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ABSTRACT. Green coordinates define a special representation of a point inside a closed
polygon in terms of its vertices and the normals to its edges (faces). This representation has
been found to be very useful for object manipulation in computer graphics. The mapping
defined by Green coordinates is shown to be analytic. It has a closed form formula in
2D and 3D, and it can be extended analytically through a face of the polygon. In 2D the
mapping is proved to be conformal.

1. INTRODUCTION

Recently, Lipman et al.[3] presented a method for creating controllable conformal map-
pings in R2 and quasi-conformal mappings in R3. Their technique is based on closed
form formulas for representing a point inside a simplicial surface (to be defined shortly)
as a linear combination of the vertices and the normals of the simplicial surface: Let P be
an oriented simplicial surface, i.e., a closed polygon in 2D, or a closed polyhedron with
triangular faces in 3D. That is P = (V,T), where V = {vi}i∈IV ⊂ Rd are the vertices and
T = {t j} j∈IT are the simplicial face elements t j = (v j1 , ...,v jd ), namely edges in case of
polygons in 2D, triangles in case of triangular meshes in 3D. In the sequel we use the term
cage to address this simplicial surface P. Let us further denote by n(t j) the outward normal
to the oriented simplicial face t j (||n(t j)||= 1). As stated above we aim at representing each
interior point η of the cage P by a linear combination

(1.1) η = F(η ;P) = ∑
i∈IV

φi(η)vi + ∑
j∈IT

ψ j(η)n(t j).

We refer to φi(·) and ψ j(·) by the term Green Coordinates. The name choice is due to the
use of Green’s third identity used to derive the coordinates.

This representation can be seen as an extension of the so called “generalized barycentric
coordinates” which represent a point inside a simplicial surface as an affine combination
of the vertices of the simplicial surface [6, 7, 2],

(1.2) η = F(η ;P) = ∑
i∈IV

ϕi(η)vi,

the coefficients of the affine sum ϕi(·) are usually referred to by the term coordinates.
One interesting application of the above representation is defining mappings of the in-

terior of P, Pin, induced by deforming the cage P = (V,T) into P′ = (V′,T′). We assume
that P and P′ have the same topological structure, and define the mapping by

(1.3) η 7→ F(η ;P′) = ∑
i∈IV

φi(η)v′i + ∑
j∈IT

ψ j(η)s jn(t ′j),
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where v′i and t ′j denote the vertices and simplicial faces of P′, respectively. The scaling
factors {s j} j∈IT are essential for achieving important properties such as scale invariance.
The definition of the scalars {s j} is explained later on, in particular, in 2D, it is simply
s j = ||t ′j||/||t j||, where ||t j|| is the length of t j.

The current paper aims at providing some of the theoretical justifications to the claims
made in the previous paper. In particular, we prove the conformality of the mapping
F(·;P′) for arbitrary P′, derive the closed form formulas for the Green coordinates φi(·)
and ψ j(·), and construct the unique analytical continuation of the mapping F outside the
cage. For the completeness of our discussion we provide here the definition and derivation
similarly to [3].

2. DERIVATION OF GREEN COORDINATES

In this section we derive the Green Coordinates inRd . As argued in [3], shape-preservation
cannot be achieved by affine combinations of the cage’s vertices alone, and we suggest to
consider combinations of vertices and normals of the form (1.1), where the exact relation
is coded in the coordinate functions {φi} and {ψ j} and the scalars {s j}. Our derivation of
these coordinate functions is based upon the theory of Green functions and upon the fol-
lowing Green’s third integral identity: Let u be a harmonic function in a domain D ⊂ Rd

enclosed by a piecewise-smooth boundary ∂D. A scalar function u is called harmonic if it
is a solution to Laplace equation, i.e., ∆u = ∇ ·∇u = 0. Further, let G(·, ·) be the fundamen-
tal solution of the Laplace equation inRd , that is ∆ξ G(ξ ,η) = δ (ξ −η), where δ (·) is the
delta function, ξ ,η ∈Rd . Then, for any η ∈Din := interior(D), u(η) can be expressed by
its boundary values and boundary normal derivatives as

(2.1) u(η) =
∫

∂D

(
u(ξ )

∂ξ G(ξ ,η)
∂n

−G(ξ ,η)
∂u(ξ )

∂n

)
dσξ ,

where n is the oriented outward normal to ∂D, and dσξ = dσ is the volume element on
∂D.

The fundamental solutions of the Laplace equation in Rd are:

(2.2) G(ξ ,η) =

{
1

(2−d)ωd
||ξ −η ||2−d d ≥ 3

1
2π

log ||ξ −η || d = 2
,

where ωd is the volume of a unit sphere in Rd .
Now let us take the domain D to be the domain enclosed by our cage P, and let u(η) = η ,

that is the coordinate functions, in (2.1). Note that here we take u as the vector function
u = ξ : Rd → Rd . Writing the integral as a sum of integrals over the cage’s faces, and
noting that on each face t j the normal n(t j) is constant, we arrive at

(2.3) η = ∑
j∈IT

(∫
t j

ξ
∂G(ξ ,η)

∂n
dσ −

∫
t j

G(ξ ,η) n(t j)dσ

)
, η ∈ Din.

Denote by N{vi} the union of all faces in the 1-ring neighborhood of vertex vi, and let
the function Γi be the piecewise-linear hat function defined on N{vi}, which is one at vi,
zero at all other vertices in the 1-ring and linear on each face. Then writing ξ as the
(unique) barycentric combination in the simplicial face t j, ξ = ∑

d
k=1 Γk(ξ )vk, where vk are

the vertices of the face t j, we get from (2.3)

(2.4) η = ∑
i∈IV

φi(η)vi + ∑
j∈IT

ψ j(η)n(t j), η ∈ Din.
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The coordinate functions φi and ψ j are

φi(η) =
∫

ξ∈N{vi}
Γi(ξ )

∂G(ξ ,η)
∂n

dσ i ∈ IV(2.5)

ψ j(η) = −
∫

ξ∈t j

G(ξ ,η)dσ j ∈ IT,

To complete the construction of the mapping η 7→ F(η ;P′) defined by (1.3) we still need
to define the scaling factors {s j}. The definition of these factors is derived by the following
properties, desirable for shape-preserving deformations:

(1) Linear reproduction: η = F(η ;P), for η ∈ Pin.
(2) Translation invariance: ∑i∈IV φi(η) = 1, for η ∈ Pin.
(3) Rotation and scale invariance: For an affine transformation which consists of a

rotation with possible isotropic scale U , F(η ;UP) = Uη .
(4) Conformality: For d = 2, the mapping η 7→ F(η ;P′) is holomorphic.
(5) Smoothness: {φi(η)},{ψ j(η)} are harmonic functions in Pin. Hence, they are C∞

for η ∈ Pin.
Linear reproduction is the basic relation (2.4) we started with, we just need to take

s j = 1 if t ′j = t j. This choice is also suitable for the second property, together with the
relation ∑i∈IV φi(η) = 1 followed by applying (2.1) to the function u(η) ≡ 1. To ensure
the third property we take s j = ||U ||2, and thus Un(t j) = s jn(t ′j). The face t j, together with
the point v j1 + n(t j), where v j1 is a vertex in t j, define a simplex S j in Rd , and similarly
t ′j and v′j1 + s jn(t ′j) define a simplex S′j. In the case of a similarity (rotation and uniform
scaling) map S we have U(S j) = S′j. In the general case we would like to define s j so that
the linear mapping taking S j onto S′j is least-distorting. In other words, s j should represent
the stretch the face t j undergoes as the cage is deformed. In 2D (d = 2) this stretch is well
defined, simply take

(2.6) s j = ||t ′j||/||t j||,

i.e., the exact stretch of the edge t j. In higher dimensions, however, the stretch is not so
evident and it cannot be described by a single scalar. Nevertheless, we find the following
definition natural: In 3D, let σ1,σ2 be the singular values of the linear map taking t j to t ′j.
Then, to have a least-distorting map taking S j onto S′j we should define s j as some average
of σ1 and σ2. The choice that provided us with the desired quasi-conformality property

is s j =
√

σ2
1 +σ2

2
2 . Using computations presented in [4] for linear transformations between

triangles in R3, one (t j) with edges defined by the vectors u,v and the other (t ′j) by the
corresponding vectors u′,v′, it turns out that

(2.7) s j =

√
|u′|2|v|2−2(u′ · v′)(u · v)+ |v′|2|u|2√

8area(t j)
.

Note that this final definition encapsulates and generalizes all of the above cases. As
demonstrated by the examples throughout the chapter, the above definition of the factors s j
leads to ’least-distorting’ deformations. However, in some cases, one may be interested in
a distortion, such as stretching the object non-uniformly. Such effects may still be achieved
by replacing the definitions (2.6) and (2.7) by the simple choice s j = 1. Intermediate effects
may be obtained by sliding the values of s j between these two options.

The fifth property holds for any choice of {s j}, and is due to the fact that for η ∈
Pin {φi} and {ψ j} can be differentiated an infinite number of times under the integral
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sign. Furthermore, since the function G(·, ·) is symmetric and harmonic, it follows that
{φi},{ψ j} are also harmonic functions. Finally, let us prove the fourth property in the
case of d = 2, that is, the mapping η 7→ F(η ;P′) is pure conformal. Note that the proof
shows that this mapping is holomorphic and does not guarantees that the jacobian does not
degenerate. However, in practice we have noticed degeneracies are rather rare and happen
mainly when the cage is drastically deformed.

Theorem 2.1. For d = 2 the deformation η 7→ F(η ;P′) defined by Eq. (1.3), with the
coordinates defined in (2.5), is conformal in Pin for all P′.

Proof. For the proof, assume the vertices v1,v2, ... of the cage are ordered in a clockwise
manner and denote t j = v j+1−v j. Let us introduce the linear operator ⊥:R2→R2 which
will stand for counter-clockwise rotation of π/2 radians. Using this symbol, the deforma-
tion in 2D can be written as:

η 7→ F(η ;P′) = ∑
i∈IV

φi(η)v′i + ∑
j∈IT

ψ j(η)(t ′j)
⊥.

We begin with three simple lemmas which form the basis of the proof.

Lemma 2.2. Let u be a harmonic function defined in an open domain D ⊂ R2, then f =
uy + iux is holomorphic.

Proof. Directly from Cauchy-Riemann equations:

(uy)x = (ux)y,

(ux)x = −(uy)y,

where the first equality is due to the fact that partial derivatives of smooth functions com-
mute. The second equality is due to the fact that u is harmonic. �

Lemma 2.3. Let v ∈ C be an arbitrary complex point. Then, if the map h(z) + ir(z) is
holomorphic then the map ivh(z)− vr(z) is also holomorphic.

Proof. The proof is immediate by multiplying h+ ir by iv. �

An immediate corollary is:

Corollary 2.4. Let v ∈ R2 and let h(x,y) and r(x,y) be conjugate harmonic functions
in D ⊂ R2. Then the mapping f : D 7→ R2 defined by f (x,y) = v⊥h(x,y)− vr(x,y) is
conformal.

Lemma 2.5. Let vi ∈ V be an arbitrary vertex of P. Denote by ti−1 and ti the faces (edges
in this case)−−−→vi−1vi and−−−→vivi+1, respectively. Then φi and ψi−ψi−1 are conjugate harmonic.
In other words

(ψi−ψi−1)+ iφi,

is holomorphic.

Before laying out the proof of this lemma, let us show that it implies that the map
η 7→ F(η ;P′) is conformal (holomorphic). It is enough to consider two cages P′,P′′ which
differ in only one vertex vi. Then successive application of the following argumentation
will constitute the proof. So, let P′,P′′ be such cages. Then, if ti−1 and ti are the edges
previous and following vi, then

F(η ;P′′)−F(η ;P′) = φi(η)(v′′i − v′i)+ ∑
j=i−1,i

ψ j(η)(t ′′⊥j − t ′⊥j ).
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Next we note that since ⊥ is a linear operator we get

∑
j=i−1,i

ψ j(η)(t ′′⊥j − t ′⊥j ) = (v′′i − v′i)
⊥ (ψi−1(η)−ψi(η)) .

Thus we have

(2.8) H(η)≡ F(η ;P′′)−F(η ;P′) = (v′′i − v′i)φi(η)+(v′′i − v′i)
⊥ (ψi−1(η)−ψi(η)) .

Therefore, from Corollary 2.4 and Lemma 2.5 H(η) is holomorphic. �
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1
βi
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e

FIGURE 1. Illustration for the proof.

Proof. (Lemma 2.5) Denote by T the triangle with vertices −−−−−−−→vi−1,vi,vi+1, and denote by e
the edge−−−−−→vi+1vi−1, see Figure 1. First, let us assume that η /∈ T . Denoting βi to be the linear
function over the triangle T , having the value of one at vertex vi and the value zero at vi−1
and vi+1, we note that

φi(η) =
∫

ti−1

βi
∂G
∂n

dσ +
∫

ti
βi

∂G
∂n

dσ +
∫

e
βi

∂G
∂n

dσ ,

where
∫

e βi
∂G
∂n dσ = 0 since βi is zero on e. Hence, using Green’s First Identity we get

φi(η) =
∫

ti−1
⋃

ti
⋃

e
βi

∂G
∂n

dσ =
∫

T
(βi∆G+(∇βi ·∇G))dV.

Now since η /∈ T , G is harmonic in T and therefore we get

(2.9) φi(η) =
∫

ti−1
⋃

ti
⋃

e
βi

∂G
∂n

dσ =
∫

T
(∇ξ βi(ξ ) ·∇ξ G(η ,ξ ))dV.

We also claim that

ψi−1(η) =− 1
|ti−1|

∫
ti−1

Gdσ =−
∫

ti−1

G∇βi ·d~σ ,

where d~σ is the line integral element. Indeed, since ∇βi = −e⊥
2area{T} pointing inside triangle

T (note that for concave setting ∇βi = e⊥
2area{T} is also pointing inside triangle T ),

∇βi ·d~σ =
−e⊥

2area{T}
· σ̇

|σ̇ |
dσ =

|e|sin](vi+1vi−1vi)
2area{T}

dσ =
1
|ti−1|

dσ .
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Similarly we have

ψi(η) =− 1
|ti|

∫
ti

Gdσ =
∫

ti
G∇βi ·d~σ .

Note that the different sign is due to the fact that the direction of the vector ti−1 agrees with
the direction of ∇βi while the direction of the vector ti is opposite (see Figure 1). Since
∇βi ·d~σ = 0 on e, we can write

ψi−1(η)−ψi(η) =−
∫

ti−1
⋃

ti
⋃

e
G∇βi ·d~σ .

Next, let us write Green’s Theorem in our notations, that is, for a vector field Q(η) there
exists ∫

ti−1
⋃

ti
⋃

e
Q ·d~σ =

∫
T

∇ · (Q⊥)dV.

Taking Q = G∇βi and noting that

∇ · (G∇βi)⊥ = ∇ · (G(∇βi)⊥) = ∇G · (∇βi)⊥,

we get

(2.10) (ψi−ψi−1)(η) =
∫

T
∇ξ G(η ,ξ ) · (∇ξ βi(ξ ))⊥dV.

We note that due to the symmetry of G

∇ξ G(ξ ,η) = ∇η G(η ,ξ ).

Now, since ∇βi and (∇βi)⊥ are constant, orthogonal, positive oriented vectors, and due to
the rotation invariance of the Laplace operators and Lemma 2.2 we have that for each fixed
ξ

∇η G(η ,ξ ) ·∇βi , ∇η G(η ,ξ ) · (∇βi)⊥

are conjugate harmonic. By integrating we get that identities (2.9) and (2.10) represent
conjugate harmonic functions. Thus, we get that ψi−ψi−1 and φi define a holomorphic
map.

vi+1

vi

vi-1

βi

t i-1

t i

t i+1

Τ

vi+1

vi

vi-1

t i-1

t i
Τ

η

w
e

0

e
1

e
0 Τ1

1
βi

0

βi

FIGURE 2. Illustration for the proof.
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In the case η ∈ T , let us add the point w = η+vi
2 and denote the vectors e0 =−−−→wvi−1, e1 =

−−−→vi+1w and e = −→viη . We also denote the two new triangles T0 = −−−−→vi−1viw and T1 = −−−−→vivi+1w,
see Figure 2. Furthermore, we define the functions β 0

i and β 1
i to be the linear functions

which coincide with βi on ti−1 and ti, respectively, and are zero on e0 and e1, respectively.
We note that

φi =
∫

ti−1
⋃

e
⋃

e0

β
0
i

∂G
∂n

dσ +
∫

ti
⋃

e1
⋃
−e

β
1
i

∂G
∂n

dσ ,

based upon the facts that the integral on e equals zero since ∂G
∂n = 0 over e, and the integrals

on e0,e1 equal zero since the corresponding functions β 0
i , β 1

i vanish there. Next, using the
First Green’s Identity on each of these closed integrals we get

φi =
∫

T0

∇β
0
i ·∇G dV +

∫
T1

∇β
1
i ·∇G dV.

Similarly, we note that

ψi−ψi−1 =
∫

ti−1
⋃

e
⋃

e0

G∇β
0
i ·d~σ +

∫
ti
⋃

e1
⋃
−e

G∇β
1
i ·d~σ ,

where we used the facts that the integrals on e and −e cancel each other and the integrals
on e0 and e1 vanish because ∇β 0

i · d~σ = 0 on e0 and ∇β 1
i · d~σ = 0 on e1, respectively.

Then, using Green’s theorem again we get

ψi−ψi−1 =
∫

T0

∇G · (∇β
0
i )⊥dV +

∫
T1

∇G · (∇β
1
i )⊥dV.

And we finish as above. �

3. CLOSED-FORM FORMULAS FOR 2D AND 3D

Interestingly, closed-form formulas can be derived for the dimensions d = 2,3.
Throughout this section we fix η and calculate φi(η), i ∈ IV and ψ j(η), j ∈ IT in the

relevant dimension.

3.1. The case d = 2. The derivation in this case is rather straight forward. Note that the
Laplace fundamental solution in this case is G(ξ ,η) = −1

2π
log||ξ −η || (see (2.2)). Let us

first establish a formula for

ψ j(η) =−
∫

ξ∈t j

G(ξ ,η)dσ .

Denote by vi,vi+1 ∈ V the ordered two vertices which consist the edge t j. Next, denote
the vectors ai = vi+1− vi and bi = vi−η . Then, taking the parametrization γ(t) = vi + tai,
t ∈ [0,1] we get ∫

ξ∈t j

G(ξ ,η)dσ =
−1
2π

∫ 1

t=0
log||bi + tai||||ai||dt.

Therefore,

ψ j(η) =
||ai||
2π

∫ 1

t=0
log(t2||ai||2 +2t(ai ·bi)+ ||bi||2)dt,

and we use the relevant antiderivative:∫ T
log(qt2 + rt + s)dt =

log(qT 2 + rT + s)
(

T +
r

2q

)
− tan−1

(
2qT + r√
4sq− r2

)(
2q+ r

q
√

4sq− r2

)
.
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Next, for φi(η) denote by t j−1, t j the edges which are adjacent to vertex vi, that is, t j−1 is
the edge between vi−1 and vi and t j is the edge between vi and vi+1. Then,

φi(η) = ∑
k= j−1, j

∫
ξ∈tk

Γi(ξ )
∂G(ξ ,η)

∂n
dσ .

For t j−1 we use the parametrization

γ(t) = ai−1t + vi−1, t ∈ [0,1]

and get ∫ 1

0
t
(
− ai−1t +bi−1

2π||ai−1t +bi−1||2
·n(ai−1)

)
||ai−1||dt =

−(bi−1 ·a⊥i−1)
2π

∫ 1

0

tdt
||ai−1||2t2 +2t(ai−1 ·bi−1)+ ||bi−1||2

.

For t j we use the parametrization γ(t) = ait + vi, t ∈ [0,1] and get∫ 1

0
(1− t)

(
− ait +bi

2π||ait +bi||2
·n(ai)

)
||ai||dt =

−(bi ·a⊥i )
2π

∫ 1

0

(1− t)dt
||ai||2t2 +2t(ai ·bi)+ ||bi||2

.

The relevant antiderivatives are: ∫ T t−1
qt2 + rt + s

dt =

1
2q

log(qT 2 + rT + s)− tan−1

(
2qT + r√
4sq− r2

)(
2q+ r

q
√

4sq− r2

)
,

∫ T t
qt2 + rt + s

dt =

1
2q

log(qT 2 + rT + s)− tan−1

(
2qT + r√
4sq− r2

)(
r

q
√

4sq− r2

)
.

All the above is combined to yield an algorithm for calculating the coordinates φi(η),ψ j(η)
in 2D as given in Algorithm 1.

3.2. The case d = 3. First, we establish the formulae for computing the

ψ j(η) =−
∫

ξ∈t j

G(ξ ,η)dσ ,

where G(ξ ,η) =−1/4π||ξ −η ||. Denote by vi,vi+1,vi+2 the order set of vertices consist-
ing the face t j, and let p be the projection of the point η onto the plane defined by the face
t j. Then,

||ξ −η ||=
√
||η− p||2 + ||p−ξ ||2.

Since ||η − p||2 is a constant, in the integral we denote it by c > 0. First, let us establish
a formula for calculating the above integral over the triangle41 with vertices (p,vi,vi+1).
Denote the angles of41 by α = ](pvivi+1) and β = ](vi+1 pvi). Using polar coordinates
on the plane defined by t j, with origin at p we arrive at∫

ξ∈41

G(ξ ,η)dσ =
−1
4π

∫
ξ∈41

1√
c+ ||p−ξ ||2

dσ =
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Input: cage P = (V,T), set of points Λ = {η}
Output: 2D GC φi(η),ψ j(η), i ∈, j ∈ IT,η ∈ Λ

/* Initialization */

set all φi = 0 and ψ j = 0

/* Coordinate computation */

foreach point η ∈ Λ do
foreach face j ∈ IT with vertices v j1 ,v j2 do

a := v j2 − v j1 ; b := v j1 −η

Q := a ·a ; S := b ·b ; R := 2a ·b
BA := b · ||a||n(t j) ; SRT :=

√
4SQ−R2

L0 := log(S) ; L1 := log(S +Q+R)
A0 := tan−1(R/SRT )

SRT ; A1 := tan−1((2Q+R)/SRT )
SRT

A10 := A1−A0 , L10 := L1−L0

ψ j(η) :=−||a||/(4π)
[(

4S− R2

Q

)
A10+ R

2Q L10+L1−2
]

φ j2(η) := φ j2(η)− BA
2π

[
L10
2Q −A10 R

Q

]
φ j1(η) := φ j1(η)+ BA

2π

[
L10
2Q −A10

(
2+ R

Q

)]
end

end

Algorithm 1: 2D Green Coordinates algorithm.

−1
4π

∫
β

θ=0

∫ R(θ)

r=0

r√
c+ r2

drdθ =
−1
4π

∫
β

θ=0

[√
c+R(θ)2−

√
cβ

]
dθ ,

where from the law of sines

R(θ) =
||−→pvi||sin(α)

sin(π−α−θ)
.

Denote λ = ||−→pvi||2sin2(α) and δ = π−α . By translating the parameter θ we get∫
β

θ=0

√
c+R(θ)2dθ =

∫
δ

ϕ=δ−β

√
c+

λ

sin2(ϕ)
dϕ.

The relevant antiderivative is∫ T √
c+

a
sin2(t)

dt = Q(a,c,sin(T ),cos(T )),

where

Q(a,c,S,C) =
−sign(S)

2

[
2
√

c tan−1
( √

cC√
a+ cS2

)
+

√
alog

(
2
√

aS2

(1−C)2

(
1− 2cC

c(1+C)+a+
√

a2 +acS2

))]
.

So at this point we know how to calculate the integral
∫

ξ∈41
G(ξ ,η)dσ . Clearly, we can

use this formula also for 42 which is the triangle defined by the points (p,vi+1,vi+2) and
43 which is the triangle defined by (p,vi+2,vi). Therefore, we can calculate∫

ξ∈t j

G(ξ ,η)dσ =
3

∑
i=1

sign(4i)
∫

ξ∈4i

G(ξ ,η)dσ ,

where sign(4i) is the orientation sign of the triplet of vertices consisting triangle4i.
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At this point we have closed formulae for calculating ψ j(η). Let us use these to derive
formulas for φi(η). Denote by ϒ the tetrahedron defined by the points η ,vi,vi+1,vi+2, and
let41,42,43 be the triangles defined by the points (η ,vi,vi+1), (η ,vi+1,vi+2), (η ,vi+2,vi),
respectively. Using Green’s third identity for the domain is ϒ we get

ρη =
∫

∂ϒ

ξ
∂G
∂n

dσ −
∫

∂ϒ

Gndσ ,

where ρ is some constant. To simplify things we translate η to the origin and hence the
left-hand side of the equality is zero. Next, note that ∂G

∂n = 0 on the triangles 41,42,43.
Therefore, we get ∫

t j

ξ
∂G
∂n

dσ =
3

∑
i=1

ni

∫
4i

Gdσ +n(t j)
∫

t j

Gdσ ,

where ni is the outward normal vector to 4i. Now, the right hand side can be easily
calculated with the above formulae, and the left hand side equals∫

t j

ξ
∂G
∂n

dσ =

vi

∫
t j

Γi(ξ )
∂G
∂n

dσ + vi+1

∫
t j

Γi+1(ξ )
∂G
∂n

dσ + vi+2

∫
t j

Γi+2(ξ )
∂G
∂n

dσ .

In the case vi,vi+1,vi+2 are not co-planar we have

∫
t j

Γi+k(ξ )
∂G
∂n

dσ =
nk+2 ·

(∫
t j

ξ
∂G
∂n dσ

)
nk+2 · vi+k

, k = 0,1,2.

In the case vi,vi+1,vi+2 are co-planar we have that ∂G
∂n = 0 on t j and therefore∫

t j

Γi+k(ξ )
∂G
∂n

dσ = 0, k = 0,1,2.

This is combined into Algorithm 2 for calculating the coordinates φi(η),ψ j(η) in 3D.

FIGURE 3. An illustration of the values of φi (left) for one vertex
(marked in bold green point), and ψ j (right) for one edge (marked in
bold green line) in 2D.
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Input: cage P = (V,T), set of points Λ = {η}
Output: 3D GC φi(η),ψ j(η), i ∈, j ∈ IT,η ∈ Λ

/* Initialization */

set all φi = 0 and ψ j = 0
/* Coordinate computation */

foreach point η ∈ Λ do
foreach face j ∈ IT with vertices v j1 ,v j2 ,v j3 do

foreach ` = 1,2,3 do
v j` := v j` −η

p := (v j1 ·n(t j))n(t j)
foreach ` = 1,2,3 do

s` := sign
((

(v j` − p)× (v j`+1 − p)
)
·n(t j)

)
I` := GCTriInt(p,v j` ,v j`+1 ,0)
II` := GCTriInt(0,v j`+1 ,v j` ,0)
q` := v j`+1 × v j`
N` := q`/||q`||

I :=−
∣∣∑3

k=1 skIk
∣∣

ψ j(η) :=−I
w := n(t j)I +∑

3
k=1 NkIIk

if ||w||> ε then
foreach ` = 1,2,3 do

φ j`(η) := φ j`(η)+ N`+1·w
N`+1·v j`

end
end

Procedure GCTriInt(p,v1,v2,η)
α := cos−1

(
(v2−v1)·(p−v1)
||v2−v1||||p−v1||

)
; β := cos−1

(
(v1−p)·(v2−p)
||v1−p||||v2−p||

)
λ := ||p− v1||2 sin(α)2 ; c := ||p−η ||2

foreach θ = π−α,π−α−β do
S := sin(θ) ; C := cos(θ)
Iθ := −sign(S)

2

[
2
√

c tan−1
( √

cC√
λ+S2c

)
+

√
λ log

(
2
√

λS2

(1−C)2

(
1− 2cC

c(1+C)+λ+
√

λ 2+λcS2

))]
return −1

4π

∣∣Iπ−α − Iπ−α−β −
√

cβ
∣∣

Algorithm 2: 3D Green Coordinates algorithm.

4. EXTENDING TO THE CAGE’S EXTERIOR

The Green Coordinates defined by Eq. (1.3) and (2.5) are smooth in the interior of the
cage P. However, each coordinate φi(η) has jump discontinuities along the edges (simpli-
cial faces) meeting at vi, see Figure 3. A natural question is whether the coordinates can
be smoothly extended to the exterior of P. In 2D the Green Coordinates induce confor-
mal transformations of the interior of P, and the above question is addressing the analytic
continuation of these conformal transformations through the boundaries of P.

In this section we derive the analytic continuation of the coordinates outside the cage,
and show that it requires only a rather slight modification to the closed-form formulas at
hand. Let us remark that the use of the term analytic continuation is twofold: In case
d = 2 we refer to the classical meaning of extending the conformal (or analytic) complex
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maps. While in the case d ≥ 3 we mean (real) analytic extension of harmonic functions
(the coordinate functions φi,ψ j are harmonic functions).

4.1. Extension through a face. Let us describe how the coordinate should be extended
through some face t` ∈ T, ` ∈ IT of the cage, i.e., as η is moving outside the cage through
that face. Let i1, ..., id ∈ be the indices of the vertices which consist the face t`. First,
we note that Theorem 2.1 implies that the mapping η 7→ F(η ;P′) is conformal also for
η outside the cage, which we denote by η ∈ Pext . However, outside the cage we loose
the important linear reproduction property (property 1, Section 2). In particular we have
F(η ;P) = 0 which is shown in the following lemma:

Lemma 4.1. For η ∈ Pext there exists;

∑
i∈IV

φi(η)vi + ∑
j∈IT

ψ j(η)n(t j) = 0(4.1)

∑
i∈IV

φi(η) = 0(4.2)

Proof. From argumentation given in Section 2, we have that

∑
i∈IV

φi(η)vi + ∑
j∈IT

ψ j(η)n(t j) =
∫

∂P
(u

∂G
∂n
−G

∂u
∂n

)dσ ,

where ∂P is the cage (piecewise linear) surface, u(ξ ) = ξ , and the singularity η is exterior
to the cage. Furthermore, Green’s second identity implies that for harmonic u and G∫

∂P
(u

∂G
∂n
−G

∂u
∂n

)dσ =
∫

Pin
(u∆G−G∆u) dV = 0.

Hence the first statement follows. For the second statement, translate the origin by a con-
stant vector −e1 = (−1,0, ...,0)t ∈Rd . Then from the above,

∑
i∈IV

φi(η + e1)(vi + e1)+ ∑
j∈IT

ψ j(η + e1)n(t j) = 0.

Furthermore, we note that ψ j(η + e1) and φi(η + e1) based on the cage P + e1 is equal to
ψ j(η) and φi(η) based on the cage P. Therefore, subtracting the latter equality from the
above equality implies the second statement. �

Another point is that the coefficients φi(·) are not continuous over the faces t j of the
cage. These observations prevent the use of φ ,ψ , as defined in (2.5), outside the cage. In
order to extend the coordinates smoothly to the exterior we take the following path. We
note that from properties 1 and 2 listed in Section 2, the coordinates φi1(η), ...,φid (η),ψ`(η)
where η ∈ Pin satisfy

(4.3) η− ∑
i6=i1,...,id

φi(η)vi−∑
j 6=`

ψ j(η)n(t j) =
d

∑
k=1

φik(η)vik +ψ`(η)n(te),

and

(4.4) 1− ∑
i6=i1,...,id

φi(η) =
d

∑
k=1

φik(η).

This yields a linear system for the coefficients φik(η),k = 1..d and ψ`(η). If the system is
invertible then these ’coordinates’ are uniquely defined by all the other coordinates via the
linear system. Let us prove that this system is invertible:
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Lemma 4.2. The linear system (4.3),(4.4) for the coefficients φik(η),k = 1..d and ψ`(η)
is non-singular.

Proof. Assume there exists a non-zero vector w = (w1, ...,wd+1) in the kernel of the sys-
tem. From (4.4) we have that

(4.5)
d

∑
k=1

wk = 0.

From Equation (4.3) we have that

0 =
d

∑
k=1

wkvik +wd+1n(t`) =
d

∑
k≥2

wk(v jk − v j1)+wd+1n(t`),

using (4.5). Now, noting that the vectors v jk − v j1 , k = 2..d and n(t`) are independent the
lemma follows. �

By the above lemma we have that solving the system (4.3),(4.4) for η ∈ Pin repro-
duce the coordinates φik(η),k = 1..d and ψ`(η). Therefore, it is natural to extend the
coordinates crossing face t` by keeping the original definition for all the coordinates ex-
cept φik(η),k = 1..d and ψ`(η) and define the latter coordinates by the system of linear
equations (4.3),(4.4). In order to distinguish the newly defined coordinates outside the cage
from the original ones (which are also defined everywhere on the plane) we denote the new
ones with ∗̃. Note that φ̃i(η) = φi(η) and ψ̃ j(η) = ψ j(η) inside the cage. It is possible to
simplify the system (4.3),(4.4) as follows. By Lemma 4.1 we have that for η ∈ Pext

∑
i∈IV

φi(η)vi + ∑
j∈IT

ψ j(η)n(t j) = 0,

and ∑i∈IV φi(η) = 0. Plugging these into equations (4.3) and (4.4), respectively, results in:

η =
d

∑
k=1

αkvik +βn(t`)(4.6)

1 =
d

∑
k=1

αk,

where αk = φ̃ik(η)− φik(η) and β = ψ̃`(η)−ψ`(η) η ∈ Pext . Furthermore, for a point
η on the exact boundary of P we get the same equations where the right hand sides are
multiplied by 1/2. We finally define the new coordinates φ̃ik(η),k = 1..d and ψ̃`(η) for
η ∈ Pext by

φ̃ik(η) = φik(η)+αk , k = 1..d(4.7)
ψ̃`(η) = ψ`(η)+β .

It is interesting to note that the system (4.6) has the following simple characterization of
the solution αk,β : From the second equation we see that ∑k αkvik is an affine sum of the
vertices which constitute the face t`. Therefore, the first equation represent the orthogonal
decomposition of the point η to the sum of a point on the hyperplane defined by the face t`
and the normal offset. Another observation is that (4.6) defines {αk} and β as the unique
affine coordinates of the point η in the simplex defined by the vertices {vik} of the face t`
plus the vertex vi1 +n(t`): η = L`(η ;P) where

(4.8) L`(η ;P) = (α1−β )vi1 +
d

∑
k=2

αkvik +β (vi1 +n(t`)) .
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Altogether, the deformation outside the cage has the form

F̃(η ;P′) = ∑
i∈

φi(η)v′i + ∑
j∈IT

ψ j(η)s jn(t ′j)+
d

∑
k=1

αkv′ik +β s`n(t ′`)(4.9)

= F(η ;P′)+L`(η ;P′).(4.10)

4.1.1. Properties in the case d = 2. A special case is d = 2 where the αk,β can be written
as follows:

α1 = 1−α2(4.11)

α2 =
(η− vi1) · (vi2 − vi1)
||vi2 − vi1 ||2

(4.12)

β =
(η− vi1) ·n(t`)
||vi2 − vi1 ||

(4.13)

Plugging this into (4.9) we get

F̃(η ;P′) = ∑
i∈

φi(η)v′i + ∑
j∈IT

ψ j(η)s jn(t ′j)+(4.14)

v′i1 +α2(v′i2 − v′i1)+β s`n(t ′`).

By Theorem 2.1 we see that the sum ∑i∈ φi(η)v′i +∑ j∈IT ψ j(η)s jn(t ′j) represents a confor-
mal mapping also for η ∈ Pext . The new addition here is the function

L`(η ;P′) = v′i1 +α2(v′i2 − v′i1)+β s`n(t ′`).

Lemma 4.3. L`(η ;P′) for η ∈ Pext is the unique linear conformal mapping taking the edge
−−→vi1vi2 to the edge

−−→
v′i1 v′i2 .

Proof. By substituting η = vi1 and η = vi2 in L`(η ;P′) we get that L`(vi1 ;P′) = v′i1 and
L`(vi2 ;P′) = v′i2 , respectively. Also, we can write L`(·;P′) in the following form:

L`(η ;P′) = v′i1 +
||v′i2 − v′i1 ||
||vi2 − vi1 ||

[
(η− vi1) · (vi2 − vi1)

||vi2 − vi1 ||
v′i2 − v′i1
||v′i2 − v′i1 ||

+ (η− vi1) ·n(t`)n(t`)] .(4.15)

And this shows that L` is conformal. The uniqueness is obvious from counting the degrees
of freedom of 2D linear conformal mapping. �

Next, we can now prove that we have actually accomplished an analytic continuation of
the mapping F through the face (edge) t`.

Theorem 4.4. In the case d = 2, fixing an edge t` and defining the coordinates φ̃ik(η),k =
1,2 and ψ̃`(η) by (4.3) and (4.4), we get that for η ∈Pext F(η ;P′)+L`(η ;P′) is the unique
analytic continuation of the conformal mapping F(η ;P′) through the edge t`.

Proof. We see from (4.14) and Lemma 4.3 that for η ∈ Pext the mapping η 7→ F̃(η ;P′) is
conformal. Furthermore, from the linear system (4.3),(4.4) and Lemma 4.2 we see that F̃
is continuous through face t`, that is F̃(η ;P′) = F(η ;P′) for η ∈ t`. By Schwarz Theorem
in complex analysis we have that two conformal mappings continuous on a common line
are analytic continuation of each other. The uniqueness of analytic continuation is due to
the fact that an analytic function which is zero on an open set is everywhere zero. �
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Maximal region of conformality. An important question is what is the maximal region
of conformality and do we have control on the location of singularities? We show two
results: first, that for general P′ one cannot expect an analytic continuation of the coor-
dinates to the whole embedding space. That is, there is no entire function F̄ such that
F̄(η ;P′) = F(η ;P′) for η ∈ Pin for general P′. However, and this is some remedy, it is
possible to place the singularities in a rather flexible manner, as proved in the following
theorem. Note that the following theorem is proved for the case d = 2 but a similar result
can be readily proven for d > 2.

Theorem 4.5. (1) There is no entire function F̄ such that F̄(η ;P′) = F(η ;P′) for
η ∈ Pin for general P′.

(2) Let Pext be subdivided into disjoint domains Ok, k ∈ K, Pext =
⋃

k∈K Ōk (Ōk is
the closure of Ok), such that for every j ∈ IT, t j is contained in some Ōk, that is
t j ⊂ Ōk. Assuming for each k ∈ K one extends F to Ok through a specific face
tk ∈ Ok. Then F̃ is analytic in

⋃
k∈K Ok in exception of all the faces t j ∈ Ok which

do not satisfy t ′j = Lk(t j;P′).

Proof. For 1 assume in negation that there exists such continuation F̄ . By theorem 4.4 we
have that the unique continuation through edge t j is F̄(η ;P′) = F(η ;P′)+L j(η ;P′). Now,
since the function η 7→ F(η ;P′) is also conformal everywhere outside the cage, that is, for
η ∈ Pext , and since L j(·;P′), j ∈ IT are entire functions, it follows by the uniqueness of
analytic continuation that

L1(·;P′)≡ L2(·;P′)≡ ...≡ L(·).
That is, all the linear conformal transformations L j(·;P′) coincide. This is obviously non-
true for a general P′, which proves 1. For 2, we have by Theorem 4.4 that F̃ is ana-
lytic through all faces tk ∈ Ok. Furthermore, the extension in Ok is F̃(η ;P′) = F(η ;P′)+
Lk(η ;P′). Therefore for any other t j ∈ Ok which satisfies t ′j = Lk(t j;P′), by Lemma 4.3
and Theorem 4.4, we have that the extension in Ok is also analytic through t j. �

4.1.2. Properties in the case d > 2. In the case of higher dimension d > 2, we don’t have
conformality, and therefore the continuation is in the sense of real analyticity. A function
f (x) is called real analytic in some domain Ω⊂Rd if for every x0 ∈Ω it can be expressed
by a power series f (x) = ∑ν cν(x− x0)ν in some neighborhood of x0. Note that we are
using the multi-index notation ν = (ν1, ...,νd), xν = xν1

1 · ... ·x
νd
d . The reason real analyticity

give rise to a unique extension in its domain of definition is the following lemma coming
from the classical theory of real analytic functions [5]:

Lemma 4.6. Let f be a real analytic function defined over a connected domain Ω such
that f = 0 on some open subset. Then f = 0 in Ω.

In the following we will show that the extended coordinates φ̃i, ψ̃ j are real analytic in
their domain of definition. This will be accomplished by another classical result from
harmonic function theory (for the proof see [5]).

Lemma 4.7. If f is harmonic on domain Ω, then it is real analytic in Ω.

Let us show next that the extended function φ̃i, ψ̃ j are harmonic in their domain of
definition.

Theorem 4.8. The extended coordinate functions φ̃i, ψ̃ j through a face t` are harmonic in
their domain of definition.
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FIGURE 4. Comparison of Schwarz-Christoffel mapping (middle) and
Green Coordinates mapping (right). Note that Green Coordinates has
lower distortion but not interpolatory.

Proof. As noted in Section 2 φi,ψ j are harmonic functions in the interior of the cage.
From the same reasoning they are harmonic also outside the cage. The coordinates φ̃ik , ψ̃`,
k = 1..d coincide with φ,ψ j in the interior of the cage and are hence harmonic there. At
the exterior of the cage it can be seen from equations (4.7) that φ̃ik , ψ̃` for k = 1..d equals
the corresponding φik ,ψ` plus the terms αk = αk(η) and β = β (η) which in view of (4.6)
are linear functions of the coordinates of η , hence are harmonic also outside the cage.
Obviously all other φ̃i, ψ̃ j equals φi,ψ j correspondingly and also harmonic outside. Finally,
we note that from definition (4.3)-(4.4) of φ̃i, ψ̃ j and Lemma 4.2, plus the fact that the
coefficients of the system (4.3)-(4.4) are C∞ functions, that these coordinates are also C∞

functions. Therefore, by continuity from both sides of the face t` we get that the defined
coordinates functions φ̃ik , ψ̃`, k = 1..d are harmonic also through the face t`. �

Combining the above we can prove the uniqueness of the proposed extension in dimen-
sions d > 2.

Theorem 4.9. Fixing a face t` and defining the coordinates φ̃ik(η),k = 1..d and ψ̃`(η) by
(4.3) and (4.4) results in the unique real analytic continuation of the harmonic coordinate
functions φi,ψ j through the face t`.

Proof. From Theorem 4.8 we have that the extended coordinates φ̃i, ψ̃ j are harmonic in
their domain of definition. Lemma 4.7 implies that harmonic functions are real analytic
and Lemma 4.6 implies the continuation is unique and therefore since φ̃i, ψ̃ j and φi,ψ j

coincide in the interior of the cage we have that φ̃i, ψ̃ j furnish the unique continuation. �

5. FINAL REMARKS

This paper presents several theoretical justification to the paper by Lipman et al.[3]. In
[3] the Green Coordinates are used to create shape-preserving free-form space deformation.
We believe that there exist more applications to this type of generalization of barycentric
coordinates. As to open theoretical question, we observed that in 3D the mapping F is near-
conformal or quasi-conformal. Proving some bound on the distortion would be interesting.

Figure 4 compares the conformal mappings created by the Green Coordinates and the
Schwarz-Christoffel formula [1]. We have employed Driscoll and Trefethen toolbox for
computing the Schwarz-Christoffel mapping. Note that we have placed the conformal
center of the mapping near the right lower vertex of the polygons P and P′. It is clear that
Green Coordinates have lower distortion than the Schwarz-Christoffel mapping, however it
is not onto the image cage P′. An interesting question would be: How far is the image of F
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from P′. An initial result in this direction can be understood from formula (2.8). Assume
that in a cage P the two edges t j−1, t j emanating from vertex v j are of the same length.
Further assume that the deformed cage P′ is identical to P except for vertex v j which is
moved to a new position v′j. Then, formula (2.8) states that a point η inside the cage P is
mapped by the rule:

F(η ;P′) = η +(v′j− v j)φ j(η)+(v′j− v j)⊥(ψ j−1(η)−ψ j(η)).

Now, we are interested understanding the image of the point η = v j under the mapping
F(·;P′). For that end, let us look at η→ v j, where η is moving along the path of the angle
bisector emanating at vertex v j. Since η is on the bisector and t j−1 and t j are of the same
length we have that ψ j−1(η) = ψ j(η). So we have

F(v j;P′) = v j + lim
η→v j

φ j(η).

Using the closed form formulas from Section 3 it is possible to calculate this limit explic-
itly. Denote by 2κ the interior angle at vertex v j, then

lim
η→v j

φ j(η) =
π

2
+

1
π

arctan(|cot(κ)|).

Hence we see that F(v j;P′)→ v′j as κ → 0, and for example, for κ = π/4, we see that
F(v j;P′) = v j +0.75(v′j− v j).
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