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I N T E G R A L  C U R V A T U R E S ,  O S C I L L A T I O N  A N D  

R O T A T I O N  O F  S P A T I A L  C U R V E S  A R O U N D  A F F I N E  

S U B S P A C E S  

D. NOVIKOV, S. YAKOVENKO 

ABSTRACT. The main result of the paper is an upper bound for the 
oscillation of spatial curves around geodesic subspaces of the ambient 
space in terms of the integral geodesic curvatures of the curves. 

Let M n be the Euclidean space R n, the projective space pn, or 
the sphere S n equipped with the Riemannian metric of Gaussian cur- 
vature c(M) = 0,1 or r - ~  > 0, respectively, and _P C M be a smooth 
curve parametrized by the arc length s E [13, s 

For these curves the (geodesic) Frenet curvatures ~Cl(S),... , 
~n- l (s )  can be defined, the last one up to the choice of sign in the 
nonorientable case of F a. The general/red inflection points are defined 
by the condition that  the last curvature ~r (s) vanishes. 

We prove that  the number of intersections of F with an arbitrary 
afflne hyperplane Ln-1 C R n (respectively, any equator of codimen- 
sion 1 in the sphere or a projective hyperplane in pn) can be at most 
1/vr times the sum woKn(r) + w lKn- l (P )  --b . . .  --F IVn-lKl(F) -~ 
wnKo( F) -b Wn+ l K - l  ( F), where 

KI(F) . . . . .  K n - l ( r )  are (absolute) integral Frenet curvatures of P,  
Kn(l") = lr • (number of generalized inflection points), 
K0(F)  = cl /n(M) �9 IF[, where ]17 is the Riemannian length of F,  
K _ I ( F )  = 0 or lr is 7r/2 times the number of endpoints of F, 
w0 ---- wl ---- 1, w2 = 2, wj ---- j - 1 for j / >  3 are the universal weights. 

For curves in the Euclidean case M ---- R n a similar estimate can 
be found for properly defined rotation around a~ne subspaces of ar- 
bitrary dimension k between 0 and n - 2. We show that  this rotation 
can be at most w 0 E k + l ( _ P ) + . . . + w k - l K l ( F ) + w k + l K - l ( F ) ,  where 
the term wkKo(F) is missing since c(R n) -- 0. 

The proof is based on arguments from integral geometry (also 
called geometric probability) and nonosciUation theory for ordinary 
linear equations. 
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1. OSCILLATION AND ROTATION AROUND AFFINE SUBSPACES 

The principal question posed in this paper can be formulated as follows: 
given a smooth curve F in the Euclidean space R n with the known integral 
Frenet curvatures fr  IxJ(s)l ds, j = 1, . . .  , n - l ,  find an upper bound for the 
number of intersections of F with any affme hyperplane A c R n, dim A = 
n - 1, and, more generally, estimate from above the "rotation" of F around 
any affine subspace of codimension greater than 1 (the notion of rotation 
needs yet to be defined). 

This problem was studied in various settings in numerous publications 
(especially the hyperplanar case). Our work was inspired by the beautiful 
paper by John Milnor [1], in which many ideas developed below were already 
present. 

We start with the set of definitions and list some known results concerning 
oscillatory properties of curves, referring to them as Facts. One of these 
facts, a theorem by Shapiro [11], [12], is a topological rather than metric 
assertion that  implies a metric result that we formulate as Theorem 1. 

Then the main result of the paper, Theorem 2, is formulated. The proof 
of Theorem 2 is given in Sec. 2. It rests on two auxiliary results from inte- 
gral geometry (a multidimensional generalization of the Fs theorem and 
the averaging property of the rotation index), and a variation on the theme 
of the P61ya theorem. The proof of Theorem 2 is derived from these auxil- 
iary results, which, in turn, are proved in Sec. 3 and Sec. 4 respectively. In 
Subsec. 1.5 we formulate and in Subsec. 2.5 prove the counterpart of Theo- 
rem 2 for spherical and projective curves. The last section, Sec. 5, contains 
an alternative proof of Theorem 2 for curves in $3 using isoperimetric in- 
equalities on the sphere. 

Acknowledgments. We are grateful to Askold KhovanskiY for acquainting 
us with the beautiful realm of integral geometry. Misha Shapiro explained 
to us how their result from [11], [12] is related to the P61ya theorem. Many 
other people made valuable remarks and expressed great interest concerning 
the subject of our work. This paper was given its final form when we enjoyed 
the hospitality and creative atmosphere of Laboratoire Pierre Fermat in 
Universit~ Paul Sabatier (Toulouse). 

1.1. Se t t ings  a n d  definit ions.  Everywhere below IXI means the natural 
measure of the set X (the number of points if X is a discrete set, the length 
of a curve, the area of a surface, etc).. 

We consider a smooth curve F in the Euclidean space R n, parametrized 
as t ,-~ xCt), t E X = [O,l], xCt) = (xl(t) , . . . ,z~Ct)) E R n. Sometimes we 
assume that the parametrization is naturaJ, i.e., the parameter is the  arc 
length measured along F; in this case we denote it by s. 
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1.1.1. Integral curvatures and integral inflection. We denote by vk(t), for 
k -- 1, . . . ,  n, the vectors of the osculating frame: by definition, 

d k 
vk: I --* R ~, t ~ vk(t) = -~-~x(t), k= l,...,n. 

Defini t ion 1 ( regular  curves,  inflections, hyperconvexi ty ) .  A pa- 
rametrized curve/ '  is regular if the first n - 1  vectors vk(t), k -- 1 , . . . ,  n - 1 ,  
are linearly independent for all t E I, whereas the complete set {vk(t)}~= 1 
is linearly dependent only at isolated points of F. The points where the 
osculating frame degenerates are called (generalized) inflection points, by 
nalogy with the planar case. A curve without inflection,points is said to be 
hyperconvex. 

Remark. By the Thorn transversality theorem, a generic smooth curve is 

For the regular curve F parametrized by the natural parameter s (the arc 
length), the osculating frame {vk(s)}~ admits orthogonalization; in other 
words, the tuple of smooth vector functions e l (s) , . . . ,en(s)  can be con- 
structed in such a way that 

(1) for any k between 1 and n -  1 the vectors v l ( s ) , . . . , v k ( s )  and 
e l (s ) , . . . ,  ek(s) span the same k-dimensional space and the angle 
between ek(s) and vk(s) is always acute, 

(2) all vectors e l (s) , . . .  ,en(s) taken together constitute a positively 
oriented orthonormal frame for all s E I. 

Since the frame {ek} is orthonormal, the vectors ek -- e~(s) satisfy 
the system of linear equations with the antisymmetric matrix of coeffi- 
cients A(s) -- {a~j(s)}~,j= 1. The additional observation that the derivative 

~sek(s) must belong to subspace spanned by e l (s ) , . . . ,  ek+l(s) implies the 

that aij(s) - 0 for all i , j  such that li - J l  ~ 2, and the system must have 
the form of the Frenet [ormulas 

 ek(s) = ek-i(s) +  k(s) ek+1(s), k= l,...,n, (1.1) 

(assuming x0 = xn -- 0, eo = e~+1 ----- 0). The numbers xj = xj(s), defined, 
in fact, by the Frenet formulas (1.1), are called Frenet curvatures. For 
regular curves the first n - 2 curvatures are everywhere positive whereas 
the last one, x~-1(s), changes sign at inflection points. 
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D e f i n i t i o n  2 ( i n t eg ra l  c u r v a t u r e s ,  i n t e g r a l  in f l ec t ion) .  For k = 1, 
. . . ,  n - 1 we define the kth integral curvature of F as 

e 

K,J_r') = f Ixj(s)l as 
0 

if the curve is parametrized by the arc length s; for an arbi t rary parametriza- 

tion t this natural ly gives the value Kj(/~) = f :  Ix j ( t ) [ .  [[Vl(t)[[ dr. Note 
tha t  for all k ~< n - 2 the Frenet curvatures x j  are positive, and, hence 

I  (s)l = , , jCs) .  
The  integral inflection is defined as 

K . ( F )  = ~rK~Cr) = ~r. I{t e I :  ~ - l ( t )  = 0} 1, 

where K n ( F ) : =  [{t: Xn_l(t) = 0}[ is the number of inflection points on F.  

1.1.2. Oscillation and rotation around a]j~ne subspaces. Let L be a linear 
subspace in R n and A = a -t- L be an affme subspace of dimension dim L = 
dim A = k, 0 ~< k ~ n - 1. We define the oscillation of F around A if 
dim A = n -  1 and rotation around A if dim A ~< n -  2 as the angu/ar length 
of T as seen from the origin in the direction orthogonal to L (resp., as seen 
from the point A N A • in the direction A• The formal definition is given 
first for linear subspaces and then for affine subspaces. 

D e f i n i t i o n  3 ( sphe r i ca l  i n d i c a t r i x ,  a n g u l a r  l e n g t h ) .  If  /~ E R n, 
n >/2, and 0 ~ F,  then the spherical indicatrix o f / "  is the spherical projec- 
tion of /~ on the unit sphere S n -  1 from the origin. The  angu/ar length of/~ 
is the (spherical) length of its indicatrix. 

D e f i n i t i o n  4 ( r o t a t i o n  a r o u n d  l i nea r  s u b s p a c e s ) .  If L C R n is a 
linear subspace of dimension k = d i m L  ~< n - 2, disjoint from F,  then 
the rotat ion f~(r', L) of/~ around L is the angular length of the orthogonai 
projection of F on L • along L. 

If d i m L  = n - 1 (i.e., L is a linear hyperplane) and L is transversal to 
F,  then F~(/~, L) is defined as ~r-IF N L]. 

D e f i n i t i o n  5 ( r o t a t i o n  a r o u n d  aff ine  s u b s p a c e s ) .  I fA  = L+a is an 
affine subspace transversal to /~ ,  then ~(/~, L + a) is defined as ~ ( F  - a, L), 
where F - a is the parallel translate of P.  

For an arbi t rary affme subspace A C R ~ of positive codimension we 
define F~(P, A) as the upper limit of ~ (P ,  A~) as e --~ 0 +, where A~ is an 
affine subspace parallel to A and e-close to it. 

Finally, we introduce the characteristics ~k (F)  for all k -- 0 , 1 , . . .  , n -  1, 

~ ( r ) =  sup n(r,A), 
dim A = k  
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where the supremum is taken over all affine subspaces of dimension k. 

1.1.3. Remarks. For a plane curve the angular length is the total variation 
of the argument along the curve. If F C R 2 is closed, then (21r)-lf~(F, 0) 
gives an upper bound for the topological index of F with respect to the 
origin. 

Therefore, for any subspace A of codimension 2 and a closed curve F the 
value (2~r)-lf~(F, A) majorizes the//n/ring number between F and A. 

For hyperplanes, the definition of rotation is given separately and may 
seem somewhat artificial. The reason for this is rather simple: for the "unit 
sphere" {:t=1} = S O C R 1 the geodesic distance between antipodal points is 
not defined whereas for all other spheres S k C R k+l, k > 0, it is equal to ~r. 
If we extend the definition of the geodesic distance for the sphere S O in the 
appropriate way, then the definition of 12(F, L) will becbme more uniform. 
Similar reasons motivate the occurrence of the factor ~r in the definition of 
the integral inflection. 

Besides, in Sec. 3 we prove several results, concerning average values of 
integral curvatures and rotations. It turns out that  they remain valid for 
the last "curvature" K ,  and the hyperplane "rotation" 12,_1 if the factor 
~r is properly placed in their definitions. 

1.2. N o n o s c i l l a t i o n  t h e o r e m s :  s t a r t i n g  po in t s .  After all the defini- 
tions are given, we list some known results in the spirit of the implication 
"bounded curvatures ==* bounded rotation." In order to write in a si- 
milar way the inequalities concerning both closed and nonclosed curves, we 
introduce the notation IOFI for the number of endpoints of the curve F: 
this number is zero if F is closed, 2 if F is simply connected, etc. 

1.2.1. Rotation around hyperplanes. The simplest case, in fact, an elemen- 
tary exercise, concerns an oscillation of plane curves F C ]12 around straight 
fines. 

Fac t  1 (see, e.g., [1]). 

ill(F) <<. g~(r)  + K2(F) + r 1Orl. (1.2) 

The proof is based on the Rolle theorem and the following observation: 
if the tangent vectors at two endpoints of the curve are parallel to the same 
fine, then either the integral curvature of the curve is at least lr, or there 
should be an inflection point. 

Most other results concerning the oscillation around hyperplanes are for- 
mulated on the assumption that  the curve is hyperconvex. Perhaps, the 
most general among them is a corollary from the theorem by Shapiro [11] 
(see also [12]). The Shapiro theorem is topological and concerns osc//- 
fating curves in ]1'~. In an obvious way, for any curve in ]1" the lower 
bound 12,~_l(F)/> 7rn is valid since there always exists a hyperplane passing 
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through n arbitrary points of the curve. The curves for which fln_l(F) = zrn 
are nonoscillating (for obvious reasons) and oscillating otherwise. The 
Shapiro theorem asserts that if a curve is oscillating, then its osculating 
frame makes, in some sense, a full turn in the flag space (see 2.2.3 below 
for the exact formulation; we derive this theorem as a corollary of our main 
result). Since the velocity of rotation of the osculating frame is naturally 
measured by the Frenet curvatures, this observation implies the following 
sufficient condition for nonoscillation. 

T h e o r e m  1. I f  the curve I ~ C R n is hyperconvex and 

f 1 (1.3) + . .  + < 
n--(v/~ ' 

P 

then the curve is nonoscillatin9, i.e., fin_l(1 ~) = Irn. 

The proof of this theorem is given below in Subsec. 4.3. Since any regular 
curve can be partitioned into v- lKn(1  ~) + 1 hyperconvex pieces and any 
one of these pieces can, in turn, be subdivided into sufficiently short arcs 
satisfying (1.3), we can give the following corollary. 

Coro l l a ry  1. 

f~n_l(_r') ~< lrn + r V ~ n  2. [KI(F) + - - .  + Kn- l (F)]  + nKn(P) .  (1.4) 

This inequality, however, cannot be accurate enough since any connection 
between nonoscillating arcs is lost. The main result of this paper, Theo- 
rem 2, gives a better value (linear in n) for the coefficients (note that  as 
n grows, the largest coefficients on the r'ght-hand side have the order of 
magnitude of n2). Some other particular results concerning the oscillation 
of hyperconvex curves around hyperplanes are mentioned in [11]. 

1.2.2. Rogation of subspaces of codimension >/2. This group of results is 
less numerous. Two main examples are the Milnor theorem pn a linking 
number between closed curves and straight lines in R 3 [1] and a theorem by 
Khovanskil and the second author [6] on the rotation around points. 

Fac t  2 (cf. Miinor [1, Theorem 3]). 

VF C ~3 fll(F) <. KI(F) Jr K2(F) + lr [OF[. (1.5) 

In fact, Milnor writes an upper estimate for the linking number between 
a closed spatial curve and any straight line in R 3, but his arguments also 
prove a stronger result concerning the rotation, which can be derived using 
the averaging principles described below, from estimate (1.2). 

The following result gives an upper bound for the rotation of F around 
any point and is valid in all dimensions. 
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Fact  3 (Khovanskff and Yakovenko [6]). 

IOrl. V/" c R~ no(r)  <~ K~(r) + (1.6) 

1.3. Fo rmula t i on  of  the  main  result .  Inequalities (1.2) compared to 
(1.5) and (1.6) suggest that in the general case an upper bound for Ok(F) 
can be found in the form of a weighted sum of the integral curvatures K1 (F) 
through Kk+I(F), with a constant term added if the curve is nonclosed; 
besides, one can hope that the weights can be chosen independeatly of the 
dimension n of  the ambient space. Our main result claims that this hope 
can indeed be justified. 

Let F C R n be a smooth regular curve with IOFI endpoints (i.e., not 
necessarily connected). 

T h e o r e m  2 (main) .  The oscillation of any regular curve F satisfies the 
following inequalities: 

f~o(r) ~ ~rlOFI + gl(r), 

nl ( r )  ~< ~lOrl + KI(F) + K2(F), 

02(F) <<. 3rlOFI + 2KI(F) + K2(F) + K3(F), 

n3(r)  ~< 2rl0rl + 2Kdr )  + 2K2(_r) + K3(r) + K4(r), 

and, in general, for any k ~ n - 1 we have 

k + l  
1 

nkcr) < 5~(k + l)10rl + ~ wk+l- jKj (F) ,  (1,7) 
j=l  

where the sequence of weights 

w 0 = w l = l ,  w 2 = w 3 = 2 ,  w j = j - 1  for j = 4 , 5 , . . .  (1.8) 

is universal. 

The inequality for On-1 implies the sufficient condition for nonoscillation. 

Coro l l a ry  2. A hyperconvex curve whose integral Frenet curvatures are 
small enough to satisfy the inequality 

n - 1  

~._~gAr)  < ~ (1.9) 
j = l  

is nonoscillating. 



164 D. NOVIKOV, S. YAKOVENKO 

This inequality is stronger than (1.3). In fact, one could well add to the 
left-hand side the last "curvature" and drop the hyperconvexity assumption 
since Kn(1 ~) >1 ~r for curves with inflections 

1.4. Remarks. Inequalities (1.7) give an upper bound for the number of 
intersections of F with any affine hyperplane. However, most hyperplanes 
intersect F at substantially smaller number of points. In particular, a ran- 
dom uniformly distributed hyperplane passing, say, through the origin (in 
order to avoid noncompactness of the set of all affine hyperplanes), intersects 
F at no more than ~r-IK1(.r ') + 1 points. 

It is interesting to observe that the estimate established by Theorem 2 
is stable with respect to the dimension of the ambient space: if we fix k, 
then the upper bound for f~k(F) is independent of the dimension n. This 
fact suggests that the analog of Theorem 2 also holds for curves in infinite- 
dimensional Hilbert spaces. 

Inequalities (1.7) are sharp for small k ----- 0, 1 and perhaps for k = 2. All 
the way around, inequality (1.3) is not sharp even for small n. It is clear 
from Subsec. 4.3 how the latter can be improved, although at the price 
of rather sophisticated computations. However, one can relatively easily 
establish the implication 

7r 
KI(/~) + K2(F) < ~ ==~ /~ is nonoscillating, (1.10) 

for three-dimensional hyperconvex curves (see Subsec. 4.4). But even this 
result is inferior to the inequality 2/(1 ( F ) + / ( 2  (/~) < ~r guaranteeing nonos- 
cillation of hyperconvex three-dinmnsional curves, a special case of (1.9) for 
n = 3 and/(3  (~P) = 0. 

The final remark concerns the choice of the weights wj in (1.8); obviously, 
without discussing this matter it is not possible to analyze the sharpness 
of the inequalities obtained. This choice is defined by Lemma 4 on the 
roots of solutions to linear ordinary differential equations; see Sec. 4. From 
a geometrical point of view the integrand appearing in (1.3) seems to be 
more natural (it admits interpretation as the angular velocity of rotation 
of the osculating orthogonal frame of a curve). However, reasonably sharp 
estimates involving f r ( ~ ( s )  + . . .  + X2 1(8)) 1/2 ds are not yet available. 

1.5. Spherical and projective curves. The main result admits reformu- 
lation for spherical and projective curves. Recall that for any Pdemannian 
n-dimensional manifold M r* and any sufficiently smooth curve F: [0, g] --* M 
one can define the osculating frame vj( t)  E Tx(t)M, j = 1 , . . . ,  n, in the same 
way as for curves in a Euclidean space, and this frame can be similarly or- 
thogonalized with the only exception that the last vector en (t) is defined 
modulo multiplication by 4-1 for the nonorientable manifold M. 
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1.5.1. Geodesic curvatures. We denote by V the operator  of covariant dif- 
ferentiation with respect to the natural  (Levi-Civita) connection compatible 
with the metric on M. Then, assuming that  the curve is parametrized by 
the arc length, one can easily see that  

V~i(0e~(t) = ~ _ l ( t ) e ~ _ l ( t )  + ~ ( t ) e j+x ( t )  j = i , . . . ,  n, (i.ii) 
with the s tandard convention that  eo(t) -- e,~+i(t) -- 0. The  functions ~j( t ) ,  
defined by (1.11), are called geodesic Frenet curvatures (in the nonorientable 
case only the modulus of the last curvature •  (t) is defined). However, 

the integral geodesic curvatures R'j(/~), j = 1 , . . . ,  n, relative to M,  make 
sense: the last one is lr times the number of points, where ~-n-i vanishes. 

We will be interested in the two simplest Riemannian manifolds: 

�9 the sphere r �9 S n of radius r > 0 that  inherits "its metric from the 
embedding in the Euclidean space R n+i, and 

�9 the real projective space pn obtained as a quotient space of the 
unit sphere Sn by identifying the opposite points •  The spherical 
metric induces the Fubini-Study metric on ~n: the length of each 
line is equal to ~r. 

1.5.2. Oscillatory behavior on S n and in ]~. For a spherical curve it makes 
sense to ask how many times it can intersect an equator, the nearest analog 
of a hyperplane. For projective curves one may look for an upper bound for 
the number of intersections with any projective hyperplane of codimension 
l i n ~ .  

The  following two corollaries of Theorem 2 giving answers to these ques- 
tions are proved in Subsec. 2.5. 

T h e o r e m  3. Let 1" C r .S n be a spherical curve with ~ e  geodesic integral 
curvatures ~Tj(F), j = 1 , . . . ,  n, of the spherical length Ko(F) = II~[. Then 
F can intersect any equator (embedded sphere r .  S n - l )  at no more than 

 nl0rl + + (1.12) 
5----1 

isolated points, where wj are the same as before (1.8). 

The  upper bound (1.12) turns into (1.17) in the limit r -* +r as one 
could expect. As a natural corollary, we obtain a similar result for projective 
c u r v e s .  

T h e o r e m  4. The projective curve 1" C ~ of length K0(T') = IF[ in- 
1 

terseets any projective hyperplane pn-1  C ~ at no more than ~nlOU I -t- 

~'~j=O wn-jgj  ( F) /Tr points. 
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Remark. The boundary term can be incorporated into the sum of integral 
curvatures without changing the law (1.8) for the weights if we set 

7r F go(F)  = el/~[17, g_1(_r') -- ~]0 l, (1.13) 

where c = c(M) > 0 is the Gaussian curvature of the ambient manifold M 
in each of the three cases, M = R '~, r �9 S '~, or p n  The universal relation 
embracing all these cases will then have the form 

Ir x (number of intersections with any "hyperplane" ) ~< 
n 

< W n + l g - l ( r )  + wnKo(g) + . "  + woKn(F) -~ ~ w n - j K i ( r ) .  (1.14) 

However, this relation is justified only a posteriori. It seems to be an intrigu- 
ing problem to find a direct proof of (1.14) for other classes of manifolds. 

2. DEMONSTRATION OF THE MAIN RESULT 

This section is the core of the paper. The two main components of the 
proof are the averaging lemmas for rotation and integral curvatures belong- 
ing to the realm of geometric probability (also called integral geometry), 
and a variation on the theme of P61ya [8] on zeros of solutions of linear or- 
dinary differential equations that admits reformulation in geometric terms. 
In this section we derive Theorem 2from these results. The demonstration 
of the two integral geometric lemmas is postponed until Sec. 3, and the 
F61ya theorem and its generalizations are discussed in Sec. 4. 

2.1. Geomet r ic  Probabi l i ty .  From now on we will deal with only linear 
(not affine) subspaces of the ambient Euclidean space R n. By S n-1 we 
denote the standard unit sphere with the Lebesgue ( n -  1)-dimensional 
measure dan-1. For p E S n-1 we denote by Rp the line spanned by p; if 
L C R n is a linear subspace, then L • is its orthogonal complement, and 
PL: R'* --* L • is the orthogonal projection on L • along L. If L -- Rp, 
then we write p• and Pp instead of (Rp) -L and P2p respectively. Sometimes 
instead of L • and p• we will write R~ -k and R~ -1, where k = dimL. 

2.1.1. Averaging integral curvatures. The first main result means that each 
integral curvature Kj (F) can be restored by averaging the corresponding 
integral curvatures of the orthogonal i~rojections Pn(F) in a random di- 
rection. Note that Pp(/~) is a hyperplane curve and as such possesses a 
complete set of integral curvatures Kj(Pn(F)), j = 1 , . . . ,  n - 1, relative to 
the hyperplaue p• (as usual, the last one is the integral inflection of the 
corresponding projection). 
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L e m m a  1. 

V j - -  1 , . . . , n -  1 K#(r) = 1 / lS, _ l K#(P,,(F)) (2.i) 
$,,-,. 

Here {S'*-i{ stands for the ( n -  1)-dimensional volume of the unit sphere 
S ~-1 C R ~. 

Remark. The factor ~r was introduced in the definition of Kn to make 
this relation valid for j -- n - 1. However, the proof for this case requires 
special considerations. 

Remark. The case n = 3, j = 1 (averaging property of integral curvature 
for spatial curves), is known as the F~ry theorem [4]. In fact, minor modi- 
fications can be made to extend the proof of F i r y  for any n (and j = 1, as 
before). 

The case n = 3, j = 2 (integral torsion of spatial curves) was proved 
by Milnor in [1]. The proof given by Milnor with only minor modifications 
works for any n and j = n - 1. 

The averaging property for intermediate curvatures seems to be a new 
result. 

Remark. In general, the projection of a regular curve is not a regular 
curve: it can even be nonsmooth, as the simplest examples already show. 
However, from the Sard theorem it follows that  the Lebesgue measure of 
directions p E S '~-i corresponding to "bad" projections is zero, and, hence 
one may disregard these pathologies when computing the average. 

2.1.2. Averaging rotation. Let L be a linear subspace of dimension k ~ n - 2  
and p E S n-1 be a vector on the unit sphere. Then, for almost all p, the 
linear sum L + Rp is a (k + 1)-dimensional subspace. 

Lemma 2. 

~ ( r ,  L) = 1 f ~ ( r ,  L + •p) d ~ - l ( p ) .  (2.2) 
Is - H S,~-i 

Remark. The factor ~r is introduced in the definition of ~(F,-)  for hy- 
perplanes in order that  this equality would remain valid for subspaces L of 
dimension n - 2. 

As before, the fact that  for a metrically negligible set of directions the 
subspace L -F Rp degenerates does not affect the integral. 
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2.2. Flags,  inflections and  oscil lat ion a round  hyperp lanes .  The 
second (analytic) component of the proof of Theorem 2 is introduced in this 
section. The principal result of it is an inequality relating the number of 
intersections of a space curve with an arbitrary affine hyperplane, with a 
number of inflection points of orthogonal projections of this curve onto a 
family of (linear) subspaces of all intermediate directions. 

2.2.1. Flags. Recall that a (complete) flag s in the linear n-dimensional 
space L is a chain of embedded linear subspaces of L of increasing dimen- 
sions: 

f~ ~- (Lj}jn=o, 0 = Lo ~ L1 C L2 ~ .." ~ Ln-1 ~ Ln -- L, d i m L j  = j .  

If v l , . . . ,  vn is any ordered tuple of vectors in n, then the flag spanned 
by this tuple is the flag whose j th  subspace is spanned by the first j vectors. 
Any orthogonal frame e l , . . . ,  en can be almost uniquely restored from the 
flag it spans: the map 

(e l , . . . ,  en) ~-* (Span(el), Span(el, e2) , . . . ,  Span(el , . . . ,  en)) 

is a covering of the Hag variety by the orthogonal group SO(n) with the 
discrete fiber of 2 n-1 points. 

2.2.2. Inflections relative to a flag and the Third Principal Lemma. Let 
?% !" C R n be a regular curve and s = {Lj) j=I ,  Ln = R n, be a complete flag. 

We denote by/~j the orthogonal projection of/~ on Lj parallel to L~- for all 
j = 1 , . . . ,  n, so tha t / 'n  = P. Each Fj is a j-dimensional curve and as such 
possesses j integral curvatures Ki(Pj),  i = 1, . . .  , j .  The last of them is the 
(relative) integral inflection Kj(Fj )  = lrvj, vj = vj(l", s  e Z+, where vj is 
the number of inflection points of the projection Pj. 

Remark. We have extended the notion of an inflection point for para- 
metrized "curves" in RI: by definition, the inflection point of the "curve" 
t ~-* x(t)  E R 1 is the point where the Wronski determinant (Vl) --- Ix'(t) I 
vanishes, in other words, the critical point of the map x(.) : [0, t] -~ R 1. The 
"curve" is hyperconvex if it has no "inflections." This convention will be 
adopted from now on. 

Now we can formulate the main result of this subsection. Let w0, wl, 
w2,. . ,  be the sequence of weights introduced in (1.8). 

?% L e m m a  3. I f  1" C R n is a regular curve and 1: = (Lj}j= 1 is a com- 
plete flag such that the orthogonal projection of 1" onto Lj  has 0 ~ vj  = 
vj (1, ~.) < cr inflection points, then 
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(1) the curve F intersects any aJj~ne hyperplane at no more than 

(2) 

?% 

i--1 

isolated points, so that 

~ �89 + 
j--1 

(2.3) 

the velocity curve/~: [0,g] 9 t ~-~ 5c(t) e R n intersects any linear 

1 1)[0PI + ~ j = i  wn- j  j isolated hyperplane at no more than ~ ( n -  n u 

points. 

This result is a geometric version of a theorem by P61ya [8], [9] on the 
zeros of solutions of linear ordinary differential equations (1922). The proof 
of Lemma 3 is given in Sec. 4 together with a discussion of related topics 
and some historical notes. 

2.2.3. Digression: Shapiro theorem. As a corollary of Lemma 3 we obtain 
a condition describing osci//ating (i.e., nonnonoscillating) curves. 

Coro l la ry  3. If  I ~ C R "~ is oscillating, then, for any complete flag •, 
the projections ff j C Lj cannot be all hyperconvex: 

vl(F,E) + . . .  + vn(P, Z) > 0. (2.4) 

In fact, the assertion of Coronary 3 can be formulated more naturally, 
using the notions of an osculating f/ag and the trar~versa/ity of flags. 

Def ini t ion 6. Two flags E and/: '  = {L~} in the same space are traasver- 
sa/if, for any pair of indices i, j such that i + j />  n, the subspaces Li and 
L~ are transversal. 

The flag/: '  is said to be orthogonal to the flag E if its subspaces are or- 
thogonal complements of the subspaces of Z: (naturally, taken in the reverse 

i • order): Lj = L,~_j, j = 1 , . . . , n .  The flag orthogonal t o / :  is denoted by 
/~• 

If L = R n and an orthogonal coordinate system is fixed by specifying an 
orthogonal frame e l , . . . ,  en, then the standard Bag s = {Ej}~= 0 is spanned 
by the basis vectors. The orthogon'al flag E • is sometimes referred to as the 
antipodal flag. 

Defini t ion 7. The osculating flag s of the regular hyperconvex curve 
F is a (variable) flag spanned by the osculating frame. 
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Remark. If a curve has inflection points, then at these points the oscu- 
lating frame does not span a flag (or, more precisely, the flag spanned by 
the frame is not complete) since the vectors from the osculating frame are 
linearly dependent. However, since we have assumed regularity of the curve, 
all k-dimensional subspaces of the osculating flag are well defined for k < n, 
and for k = n we assume that the last subspace is always R n. 

From these definitions it is almost obvious that if x ~ F is a point on the 
curve, which becomes an inflection point of the projection 1"j, then the j t h  
subspace of the osculating flag Z:/.(x) is nontransversal to the subspace LJ- of 
the orthogonal flag Z: • Thus we arrive at the reformulation of Corollary 3. 

Coro l la ry  4 (Shapiro  t h e o r e m  [11], [12]). / f  the hyperconvex regu- 
lar curve 1" C R n is oscillating, then, for any complete flag 1~, there exists 
at least one point x E 1" such that f~r (x) ~ f.. 

In fact, this theorem is valid also for projective curves. It should be 
pointed out that the Shapiro theorem generalizes, to a certain extent, the 
Rolle theorem (consider the ease of plane convex curves). There are some 
other Rolle-type theorems; see [6], [7]. In addition, the (classical) Rolle 
theorem is the key tool in the demonstration of Lemma 3; see See 4. 

2.3. D e m o n s t r a t i o n  of  T h e o r e m  2 for hyperplanes .  To prove Theo- 
rem 2 for hyperplanes and estimate On-x(/'), we construct a flag /2 = 

n {Lj}j= 1 in such a way that the weighted sum of integral curvatures for the 
projection 1"j of 1" = 1"n on each subspace Lj, 1 ~< j ~< n, is bounded in 
terms of the weighted sum of curvatures of the original curve. This auto- 
matieally provides upper bounds for the corresponding integral inflections 
of the projections, and therefore it remains to apply Lemma 3 in order to 
estimate the number of intersections. 

The construction of the f lag/:  is carried out by induction on the codi- 
mension of the subspaces. Let w0, Wl, . . . ,  w,,-1 be the weights (1.8) and 

T(1") = Wn- lK l (P)  + " "  + WlKn-l(1") + woKn(P) 

= Wn-lKl(1") + " "  + w l K , - I ( P )  + 7rwo~,~ 

be the weighted sum of the integral curvatures, where ~'n is the number of 
inflection points of 1". 

The sum of the first n - 1 terms admits averaging: by Lemma 1 the 
rt--1 value Y~'~j=I wn-jKJ(1") is equal to the average value of the function X(P) = 

n- -1  ~ j = l  wn-jKj(Pp(1")) on the sphere S n- l ,  where Pp(1") is the orthogonal 
projection of r '  onto the hyperplane p"  parallel to a random vector p E S,,-1. 

The function X(P): Sn-1 _., R does not exceed its average value at some 
point p E S n-1. We denote the corresponding normal hyperplane by Ln-1  = 
p•  (it will play the role of the (n - 1)-dimensional subspace of the flag s 
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the projection of F onto L,~-I by F,~-I, and the number of inflections of 
this projection by v7%-1. Then 

w.-1Kl(Fn-1)  + " "  + w2K.-2(F,~-I) + rwlvn-1 + ~rwoun <~ T(F).  

The procedure of averaging can be repeated once again, this time applied 
?%--2 to the truncated sum 5"~= 1 w,~_jKj(F,~_I), and a subspace Ln-2 C L . -1  

of codimension 1 in L,~_I and, hence, of codimension 2 in ~'~, can be found 
such that for the projection/".-2 of F onto L,~_2 one has the inequality 

?/)r,_lKl(Fn_2) J r - "  -~- %u3K?%_3(Fn_2) -~- 7rw2vn_ 2 -~- 

+ Irwlu?%-i + ~rwou?% <. T(F), 

where, obviously, ~',~-2 is the number of inflections of the curve F,~-2 C 
L,,-2. 

Iterating these arguments n times, we construct all subspaces L . -1 ,  
L,~-2, . . . ,  L2, L1 of  the  flag L, and for the number of inflection points 
of the corresponding projections we have the inequality 

~(w.-1~1 + ' "  + wlu~,_l + woV,~) <~ T(F).  

Applying the first assertion of Lemma 3, we infer that the number of points 
of intersection of F with any affme hyperplane does not exceed n]cgFI/2 + 
T(F)/~r, and, hence the oscillation satisfies the inequality 

?% 

fl?%_1(F) <<. 2 ~rnlOF] + T(F) = l~nlOF I + ~ wn_jKi(F ), 
j= l  

The proof for the codimension 1 case is complete. 

2.4. D e m o n s t r a t i o n  of  T h e o r e m  2 in t he  general  case. The proof in 
the general case is carried out by induction on the codimension of subspaces, 
the hyperplane case being the base of induction. 

Suppose that the inequalities of Theorem 2 are already established for 
all codimension c subspaces and any dimension of the ambient space (c --- 1 
corresponds to hyperplanes). Take a linear subspace L of dimension k - 1 
and codimension c +  1, so that n = c+k.  Now let p be a variable vector on 
the unit sphere in S 7%-1 and Pp be the corresponding orthogonal projection 
onto Hp := p l .  Then for almost all p the projection Lp := Pp(L) C 
Hp has dimension k -  1, and, hence, codimension c, and therefore, for 
the projection Fp = Pp(P) we know by the induction assumption that the 
oscillation (relative to Hp) satisfies the inequality 

k 
Vp e S '~-I ~(F~,,L1,;H~, ) <~ l~rklcgFp[ -F ~_wk_jKj(Fp;H~,), (2.5) 

j = l  
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where ~(.,-; Hp) is the oscillation around k -  1-dimensional subspace Lp C 
Hp and wj are the weights introduced in (1.8). 

Note that 

nCr,,, L,,; Hp) = L + ap; R") (2.6) 

since both sides are, by definition, the angular lengths of the same curve in 
n Hp = (L + Rp) 1 

The number of endpoints [cgFpl is the same as IcOT'l for almost all p. After 
averaging inequality (2.5), we infer from (2.6) and (2.2) that the left-hand 
side turns into ~(T', L) by Lemma 2, and the average of the right-hand side 
by Lemma 1 and the linearity is the weighted sum of integral curvatures of 
the original curve f'. Thus the inequality 

k 

i----1 

is established for subspaces of codimension c + 1 as well, and, hence, by 
induction, Theorem 2 is proved in full generality. [] 

2.5. Osci l lat ion of  spherical  and p ro jec t ive  curves:  p r o o f  o f  T h e -  
orems  3 and  4. The basic case is that of curves on the unit sphere S '~-1. 

Consider a regular curve r parametrized by the arc length. Its velocity 

curve/~: t ~-* 5(t) = ~--;x(t) belongs to the unit sphere S n-1  C •n. If at 

the end of the proof of Theorem 2 (the hyperplane case, Subsec. 2.3) we 
replace the reference to the first claim of Lemma 3 by the second one, we 
shall obtain an upper bound for the oscillation of/~ in terms of the integral 
curvatures of the primitive curve/ ' .  To obtain the proof of Theorem 3, it 
remains to recompute the integral curvatures of 2" in terms of the geodesic 
curvatures of T. 

If e l ( t ) , . . . , e n ( t )  is the Frenet frame for r '  then ~l(t) = e2(t), . . . ,  
e',~-1(t) = en($) is the Frenet frame for/~ considered as a spherical curve; to 
obtain the full Frenet frame for the same curve considered as a space curve, 
one needs to add go(t) -- =l=el(t), the (unitary) radius-vector of/~. However, 
the parameter t is not the natural parameter on/~ since 

=  el(t) = (t) = (t). 

The covariant derivative on a submanifold of the Euclidean space 
(equipped with the induced metric) admits the following simple descrip- 
tion (see [2, Ch. 2, 3.1]): one should take the (usual) derivative with respect 
to the ambient Euclidean space and project the result orthogonally onto 
the space tangent to the submanifold. Since the Frenet formulas have to be 



CURVATURES AND OSCILLATION 173 

written with respect to the arc length parameter s on/~, we arrive at the 
set of relations 

d dt 
v ~ , ( ~ ) ~ ( ~ )  = ~ ( ~ e ~ + l ( t ) )  �9 ~ ,  j = l , . . . , n - 1 ,  

where H --- IIt stands for the orthogonal projection onto the tangent sub- 
space to the sphere S n-1 (at the corresponding point 5(t)). The Frenet for- 

d 
mulas (3.15) for the derivatives ~-~ej(t) together with the identity dt /ds  = 

1/~r (s) immediately yield 

V~" (s)~j(s) = x~-l(s)II(-xje '~-i  + xj~j+l), j = 1 , . . . ,  n - 1, 

where e'0(s) = 5(s) is the radius-vector of /~  and ~'n _-- 0 by definition. 
In fact, the projection II leaves all right-hand sides unchanged, except for 
j = 1, where H kills the term proportional to 5(s), normal to the sphere. 
Comparing the remainder with equalities (1.11), we infer that the geodesic 
curvatures k l , . . - ,  ~n-2 can be expressed as 

~ l ( t )  --  x2 ( t )  ~r . .  ~ n - 2 ( t )  ---- =t= ~r (2.7) 
~ l ( t ) '  ~ 2 ( t ) -  ~ l ( t ) '  " ~ ( t )  " 

Since the arc length element is ds = xl(t)dr,  we finall.y arrive at the iden- 
tities relating K s (F) to the integral characteristics of F expressed in terms 
of the induced spherical metric on S'~-1: 

KI(F) = IPl, Ks(r)  = Rj_~(P), j = 2 , . . . ,n  (2.8) 

(recall that I/~1 is the length of/~). The last equality Ks(F)  = Kn-l(/~) 
expresses the fact that the vanishing points of ~r and K'n_2(t) are the 
same. The reference to the formula (1.7) completes the proof for spherical 
curves on the unit sphere since any such curve t ~ 5( t ) is the velocity curve 
of any of  its vector primitives t ~-~ x(t)  ---- f ~(t) dt (not e that the primitive 
curve needs not be closed). 

If r ~ 1, then the obvious rescaling x ~-* x / r  brings the sphere r .  S n-1 
into the unit sphere. After this rescaling the length is multiplied by 1/r,  

while the other curvatures Kj  remain unchanged. 
Finally, i f /~  C F n-1 is a projective curve, then we can consider the 

canonical S '~-1 --~ ~ - 1  which is all isometric two-sheet covering. For the 
preimage of /~  on S n-1 everything will be doubled, namely, the length, 
integral curvatures, the number of endpoints etc., but the number of inter- 
sections with the equators (hyperplanes) will also be. Thus one arrives at 
the same formula for ~ - 1  as for the unit sphere. [] 
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3. D E M O N S T R A T I O N  OF AVERAGING P R O P E R T I E S  FOR CURVATURES A N D  

ROTATIONS 

3.1. The  pr inc ipa l  formula  of  geomet r i c  probabi l i ty .  The proof of 
the two key lemmas, 2 and 1, is based on the main principle of geometric 
probability: the k-dimensional measure of a smooth k-dimensional sub- 
manifold M C_ S ~-I can be obtained by averaging the (k - 1)-dimensional 
measures of its slices. More precisely, the following identity holds for any 
smooth submanifold: 

ak(M) 1 f a k - I ( M  N n-2 sp ) 
IS~---~ = is~_l--- T J is~_ll d~_~(p) ,  (3.1) 

S,~-i 

where S~ -2 = p •  '~-1 is the (n-2)-dimensional equator o'rthogonal to the 
direction p, ak(M) is the Lebesgue k-measure of M, and a k - l ( M  N S~ -2) 
is the (k - 1)-measure of the slice cut ~om M by S~ -2. 

The general discussion of this fact can be found in [10]. We will need this 
formula in two special cases, where it can be justified by one-line arguments. 

P r o p o s i t i o n  1. The length ]q,] of the spherical curve ~/ C S ~-1 is zr 
times the average number of intersections with the random equator S~-2: 

h'l = [s._~[ 1~' n s~-=[ d~. - l (p) ,  (3.2) 
S " - 1  , 

which, Caking into account the definitions of rotation around the origin and 
the hyperplane p• is the same as the identity 

~(F, O) = 1 f ~(F,p  • dan-l~p). (3.3) 

S,~-1 

Sketch of the proof. The proof of (3.1) for k = 1, which coincides with (3.2), 
is obvious if 7 is a piece of a large circle: then the integrand on the right-hand 
side is a function equal to 1 in the spherical sector between two medians 
with the opening proportional to the length of % Hence this result is valid 
for spherical polygons, and the case of a general smooth curve is obtained 
by approximation. O 

P r o p o s i t i o n  2. For any measurable function X : Sn-1 --+ R we have 

isn_~l x(r)  d~,,_~(r) = 
s--~ 1 
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Sketch of the proo]. The formula (3.4) coincides with (3.1) for X being the 
indicator function of a full-dimensional submanifold and k -- n - 1. To 
justify (3.1) in this extreme case, it is sufficient to note that  the measure 
given by the right-hand side of (3.1) is (n - 1)-dimensional and rotation 
invariant. Thus it must coincide with the Lebesgue area a,~-l(-) modulo a 
constant factor. By taking M = S " - I ,  one can easily check that  this factor 
is in fact equal to 1. [] 

3.2. R o t a t i o n  a r o u n d  r a n d o m  subspaces  a n d  t h e  p r o o f  of  L e n n n a  2. 
We start  with elementary properties of rotation. In order to avoid confu- 
sion, we use the extended notation ~(F,  L; L 1) for the rotation o f / "  C L'  
around L C L 1. 

3.2.1. Rotation and projections. Rotation o f / "  along any subspace L is 
equal to the rotation around P-I (P(L) )  for any projection P = Pp. This 
follows from the following identity. 

P r o p o s i t i o n  3. I f  L C R n is a linear subspace, p E L is a direction 
(as usual, identified with a point on the sphere Sn-1),and P = Pp is the 
orthogonal projection from R n onto ~ - 1  = p• then 

a(/", L; R ~) = O(P(r), P(L); R~-I). (3.5) 

Remark. This construction can be iterated as many times as necessary, 
so that  for any pair of subspaces L C_ L' ~ R ~ we have 

~( /", L' ; R ~) = O( P( /"), PL( L'); L • ). (3.6) 

Assertion (3.6) in the case L = L'  coincides with the definition of ~(/", L). 

Proof. Indeed, both parts of (3.5) are the angular (spherical) length of the 
projection of / "  onto L • C ~ - 1  since PL = PP(L) oP (recall that  PL: R n --* 
L • stands for the orthogonal projection along L). [] 

3.2.2. Random one-dimensional extensions of subspaces. There are two 
equivalent ways to parametrize (k+ 1)-dimensional linear subspaces contain- 
ing the given k-dimensional subspace L. This implies an integral identity 
that  will be used later. 

P r o p o s i t i o n  4. For any/" C R n and any L C R n, d i m L  = k < n - 1, 

1 f a ( / " ,L+Rp)dan_ l (p )= Is~-I I 
S~-1 

(3.7) 

where, as usual, S~ -~-1 = S '~-I Cl L • 
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Proof. Note first that for almost all p E S '~-1 the subspace L + Rp is (k + 
1)-dimensional, while L ~ Rq is always (k + 1)-dimeusional for q E L I .  
Obviously, L+Rp = L@R. (PL(P)) for p ~ L, and for p uniformly distributed 
over S n-  1 the normalized projection PL (P)/[[PL (P)H is uniformly distributed 
in S~ -~-1. [] 

3.2.3. Proof of Lemma 2 for zero-dimensional subspaces. Let L = {0} be a 
zero-dimensional subspace. Then the assertion of Lemma 2 can be formu- 
lated as follows: 

~(F ,0) - -  1 / 12(F, Rp)da,~_l~p). (3.8) lS--ll 
a n -  1 

Substitute into (3.4) the function x(r) = 12(F, rJ'), the oscillation around 
the hyperplane r • Then, by virtue of (3.3), the left-hand side is just 
~(F, 0). On the other hand, denoting P = Pp, we have 

~(r, Rp) = a(P(r), 0; ~-1)  by (3.5) 

1 f n(P(r),qxnR~-~;R~-1)du~_~(q) by (3.3) --IS~_21 
s~-2 

- 1 _ _  f fl(P,q• by (3.5), ls--21 
S~ - 2  

which, after integration over all p G S "-1, yields the right-hand side of (3.4). 
The proof in the case dim L = 0 is complete. 

3.2.4. Proof of Lemma 2 in the general case. Consider the orthogonal pro- 
jection PL : R "~ --~ R~ -~ = L • We have 

12(F, L; R") = ~(PL(F), 0; L ~) 

1 
-iS~_k_~l f 

Sr,--~--I 

1 

_ ~ f a(r,L+RP;R'~) ~,~-I(p) 

a(PL(F), Rp; L • dqn-~-l  (P) 

12( F, L ~ Rp; R '~) dc~,~-k-1 (p) 

by definition 

by (3.8) 

by (3.6) 

by (3.7). 

Thus the assertion of Lemma 2 is proved in full generality. [] 
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3.3. In t eg ra l  cu rva tu re  of  a r a n d o m  pro jec t ion  and  t he  p r o o f  
of  L e m m a  1. Let F be a curve with an arbitrary (not necessary natural) 
parametrization [0, l ]  9 t ~-* x(~) E R n. We start with an analytic expression 
for Frenet curvatures. 

3.3.1�9 Analytic expression for curvatures. Let v l ( t ) , . . . ,  vn ( t ) be successive 
am 

vector derivatives vl(~) = ~(t), v2(t) = ~($), . . . ,  vn($) -- d--~x(t). Taken 

together, they constitute the osculating frame. 
We denote by Vk(t) = (vl(t) , �9 for k = 1 , . , . , n ,  the k-dimen- 

sional volume of the tuple v l , . . . ,  Vk: 

(vz) = llvlll, (vz, v2) = det 112 L(v2,vl) (v~,v2)J' 

and, in general, for any k = 1, 2,..., n, 

" ( v l , v l )  ( . 1 , . 2 )  "�9149 
. . .  

(Vl,�9149149 vk) = det 1/2 
�9 . �9 �9 

(obviously, (., .) is the Euclidean scalar product in R"). 
The Frenet curvatures xj (t), originally defined via the orthogonalization 

of the osculating frame, admit the following representation: 

Xk(~:) : <Vl , ' ' ' ,? ' )k - - I )  ( V l , ' ' ' , ' U k + I )  = Vk- - l ( '~ )Vk+ l ( t )  
<v1,...,vk) v (t) v (t) ' (3.9) 

vj = vj(t), k = Z , . . . , n -  1. 

Indeed, let Lk = L~(t) = Span(vl , . . . ,vk)  = Span (e l , . . . ,  ek) be the kth 
subspace of the osculating flag. Since the frame {ek} is obtained from the 

Vk 
frame {vk} by orthogonaiization, vk = - -  ek rood Lk-1. Differentiating 

Vk-1 
this equality and denoting the natural parameter by s, we obtain, from the 
Frenet formulas (3.15), 

d V~ dek d S m o d L k =  Vk 
Vk+z = -~vk = Vk-1 ds " d-t Vk-I J<kek+l ]Vl[ rood Lk. 

Vk+l 
On the other hand, we should have vk+l = ~ ea+l rood Lk. This im- 

Vk+l Vk which coincides mediately implies that Vl~<k = fv l[~ = Vk : Vk- l '  

with (3.9)�9 
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After integration, identity (3.9) takes the form independent of the choice 
of the parametrization: 

Kk(F ) = / (Vl, . . - ,  ?-)k-l) ('U1, . . . .  Vk+l) d~: --~ 
(r Vk) 2 

0 
s 

= f Vk-I (t) Vk+l (t) 
v (t) dr. 

o 

(3.10) 

If P = Pp : R n --~ R~ -1 = p "  is the orthogonal projection along the 
direction p E S n - l ,  then, by linearity, the osculating frame of P(F) is the 
frame P ( v l ) , . . . ,  P(v,,), and this identity yields explicit formulas for Frenet 
curvatttres of the projected curve. If we denote by s  = {Lj(t)}j=i'~-I the 
osculating flag ofT' spanned by the frame {vj}, then, for any k = 1 , . . . ,  n - l ,  
we have 

(P(v l ) , . . . ,  P(vk)) = sin(p, L~)- ( v l , . . . , v k ) ,  
P = Pv, vj = vj(t), Lk = L~(t) = Span (v t ( t ) , . . . ,vk( t ) ) ,  (3.11) 

and sin(p, Lk) is the sine of the angle between p and Lk defined as the 
Euclidean angle in IR '~ between p and its orthogonal projection on Lk. 

3.3.2. Demonstration of Lemma I .for k ~< n - 1. Substituting (3.11) into 
(3.10) for any k between 1 and n - 2, we obtain 

t 

Kk(P(F))  = / Vl,+l(t)Vk-l(t) . sin(p, Lk+l(t)) sin(p, Lk- l ( t ) )  dr. 
(t) sin s (P, Lk (tl) 

o 
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Denoting ~k = Vk+lVk-1/V2 = llvl ll 'xk and averaging this equality over 
p E S '~-1, we obtain 

1 f g k  (Ppir,)) dp = 
IS--ll 

g , ~ - i  

{/ } f sin(p, Lk+1 it)) �9 sin(p, L#c-1 it)) 1 da._1(p) ,~(t). ~ i ~ ( ~  ~t = 
is--~ 1 

' { / / = i ~kit) dt 1 sin(p, Lk+lit)) �9 sin(p, Lk_lit)) (!) 
iSn_ll sin2(p, Lk(t) ) d~n-l(p) = 

0 S ' ' - I  

t 

(D i = ~k(t) at 
0 

1 i sin(p, Ek+l)'sin(p, Ek-1) da, , - l (P)} = 
Sn- 11 sin 2 (p, Ek) 

Sn -- 1 

(1/ 
IS--11 

S n -  1 

= constk,n-1 .Kk(F), (3.12) 

where Ej are subspaces of the standard flag E = {Ej}~ -1. The transfor- 
mation marked by ill, the key point of all the computation, holds by the 
rotation symmetry: any three subspaces of the flag s  can be simultane- 
ously transformed into three subspaces of any other flag by an appropriate 
rotation of R '~. 

In order to carry out the proof, it remains to show that the constant 
factor, denoted by constk,,_l in (3.12), converges and is, in fact, equal to 1. 
This is done by a straightforward computation in the spherical coordinates 
on R n-1. For convenience, we replace the sphere S n-1  C R n by S n C R n+l 
endowed with the Euclidean coordinates p = (pl , . . . ,  Pn+l). Our goal is to 
prove the identity 

1 / sin(p, Ek+l) �9 sin(p, Ek-1) 
constk,n = ~ sin2(p, Ek) dan(p) 

$ -  

(3.13) 
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The sphere can be parametrized by the angles r  r as 

Pl = sin r 

P2 = cos r sin r 

P3 = cos r cos r sin r 

p ,  -- cos r cos r sin r  

Pn+l = COS r  COS Cn--1 COS Cn, 

r E (-~-/2,7r/2) V i = 1 , . . . , n -  1, r E (-~r, lr) 

so that the n-volume element on the sphere has the form 

d,o'n(P) = cos n-1 r cos n-2 r  cos Cn-1 d r  dCn-ldr 

Introducing the notation 

~/2 

Bk = / 
-~/2 

cos k 0 dO = v~ 

where r is the Euler g~mma~function, we have the identity 

2~r 
1 = ~ B,~-xB,~-="" B2B1, (3.14) 

following from the definition fs- do'.(p) = IS"I . 
The angle between the point p and the coordinate plane Ek C R n+l 

spanned by the first k coordinate vectors can be easily measured: the 
squared sine of this angle is equal to the squared length of the projection of 
p onto the remaining (complementary) coordinate subspace Ek I .  In other 
words, we have 

sin20, Ek) = COS 2 r COS2 Ck X 

• (sin 2 r + cos 2 r sin 2 r +"" + cos 2 r cos2 r = 

= cos 2 r cos 2 Ok. 

Since k ~< n - 1 (the case we are interested in), all cosines axe positive in 
the domain of parametrization, and, hence, for the integral (3.13) we have 
the expression 

f (cos r cos r r cos 
= da,~(p) 

8- 

271" / / COSr .COSn_ 1 
= ~ "'" COS Ck r  COS Cn--1 dr . �9 �9 dCr,-1. 
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Now it is immediately clear tha t  the integral converges for n -  1/> k >/1 and 
is equal to the same product (3.14) with the terms B~ and Bk+l transposed. 
Hence we have proved the identity const,,,k = 1, so that  the assertion of 
Lemma 1 is proved for all integral curvatures Kk, except for the last one, 
the integral inflection. 

3.3.3. Averaging integral inflection. The idea of the proof is the same as 
in [1]. 

Let e l ( s ) , . . . ,  en(s) be the orthogonal osculating frame of the naturally 
parametrized regular curve/~ C R n obtained by the orthogonalization of 
the frame Vl , . . . ,  vn. The last Frenet formula takes the form 

= ( 3 . 1 5 )  

Consider the curve E*, parametrized as s ~-* en(s). Since He,,(s)H - 1, 
E* is a spherical curve, and from (3.15) it follows that  

l 

= / I x ~ - l ( s ) l  ds = g ~ _ l ( E ) .  (3.16) Ir'l 
0 

Applying the formula (3.2), we conclude that  

g n - 1  (P) = ~r 

Now it remains only to note that  if the vector en(s) is orthogonal to the 
vector p E S n-1 at some point s E [0, s then the curve Pp(F) C R~ -1 = p• 
has an inflection point at Pp(x(s)) since the projection Pp restricted to 
the subspace Ln-1 of the osculating flag L:E is degenerate (the rank is not 
full). Therefore IF* Np• = Kn_l(Pp(E)), and, taking the coefficient ~r into 
account, we obtain the equality 

g n - l ( F )  = 1 f T K -I(PAE)) 
S,~- 1 

The proof of Lemma 1 is complete. [] 

4. POLYA THEOREM AND DEMONSTRATION OF LEMMA 3 

4.1. R o o t s  of  l inear combinat ions .  We start with a seemingly irrelevant 
question. Given a tuple of sufficiently smooth functions f l (~) , . . - ,  fn(t), all 
defined on the common interval I - [c~,/3] c R 1, how many isolated zeros 
can the (nontrivial) linear combination ~lf~+" �9 "+~,Jn  have on tha t  interval 
for an arbitrary choice of the coefficients Xj E ]R? We shall formulate this 
problem in periodic and nonperiodic contexts, the former meaning tha t  all 
f j  extend as a (/3 - a)-periodic functions on R 1. To formulate the results 
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in the uniform way, we introduce the number 6 E {0, 1} equal to 0 i f  the 
functions are periodic and to I otherwise. The periodic context corresponds, 
in fact, to functions defined on the circle S 1 = I/(c~ ~ ~) rather than o n  the 
interval I .  Thus, in some sense, 26 =IOI[ is the number of endpoints o f  I .  

We fix the order of functions f j  and introduce (following P61ya [8], [9]) 
n + 1 functions Wk: I --* R as the Wronski determinants of the first k 
functions f l , -  �9 -, .fk: 

w0(t) = 1, w (t) = 

f (t) 
fI( t)  

Wk(t) = det 

w2(t) =fI(t)f (t) 

f2(t) "'" fk(t)  
f~(t) .- .  f~(t) 
: ".. : , 

(4.1) 

k =  1 , 2 , . . . , n .  

4.1.1. Chebyshev systems and Pdlya theorem. In the simplest case the non- 
vanishing of the Wronskians implies the Chebyshev property (nonoscilla- 
tion) of the linear spaces of functions. 

T h e o r e m  5 ( P d l y a  t h e o r e m  [8]). / f  all Wronskians W1, . . . ,  Wn are 
nonvanishing on I, then any linear combination ~'~j=l )~nfn can have at 
most n - 1 isolated root on I, counting with multiplicities. 

4.1.2. The general case. If the Wronskiaus Wj have zeros on I ,  not vanish- 
ing identically, then Theorem 5 does not hold any longer. However, in this 
case one can find an upper bound for the number of isolated zeros occurring 
in linear combinations. We denote by vj >/0 the number of zeros of Wj on 
I .  

The simplest way is to consider the partition of I by the roots of v~rron - 
sldan.q into 6 + ~-'~j=l vj subintervals. Then Theorem 5 can be applied to 
each of them, yielding an upper bound of ( n -  1)(6 + ~ vj) for the number  
of zeros outside the partition points. Adding the number of zeros eventually 
occurring at  these points, we arrive at the upper bound (n - 1)6 + n ~ vj. 
However, this estimate can be substantially improved. The idea of such im- 
provement was given in [7], where a result, though inferior to the inequality 
below, but  still sufficient for the purposes of [7], was obtained. 

L e m r n a  4. I f  vj is the number of zeros of Wj on the interval I ,  then the 
number of isolated zeros occurring in "any nontrivial linear combination of 
the functions f l , . . . ,  fn, does not exceed 

( n -  1 ) .6  + ~ W n - j V j ,  (4.2) 
j--1 
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where the sequence of wj is the same as in (1.8). 

Note that  if gl . . . . .  vn = O, then the assertion of Lemma 4 coincides 
with tha t  of Theorem 5. 

Proof. The proof is based on the fact tha t  all linear combinations satisfy 
the following n th  order linear ordinary differential equation with variable 
coefficients: 

D n D n - x " "  D1 y = 0, Di = Wi 0 Wi-1 0 = __d (4.3) 
Wi-1 W i '  dt 

(this form is due to Frobenius, and a simple proof of this fact can be found 
in [7]). Equation (4.3) can be transformed as 

1 1 1 
A n - l "  W,~--'-'~ " A'~-2 " "" A3" W-~x" A2- Woo" A1 y = const.  Wn-2Wn,  

(4.4) 

where Aj  ---- W]  �9 O. (Wj) -1 is the differential operator transforming the 
W 2" "IV w flmction ~a into j t ~ /  j ) ,  and, without loss of generality, one can assume 

tha t  const ~ 0 (otherwise the order of the equation can be further reduced). 
We need first to modify the Rolle theorem to allow for functions with poles 
and differential operators other than  0. 

If 9: I --* R is a smooth function and N(g) < c~ is the number of its 
zeros on I ,  then Ajg  is also smooth, and 

N(9) N(Zxsg) + uj + (4.5) 

where 6 is 0 or 1, depending on whether g is periodic or not. Indeed, g / W  s 
is a function that  is smooth on u s + 6 intervals between zeros of Wj. The 
application of 0 can decrease the number of zeros on each interval at most by 
one (Rolle theorem), and the multiplication by W 2 restores the smoothness. 

If the function g itself has p poles (e.g., 9 is a fraction whose denominator  
has p isolated zeros), then (4.5) should be replaced by 

N(g) <~ N ( A s 9  ) + u s + p + 6 (4.6) 

since the number of intervals of continuity will in this case be uj + p + 6. 
Let f = ~-']~jn 1 )~SfS be a nontrivial linear combination of functions fS. 

Consider the sequence of functions occurring in the evaluation of the left- 
hand side of (4.4): 

Fo = f ,  F1 = A1Fo, Fz = A2WolF1,  F3 = AzW~IF2,  . . . ,  

- 1  F ,  _ = F~-2 = A,-2W,~_4 ~-z,  F~ - I  = A,~-lW~.13F,~-2 const- Wn-2W,~. 

The number of poles of Fk is at most un-~. + un-3 + un-4 + " " ,  assuming 
that  uo = y-1 . . . . .  0. 
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Iterating inequalities (4.6), we obtain the chain of (n - 1) inequalities 

N(F1) i> N(Fo)  - Ill - -  6, 

g ( F 2 )  >1 g ( F 1 )  - - - 6, 

N(F3)/> N(F2) - v3 - (vo + Yl) - 6, 

N(F4)  >/N(F3)  - v4 - (vo + vl + v2) - 6, 

and so on. Adding up all these inequalities, we arrive at the estimate 

N ( W n W n - 2 )  = N ( F n - 1 )  >i N ( f )  - (n - 1)6 - (vl + I/2 + . . .  + v n - i  ) - 

-- (n -- 2)vo -- (n -- 3)Ul . . . . .  nun-3.  

The left-hand side of this inequality is equal to vn-2 + v;~ by (4.4), while 
v0 = 0. Therefore the number of zeros N ( f )  is estimated from above by  the 
combination 

b' n -{- b'n--i "}- 2V,~--2 + 2Yn--3 -}" 3Vn--4 + ' ' "  -l- 

+ (n -- 3)/-'2 -b (n -- 2)//1 + (n -- 1)6. 

The proof is complete. [] 

�9 Remark.  In the above proof we assumed that  the roots of Wj are disjoint 
from the roots of the corresponding factor, so that  each division by  Wj 
increases the number of intervals of continuity by vj but does not change 
the number of zeros. As a matter  of fact, the coincidence may happen, 
so tha t  cancellation occurs, but then the number of intervals of continuity 
will be smaller on each step from that  moment on. One can easily check 
tha t  the overall estimate in this case will be even better. Alternatively, one 
can use a small perturbation to move zeros of W j  away and then use the 
semicontinuity arguments for the number of zeros. 

4.2. D e m o n s t r a t i o n  o f  L e m m a  3. Let s = {Lj}jn__l be a complete flag 
and vj --- uj (I', s  < c~ be the number of inflection points of the orthogonal 
projection o f / "  onto Lj .  

We choose the orthogonal coordinate system such that  the frame spans 
the flag s (this choice is essentially unique, modulo change of signs of  the 
coordinates). Then the curve F corresponds to the smooth vector function 

d 
t ~-* x(t) = (Xl( t ) , . , .  ,xn(t)).  We denote f j ( t )  = - ~ z j ( t )  and consider the 

Wronskians corresponding to the ordered tuple f l , . . . ,  fn .  
Then the wnishing of the j t h  Wronskian Wj corresponds to the inflection 

point of the projection of/~ onto Lj  (the first j coordinates); see 3.3.1. Note 
tha t  the velocity curve/~ is closed if and only if the functions f j  are periodic. 
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By Lemma 4, the number of isolated roots of any linear combination 

~ j = l  Ajfj(t) can be at most N = ~ ( n -  1)]0F] + ~'~j=l wn_juj.  In geomet- 

ric terms, this means that  the velocity vector ~(t) = (~l(t), . . . ,  ~,~(t)) inter- 
sects any/ /near  hyperplane {~-]. Ajxj = 0} C R n at most at N points. This 
is exactly the second claim of Lemma 3. But then, by the RoUe theorem, 

the curve F itself can intersect any atone hyperplane at most at  N + ~10/~l 

points, which is the inequality asserted by the Lemma since 10/~] ~ ]0F] 
(the velocity curve/~ may be closed whereas F may not, but the inverse is 
impossible). 

An alternative (direct) way to prove the second assertion of Lemma 3 is 
to consider a system of n + 1 functions 1, x l ( t ) , . . . ,  x~(t) and expand the 
corresponding Wronskians by the elements of the first row, thus proving an 
upper bound for the number of intersections of F with any affine hyperplane 

[] 

4.3. D e m o n s t r a t i o n  o f  T h e o r e m  1. The idea of demonstration is 
straightforward: if the hyperconvex curve F parametrized by the arc length 
t E [0,s is oscillating, then its osculating flag / ; r ( t )  must become non- 
transversal to any other flag, in particular, to E' = s  • But  s  is 
in some sense "maximally transversal" t o / ; ' ,  and to take a nontransversal 
pos i t ion, / ; r ( t )  should go a sufficiently long way in the flag variety. On the 
other hand, the velocity of the "curve" t ~-, /~r(t) in this variety is con- 
trolled by the instant curvatures xj( t) ,  j = 1, .... , n -  1, which means that  
the integral curvatures cannot be too small. 

For practical reasons it is more convenient to work not in the flag variety, 
but rather in its covering space identified with the orthogonal group. 

Let ~ : I ---- [0, s --* SO (n), t ~-* E(t) be the associated curve: the point 
t is mapped into the orthogonal matrix whose columns are the vectors ej (t) 
of the orthogonalized Frenet frame. Then the Frenet formulas take the form 
E(t) -- A(t)E(t), where A(t) is an antisymmetric matrix function with the 
entries :t:xj(t), j = 1 , . . .  , n -  1, occurring on the principal sub- (resp., 
super-) diagonal. Without loss of generality, we can assume that  E(0) is an 
identity matrix (the corresponding flag is the coordinate one ~). 

We embed the orthogonal group SO(n) into the Euclidean space R n2 of 
square matrices with the norm IIXII 2 n 2 = ~'~i,j=l xij, where xij are the entries 
of X. 

By the Cauchy-Bnnyakovskii inequality, II~Xll <~ IIAtl. IIXII. Evidently, 
IIA(t)ll 2 = 2>t~l(t ) + . . .  + 2~2_1(t), and IIE(t)ll 2 = n since E(t) is an or- 
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thogonal matrix. Therefore 

IIZ(t)ll 

where is the length of ~ in R n2. 

s 

o (4.7) 

On the other hand, all matrices sufficiently close to the identity matrix 
correspond to the flags transversal to the antipodal flag g• More precisely, 
if all upper-left (k • k)-minors of E(t) are nonzero, then the above transver- 
sality holds. In particular, if IIXII < 1 / v ~  , then E(0) + X corresponds to 
the flag still transversal to 6 • Indeed, in this case, for any i = 1 , . . . ,  n, we 
have (E~'=I IxlJl) 2 < n E~=I x~j <~ nllXll 2 < 1 and any row of the matrix 
E(0) + X has a dominant diagonal element. Thus all minors are nonzero, 
and the required transversality holds. 

In other words, we have proved that the ball {E(0) + X E R n* : IIXH < 
1/v/-n} of radius 1 /V~ centered at E(0) consists of matrices that span flags 
transversal to 6 • If the curve F is oscillating, then, by the Shapiro theorem, 
the associated curve G should leave this ball, and, hence, its length should 
be at least 1 /v~ .  Taking into account the inequality (4.7), we arrive at the 
final estimate (1.3). [] 

It is clear that the measuring of lengths in R n2 rather than in the group 
SO(n) results in the loss of sharpness. To get the best results from this 
approach, one should use a left-invariant metric on S0(n) and estimate 
the distance from E(0) to the nearest non-transversal matrix in this metric. 
However, we do not want to discuss the general case, but will rather consider 
three-dimeusional curves, where a similar computation is relatively easy. 

4.4. Nonosci l la t ing  curves in R 3 v ia  t he  Shapi ro  theorem.  As an il- 
lustration of the Shapiro theorem (Corollary 4), we prove that a hyperconvex 

71" 
(nonclosed) curve with KI(F) + K2(F) < ~ is nonoscillating, I'll(F) ~< 3~r. 

Consider the osculating flag s = s Without loss of generality, 
we can assume that s = s (the standard flag). If the curve is oscillating, 
then L:(s) should become nontransversal to the antipodal flag E • at some 
point, by virtue of Corollary 4. This may happen in one of the two possible 
scenarios: 

�9 either the tangent el(s) intersects the plane spanned by e2(0) and 
es(O), 

�9 or the vector es(s) intersects the plane spanned by el(O) and e2(O). 

In both cases the length of the path made by the corresponding vector on 
Ir (the spherical distance the sphere before the intersection occurs is at least 

from the north pole to the equator). 
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On the other hand, from the Frenet formulas el (s) = xl (s)e2 (s), ~3(s) -- 
-x2(s)e2(s) it follows that the path made by el(s) for s e [0, 4 is exactly 
K1 (F) and that made by e3 (s) is/(2 (F). Therefore the inequality K1 +/(2 < 

r excludes both possibilities, and the contradiction obtained proves that 
2 
the curve F is nonoscillating. 

5. ISOPERIMETRIC INEQUALITIES ON S 2 AND NONOSCILLATION 

In this section we consider three-dimensional hyperconvex curves, pri- 
marily the closed ones, and prove inequality (1.7) for f~2(F) based on a 
completely different set of arguments. We will always assume that F is 
parametrized by the arc length s E [0,~], so that the velocity curve (hodo- 
graph) /~: s ~-* ~(s) is a spherical curve. We also return locally to the 
classical terminology, referring to x(s) = xl  (s) > 0 as the curvature and to 
8(s) = x2(s) as the torsion. 

As follows from identities (2.7), the arc length element on/~ is x(s)ds 
and the (first and unique) geodesic curvature of -P is ~(s) = 8(s)/x(s). If 
F is hyperconvex (without inflection points), then/~ is geodesicafly convex. 

5.1. I sope r ime t r i c  inequali t ies on a sphere .  First we consider hem/- 
spheric convex lobes, closed piecewise smooth curves formed by a piece A 
of a smooth geodesically convex curve and an arc of a large circle (equator) 
E, entirely belonging to one hem~.qphere. We denote by a and a '  the exte- 
rior angles at the vertices of the lobe and let K(A) be the integral geodesic 
curvature of the arc A (the integral of the geodesic curvature k(s) against 
the arc length). Our local aim is to prove the inequality 

a + a '  + K(A) + 21A I t> 2~r. (5.1) 

Note that a + a '  +K(A)  is the integral of the geodesic curvature of the entire 
lobe since K(E)  = 0. To prove (5.1), we frs t  note that by the spherical 
excess theorem (Gauss-Bonnet formula), 

+ + = - s ,  (5.2) 

where S is the area of the lobe [2, Ch. 1, 2.7]. Now the problem is to 
majorize S in terms of IAI. 

The standard isoperimetric inequality between the length 171 of a simple 
closed spherical curve and S, the area bounded by this curve, has the form 

2 />  - s 2, (5.3)  

the eqtmlity being attained only if 7 has a constant geodesic curvature. In a 
similar way the Dido problem of finding the shortest curve with endpoints on 
the equator, bounding together with the piece of equator the largest possible 
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area, has only constant curvature solutions, normally crossing the equator. 
For the corresponding solution A one has the isoperimetric inequality 

]AI 2/> 2~rS- S 2, (5.4) 

where S is now the area bounded by the curve and the equator taken to- 
t ~  

gether. From (5.4) it follows that within the range 0 < S ~< 51r the length 

and the area are related by the inequality 

1 8 
IAI t> ~S, 0 ~< S ~< ~ .  (5.5) 

Unfortunately, without additional considerations (5.4) does not imply any 
lower bound for IAI if S approaches the area of the hemisphere 21r. In order 
to analyze the region of large areas, we apply inequality (5.'3) to the closed 
arc formed by A and E taken together: since S ~< 2r (the lobe belongs to 
a hemisphere), the inequality (IAI + ]El) 2 ~ 4~rS - S 2 implies 

1 27r ~< S ~< 2~r. (5.6) [AI + [El i> ~r + ~S, 

Now it remains to point out that for a c o n v e x  lobe IEI ~ ~r. Indeed, if 
we rotate a half-equator inside the lobe while keeping its endpoints fixed, 
we can obtain an /aae r  tangency between IA I and a geodesic curve, which 
is impossible. Substituting this into (5.6), we conclude that the inequality 

P 8 1  r 1 2  
oo L0, 

ing the entire range of admissible areas [0, 2~r]. Together with (5.2) this 
proves (5.1). 

Our next aim is to extend inequality (5.1) for geodesically convex hemi- 
spheric curves with endpoints on an equator, but eventually self-intersecting. 
It turns out to be even easier. 

If the curve A is self-intersecting, forming a number of "petals," then 
one can break A into (oriented) smooth pieces and reconnect them in such 
a way that together with the arc E of the equator they will form v > 1 
closed curves, only one of them containing E (the case y = 1 corresponds 
to simple A). The domains bounded by these curves may overlap, but  in 
any case their areas S~ will not exceed 27r, and at least one of them will be 
convex disjoint from E. 

The spherical excess theorem can be applied to each domain; if we add 
the corresponding relations together, then the resulting relation will take 
the form 

a + a '  + K(A) = 2~r~, - (B1 J r - - - .  "[- Sv ) .  

For each domain with the area Sj and bounded by the arc of the length 
IAjl (except for one of them whose boundary has the length ]Ajl + IEI), the 



CURVATURES AND OSCILLATION 189 

isoperimetric inequality (5.3) gives the inequality [Aj[ 2 i> 4~-Sj - S~ which, 
since all Sj are less than 2~r, implies that  IAjl >/ Sj (for the exceptional 
domain the latter takes the form ]Aj] + ]E] >/Sj) .  Adding these inequalities 
together and noting that [All + . "  + ]A~[ = [A], we arrive at the inequality 
a + a '  + K(A)  + ]A[ + ]E] >/2Try. It remaln.q to observe that  [E I ~< 2~r and 
v > 1 and to conclude that 

+ a '  + K(A) + IAI 1> 27r(~ - 1) t> 27r, 

which is even stronger than asserted by (5.1). 

5.2. L e n g t h - c u r v a t u r e  i nequa l i t y  for  geodes i ca l ly  c o n v e x  sphe r i ca l  
c u r v e s  osc i l l a t ing  a r o u n d  an  e q u a t o r .  Now assume~that A is a geodesi- 
cally convex spherical curve intersecting some equator at n >t 2 points. We 
show that  in this case 

~:(A) § 2[A I >1 7r(n - [SA]). (5.7) 

To prove this, we break A into smooth pieces between subsequent intersec- 
tions with the equator; their number is n if A is closed and n - 1 otherwise. 
We denote by a~ and a~ the exterior angles of the lobes formed by Ai to- 
gether with the corresponding arcs of the equator. Then, as one can easily 
see, 

! C~i+l~-Cgi=Tr i =  1 , . . . , n -  1 

(if A is closed, then the subscript i is cyclical modulo n). 
We apply the inequality (5.1) to each of these lobes and add the results 

together. Then, since all curvatures K(A~) are of the same sign, the resulting 
inequality takes the form 

Trn + K(A) + 2]A]/> 27rn, 

a l  + a~_l  + 7r(n - 2) + -~(A) + 2]A[ >t 27r(n - 1), 

if A is closed, 

otherwise. 

! Since both  a l ,  c~n_l are less than ~r, we arrive at inequality (5.7). 

5.3. H y p e r c o n v e x  cu rves  in R 3 a n d  on  S 2. Inequality (5.7) is, in 
fact, the upper bound for oscillation of spherical curves that  coincides 
with (1.12) for n = 2 and r --- 1. To prove the inequality f~2(F) 

2K1(/ ' )  + K2(F)  + ~lSF I, which is a special case of Theorem 2 for three- 

dimensional hyperconvex curves, we apply once again the Rolle theorem to 
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the spherical curve A = P, as in the proof of Theorem 2 for h)~perplanes: 
the resulting estimate will then be 

n (r) .<  lorl +  IoPl + 21Pl + 

~< 3~rl0T' I + 2KI(F) + K2(F) 

by virtue of relations (2.8). [] 
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