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OSCILLATION AND BOUNDARY CURVATURE

OF HOLOMORPHIC CURVES IN Cn

D. Nadler and S. Yakovenko

Abstract. The number of isolated intersections between a smooth curve in Eu-
clidean space and an arbitrary hyperplane can be majorized by a weighted sum
of integral Frenet curvatures of the curve. In the complex Hermitian space one
can derive a similar result for holomorphic curves but with much better weights.

The proof of this result is based on a generalization of the Milnor–Fáry theo-
rem for complex Hermitian spaces: the expected integral curvature of a random
hyperplanar Hermitian orthogonal projection of a smooth curve in Cn is equal to
the integral curvature of the projected curve itself.

In the appendix we show how this technique allows one to improve the known
estimates for real analytic curves in Euclidean space.

1. Introduction

A smooth real curve with bounded integral Frenet curvatures may have only
a limited number of isolated intersections with an affine hyperplane: the upper
bound is given by a certain weighted sum of the integral curvatures and the
number of generalized inflections, the points of the curve at which the osculating
frame degenerates [1]. The purpose of this short note is to establish an analog
of this result for holomorphic curves in the complex space Cn equipped with the
standard Hermitian structure.

Let U � C be a simply connected domain bounded by a smooth curve γ = ∂U .
Let F : U → Cn be a holomorphic curve and denote by Γ : γ → Cn the restriction
of F to γ; this smooth curve in the complex space is the boundary of F . (When
the parameterization does not play a role, we will also use Γ to refer to the
image of γ under F ). Let Ω(F ) be the maximal number of isolated intersections
between the curve F and a complex affine hyperplane in Cn. Obviously, in all
nontrivial cases Ω(F ) � n, since the plane can pass through any n points on F .

Our main result is an upper bound for Ω(F ) in terms of a weighted sum of
the integral curvature K(γ) of the boundary γ = ∂U , and the integral complex
Frenet curvatures Kj(Γ ) of the boundary Γ = ∂F (the precise definition of these
curvatures is given in §2.1).
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Theorem 1. The number of isolated intersections between a holomorphic curve
F : U → Cn and any affine complex hyperplane, does not exceed the weighted
sum of integral complex Frenet curvatures of the boundary Γ = ∂F and γ = ∂U :

2π Ω(F ) � 2n K(γ) + 4K1(Γ ) + · · · + 4Kn−2(Γ ) + 3Kn−1(Γ ) + Kn(Γ ).

Remark. Except for the first term 2nK(γ) in the above sum, the sequence of
weights appearing in the inequality is bounded uniformly over the dimension n
of the ambient space. For smooth curves in Euclidean space the weights in [1]
were growing as O(n).

In fact, the tools developed in this paper allow one to improve rather substan-
tially the upper bound for the number of intersections between a real analytic
curve and an affine hyperplane in Euclidean space. The formulation of this result
appears in the Appendix.

2. Differential and integral geometry
of smooth curves in the complex space

2.1. Frenet formulas for smooth curves in the Hermitian space. The
Frenet formulas for smooth curves in the complex Hermitian space are derived
in the same way as their real counterparts. Let Γ : [0, ] → Cn, t �→ x(t) =
(x1(t), . . . , xn(t)) be a sufficiently smooth curve, parameterized by the arclength.
Denote by vj : [0, ] → Cn its jth derivative, vj = djx/dtj , for j = 1, . . . , n. In
the generic case the vectors v1, . . . , vn are linearly independent at every point
of Γ , and span the osculating flag E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = Cn, where
Ek = Cv1 + · · ·+Cvk (all subspaces of the flag depend on t, but we usually omit
this dependence in the notations).

In general, there is no canonical choice of a Hermitian orthogonal frame {e1(t),
. . . , en(t)} spanning the same flag (so that Ek = Ce1 + · · · + Cek). However,
under the additional assumption that vk = βk ek mod Ek−1, with βk > 0, for all
k = 1, . . . , n, the choice of the Frenet frame {e1, . . . , en} is unique at any time t.
In what follows, we will often denote the Frenet frame by {e1, . . . , en} without
further comment.

In the same way as for curves in the real space, the derivative ėk(t) will belong
to Ek+1. Since the frame is Hermitian orthogonal, we can write

(1) ėk = −κk−1ek−1 + iλkek + κkek+1

with real λ1 = λ1(t), . . . , λn = λn(t) and positive κ1 = κ1(t), . . . , κn−1 =
κn−1(t) (for k = 1 and k = n there will be only two terms in the right hand
side of (1)). These relations constitute the Frenet formulas for smooth curves in
the complex space, and coincide with the classical Frenet formulas if the curve
belongs to the real subspace Rn ⊂ Cn. In this special case, all λk are zero, and
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κk turn into the Frenet curvatures. In general, to restore the original velocities
vk from the Frenet frame, one may use the identities

(2)
vk = βk ek + Bk ek−1 mod Ek−2, k = 1, . . . , n,

vn+1 := v̇n = Bn+1en mod En−1,

where the coefficients βk ∈ R+, k = 1, . . . , n, and Bk ∈ C, k = 2, . . . , n + 1, are
defined by the identities

(3) (βk+1/βk) = κk, Im(Bk+1/βk) = Λk := λ1 + · · · + λk.

Indeed, differentiating the expression for vk with yet undefined βk and Bk,
by virtue of (1), we have βk+1ek+1 + Bk+1ek = βk(κkek+1 + iλkek) + β̇kek +
Bkκk−1ek mod Ek−1. Thus βk+1 = κkβk and ImBk+1 = βkλk + κk−1 Im Bk−1,
since βk is always real and hence Im β̇k = 0. These two identities in turn imply
Im Bk+1/βk = Im Bk/βk−1+λk, and, taking into account the “initial conditions”
β1 = ‖v1‖ = 1, B1 = 0, we arrive at the formulas (3).

Definition. The integral complex Frenet curvatures of orders k = 1, . . . , n of a
smooth curve Γ in the complex space Cn are the integrals against the arclength,

Kk(Γ ) =
∫

Γ

√
Λ2

k + κ2
k d, k = 1, . . . , n − 1; Kn(Γ ) =

∫
Γ

|Λn| d.

Remarks. There are several instances in which the complex case differs from the
real one.

1. The osculating frame for a curve in the real space typically degenerates at
isolated points, whereas in the complex space the osculating frame is typically
nondegenerate. Indeed, the determinant of the square matrix with the vectors
v1, . . . , vn as columns, is a complex-valued smooth function of the real parameter
t, and by a Cn-small perturbation of the curve one can destroy all zeros of this
function on the segment [0, ]. Similar considerations in the real case prove only
that the roots of the determinant are non-critical hence isolated (these roots
correspond to the inflection points as defined in [1]).

2. As mentioned above, the formulas for the complex curvatures Kj(Γ ),
j = 1, . . . , n − 1, coincide with their real counterparts for curves lying in the
real subspace. The expression for Kn is a complex analog (and a majorant) for
the number of generalized inflection points [3] in the case when Γ = ∂F is the
boundary of a holomorphic curve F .

3. E. Calabi in [2] derived the Frenet theory for holomorphic curves in the
Hermitian space. For a holomorphic non-hyperplanar curve F : U → Cn one
can define n− 1 real analytic functions ρk : U → R by the same formulas as the
real Frenet curvatures. It turns out that the first of them, ρ1(z), is essentially
the Gaussian curvature of the induced metric. The other (higher) curvatures
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are uniquely defined by ρ1 and the embedding of the curve into Cn is uniquely
determined by ρ1 (hence by the intrinsic geometry) modulo a Hermitian rotation.

One can easily show that if a smooth curve Γ lies on a holomorphic curve
F , then |λ1| is the geodesic curvature of Γ in the induced Riemannian metric
on F (for example, if F is flat, then Γ may be treated as a planar curve, and
K1 = K(Γ )). In addition, for geodesic curves the first curvature K1 coincides
with the integral Calabi curvature

∫ �

0
|ρ1(t)| dt. The relations between the higher

Calabi curvatures of a holomorphic curve and the complex Frenet curvatures of
smooth arcs on it are not clear.

2.2. Variation of argument, Voorhoeve index, pseudoinflection and
their properties. In this subsection we introduce several definitions all closely
related to the variation of argument of a complex-valued function.

2.2.1. Variation of argument along a planar curve. If γ ⊂ C � {0}, given by
t �→ x(t) = r(t) exp iϕ(t), is a continuous curve on the complex plane, avoiding
the origin, then the total variation of its argument V(γ) is well defined. For a
smooth curve it is equal to the integral∫ �

0

|dϕ(t)/dt| dt =
∫ �

0

| d
dt Arg x(t)| dt =

∫ �

0

| Im(x−1(t) · ẋ(t))| dt,

which majorizes the (scaled by 2π) winding number of the curve around the
origin.

2.2.2. Voorhoeve index of an analytic function. Let U � C be a domain bounded
by a smooth curve γ = ∂U , and f : U �→ C a complex-valued function such that
f is never zero on the boundary γ. The Voorhoeve index [3] of f with respect
to the curve γ is defined to be the total variation of argument of f along γ:
Vγ(f) := V(f(γ)). In other words, it is equal to the above introduced variation
of argument of the image curve f(γ). Obviously, Vγ(cf) = Vγ(f) for any
0 �= c ∈ C (scaling and rotational invariance).

Example 1. Let z(t) be any parameterization of γ so long as ż(t) is never
zero. Then unwinding the definitions, one obtains Vγ(ż) = K(γ), the integral
curvature of the boundary γ, occurring in the main theorem.

Of course, we will be most interested in the Voorhoeve index of meromorphic
functions with no poles on γ. In the particular case when f is analytic throughout
U , we know by the argument principle that the number of zeros of f in U is
equal to the winding number of f(γ) around the origin. Since the Voorhoeve
index Vγ(f) is a majorant for the winding number (in fact, 2π times the winding
number), it is in turn a majorant for the number of zeros of f .

Example 2. Suppose that f is meromorphic on an open neighborhood of a real
segment [0, ] and takes real values on it (except for poles). Denote by Uε the
ε-neighborhood of [0, ] in C, and let γε = ∂Uε. Then it is clear, see [4], that

lim
ε→0+

Vγε(f) = 2π(#{f = 0} + #{f = ∞}).
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For f real analytic on [0, ] the above limit is 2π times the number of zeros of f
on the segment.

The reason for introducing the Voorhoeve index, as opposed to working with
the winding number of f(γ), is the following. Unlike the winding number of f(γ),
the closely related Voorhoeve index behaves much more nicely under derivation.
The following properties, generalizing the Rolle lemma for real functions of one
variable, were proved in [3].

Rolle–Voorhoeve lemma. If f, g are holomorphic in a neighborhood of γ,
then

(4)

Vγ(f) � Vγ(f ′) + K(γ) (the Rolle inequality),

|Vγ(f) − Vγ(g)| � Vγ(fg) � Vγ(f) + Vγ(g) (the triangle inequality),

Vγ(1/f) = Vγ(f) (symmetry).

where K(γ) is the integral curvature of the boundary (for example, 2π if γ is
convex ).

Remark. In fact, the Rolle inequality above is a particular case of a more gen-
eral inequality relating rotation and curvature of smooth curves, not necessarily
closed ones [3]. Another particular case concerns periodic functions.

Let f be meromorphic and real on the real axis as in Example 2 above.
Assume in addition that f is -periodic, i.e. f(t + ) ≡ f(t), and f(0) �= 0,∞.
Denote by N(f) the sum of the number of zeros and poles on the segment [0, ]
(or any other segment of length  with nonsingular endpoints). Then from the
general inequality [3] it follows that N(f) � N(f ′).

2.2.3. Pseudoinflection of a non-planar smooth curve in Cn. Now let Γ : [0, ] →
Cn be a sufficiently generic smooth curve. Then the osculating vectors v1, . . . , vn

are independent everywhere and their wedge product v1(t) ∧ · · · ∧ vn(t) can be
identified with a nonvanishing function ∆ = ∆Γ : [0, ] → C � {0} with complex
values, well defined modulo a constant factor. If x1(t), . . . , xn(t) are the coordi-
nate functions of the embedding Γ in Cn, then ∆ is the Wronski determinant of
the time derivatives ẋ1(t), . . . , ẋn(t). If the curve were in Euclidean space, then
zeros of ∆ would correspond to (generalized) inflection points, as introduced in
[1]. In the complex setting we replace the number of zeros by the variation of
argument of ∆ considered as a curve [0, ] → C � {0}.
Definition. The pseudoinflection of a smooth non-hyperplanar curve Γ in Cn

is

I(Γ ) = V(∆Γ ) =

�∫
0

∣∣∣∣ d

dt
Arg(v1 ∧ · · · ∧ vn)

∣∣∣∣ dt =

�∫
0

∣∣∣∣Im v1 ∧ · · · ∧ vn−1 ∧ v̇n

v1 ∧ · · · ∧ vn−1 ∧ vn

∣∣∣∣ dt.

One can immediately see that this definition does not depend on the choice of
parameterization: any change of parameter t �→ τ = τ(t) with dτ/dt > 0 results
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in ∆(t) being replaced by r(τ)·∆(t(τ)), with r(τ) a real-valued positive function,
hence the variation of argument remains the same. Moreover, the number I(Γ )
is invariant by Hermitian orthogonal rotations.

2.2.4. Pseudoinflection of k-planar curves. The above definition makes sense on
the assumption that the curve Γ is not hyperplanar, more precisely, that the
wedge product v1(t) ∧ · · · ∧ vn(t) is nonvanishing on [0, ].

However, below we will have to consider the opposite case and compute the
pseudoinflection of k-planar curves, i.e. curves by construction belonging to some
k-plane L ⊂ Cn with k < n. Formally this case can be incorporated into the
above definition by identifying L with a copy of Ck, e.g. with the complex k-
space spanned by the first k coordinate axes. In this case ∆Γ can be identified
with the Wronski determinant of the time derivatives of the first k coordinate
functions ẋ1(t), . . . , ẋk(t).

Alternatively one may choose any n−k vectors pk+1, . . . , pn in Cn spanning a
subspace transversal (complementary) to L. Then the wedge product v1 ∧ · · · ∧
vk ∧ pk+1 ∧ · · · ∧ pn will be well-defined modulo a constant factor depending on
the choice of {pk+1, . . . , pn}. The variation of argument of this extended wedge
product will be a rotational invariant of Γ , independent of the parameterization,
and obviously coinciding with the variation of argument of ∆Γ as introduced
above.

Note that for any real analytic curve Γ not reducible to one point, there always
exists the dimension k � n such that Γ is k-planar, i.e. Γ ⊂ L, dimL = k, and
the k-pseudoinflection of Γ (relative to L) is well-defined and finite. Sometimes
we will write I(Γ ;L) to stress the fact that Γ ⊂ L.

2.2.5. Real and complex Wronskians. Let F : U → Cn, z �→ (x1(z), . . . , xn(z)) be
a holomorphic curve, γ = ∂U , Γ = F (γ). Denote by W = WF (z) the Wronski
determinant of the n derivatives x′

1(z), . . . , x′
n(z); together with these derivatives,

W is holomorphic in U . There is an obvious relationship between W (z) and the
function ∆Γ (z) as defined in §2.2.3: for an arbitrary parameterization [0, ] → C,
t �→ z(t), of the boundary curve γ, the chain rule yields

(5) ∆Γ (t) = WF (z(t)) · [ż(t)]1+2+···+n.

2.3. Integral geometry and geometric probability. Let Gk(n) be the
Grassman manifold of complex k-planes in Cn. It is a complex compact man-
ifold with transitive SU(n)-action, and there is a unique normalized SU(n)-
invariant measure in Gk(n) that will be usually denoted by dµk,n or simply dµ.
In the particular case n = 2, k = 1 we have the Fubini–Studi measure on the
projective line CP 1 = G1(2), that in the affine coordinate z takes the form
dµ(z) = 1

π (1 + |z|2)−2 dz ∧ dz.
We begin with several simple statements concerning behavior of the canonical

measures under geometric constructions. Each subspace E ⊂ Cn of dimension
d, identified with Cd, defines two “maps” from Gk(n) to Gk−n+d(d) and to
Gk(d) respectively, called intersection and projection: for almost any k-plane
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L ∈ Gk(n) the intersection ι(L) = L∩E is a subspace of dimension k−n + d in
E � Cd and the Hermitian orthogonal projection π(L) of L onto E parallel to E⊥

is a k-dimensional subspace of E (the nontransversal or badly projecting planes
constitute a zero measure set of Gk(n) and will be neglected in the sequel). This
construction allows one to push forward the canonical measure from Gk(n) to
Gk−n+d(d) and Gk(d) respectively. Not surprisingly, these transferred measures
coincide with the canonical measures on the respective Grassmanians. In terms
of geometric probability, this becomes a claim on the uniformity of distributions
of certain random k-planes.

Proposition G1. The intersection ι(L) ∈ Gk−n+d(d) and projection π(L) ∈
Gk(d) of a random uniformly distributed k-plane L ∈ Gk(n) are uniformly dis-
tributed over the corresponding Grassmanians.

Any (n− 1)-dimensional hyperplane Π ∈ Gn−1(n) in the Hermitian space Cn

naturally inherits the metric and SU(n − 1)-invariant measure (and hence one
can choose a random k-plane inside Π). The following is a claim concerning the
conditional distribution.

Proposition G2. A random k-plane L, uniformly distributed inside a random
uniformly distributed hyperplane Π ∈ Gn−1(n), is also uniformly distributed in
Gk(n).

Proof. Both claims follow from the uniqueness of the SU -invariant measures on
the Grassmanians. �

3. Average pseudoinflection and the Milnor–Fáry lemma in Cn

3.1. Average pseudoinflection of random projections. Let Γ be a smooth
curve in Cn. For almost any k-plane L ∈ Gk(n) the Hermitian orthogonal pro-
jection πL(Γ ) of Γ on L parallel to L⊥ will be a nonsingular k-planar curve,
whose pseudoinflection will be denoted by I(πL(Γ );L). After averaging over all
k-planes (with respect to the canonical measure) this gives the quantity provi-
sionally denoted by Ik(Γ ):

Ik(Γ ) =
∫

Gk(n)

I(πL(Γ );L) dµ(L).

Lemma 1. The pseudoinflection averaged over all k-dimensional Hermitian or-
thogonal projections, is equal to the kth integral complex Frenet curvature:

Ik(Γ ) = Kk(Γ ) for all k = 1, . . . , n.

Proof. Assuming the curve Γ sufficiently smooth, denote by ∆L(t) the wedge
product (relative to the k-plane L) of the osculating vectors of the curve πL(Γ ),
as introduced in §2.2.4. Then I(πL(Γ );L) =

∫
Γ
| Im(∆−1

L · d
dt∆L)| dt.
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1. Choose any frame {pk+1, . . . , pn} in L⊥ (the Hermitian orthogonal sub-
space) so that, as usual modulo a scalar factor, ∆L = v1∧· · ·∧vk∧pk+1∧· · ·∧pn.
Differentiating with respect to t, we observe that d

dt∆L = v1∧· · ·∧vk−1∧vk+1∧
pk+1∧· · ·∧pn. Substituting this into the definition of Ik and changing the order
of integration, we arrive to the identity

(6) Ik =
∫ �

0

dt

∫
Gk(n)

∣∣∣∣Im v1 ∧ · · · ∧ vk−1 ∧ vk+1 ∧ pk+1 ∧ · · · ∧ pn

v1 ∧ · · · ∧ vk−1 ∧ vk ∧ pk+1 ∧ · · · ∧ pn

∣∣∣∣ dµ(L).

Note that for fixed t the integrand is independent of the choice of the frame
{pk+1, . . . , pn} in L⊥, being a function of the relative position of the variable
subspace L, the fixed subspace Ek−1 spanned by {v1, . . . , vk−1}, and the pair of
vectors vk, vk+1. Denote this function by Z = Z(Ek−1, vk, vk+1, L) so that the
integral takes the form Ik =

∫ �

0

∫
Gk(n)

| Im Z(Ek−1, vk, vk+1, L)| dµ(L).

2. By the above remarks, one can replace the collection {v1, . . . , vk−1} in
(6) by any other frame spanning the same subspace Ek−1, in particular, by the
Frenet frame {e1, . . . , ek−1}. Using the freedom to choose the frame {pk+1, . . . ,
pn}, we choose pk+1, the first vector of this frame, to be in the intersection
L⊥ ∩ Ek+1. Now using (2) to express the vectors vk and vk+1, we observe that
the value of the integrand only depends upon the projection of pk+1 onto the
two-dimensional span Cek ⊕ Cek+1 ⊂ Ek+1, not upon pk+1 itself. We denote
this projection by ζ1ek + ζ2ek+1 so that pk+1 = ζ1ek + ζ2ek+1 mod Ek−1. Fur-
thermore, for the sake of readability, we set Ek−1 = e1 ∧ · · · ∧ ek−1 ∈

∧k−1(Cn)
and Pk+2 = pk+2 ∧ · · · ∧ pn ∈

∧n−k−1(Cn). With the new notation, we have

| Im Z| =
∣∣∣∣Im Ek−1 ∧ vk+1 ∧ pk+1 ∧ Pk+2

Ek−1 ∧ vk ∧ pk+1 ∧ Pk+2

∣∣∣∣
=

∣∣∣∣Im Ek−1 ∧ (βk+1ek+1 + Bk+1ek) ∧ (ζ1ek + ζ2ek+1) ∧ Pk+2

Ek−1 ∧ (βkek) ∧ (ζ1ek + ζ2ek+1) ∧ Pk+2

∣∣∣∣
=

∣∣∣∣Im
(

Bk+1

βk
− βk+1

βk
· ζ1

ζ2

)∣∣∣∣ = |Λk − κk Im(ζ1/ζ2)|.

3. By virtue of Proposition G1, since Cpk+1 = L⊥ ∩ Ek+1 is uniformly
distributed in Ek+1, its projection onto the two-dimensional span Cek⊕Cek+1 ⊂
Ek+1 is as well. Thus instead of averaging over the Grassmanian Gk(n) in (6), we
may compute the average of the function | Im Z| over all projections of Cpk+1 on
C2 � Cek ⊕Cek+1, in other words, over the projective plane CP 1 equipped with
the homogeneous coordinates ζ = [ζ1 : ζ2] ∈ CP 1 and the canonical rotationally
invariant measure. Denoting by z = x + iy = ζ1/ζ2 ∈ C the affine chart and
using the explicit form for the Fubini–Studi measure, we arrive to the explicit
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answer:

Ik =

�∫
0

dt

∫
C

|Λk − κk Im z| dz ∧ dz

π(1 + |z|2)2

=
∫ �

0

dt

+∞∫
−∞

|Λk − κky| dy

+∞∫
−∞

dx

π(1 + x2 + y2)2

=
∫ �

0

dt

+∞∫
−∞

|Λk − κky|
2(1 + y2)3/2

dy =
∫ �

0

dt
√

Λ2
k + κ2

k = Kk .

4. The case k = n is to be treated separately, but in this case the averaging
step disappears, and for the pseudoinflection of the curve we have by (2)

In =I=
∫ �

0

∣∣∣∣Im v1 ∧ · · · ∧ vn−1 ∧ v̇n

v1 ∧ · · · ∧ vn−1 ∧ vn

∣∣∣∣ d=
∫ �

0

∣∣∣∣Im Bn+1

βn

∣∣∣∣ d=
∫

Γ

|Λn| d=Kn .

3.2. Average curvatures of hyperplanar projections. If Γ is a real curve
in Cn with integral curvatures K1(Γ ), . . . , Kn(Γ ), then its Hermitian orthogonal
projection onto a hyperplane L ∈ Gn−1(n) has only n−1 curvatures Kk(πL(Γ )),
k = 1, . . . , n − 1. The following result is the generalization of the Milnor–Fáry
lemma on average curvatures [1, Lemma 1] for the Hermitian space.

Corollary 1 (Milnor–Fáry lemma for smooth curves in the Hermitian space).
The expected curvature of a random Hermitian projection of a smooth curve is
equal to the curvature of the initial curve:

Kk(Γ ) =
∫

Gn−1(n)

Kk(πL(Γ )) dµ(L) ∀k = 1, . . . , n − 1.

Proof. By Proposition G2, the same result will be obtained if instead of averaging
over all k-planes from Gk(n), one first chooses a hyperplane L ∈ Gn−1(n),
averages over all k-planes inside L and then averages the result over all such
hyperplanes. �

Remark. The assertion of Corollary 1 cannot be reduced to the usual Milnor–
Fáry lemma in Rn as in [1] by forgetting the complex structure. Even if one
identifies Cn with R2n and reduces the complex Frenet curvatures to their real
counterparts, the average in the above Corollary will be extended over only a
small portion of all codimension-two real subspaces, namely, those coming from
complex hyperplanes.
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Corollary 2. Let Γ be a smooth curve in Cn, w1 > 0, . . . , wn > 0 an arbitrary
collection of weights. Then one can find a complete flag E1 ⊂ · · · ⊂ En−1 ⊂
En = Cn of subspaces in such a way that

∑n
k=1 wk I(Γk) �

∑n
k=1 wk Kk(Γ ),

where Γk is the Hermitian orthogonal projection of Γ on Ek, and I(Γk) =
I(Γk;Ek) the corresponding (relative) pseudoinflection.

Proof. The proof is essentially the same as in the real case [1], and goes by
induction on the ambient dimension n. For n = 1 the assertion is obvious, since
the only existing curvature K1 coincides with the pseudoinflection I. Suppose
that for n−1 the claim is already justified, and consider the weighted sum Kw =
wn Kn +wn−1 Kn−1 + · · · + w1 K1 = wn Kn +K̂w. The topmost curvature Kn

coincides with the pseudoinflection I = I(·;En), so consider the remaining part
K̂w = wn−1 Kn−1 + · · · + w1 K1 as a functional on smooth curves. Its average
over all (n−1)-dimensional projections of the curve Γ is equal to the value of K̂w

on Γ by Corollary 1, and therefore by the mean value theorem there exists an
(n−1)-plane En−1 ⊂ En � Cn such that K̂w(Γn−1) � K̂w(Γ ), where Γn−1 is the
Hermitian orthogonal projection of Γ on En−1. By the induction assumption,
the flag E1 ⊂ · · · ⊂ En−2 inside En−1 can be constructed as required so that
K̂w(Γn−1) �

∑n−1
j=1 wj I(Γj ;Ej), and this flag (appended by the space En−1),

serves also the space Cn, since

Kw(Γ ) = wn I(Γ ) + K̂w(Γ ) � wn I(Γ ) + K̂w(Γn−1) � wn I(Γ ) +
n−1∑
j=1

wj I(Γj).

4. Linear ordinary differential equations with analytic
coefficients and the proof of the main theorem

4.1. Complex zeros of linear combinations of holomorphic functions.
Let U � C be a simply connected domain bounded by a smooth curve γ =
∂U with integral curvature K = K(γ), and f1, . . . , fn be an ordered n-tuple
of functions analytic on the closure U = U ∪ γ. Denote by Wk = Wk(z),
k = 0, 1, . . . , n, the Wronski determinant of the first k functions: W0 ≡ 1,
W1 = f1, W2 = f1f

′
2 − f2f

′
1 etc. It is known that any linear combination

f = µ1f1 + · · · + µnfn satisfies the homogeneous linear ordinary differential
equation of order n,

(8)
Wn

Wn−1
· ∂ · W 2

n−1

WnWn−2
· ∂ · · · ∂ · W 2

1

W2W0
· ∂ · W0

W1
· f = 0, ∂ =

d

dz
,

(the Frobenius formula), that can without loss of generality be reduced to the
form containing only n − 1 derivations,

W 2
n−1

WnWn−2
· ∂ · · · ∂ · W 2

1

W2W0
· ∂ · W0

W1
· f = const �= 0.
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From this identity and the inequalities (4) it immediately follows that

0 = Vγ(const) � Vγ(f) − (n − 1)K(γ) −
n−1∑
j=0

Vγ

(
W 2

j

Wj−1Wj+1

)
,

where we put for convenience W−1 ≡ 1, so that W0/W1 ≡ W 2
0 /W−1W1. This

inequality in turn implies an upper bound for the Voorhoeve index of any non-
trivial linear combination f by the weighted sum of the Voorhoeve indices of the
Wronskians: using (4), one concludes that

(9) Vγ(f) � (n − 1)K(γ) + 4
n−2∑
j=1

Vγ(Wj) + 3Vγ(Wn−1) + Vγ(Wn).

We will modify these simple arguments to prove the main result of the paper.

4.2. Proof of Theorem 1. Let F : U → Cn be a holomorphic curve with the
boundary Γ = F (γ), γ = ∂U , and denote by w1, . . . , wn the weights occurring
in (9): w1 = · · · = wn−2 = 4, wn−1 = 3, wn = 1.

1. By Corollary 2, one can choose a complex coordinate system (i.e. a
complete flag in Cn) in such a way that the weighted sum of pseudoinflec-
tions of projections of the curve Γ on the coordinate subspaces Ej will not
exceed the weighted sum of the complex Frenet curvatures. Recall that in the
chosen coordinate system, the pseudoinflection I(Γk) is the variation of argu-
ment of the function ∆k(t), the Wronski determinant of k composite functions
x1(z(t)), . . . , xk(z(t)), where z(t) is any fixed parametrization of the boundary
γ = ∂U .

2. Any affine combination of the coordinate functions µ0 + µ1x1(z) + · · · +
µnxn(z) satisfies a linear ordinary differential equation similar to (8) but of order
n+1 rather than n. The Wronskians Wk occurring in (8) are to be replaced by the
Wronski determinants of the functions 1, x1(z), . . . , xk−1(z), which are obviously
equal to the Wronski determinants of the derivatives x′

1(z), . . . , x′
k−1(z): W1 =

x′
1, W2 = x′

1x
′′
2 − x′′

1x′
2 etc. Recall that by convention we put W0 ≡ W−1 ≡ 1.

From §4.1 it follows that the Voorhoeve index of any affine combination f
of the coordinate functions of F , and hence 2π times the number of isolated
intersections between F and any affine complex hyperplane in Cn, must satisfy
the inequality Vγ(f) � nK(γ) +

∑n−1
k=0 Vγ

(
W 2

k /Wk−1Wk+1

)
.

3. It remains to replace the Wronskians Wk in this inequality by the pseu-
doinflections of the corresponding projections. Using the identities (5) and then
(4), for an arbitrary affine combination f , we have

2π Ω(F ) � sup
f

Vγ(f) � nK(γ) +
n−1∑
k=0

Vγ

(
∆2

k(z(t))
∆k−1(z(t))∆k+1(z(t))

· ż(t)
)

� 2nK(γ) +
n∑

k=1

wk V(∆k) = 2nK(γ) +
n∑

k=1

wk I(Γk).
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The weighted sum of the pseudoinflections in the right hand side is majorized
by the weighted sum of integral curvatures by the choice of the coordinate sys-
tem. �

5. Appendix: improved oscillation bounds for curves in Rn

Using the Rolle-Voorhoeve inequality (4) instead of the usual Rolle lemma
allows one to improve the estimates from [1], at least for real analytic curves
in Rn. This concerns the assertion of Lemma 4 from [1, p. 182] and affects all
the subsequent estimates. In the notations of §4.1, assume that all functions
f1, . . . , fn are real analytic on [0, ], and denote by N(f) the number of zeros
of a function f on [0, ], counted with their multiplicities. Example 2 from
§2.2.2 and the inequality (9) imply that for any nonzero linear combination
f = µ1f1 + · · · + µnfn we have

N(f) � (n − 1) + 4N(W1) + · · · + 4N(Wn−2) + 3N(Wn−1) + N(Wn).

For -periodic functions the term n − 1 disappears (see the remark in §2.2.2).
This in turn implies the following result substantially improving Theorem 2 from
[1]. Recall that for a real curve in Rn the hyperinflection is the number of points
where the osculating frame degenerates [1].

Theorem 2. The number of intersections between a real analytic connected
curve Γ ⊂ Rn and an arbitrary affine hyperplane, does not exceed the sum
δn + ν(Γ ) + 1

π [3Kn−1(Γ ) + 4Kn−2(Γ ) + · · ·+ 4K1(Γ )], where K1, . . . , Kn−1 are
integral Frenet curvatures of the curve, ν(Γ ) is the number of hyperinflection
points and the index δ ∈ {0, 1} is zero for closed curves and 1 otherwise.

The proof of this result remains exactly the same as in [1] after the above
improvement of Lemma 4. Moreover, all subsequent results of [1] concerning
rotation of curves around subspaces of codimension � 2, can be improved in a
similar way based on Theorem 2. We leave the details to the reader.
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