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Recent works in geometric modeling show the advantage of local differential coordinates in var-
ious surface processing applications. In this paper we advocate surface representation via differential
coordinates as a basis to interactive mesh editing. One of the main challenges in editing a mesh is to
retain the visual appearance of the surface after applying various modifications. The differential coor-
dinates capture the local geometric details and therefore are a natural surface representation for editing
applications. The coordinates are obtained by applying a linear operator to the mesh geometry. Given
suitable deformation constraints, the mesh geometry is reconstructed from the differential representa-
tion by solving a sparse linear system. The differential coordinates are not rotation-invariant and thus
their rotation must be explicitly handled in order to retain the correct orientation of the surface details.
We suggest two methods for computing the local rotations: the first estimates them heuristically us-
ing a deformation which only preserves the underlying smooth surface, and the second estimates the
rotations implicitly through a variational representation of the problem.

We show that the linear reconstruction system can be solved fast enough to guarantee interactive
response time thanks to a precomputed factorization of the coefficient matrix. We demonstrate that
our approach enables to edit complex meshes while retaining the shape of the details in their natural
orientation.

Keywords: mesh editing; differential coordinates; Laplacian coordinates.

1. Introduction

Editing tools for three dimensional shapes have been an important research area in geo-
metric modeling and computer graphics. It is a challenging problem since a good editing
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tool should be intuitive and easy to use, and at the same time flexible and powerful. In the
following we are focusing on mesh editing, where the tool works on shapes represented
by triangular meshes. There is a vast amount of tools for free-form modeling of shapes
from scratch mostly based on piecewise polynomial surface representations (see e.g.,7,11).
For triangle meshes, the most popular example of such tools are subdivision techniques20.
However, these techniques aim at the design of smooth surfaces, and they are not appropri-
ate for editing arbitrary, existing meshes such as the complex, highly detailed shapes that
emerge from digitizing real-world models.

There are a number of crucial requirements on an editing operation which make shape
modeling a challenging problem: The operation should be efficient enough forinteractive
work. It should providelocal influence anddetailpreservation. Typically, moving a handle
is a local operation, where only nearby vertices are affected. In addition, a flexible tool
allows the user to easily define the degree of locality and hence enables edits of different
scale. When dragging the handle vertices, the deformed surface should retain the look of
the original surface in a natural way. If a surface is smooth, the modified shape should
remain smooth. If the surface contains some geometric details, theshapeandorientation
of these details should be preserved. The editing operation should naturally change the
shape and simultaneously respect the structural detail. This problem becomes more pro-
nounced with the emergence and the proliferation of three dimensional scanned models.
Unlike CAD models, the surfaces of scanned models are usually not smoothed and contain
high-frequency details which one would like to preserve since they contribute a lot to the
appearance of the surface.

In this paper we advocate the use of differential coordinates as an alternative repre-
sentation for the vertex coordinates. We show that this representation leads to efficient,
interactive and intuitive shape modeling including local control and detail preservation.
The differential coordinates represent the geometric details and are defined with respect to
a common global coordinate system. This representation allows a direct detail-preserving
reconstruction of the modified mesh by solving a linear least squares system. The differ-
ential coordinates are not rotation-invariant since they are defined in a global coordinate
frame. As we show below, this can cause distortion of the orientation of the details on the
reconstructed surface. We suggest two methods to rectify the local orientation. First, we ro-
tate the differential coordinates according to the rotation of an approximated local frame.
The second method finds the local transformations implicitly, by expressing them as lin-
ear functions of the unknown (deformed) mesh geometry, and then incorporating these
transformations into the reconstruction optimization.

The method we present in this paper allows editing arbitrary triangle meshes. Our ap-
proach enables flexible, intuitive and interactive shape modeling. The method is concep-
tually simple and fairly straightforward to implement compared to common techniques.
The method avoids explicit multiresolution representations of the shape to allow editing in
different scale.

For the sake of speed, in this work we have restricted ourselves to express the dif-
ferential coordinates in linear terms only. The reconstruction process requires solving a
sparse linear least-squares system over the modified region of the surface. We show that
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this process is fast enough to guarantee interactivity even for detailed mesh regions.

2. Background

2.1. Mesh Editing

In this section we briefly overview mesh editing techniques for geometric modeling as
they have evolved in the recent years. Early approaches focused on the design of smooth
surfaces. Welch and Witkin26 introduced a variational method for free-from shape design
based on arbitrary triangle meshes. An edit operation imposes some geometric boundary
conditions, and the modified surface is obtained by an optimization process that mini-
mizes a fairness functional. Taubin24 improves the efficiency of the optimization by ap-
plying Laplacian smoothing which requires only the solution of a sparse linear system.
The Laplacian-based fairing operator is carefully developed from a signal processing point
of view, revealing the relation to geometric frequencies. Techniques for modeling smooth
surfaces are still an active research area16.

The above work considers the design of smooth surfaces. Shapes that contain geo-
metric details, like those acquired from real-world objects, require special editing tools
to preserve the details. The standard approach to detail-preserving uses a multiresolution
representation of the mesh. It enables large-scale editing on a coarse level and naturally
propagates modifications to the finer levels. The geometric details are usually expressed
as some kind of displacements relative to a local coordinate frame9. The different levels
can be considered as geometric frequencies or resolution of detail, where the coarsest level
refers to a smooth surface. Roughly speaking, the editing modifies a coarse level, and the
modified version of the next finer level is computed by ”adding” the displacements. This
is iterated over the hierarchy until the finest level of the detailed surface is reconstructed.

Zorin 28 present a framework for interactive multiresolution modeling. Their technique
is based on input meshes with subdivision connectivity. Kobbelt14 enable the interactive
editing of arbitrary meshes, using a two-band decomposition to encode details between
original and a smoothed mesh. The further improvement of the reconstruction leads to
multi-band decompositions10,15.

The encoding scheme of the local detail is critical. Zorin28 and Guskov10 use local
frames attached to vertices and normal displacements that pierce the original surface and
thus lead to resampling. Kobbelt14 use face-based frames, and the local encoding opti-
mizes the base point of the displacement vector. The encoding was further improved in15

to avoid artifacts in the reconstruction. In a recent work5, displacement volumes are ap-
plied to prevent local self-intersection in the reconstructed surface. This method requires
an iterative, non-linear optimization process. Other works aim at adjusting the vertex den-
sity 13 and remeshing the modified surface on the fly, trading computation time for a regular
vertex distribution.

A different approach, introduced by Lee17 parameterizes the region of interest over a
planar domain and fits a multiresolution B-spline to the relocated handles. The modified
surface is reconstructed from displacements to the spline. This can be interpreted as a kind
of simple constraint deformation (scodef3), well-known for FFD. In this context, Ben-
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dels and Klein2 recently introduced an inherent parameterization by geodesic distances to
improve on the constraint fitting and interpolation.

2.2. Differential Coordinates

The simplest form of differential coordinates is the Laplacian coordinates. The powerful
properties of Laplacian coordinates for mesh representation are not new and have been ex-
ploited in various ways. Taubin24 derives a discrete mesh fairing operator that is applied to
model smooth surfaces. Karni and Gotsman12 take advantage of this extension of spectral
theory to arbitrary 3D mesh structures for progressive and compressed geometry coding.
Based on Laplacian coordinates, Sorkine22 derive a geometry compression algorithm that
benefits from strong quantization.

Alexa1 shows that Laplacian coordinates can be effective for morphing and briefly dis-
cusses their potential for free-form modeling. He proposes to use differential coordinates to
perform local morphing and deformation of the mesh, suggesting differential coordinates
as alocal mesh description, which would be more suitable to constrain under a global
deformation of the mesh. This work also mentions the difficulty in using affine-invariant
coordinates for mesh representation: the vertex neighborhood cannot always define a local
frame (due to linear dependency), and thus the problem is numerically unstable.

In a recent work, Yu et al.27 introduce an editing technique, formulated by manipula-
tion of the gradients of the coordinate functions (x,y,z) defined on the mesh. The surface is
reconstructed by solving the least-squares system resulting from discretizing the Poisson
equation∆ f = g with Dirichlet boundary conditions. As in18, Yu et al.27 point out the
main problem of this approach: the need to rotate the local frames that define the gradients,
or the Laplacians, to preserve the orientation of the local details. They propose to remedy
this problem by explicit assignment of the local rotations by propagating the rotation of the
editing handle, defined by the user, to all the vertices of the region of interest. If, however,
the transformation of the handle consists only of translation, the result might distort the
surface details. Another recent work21 proposes a rotation-invariant local representation
of geometry, which avoids the need to assign rotations altogether. However, the reconstruc-
tion of the surface geometry is not linear, which hinders interactive applications.

3. Fundamentals

Let G = (V,E) be a 3D triangular mesh, whereV denotes the set of vertices of the mesh
andE denotes the set of edges. Denote byp j the spatial position of vertexj. Let S be a
scheme approximating verticesp j ∈V by linear combination of some other vertices:

p j ≈ S(p j) = ∑
i∈supp( j),i 6= j

α ji pi (1)

where supp( j) denotes the set of vertex indices that schemeSuses to approximate vertexj.
Now, the linear transformationD(p j) = p j −S(p j) is defined as linear differential mesh

operator created by schemeS, andD(V) =V−S(V) is defined as differential representation



May 10, 2005 12:15 WSPC/INSTRUCTION FILE ijsm˙editing

5

of the mesh created by schemeS. In the next sections we will use such representations for
our 3D mesh as a point of departure to our mesh editing algorithm.

A basic example of a linear differential mesh operator created by schemeS is the mesh
Laplacian operator:

D(p j) = L(p j) = p j −
1
d j

∑
i:( j,i)∈E

pi , (2)

where d j is the valency of vertexj and S(p j) = 1
d j

∑( j,i)∈E pi is the approximation
schemeS.

In general, the operatorD can be viewed as a filter of high-frequency detail, i.e. the
detail that is missed out by the approximation schemeS. In the case of the Laplacian
scheme,D measures the deviation of a vertex from the centroid of its neighbors and thus
captures local detail properties of the surface. These are the kind of details that we would
like to preserve during an editing operation.

The operatorD is linear and can be represented by an(n×n) matrixM, wheren= |V|:

Mi j =


1 i = j

−αi j j ∈ supp(i)
0 otherwise

Thus,(δ (x),δ (y),δ (z)) = M(p(x),p(y),p(z)), whereδ (x) is then-vector ofx components of
D(p). We call the vectorD(p j) thedifferential coordinatesof vertex j. If |supp( j)| is small
thenM is a sparse matrix, and the differential coordinates can be efficiently computed.

Given the differential coordinatesδ (x),δ (y),δ (z) of the mesh, the absolute coordinates
of the mesh geometry can be reconstructed by solving the systemMx = δ (x) (the same goes
for y andz). The matrixM can be singular. For example, in the case of the simple Laplacian
(2), rank(M) = n− k wherek is the number of connected components in the mesh8. We
add spatial constraints to the system to obtain a unique least-squares reconstruction and
to control the shape of the surface. To put a (soft) constraint on the position of vertexi,
we add the equationwixi = wiui to the system (ui is the desired location andwi > 0 is the
weight that we assign to the constraint). We then solve the resulting systemAx = b in the
least-squares sense.

4. Preserving the orientation of the details

Ideally, relative coordinates should be rotation-invariant, represented in a local coordinate
system with respect to some local reference frame. However, the differential coordinates,
as defined above, are represented in the global coordinate system, since they are merely
an image of a linear transformation ofR3n. Therefore they are not rotation-invariant. The
transformation of the differential coordinates to local frames (defined at each vertex dif-
ferently, based on some neighborhood) is not a linear invertible mapping ofR3n. While
staying in a linear framework has efficiency and simplicity advantages, it brings up the fol-
lowing problem: As a result of an editing operation, certain deformation of the surface is
introduced, which typically involves some local rotations. However, the reconstruction of
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Fig. 1. The differential coordinates are not rotation-invariant. Therefore, when we edit the mesh (lower curve), the
orientation of the details with respect to the low-frequency surface is not preserved. To rectify this, we explicitly
rotate the differential coordinates (see the dark curve).

the surface from the differential coordinates does not respect the local rotations and there-
fore the orientation of the reconstructed details will not be preserved and not rotated with
the deformed surface. This is demonstrated in Figures 1 and 6.

Recall that the editing of the surface is meant to modify large features of the surface,
while keeping the small details locally unchanged. More precisely, we would like to pre-
serve the orientation of the details with respect to the surroundings. To compensate for
rotations, weexplicitly rotate the vectors representing the differential coordinates, while
continuing to represent them in the global coordinate system. The rotation is taken to be
the local estimation of the transformation applied to the low frequency surface.

More formally, let us consider two meshesM andM′, whereM′ is the mesh obtained
from M by an arbitrary editing transformationT. M andM′ share the same connectivity
and have different geometry. Denote byp j andp′j the spatial locations of vertexj in M and
M′, respectively. Let us also definen j andn′j as the estimates of the normals at vertexj
in M andM′, computed as an average of the face normals in some neighborhood of the
vertex.

The following is an important property of the differential coordinates:

R·D(p j) = D(R·p j), (3)

whereD is the transformation from absolute to differential coordinates andR a global
rotation applied to the entire mesh.

The editing transformationT introduces different local rotations across the surface
(in addition to stretch, of course). Thus, our key idea is to use the above property of the
differential coordinates locally, assuming that locally the rotations are similar.

The local rotation at vertexj is approximated by observing the rotation of an orthogonal
frame consisting of{n j , u ji , n j ×u ji}, whereu ji is a unit vector obtained by projecting
some edge( j, i) onto the plane orthogonal ton j . In other words,

u ji =
v
‖v‖

, wherev = (pi −p j)−〈pi −p j ,n j〉n j .
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The rotation of the normal component is defined byn j ↔ n′j . The rotation of the tangential
component is estimated by observing the transformation of the chosen edge( j, i). Among
all edges emerging fromj, it is best to choose the one whose direction is the closest to
being orthogonal ton j . We can writeD(p j) in this frame:

D(p j) = αn j +βui j + γ(n j ×u ji ).

After applying transformationT, the above frame transforms to{n′j ,u
′
ji ,n

′
j ×u′ji}, where

u′ji is the direction of edge( j, i) in the transformed meshM′, projected onto the plane
orthogonal ton′j . The rotated differential coordinates of vertexj are:

D′(p′j) = αn′j +βu′ji + γ(n′j ×u′ji ).

We defineR1 andR2 to besimilar rotationsif

‖R1−R2‖ ≈ 0 (4)

using some norm induced by a vector norm onR3. Since property (3) is correct globally,
we expect it to be correct for locally similar rotations. Denote byRj the rotation associated
with the vertexj. The normal directions of nearby points over a low-frequency surface do
not deviate rapidly (in Section 7 we describe how to achieve ”smooth” normal estimation).
Local tangential rotation is also a slow changing parameter for reasonable transformations
T. SinceRj is defined using the estimation of normal and tangential rotations of the low-
frequency surface, we expect‖Ri −Rj‖ to be small for verticesi in the neighborhood of
j. Thus, we can expect the property (3) to be valid locally, or in other words, that the
reconstructed transformed surface retains the orientation of the details with respect to the
underlying low-frequency surface.

In summary, the reconstruction from the rotated differential coordinates consists of the
following four steps:

1. Apply a rough deformationT to the mesh.
2. Approximate local rotationsRj .
3. Rotate each differential coordinateD(p j) by Rj .
4. Solve the system ofRj(D(p j)) to reconstruct the edited surface.

5. Implicit derivation of the Laplacian rotations

In this section we suggest an alternative for calculating the rotationRj , as suggested in23.
The reconstruction of the geometry of the mesh from its differential coordinates, as de-
scribed in Section 3, could also be seen as the following variational problem:

E(V ′) =
n

∑
i=1

∥∥∥∥∥δi −

(
v′i −

1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

+
n

∑
i=m

‖v′i −ui‖2, (5)

which has to be minimized to find a suitable set of coordinatesV ′, where δi =
(δ (x)

i ,δ
(y)
i ,δ

(z)
i ) is the Laplacian vector of vertexi, andui are the spatial constraints.
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As mentioned, the Laplacian coordinates are sensitive to linear transformations. Thus,
the detail structure of the shape can be translated, but not rotated or scaled. If the constraints
ui imply a linear transform, the details are not transformed accordingly.

As was done heuristically in Section 6, our approach is to compute an appropriate
transformationRi for each vertexi based on the eventual configuration of verticesV ′. Thus,
Ri(V ′) is a function ofV ′, and we formulate the error functional as

E(V ′) =
n

∑
i=1

∥∥∥∥∥Ri(V ′)δi −

(
v′i −

1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

+
n

∑
i=m

‖v′i −ui‖2. (6)

Note that in Eq. 6 bothRi andV ′ are unknown. However, if the coefficients ofRi are
a linear function inV ′, then solving forV ′ implies findingRi (though not explicitly) since
E(V ′) is simply a quadratic function inV ′.

The basic idea for a definition ofRi is to derive it from the transformation ofvi and its
neighbors intov′i and its neighbors:

min
Ri

(
‖Rivi −v′i‖2 + ∑

j∈Ni

‖Riv j −v′j‖2

)
. (7)

Since this is a quadratic expression, the minimizer is a linear function ofV ′, as required.
However, ifRi is unconstrained, the natural minimizer forE(V ′) is a membrane solution,
and all geometric detail is lost. Thus,Ri needs to be constrained in a reasonable way. We
have found thatRi should include rotations, isotropic scales, and translations. In particu-
lar, we want to disallow anisotropic scales (or shears), as they would allow removing the
normal component from Laplacian coordinates.

The translational part ofRi is introduced simply by using homogeneous coordinates.
The linear part should satisfy the following conditions: The transformation should be a
linear function in the target configuration but constrained to isotropic scales and rotations.
The class of matrices representing isotropic scales and rotation can be written asT =
sexp(H), whereH is a skew-symmetric matrix. In 3D, skew-symmetric matrices emulate
a cross product with a vector, i.e.Hx = h×x. The vectorh represents the rotation axis.

Lemma 5.1. For 3× 3 matrices, the exponential sexp(H) can be represented as
αI +βH + γ hTh, whereα,β ,γ are some scalars.

Proof. Leth∈R3 be a vector and H∈R3×3 be a skew-symmetric matrix so that Hx = h×
x,∀x ∈R3. We are interested in expressing the exponential of H in terms of the coefficients
of H, i.e. the elements ofh. The matrix exponential is computed using the series expansion

expH = I +
1
1!

H +
1
2!

H2 +
1
3!

H3 + . . .

The powers of skew-symmetric matrices in three dimensions have particularly simple
forms. For the square we find

H2 =

−h2
2−h2

3 h1h2 h1h3

h1h2 −h2
1−h2

3 h2h3

h1h3 h2h3 −h2
1−h2

2

= hhT −hTh I (8)
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and using this expression (together with the simple fact that Hh = 0) it follows by induction
that

H2n = (−hTh)n−1hhT +(−hTh)n I

and

H2n−1 = (−hTh)n−1H

for n∈N. Thus, all powers of H can be expressed as linear combinations of I, H, andhhT ,
and, therefore,

expH = αI +βH + γhhT

for appropriate factorsα,β ,γ.

Inspecting the terms we find that onlys, I , andH are linear in the unknownss andh,
while hTh is quadratic. As a linear approximation of the class of constrained transforma-
tions we, therefore, use

Ri =


s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1

 . (9)

This matrix is a good linear approximation for rotations with small angles. The conse-
quences for larger angles are discussed later.

Given the matrixRi as in Eq. 9, we can write down the linear dependency (cf. Eq. 7) of
Ri onV ′, explicitly:

s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1




v(x)
k

v(y)
k

v(z)
k
1

=


v′(x)k

v′(y)k

v′(z)k
1

 , k∈ {i}∪N(i) (10)

We wish to write downs,h, t as expressions ofV ′ andV. Therefore we reform the above
as the following system of equations, where the unknowns ares,h, t.


v(x)

k 0 v(z)
k −v(y)

k 1 0 0

v(y)
k −v(z)

k 0 v(x)
k 0 1 0

v(z)
k v(y)

k −v(x)
k 0 0 0 1

...





s
h1

h2

h3

tx
ty
tz


=


v′(x)k

v′(y)k

v′(z)k
...

 , k∈ {i}∪N(i), (11)

and this system is equivalent to Eq. 7. Denoting the matrix byAi and the right-hand side
vector bybi , we abbreviate the above asAi(si ,hi , t i) = bi . We solve this system in the
least-squares sense via normal equations:

(si ,hi , t i)T =
(
AT

i Ai
)−1

AT
i bi , (12)
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Fig. 2. Classification of the vertices of the edited region (ROI). The yellow vertex is the handle vertex which is
moved by the user. The green vertices are thefree vertices of the ROI (their position changes according to the
reconstruction process). The red vertices are the stationary anchors - their position is constrained in the least-
squares sense.

which shows that the coefficients ofRi are linear combinations ofv′k, k∈ {i}∪N(i), since
Ai is known from the initial meshV. Next, we plug the expressions forRi into the opti-
mization in Eq. 6 to get a linear least-squares system in unknownV ′ only.

6. Editing using differential coordinates

From the user’s point of view, the editing process is comprised of the following stages:
First, the user defines the region of interest (ROI) for editing. Next, the handle vertices
are selected. In addition, the user can optionally define the amount of “padding” of the
ROI bystationary anchors. These stationary anchor vertices support the transition between
the ROI and the untouched part of the mesh. The user can also define the type of the
differential operator he wishes to use. Finally, the user moves the handle, and the surface is
reconstructed with respect to the relocation of the handle and displayed. The last two steps
of selecting and then relocating a handle are repeated for the current ROI until the desired
surface edit is achieved.

On the algorithmic side, the following steps are performed. Once the ROI, the sta-
tionary anchors within and the handle vertices are defined, the mesh vertices are logically
partitioned into two groups: the modified vertices, consisting of the ROI, and the rest of
the mesh, which is untouched and thus stays fixed. Only the submesh of the modified ver-
tices is considered in the following editing process. The positions of the handle vertices
and the anchors constrain the reconstruction and hence the shape of the resulting surface.
The handle acts as a control, therefore its constraints are constantly updated. The uncon-
strained vertices of the edited mesh represent the overall shape and are forced to follow
the user interaction. The stationary anchors are responsible for the transition from the ROI
to the fixed part of the mesh. The least-squares solution approximates their positions (see
also22) resulting in a soft blend between the two submeshes. To further improve on the
smoothness, we choose several layers of anchors, which are weighted proportional to their
geodesic distance from the handle. Selecting the amount of these padding anchor vertices
depends on the user’s requirements, as mentioned above. We have observed in all our ex-
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Fig. 3. The effect of editing the mesh (in blue) using different orders of the Laplacian operator. The constrained
anchors are the left- and rightmost vertices of the mesh. Pulling the handle vertex in the middle results in the
green curve for the 1st-order Laplacian and red curve for the 2nd-order Laplacian operator.

periments that setting the radius of the “padding ring” to be about 10% of the ROI radius
gives satisfying results. Figure 2 illustrates the vertex classification.

The edited surface is reconstructed from the locally rotated differential coordinates,
as described in Section 4. To approximate the rotations we have to a priori estimate the
normals of the editing result. The details of this normal estimation are given in the next
section. It is based on a reference shape that is a rough, approximate result of editing
the input mesh. Here, we simply use the reconstruction with respect to the not yet rotated
differential coordinates as reference. Then our normal estimation approximates the normals
of some underlying smooth surface. This approach proved to be effective for estimation of
local rotations; however, other types of deformations can be applied to obtain a reference
surface, such as a simple constrained deformation2,3.

In the last step, after applying the local rotations to the differential coordinates of the
vertices in the ROI, we reconstruct the surface by solving the linear least-squares system
defined in Section 3. The system is constructed from the basic differential operator matrix
and the extension of the constrained vertex positions equations. The right-hand side vector
contains the rotated differential coordinates together with the constrained locations of the
handle and the stationary anchors. The solving procedure is efficiently implemented, as
explained in Section 8. We are free to choose an appropriate (linear) differential operator
D, such as different orders of the Laplacian. However, a higher-order operator has larger
support, resulting in a less sparse system matrix. Figure 3 shows a 2D example of editing a
mesh by employing the same constraints and handle movement, by using first- and second-
order Laplacian (without applying explicit rotations to the differential coordinates). The
latter operator exhibits smoother transition between the stationary vertices and the ROI.

7. Normals estimation

The detail preservation technique introduced in Section 4 requires an approximation of the
normals of the underlying smooth surface. A naive estimation can be applied by averag-
ing the normals of the detailed surface in some neighborhoodWj of radiusr around the
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Fig. 4. A 2D example of smooth surface normals estimation. (a) and (c) show the surface with high-frequency
detail and the estimated normals of the underlying smooth surface. In (a) a naive averaging of the detailed surface
normals was used. (b) shows the same normal vectors as in (a), but they coordinate of the origin point of each
normal is set to zero. This visualizes the problem of the naive estimation - the resulting normals do not vary
smoothly. In (c) we show the result of normals estimation using weighted average (with the same support as
in (a)–(b)), as explained in Section 7. As demonstrated in (d), such estimation leads to more smoothly-varying
normals which are closer to the real smooth surface normals.

estimated vertexj:

n j =
n
‖n‖

; n = ∑
i∈Wj

ni .

However, this simple method does not always give satisfactory results since it weighs
all the normals equally (see Figure 4(a)–(b) for an example). A better alternative is to use a
smooth weighting scheme, where the weights decrease with the distance from the estimated
vertex:n = ∑i∈Wj

wi j ni ; wi j = p(dist(p j ,pi)). The radial functionp should be a smooth
function vanishing close tor (the estimation support radius). We have chosen to use the
polynomialp(t) = 2

r3 t3− 3
r2 t2 +1. It has the desired properties:p(0) = 1, p′(0) = p′(r) =

p(r) = 0, and it is smooth. The distance measure used should ideally be the geodesic
distance betweenp j andpi ; however, it is difficult and computationally costly to compute.
Therefore, we retreat to an approximation by computing the length of the weighted shortest
path betweenp j andpi using Dijkstra’s algorithm, where the edges of the mesh graph are
assigned weights equal to the edges’ length. A more detailed discussion of this choice is
given in the next section.

The weighting scheme leads to a smoother approximation of the normals, as can be
observed in the 2D example in Figure 4. The figure compares the naive averaging with the
elaborated weighted averaging. Note that the supporting neighborhood is the same in both
cases.

8. Implementation issues

An interactive editing tool must provide the user an immediate feedback. The critical part
of our algorithm is the reconstruction from the differential coordinates, consequently we
express them in linear terms only. Thus, the computational kernel of our editing algorithm
is a sparse linear solver for the least-squares problem min‖Ax−b‖ over the modified re-
gion of the surface. This problem can be solved fast enough to guarantee interactive editing.
The speed is gained thanks to a pre-factorization of the coefficient matrix, which permits
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very fast solves. Hence it is possible to work on large, detailed meshes while maintaining
interactive frame-rates.

To solve the linear least-squares system, we use a direct solver for the normal equa-
tionsATAx = ATb. The coefficient matrixATA is positive semi-definite, and its triangular
factorization is computed asATA= RTR, whereR is an upper triangular matrix. The factor-
ization is the most time-consuming operation, but it only needs to be done once per defined
edited region. Once the factorization is available, the system can be solved very efficiently
by back-substitution, as many times as necessary. This is required each time the position
of the handle vertices is changed, which implies a change of the right-hand side vectorb.

In our implementation we useTAUCS version 2.225 as linear solver. It is a direct solver
which performs quite fast even on large editing regions, as shown in Table 1. The table
displays factorization and solving times for the ROIs that we used in our experiments.
The fast solve procedures enable interactive frame-rates when editing complex, detailed
meshes. The timings were measured on a 2.4 GHz Pentium 4 computer.

Another implementation issue to address is the computation of geodesic distances
needed for our smooth normals estimation and the weighting policy for the stationary
anchor points. As explained in Section 6, the anchors’ weights are proportional to their
respective geodesic distance from the handle. In contrast to2, these distances are applied
merely to aid a smooth transition between the edited region and the fixed part of the mesh.
Therefore, we observed that an inexpensive approximation to the geodesic distance is suf-
ficient for our application. We use Dijkstra’s algorithm to compute discrete shortest paths,
where each edge is weighted by its length.

9. Results and discussion

We demonstrate that representing the geometric information of a triangle mesh in differ-
ential form enables detail-preserving interactive shape modeling. The absolute vertex po-
sitions are reconstructed from their relative coordinates by solving a sparse linear system.
This can be done efficiently, as discussed in the previous section. In fact, we get interactive
response for the reconstruction in our experiments. Table 1 provides the computation times
for factorization and back-substitution for the shown examples as well as the size of the
editing region. Note that the factorization is applied only once per ROI.

Figure 7 shows examples for edits on theOctopusmodel. As the user defines regions of
interest of different size, the surface is edited on different scales of detail. In the examples,
we padded the outer layers of the ROI with weighted stationary anchors for about 10% of
its radius, as explained in Section 6.

The figures show the preservation of details and surface features like the rings of the
Octopus. In Figures 6 and 7, the estimated local rotations (Section 4) are applied to the
differential coordinates to preserve the orientation of the details. Figure 6 illustrates the
effect of this operation for a simple height field and for theOctopusmodel. We compare to
the reconstruction from coordinates defined with respect to the global coordinate system,
which clearly suffers from unnatural distortion of the local detail (note the rings on the arm
of theOctopus).
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Model ROI Factor Solve

Octopus(Figure 7, top) 4,685 0.092 0.005
Octopus(Figure 7, bottom) 12,774 0.568 0.020
Octopus(Figure 6, bottom) 16,792 0.804 0.030
Height field(Figure 6, top) 32,280 1.863 0.069

Table 1. Running times of solving the linear least-squares systems for the different editing regions.ROI denotes
the number of vertices in the editing region.Factor is the time in seconds spent on the factorization of the normal
equations. The factorization is performed only once, when the editing region is selected.Solveis the time to solve
for one mesh function.

Figures 5 and 8 demonstrate some editing results when the local transformations are
computed implicitly (Section 5). It can be seen that here as well, the details are well pre-
served. The example in Figure 8 would be difficult to treat with the heuristic estimation of
rotations, because the details are large and hence a lot of smoothing would be required to
correctly estimate the normals of the underlying smooth surface. On the other hand, treat-
ing large rotational deformations is difficult with this approach, due to the need to linearize
rotation matrices in 3D.

All the above examples indicate that our method enables intuitive and flexible shape
modeling at interactive frame rates for fairly complex models. For all edits we chose the
differential mesh operatorD as uniform discretization of the Laplacian also known as the
umbrella operator14. For our purposes this simplest discretization has been proven to be
good enough, but better approximations can be used as well (as in e.g.,6,10). The order
of the Laplacian affects the local support of the operator and hence the sparseness of the
system. We plan to investigate the tradeoff between additional computational costs and the
benefit for editing.

Our approach is conceptually simple, and its implementation is relatively straightfor-
ward. The software consists of two main components: the triangle mesh and a sparse linear
solver together with a matrix package. Both components are available in standard libraries
(e.g.4,25) and can be easily combined. Note that our technique does not require any in-
volved method for multiresolution analysis and synthesis to provide interactive edits of
different scale.

10. Conclusion

In this paper we show how a differential representation of vertex coordinates can be ex-
ploited for the editing of arbitrary triangle meshes. The use of this representation leads to
a conceptually simple yet powerful method for interactive, feature-preserving shape mod-
eling method. Thanks to local rotations of the relative coordinates the orientation of the
details are preserved. Our examples show the effectiveness and efficiency of the method
for fairly complex input meshes. In particular, we show that a simple and intuitive modeling
tool provides results quickly, while preserving the local surface details.

As we discussed, the value of relative coordinates and in particular Laplacian coordi-
nates, have been recently pronounced in other applications like mesh morphing and geom-
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(a) (b) (c)

Fig. 5. Example of editing results using implicit optimization of local transformations. (a) The user selects the
region of interest – the upper lip of the dragon, bounded by the belt of stationary anchors (in red). (b) The chosen
handle (enclosed by the yellow sphere) is manipulated by the user: translated and rotated. (c) The editing result.

etry compression. We believe that differential coordinates have a lot more potential in dig-
ital geometry processing. For instance, this includes the extension of more digital image
processing techniques that employ differential operators, like in19, to meshes, which we
plan to investigate on in the future, as well as on alternative representations of differential
coordinates.
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Fig. 6. The effect of applying local rotations to the differential coordinates. The left column displays the original
models. Middle column shows an edit performedwithout local rotations. Note the distortion of the letters and the
circle stamps. The right column shows the result of the same editing operationwith local rotations applied. The
orientation of the details is much better preserved.
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Fig. 7. Defining different ROIs and applying the editing technique. The handle vertex is located at the tip of the
front arm, marked by the bright sphere. The left column displays the original model with anchor vertices shown
by small dots (they mark the padded boundary of the ROI). In the right column the result of an editing operation
is displayed. The small ROI in the top row results in a local change of the shape of the arm, whereas the larger
ROI in the bottom row allows for a more global deformation.

(a) (b) (c)

Fig. 8. Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes
the global shape while respecting the structural detail as much as possible. The local transformations were opti-
mized implicitly.


