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This paper introduces a method for mesh editing, aimed at preserving shape and volume. We
present two new developments: the first is a minimization of a functional expressing a geometric
distance measure between two isometric surfaces. The second is a local volume analysis linking
the volume of an object to its surface curvature. Our method is based upon the moving frames
representation of meshes. Applying a rotation field to the moving frames defines an isometry.
Given rotational constraints, the mesh is deformed by an optimal isometry defined by minimizing
the distance measure between the original and the deformed meshes. The resulting isometry nicely
preserves the surface details, but, when large rotations are applied, the volumetric behavior of the
model may be unsatisfactory. Using the local volume analysis, we define a scalar field by which we
scale the moving frames. The scaled and rotated moving frames restore the volumetric properties
of the original mesh, while properly maintaining the surface details. Our results show that even
extreme deformations can be applied to meshes, with only minimal distortion of surface details
and object volume.

Categories and Subject Descriptors: |.3®fmputer Graphics]: — Computational Geometry and Modelling
General Terms: Algorithms

Additional Key Words and Phrases: mesh editing, moving frames, discrete differential geometry

1. INTRODUCTION

Triangular meshes are the de-facto common representation of 3D objects in computer
graphics. Recently, several researchers have studied the manipulation of meshes while
preserving their surface details [Kobbelt et al. 1998; Yu et al. 2004; Lipman et al. 2004;
Sorkine et al. 2004; Lipman et al. 2005; Zhou et al. 2005]. The common idea in these
works is to represent the surface witlfferential coordinates, and to minimize the changes

in these coordinates under some constraints defining the editing objectives. One of the
main issues is to find the quantities which should be preserved during the deformation.
In previous works, the assumption was that preserving the differential coordinates which
represent the local shape of the surface would lead to a detail-preserving operation. How-
ever, it has been noted that differential coordinates defined in a global coordinate system
are not rotation-invariant, and, as a result, the details in the deformed mesh are distorted.
In [Lipman et al. 2004; Yu et al. 2004; Sorkine et al. 2004] it is shown that transforming
the differential coordinates with respect to the given constraints alleviates the problem,
provided that the deformations are not too large, and the shapes are not too complex.

Representing the surface by rotation-invariant differential coordinates [Lipman et al. 2005]
decomposes the problem into finding the rotational transformation and the residual general
deformation. Solving first for the rotations and then for the positional constraints preserves
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Fig. 1. The elephant model is deformed in one step witlhr ad?ation applied to the tip of his trunk.

the rigidity of the local details. The representation, introduced by Lipman et al., is based
on moving frames encoded by differential values. Their technique is particularly attractive
since it only requires solving two sequential linear least-squares systems. However, the
geometric relevance of the quantity minimized in this process remains unclear. Moreover,
the linear least-squares solution is not optimal, and under large deformations the shape of
the model and its volume may be quite distorted. Furthermore, the deformation operators
for overx radians are undefined, and can only be realized by a series of operators of smaller
angles.

Drawing upon the moving frames representation, we introduce in the paper a new math-
ematical framework which leads to a new method for mesh editing, aiming at the preser-
vation of shape and volume. We developed two transformations fields which are applied
to the moving frames, which in turn are used for the reconstruction of the deformed sur-
face. The first is an optimabtation field that preserves the surface local shape, and the
second is acalingfield that preserves the local volume. The new technique allows apply-
ing large deformations in a single step, while preserving both the shape and volume of the
subject. Figure 1 shows an example of a large rotatiarnré2lians) applied to the trunk of

an elephant. Another, more general deformation is shown in Figure 4.

1.1 Our approach and contributions

A shape is a geometric property that is invariant to rigid transformations. As such, a shape
can be characterized by differential invariants of rigid transformations. In surface differ-

ential geometry, the first and second fundamental forms are used as such invariants, which
form a complete local representation. Our approach to preservation of shape under a de-
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formation subject to geometrical constraints is to look for a deformation which maintains
the first fundamental form intact (an isometry), and minimizes the changes in the second
fundamental form. This leads to defining a distance meabisgM,M) between two
isometric surfaceM andM based on the differences of the corresponding second funda-
mental forms. Thus, we are looking fehape preserving isometrieshich are isometric
deformations that minimize the distance measure, see Figure 2.

&P o

Fig. 2. lllustration of two isometric deformations (b) and (c) of the shape in (a). The two deformations are
isometric as they both preserve the length of the perimeter. However, the shape in (c) better preserves the shape
of (a) in the sense that the curvature of corresponding points (along the arc length) are better preserved than in

(b).

Given a surfac# and a set of rotational constraints, we look for a deformaton f(M)
minimizing Dist(M, f(M)), wheref is an isometric map that satisfies the prescribed con-
straints. Inspired by Cartan’s moving frames theory [do Carmo 1994, Ivey and Landsberg
2003], we show a reduction of this problem to minimizing a Dirichlet-type integral, for
which we devise an efficient solution.

Shape preserving deformations tend to preserve volume better than other mesh deformation
techniques. However, large deformations may still lead to undesirable volume changes. We
introduce a method that scales the local frames to compensate for the volume changes. Our
approach is based on the general Stokes’ theorem, using a carefully designed differential
form, which establishes a connection betwksmal volumeand surface properties. Our ap-
proach avoids the explicit construction of any volumetric representation and its inevitable
cubic complexity. It enables volume correction by merely scaling the moving frames on
the surface.

2. BACKGROUND

Deforming shapes has been intensively investigated in the context of interactive editing
(e.g., [Kobbelt et al. 1998; Botsch and Kobbelt 2004]) and shape blending (e.g., [Igarashi
et al. 2005; Xu et al. 2005]). The main challenge is to handle non-trivial transformations,
i.e., transformations which include rotations (especially large rotations), while preserving
as much as possible the visual characteristic of the shape at interactive rates.

In shape blending, it has been accepted that deforming shapiggd as possiblerovides
plausible results. The key idea is to factor out the rotation from the deformation. Since
rotations are rigid transformations, such factorization enables treating the deformation as
pure rotation plus a residual elastic deformation. Cohen-Or et al.[Cohen-Or et al. 1998]
have applied this concept to minimize the global deformation during shape interpolation.
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Fig. 3. The setup for shape preserving isometric deformation of surfaces.

Alexa et al.[Alexa et al. 2000] show how it can be applied locally as a means of treating
the volume (area) of a shape as rigid as possible. Xu et al.[Xu et al. 2005] have recently
extended these principles to the surface of a shape. They factor out the rotations of the
transformed triangles and have shown that the volume of the interpolated mesh is well
behaved.

In the context of shape editing, the problem of factoring out the rotation turns out to be
significantly harder. Since the target shape is not explicitly given, as in a shape interpo-
lation setting, the factorization and the shape definition have to be solved simultaneously
[Sorkine et al. 2004]. Recently, Huang et al.[Huang et al. 2006] and Botsch et al.[Botsch
et al. 2006] have successfully introduced algorithms based on non-linear formulations.
Huang et al. used a subspace domain to reduce the problem dimensionality via mean value
coordinates [Floater 2003; Ju et al. 2005]. Botsch et al. introduced a local shape rep-
resentation based on prisms and use hierarchial multigrid solver to reduce the problem
complexity.

Instead of factoring out the rotation, a better solution is to represent the shape with intrinsic
coordinates [Sedeberg et al. 1993], or with rotation-invariant coordinates [Lipman et al.
2005]. With purely rotation-invariant coordinates the factorization of the rotation is given
for free. Lipman et al. proved that by representing the mesh vertices within their own
local frames, it is possible to uniquely represent a mesh, and that its reconstruction merely
requires solving a sequence of two linear systems. However, the least squares solution
for the rotations is not optimal. For large deformations, it may cause counter-intuitive
distortions to the surface, and consequently implausible deformations, see Figure 8. Zayer
et al.[Zayer et al. 2005] used a harmonic scalar field to better propagate the deformations
to the entire mesh from the constraints. They use a scalar harmonic field that ranges from
one at the handles to zero on the fixed vertices constraints to interpolate the quaternions
representing the global rotations.

A different research direction aims at the preservation of the volume of a shape. The
prominent approach directly enforces volume preservation through an explicit construction
of a representation that models the interior of the shape (e.g., [Rappaport et al. 1995; Aubert
and Bechmann 1997; Hirota et al. 1999; Botsch and Kobbelt 2003; Zhou et al. 2005]). A
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common approach to solving a physically-based model is the finite element method (FEM)
[Bathe 1982]. With these methods the shape can be accurately preserved by simulating the
behavior of the deformed volume. These techniques model the entire volume of the objects
and solve the deformation in small time steps. Given a detailed surface, the construction
of the elements is quite involved. Furthermore, to allow interactive times, typically only

a relatively small number of elements are modeled. Another problem is the non-linearity
of the strain function. To alleviate the problem some approximations can be used; for
example, Muller et al.[Muller et al. 2002] approximate the stiffness matrix of the strain
function at each time step using a warping of the original stiffness matrix by a rotation
field.

Recently, Zhou et al.[Zhou et al. 2005] developed a mesh deformation that strives to pre-
serve the local volume. They build an internal structure of points with neighboring re-
lations. While their construction is simpler than a tetrahedral structure, its complexity is
still cubic in the general case. To propagate the transformation of the handle, they use a
geodesic distance field, which may lead to counter-intuitive results for large scale details
[Zayer et al. 2005; Lipman et al. 2005].

The above methods require the explicit representation of the solid/volume of the manipu-

lated object. The approach that we introduce in this paper is different, since the volume is

merely represented implicitly, and therefore, run-time computation uses surface informa-

tion only, hence, remains proportional to the size of the surface representation, rather than
the volume.

Botsch and Kobblet [Botsch and Kobbelt 2003] introduce a method for volumetric detail
preservation based on the multi-resolution paradigm by using volume elements (prisms)
between the surface and its smooth version. They employ a hierarchical relaxation to solve
a non-linear system that corrects the position of the surface vertices to optimize the local
volume.

Angelidis et al.JAngelidis et al. 2004] introduce a unique editing tool that preserves vol-
ume. It is based on an operator called swirling-sweepers which is applied along a path,
where in each incremental step the swirl locally twists the space locally around while pre-
serving the volume. This tool gives the artist the illusion that he is interacting with real
material like, for example, clay. Recently, von Funck et al. [von Funck et al. 2006] used a
divergence-free vector field to define a shape preserving editing operator.

3. ISOMETRIC SHAPE-PRESERVING DEFORMATIONS

In this section we formulate the theoretical background to the construction of a surface
deformation technique, which best preserves geometric properties, aiming at minimizing
the distortion of the shape. We define a rigid motion-invariant geometric distance between
two isometric surfaces. Then, given a surface and a set of rotational constraints, we look
for an isometric deformation minimizing the geometric distance to the original surface
under the constraints. We show that this minimization problem can be reduced, using
notions from Cartan’s Moving Frames theory, to a Dirichlet energy function8IG¢8)

(the rotation group ifR3) . The application of this theory to meshes employs the finite
element approach to minimizing the energy functional.
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Fig. 4. A general deformation is applied to a bumpy sphere. In (a), the handle set is drawn (yellow) over
the original model. (b) is the result of applying the deformation, and (c) is the result of applying two such
deformations.

@ (b)

Fig. 5. A bar with bunnies (a) (110K polygons) is deformed in (b) by two rotationstg22ach. In (c) a single
large rotation of & is applied.

A well-known result in differential geometry is that the first and second fundamental forms
uniquely define a surface up to rigid transformation. We can thus regard the first and second
fundamental forms as complete local descriptors of a surface. Since we deal with isome-
tries, and the first fundamental form (which defines the metric on the surface) is invariant
under isometric deformations, we consider only the second fundamental form. The second
fundamental form, defined from the normal map differential, describes the local sectional
curvature of the surface (curvature tensor). In others words, it describes the local change of
the normal, or in formal terms, it is the quadratic form defined by the normal differential,
i.e., theshape operator Thus, minimizing thechangein the second fundamental form
yields an overall minimal shape distortion of an isometry. As we shall see, the change in
the normal differential can be measured by the differential of the rotations applied to the
moving frames. Hence, minimizing the integral norm of the differential of the rotations
field over the surface yields a least distorting isometry.

3.1 Least distorting isometric deformations - The smooth case

Let M andM be two differentiable isometric surfaces embeddefRirwith the induced
metric from the Euclidian ambient spal which we denote by:,-)p, p € M. Let T,M
denote that tangent planelbat pointp. Denote byf : M — M the isometry map between
the surfaces. Lefer,e,e3) :V € M — R® be amoving frameon a patch of the surface
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V C M. Thatis,(e1(p),e2(p),es3(p)) is a smooth orthonormal frame such teatp), ex(p)
spans the tangent plaiigM at each poinp € V C M, andes(p) is normal to the surface.

The isometryf induces a moving frames field on & =d fo(er) andé; =d fy(e2), where
df is the differential off, i.e.,d fy(&) stands for the derivative of, at the pointp € M,
in the direction of§ € T,M. The vectorgs is defined uniquely so thdg;,&,&) has a
positive orientation (see Figure 3).

At each pointp € V C M, we denote byd = Hp = (h; j)i j=12 the matrix representation of
the differential ofes at p. That is,(de3), in the basis; (p),ex(p) of ToM. The normal map
e3(p), p €V, is also known as th&auss magnd the differential of this map is known as
the Shape operatad is similarly defined in the basi (f(p)),&(f(p)) of T¢yM. Since
e1(p),e(p) is an orthonormal basis G,M, the matrixH is also the matrix of the second
fundamental form in this basis, where the second fundamental form is defifidd &5) ,

whereé € ToM is represented in the bagis;, €).

The local geometric distance between isometric surfaces is defined by the distance between
the corresponding normal maps’ differential matrieesndH. Let us use the Frobenius

norm||A[|2 = /3, j|ai j|? =trace(A- A'), to define docal geometric distancas

dist ¢ (p) = |H — FI[, ®

whereE = (e, e,e3) denotes the moving framé used. As proved in Lemma C.1 (in
Appendix C) the functiomjisqﬁ ¢ is invariant to the choice of the moving frame, i.e., de-
pends only orM and the isorﬁetryf. Hence, this function is well-defined, and hereafter
we denote this function bgisty .

Integratingdisty ¢ over the surfac#! yields a rotation-invariargeometric distange

Dist(M, f (M)) = Disty 1 :/MdistM,fdG, @)

wheredo is the area element. Since a surface is determined up to rigid motion by its
fundamental formsDisty ¢ = 0 if and only ifM and f (M) = M are rigid motion of each

other. Therefore, we claim that this distance measures to what extent the $didacethe
deformed surfac®! are rigid motion of each other. It is important to note that this latter
property of geometric measure cannot be achieved by using only the Gauss and mean
curvatures. As a simple example, the well-known Catenoid and Helicoid shapes have
an isometric correspondence between them, such that at corresponding points, the Gauss
and mean curvatures are the same, but the surfaces are clearly not a rigid motion of each
other [Ivey and Landsberg 2003]. It turns out tfiBisty ;)%/2 can be used to define a
metric between isometric surfaces. However, in this work we are simply B8ig ; as

a distance measure.

Now we are ready to define ogeometric deformatioproblem: given a surfack, the
goal is to deform it into a surfadd subject to some prescribed constraints, such that the
geometric distance betwedhandM is minimal.

Usually minimizing the geometric distance integral may be extremely difficult. Fortu-
nately, the problem can be reduced to a known problem of minimizing a Dirichlet-type
integral. Consider a rotation field: M — SQ(3), whereSQ(3) is the rotation matrix
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Fig. 6. A plane is deformed into a wavy shape, using the (yellow) handle set in the middle and identity boundary
conditions are set at the (green) boundary of the plane.
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Fig. 7. A demonstration of the effect of different boundary conditions. (a) the initial plane with the square handle
(in yellow) placed around its center . The axis of rotations around the handle are tangents to the handle curve. (b)
a series of rotations of,@/6, /3, /2,2r/3 radians around the axis of rotation, where the (identity) boundary
conditions are weakened by a factor 00D. (c) a series of the same rotations, but with (identity) boundary
rotations now factored by.Q, and hence, keeping the boundary of the planar shape with the original orientation.

group onR® embedded irR® with the induced metric from the ambient Euclidian space
R°® (see Figure 3)Rc SQ3) is defined at any poinp € M such thaRe =§,i=1,2,3.

In Appendix A we show thafH — H||2 = 1/2||0R||2, hence we obtain the following rep-
resentation for the geometric distance:

. 17
Distu. = 5 [ IOR|Zdo. 3)

Therefore, the distance function is reduced to an energy functional on the rotationR field
That is, the amount of shape distortion by the isométig/low iff the energy of the rotation

field is low. The minimizer of the integral on the right-hand side, subject to constraints, is
a generalization of the classical harmonic map functions to maps into Lie gr8@3) (in

our case). The type of constraints we consider are rotational constraints, i.e., the rotations
are prescribed on a subget- M.

Based on the above, the geometric deformation problem is realized by the following two
steps:

—Compute a rotation fiel®: M — SQ(3) s.t. f, ||OR||2do is minimized subject to con-
straintsR|c = Ro.

—Apply the rotations over the moving frames, and reconstruct the isorhetry
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Fig. 8. A comparison with the method of Lipman et al.[2005]. The bar model is rotated by
just less thamr radians (a). On (b-1) a bar with bunnies is deformed by the technique of
Lipman et al.[2005] and by our technique (c-1). Note how the error is evenly distributed
by our technique. The colored close-up views (b-2),(c-2) of the bunny head, show the
differences in the mean curvature with respect to the original shape. Another example is
shown in (d),(e),(f) with a bumpy plane model.

Fig. 9. A comparison with the method of Sorkine et al. [2004]. The bumpy plane is
rotated byr/2 radians (a). In (b) the method of Sorkine is applied, and in (c) our method

is applied.
3.2 Parametrization of SQ(3)

Since the images @R are rotations, we need to use a parametrizatioB@f). There is
no canonical parametrization of this group, hence we suggest two parametrizations, each
of which is advantageous in different cases.

In the case where the rotational constraints in the geometric deformation problem share
the same axes of rotation, the solution to our variational problem can be further reduced.
Using an orthogonal parametrization®®(3) (as described in Appendix D), with coordi-
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nates(6%, 62, 6%) where6? describes the angle of rotation around the axis of rotation, the
integral in Eq. (3) takes the form:

2/M ||D91||2+4sinz(%l)(||D92||2+sin2(92)||D93||2)dG. (4)

When all the constrained rotatioRs(p), p € C, have the same rotation axis, they can be
represented bg? = 0 = 3. Hence, an immediate consequence of this representation is
that there is a minimizer such th@€ = 0 and63 = 0. Therefore, we are left with the
problem of minimizingy, |06%||°do which leads to the linear (sparse) Laplace-Beltrami
operator. For example, bending deformations, such as shown in Figures 1, 5, 6 and 15, are
of this type. Thus, we note that in such deformations, the minimizer is obtained when the
rotation angled? is harmonic. Specifically, it enables applying a rotation of more than 2

in a single step. In this point we note that in the case of single rotation axis, applying the
technique of Zayer et. al [Zayer et al. 2005], i.e., using harmonic scalar field to interpolate
the quaternions, results in the same rotation field as our method.

In the general setting, where the rotational constraints consist of different rotation axes, the
minimization leads to non-linear Euler-Lagrange equations. However, with a conformal
parametrizations d8Q(3) (Appendix D), the integral in Eq. (3) takes the form:

1
64 / — ~ ___|07|%de, 5)
v @t e

wheren = (n1,n2,1n3) are the conformal coordinates. As shown below, this representation
is advantageous in applications, i.e., we derive an iterative scheme where the first (linear)
solution is already a good approximation of the minimizing rotation field. Note that in
this case it is impossible to represent rotations with rotation angle of avexithout
introducing ambiguity, therefore in this case, the deformation should consists of angles
smaller than 2.

To find the deformed surfadd we need to integrate the computed rotation fiReldsing

the relationd f = R. However, such an integration is well defined onlRi§atisfies certain
compatibility conditions. Rotation field which minimizes the energy functional (3), under
some constraints, do not necessarily satisfy the compatibility conditions. Therefore, we
adopt the approach used in Lipman et al. [Lipman et al. 2005], to find the transfornfiation
such that|d f — R|| is minimized. The actual application of this step to meshes is described
in subsection 5.

3.3 Piecewise-linear case

In practice, we want to apply geometric deformation to piecewise-linear surfaces. Given
a 2-manifoldmesh denoted byM, we would like to deform it into a meshl, subject to
constraintR(p) = Ro(p), p € C C M. We shall minimize the geometric distance given by
Eg. (3), R: M — SQ(3)) subject to the given constraints. We adopt the piecewise linear
finite-element approach and approxim&®y a linear function on every trianglg € T,
whereT are the triangles of the mesh, and minimize with respect to the values at the
vertices. In particular, we minimize the geometric distance (Eg. (3)) with the approach
used to minimize Dirichlet energy functional in Euclidian spaces [Polthier 2005; Pinkall
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and Polthier 1993]. Here it is extended to minimize the Dirichlet energy functional in the
more general setting of maps ins6)3).

In the case of constraints sharing one rotation axis, the problem is reduced to minimizing
Ju1I0612do. Hence, the minimizing solution satisfiés 61 = 0 on M, whereAy is

the Laplace-Beltrami operator. Following [Polthier 2005; Pinkall and Polthier 1993], the
piecewise linear approximation iy, |06%||°do is given byQ = Ster Qn, whereQr, =

35 1coty; |6t — 6} |? whereiy, i andis are the indices of the vertices of trianglie

andy, are the respective angles. We minimzeubject to the given constraints by solving

the corresponding sparse linear system:

% (cot(af) +cot(B])) (6 —6) =0, jeV, (6)

whereN; are the neighbors of vertgxandaj, ] are the angles opposite to the edge).

After solving for the rotations, we apply them to the moving frames and follow the paradigm

in Lipman et al. [Lipman et al. 2005] to construct the deformed mddtefined by these
frames, in the least-squares sense. The implementation details and results are described in
Section 5.

In the general case, of general rotational constraints, we use the conformal parametrization
of SQ(3) and the form (5) oDisty . Integrating over the mesh, following [Polthier 2005;
Pinkall and Polthier 1993] again, we get:

1 S 2de — © o
/M W”DTI” do = E%W(ul,uz,ug)QTi, (7)

whereW, ;, ;) = (W(TT;,) +W(T;,) +W(T;,)) andw(n) = 1/(4+][7|[2). Differentiat-
ing with respect to each unknowd of vertex j, and equating zero, yields the following
system:

S reny (COUGH W 1) + COUB) W 1)) (m} =) =

2n) Or 8
(4+\WJH2)3 zTiENTj i
whereNT; are neighboring triangles to vertgxespectively.

The system is solved by an iterative scheme where the non-linear part is calculated using
the previous iteration. The initial guess is chosen to be identically zero. In practice the

convergence of the system is fast (few iterations are enough), where typically a single
iteration already yields close enough results, as shown in Figure 10. Note that a single
iteration is equivalent to solving Eq. (6) for each of the conformal coordirigtes)?, n3).

4. VOLUME PRESERVATION

Itis well known that isometric deformation of closed surfaces may cause undesired volume
distortions. In this section we deal with volume correction, and we focus on local volume
preservation which is visually more important than global volume preservation. The local
volume is defined as an estimate of the volume below a surface element, in the direction of
the inward normal. Preserving the local volume yields plausible shapes at the expense of a
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(d)

Fig. 10. A demonstration of the difference between the convergent solution of the iterative process and the first
(linear) approximation of the general geometric deformation problem. (a) shows the initial plane with the circle
handle drawn around its center (in yellow) and the static set colored in green. The axis of rotations around the
handle are tangents to the handle curve and the angle of rotation is approxinmgtely(8) the result after the

first (linear) iteration, and (c) the convergent result achieved after 10 iteration. Note how well the linear solution
approximates the convergent solution. In (d)-(f) another example, where (e) is the linear first solution and (f) is
the convergent solution.

rather small distortion of the local surface area. Furthermore, our local volume preservation
yields a good approximation to a global volume preservation, as we demonstrate in Section
5.

The isometries defined in the previous section, dictate the desired rotations of the local
frames. Here we introduce means to control the local volumedajing the moving
frames, while retaining the local rotations intact.

The main idea is to derive an expression for the local volume in terms of surface curvature
and local thickness, and to use this expression to modify the suvfamecordingly. The
emphasis is on achieving volume preservation by surface operations alone.

4.1 The general idea

Stokes’ theorem states that given a 2-fqunn a domainD c R3 with smooth boundary

oD,
/du =/ M
D JD

whered denotes the exterior derivative [Stoker 1989; do Carmo 1994, Ivey and Landsberg
2003] of .

Stokes’ theorem is general enough and enables the use of any conveniemnt. f&imce
we are interested in a local volume preservation, we carefully design afatefined over
a volumetric domaitD such thadu is a volumetric form, for whicvoluméD) = [, dpu.
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Fig. 11. The volume preservation setting.

Furthermorep |y reflects thdocal volume underlyinghe pointp on the surfacé/.

Let us construct a volumetric domaih over whichpu is defined (see Figure 11). The
volumeD approximates the original volume. We aim at preserving the voluni® ahd

in particular its local volume. In the following, we define the meaning of local volume and
its construction.

Denote by the volume enclosed by the surfade that isM = dV. Lety : M x R — R3
map a poinyp on the surfac®/ to a parametric line emanating frapn y(p,t) = p—tes(p),
wherees is the normal pointing outward to the surfacepaandt is the parameter along
that line.

Let¢ : M — R be a smooth function such thdt := {y(p,¢(p)),peM} ={p—od(p)es(p),pe
M} is a smooth surfacep represents the local depth of the volume element estimated at

Denote by’ the volume enclosed by’ (the green region in Figure 11), and &=V \V/
be the volume enclosed betwelgnandM’. Next, let(e,e;,e3) be an orthonormal frame
such that its restriction thl = dV is a moving frame in the sense we defined in Section 3.

Denote byw;, the co-frames 0§ in the volumeD, i = 1,2, 3, i.e., the linear functional
satisfyingw;(ej) = d;,; where g j equals one ifi = j, and otherwise equals zero. We
construciu such that:

du = wyp Awp Aws = dxg Adxe Adxs,
w = h-wy Aws.

(9)

whereA denotes the wedge product [Stoker 1989; do Carmo 1994, Ivey and Landsberg
2003].

The first requirement implies thgt du = VoluméD), and the second requirement means
that u|w depends only on the trajectory in the direction of the inward normag) as
explained below. In order to calculateit is enough to find ouh (given that the moving
frames are known). Given these requirements, as shown in Appendixs#&tisfies the
following first order linear ODE,
J h=1-h(O 10
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 12. The volume correction algorithm is applied to a twisted bar. A rotation of approximatefyahe step

is obtained by applying our technique, without volume correction in (a) top, and with volume correction in (a)
bottom. Applying a rotation of # and then another rotation oft34 around another rotation axis yields (b). (c)
shows the result of applying one big rotation af, 3ogether with position constraints to form a helical shape.

Note that the operatdr - e3 restricted to the surface is the mean curvature. The character-
istic curves of this ODE are the trajectories in the direction of the normal vector &gld (

in D. Hence, the above equation establishes an interesting connection between the mean
curvature and the volume. This connection is the key observation to our volume correction
method.

Thus, given a solutioh to the ODE u is of the formu = h-w; Aw,, and we have

VoluméD) = | hdo = hdo — h do, (11)
oD V=M V=M’

wheredo = w; AW, is the area element. Since we can choose any initial valuesvte
set it to zero oM’, and we are left with

VolumeD) = /a h do.
V=M

Let us now consider the two surfaced, and the deformed isometric surfabe  Simi-

lar to the above, we define a depth functionand a corresponding surfabll = {p-

¢(P) &|p € M}. Also we denote by andV’ the volume enclosed byl andM’ respec-
tively, andD :=V \ V' (see Figure 11).

Using Eq. (11) foM with h| 55, = 0 we getVoluméD) = [, h dG. Since the two surfaces
M,M are isometricdG = do. By scaling the area elemed& , i.e., scaling the moving

frames on the surface by = (h/ﬁ)l/z, we get that the local volume & is preserved in
M. This assumes thétis not affected much by scale.

4.2 The realization

As discussed above, the problem of volume correction is reduced to the problem of esti-
matingh, h on the meshel, M, respectively. Thatis, one should solve the ODE (Eg. (10))
with the initial conditionh|;,» = 0 in D, andh|,, = 0 in D. In the following we describe

the process for the medh (and similarly is done foM).
Defining the volumeD is equivalent to defining the functigih To each verte)p € M we
attach a moving framgey, e, €3), and we extend it into the voluni2simply by translating
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Fig. 13. The volume correction algorithm is applied to a Lego piece model (a). In (b),(d) without volume
correction and in (c),(e) with volume correction.

the frame in the inward normal{gsz) direction. Ideally,y should be an injective map:
v(-,¢(-)) M — M. In practice we use the following considerations. We definddbal
depth denoted by (p) at a vertexp € M, as the distance betwegnand the intersection
of the line emanating fronp in the inward normal {e3) direction with the surface. In
practice, we take the average of distances obtained by a narrow cone of straight lines from
p (in a preprocess calculation). Denoterhy= 1/k1, ro = 1/ky the signed osculating radii,
wherek; andk, are the corresponding discrete principle curvature at a poivWe choose
o(p) = min{aL(p),B(r1)+,B(r2)+}, where(x); = oo for x < 0 and(x)+ = x for x > 0.

o € (0,1/2], 8 € (0,1) are constants which control the thickness of the volin® be
preserved. We mainly use= 8 = 1/2 to approximate the whole volume. The reason for
this definition of¢ lies in the fact that if one of the osculating radii is small and positive,
then for (local) injectivity ofy(p, ¢(p)) the local depth cannot exceed that value.

Note that the above are local computations which do not take into consideration global
self-intersections. Also to enable interactive time response, the vialpggor the mesh

M are taken to be as M. This is equivalent to using the same local depth of the volumes
D andD. During the interaction, the volume correction requires only local curvatures’
estimation across the mesh.

Using the parametrizations &f, y(p,t) € D, wherep € M is fixed andt € [0,¢(p)], we

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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(@) (b)

Fig. 14. Rotation of over2 is applied to a bar. In (a) the technique of Lipman et al.[2005] is applied three times
with 27/3 in each step. In (b) the shape preserving isometric deformation is applied in one single step. (c) a
volume correction is applied to (b).

estimate the termi - e3 in the ODE (10) by

0 ki=0=k,
0-e(t) = ﬁ ki#0, ki=0, {i.j}={12} % (12)
ﬁ+?l+t k170, ko7#0

which corresponds to the positign(p,t) anda; =r; — ¢ (p), i = 1,2.

The rational of this estimation is that it is enough to consider locally the surface by it's oscu-
lating paraboloid and extending the local fran{raae}?zl in a natural way into the volume by
translation along the inward normal direction. In this cas$egs, which is the trace of the
differential of the normal map, is the mean curvature of the level surfgpet = const.

Note that this value appears in our ODE fofsee Eg. (10)).

With the above approximation one can explicitly solve Eq. (10) on the characteristic curves.
The characteristic curves are the trajectories in the direction of the nonGa$,= p+
(t—o(p))es(p), starting from the surfack!’ and ending at the surfadé (see Figure 11).
Setting the the initial conditions(0) = 0 (0 on the surfac#!’), we obtain the solution,

t k1=0=k
t2/2+ajt kj#0, k=0, {i,j}={1,2}
h(t) = i : . (13)
t3/3+ (a1 +ap)t2/2+aat k1#£0, ko#£0
(a+t)(ap+t)

For each vertexp € M and its corresponding vertgx M, we approximate the scalar
fieldsh andh on the two surfaces by evaluating Eq. (13} at ¢(p) andt = ¢(p), i.e.,

h(p) = h(¢(p)) andh(p) = h(¢(P)). Finally, we compute the scaling factor for vertex
peM as (h(p)/ﬁj(m)l/z, and use it to scale the rotated frames. Then we use these
moving frames to reconstruct the mesh [Lipman et al. 2005], as elaborated in Section 5.

5. IMPLEMENTATION AND RESULTS

We have integrated our shape and volume preserving technique into an interactive system.
The system accepts a mdghand a set of constrainGc M, which defines the geometric
deformation. There are two types of constraitsH = C: The setSis thestatic set of
vertices, with rotations set to identity, ahidis thehandleset, over which the user defines

the rotations. In Figures 6, 8 and 10, the handle set is colored yellow and the static set is
colored green.
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Fig. 15. The body of the Armadillo model is bent yadians and the hands are further bent to create a bridge-like
pose. Note the preservation of the details and volume under the deformation.

In the preprocess stage we (i) create and factorize the Laplace-Beltrami matrix of the region
of interest of the mesh, and (ii) calculate the local depth fietd the mesh.

During interaction:
—the rotation fieldR: M — SQ(3) is calculated:

—in the case obendingwith a single rotation axis, the Laplace-Beltrami factorization
is used to solve for the rotation angié (see Eq. (6)).

—otherwise, the Laplace-Beltrami factorization is used to solve for conformal parame-
ters(nt,n2,n%) (see Eq. (6),(8)). See for example, Figure 4, where at each vertex in
the handle (yellow) the rotation is around the tangent to the curve. Optional: further
iterate using Eq. (8).

—The rotations are applied to the moving frames at each vertex, and the nevivhissh
reconstructed by the difference equations [Lipman et al. 2005]:

Pi— B = A& +Bi & +Ci &, (14)
where(i, j) is an edge of the mesf, are the new unknown position of vertexe,, &,, &)
denotes the rotated moving frame at verteandA, j,B; j,C j are the coefficients of

pj — pi in the moving frame(€},€,,€;) at pi in M. As in [Lipman et al. 2005] the
solution of the system (14) is done in the least-squares sense.

—the scaling factor for the volume correction is calculated:

—Calculate théh-fields by Eq. (13)h andh, of M andM, respectively. The evaluation
of Eq. (13) uses the pre-computed local depth L, and the local discrete curvature are
computed over the deformed mesh.

—the scale factor is set to kjb/h)1/2

—the (rotated) moving frames M are scaled by the scaling factor and the mesh is recon-
structed again.
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(a) (b)

Fig. 16. The Armadillo model is twisted byr89 radians. Shape preserving deformations, without volume
correction (a) and with volume correction in (b).

There are some important implementation issues. First, for irregular meshes it is useful
to use other discrete Laplacian operators. We have also integrated the discrete Laplacian
operator as presented in [Taubin 1995] into our system and got better results on highly-
irregular meshes, for example see Figure 17. Second, we note that the deformation which
is defined by the field of rotations on the moving frames is invariant to the actual choice of
the moving frames. Hence, any choice of local frames as moving frames will do. Third,
positional constraints are forced as in Lipman et al. [Lipman et al. 2005], by adding them
to the positional reconstruction system (14).

The isometric shape preserving technique, requires solving sparse linear systems. Sim-
ilarly to the technique of Lipman et al. [Lipman et al. 2005] we use a sparse Cholesky
decomposition [Toledo 2003] once per definition of a region of interest (ROI). During in-
teraction, only back-substitution is needed. The volume correction is slower, where the
bottleneck is the computation of the discrete curvature, which is directly related to the
number of vertices of the surface mesh. For example, meshes of sizes of 2.2K/8.5K/86.5K
vertices require 0.14/1.03/11.66 seconds for factorization, 0.016/0.047/0.66 seconds for
back substitution, and 0.05/0.17/1.9 seconds for volume correction on an Intel P4/3.0 GHz.

To demonstrate the performance of our technique, we show extremely large deformations
in Figures 5, 15 and 17. To visualize the quality of the deformation, we color coded the
difference between the mean curvature across the surface before and after the deforma-
tion. Figure 8 demonstrates the shape preservation under a large deformation. In Figure
9 we compare our method to that of Sorkine et al. [2004]. Note that Sorkine’s method
doesn't distribute the rotations uniformly, however, it should be noted that their method
incorporates positional constraints.

Figure 14 shows a bar rotated by over fadians. In (a) the bar is rotated by inte-
grating three steps of approximatelyr/3 degree each using the technique of Lipman
et al.[Lipman et al. 2005]. The result in (b) is achieved by a single step using our tech-
nigue. In (c), a volume correction is applied to the bent bar. In Figure 12, a bar is twisted
by an extreme rotation of approximately 4t one step (a), in (b) the volume correction
is applied, and in (c) and (d) one more deformation is applied. Figure 16 shows a volume
loss (a), and a correction (b), of a twisted Armadillo model. Since local volume preser-
vation implies global volume preservation, we achieve also global volume preservation, to
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no volume | with volume
model rotation | correction correction
r /2 0.0473 0.00267
b1 0.143 0.00333
2 0.37 0.00173
3n 0.53 0.0533
A & /4 0.0164 0.00663
“d n/2 0.0412 0.00971
L r 0.143 0.0316
3r/2 0.260 0.0704
) /6 0.023 0.0025
Y /3 0.083 0.0057
2n/3 0.267 0.1
T 0.435 0.24

Table I. The relative change in volume resulting by the shape preserving isometric deformation, with and without
volume correction: Thérmadillo andbar models, which consists of 170K and 4K polygons, respectively, are
deformed by bending operators with several prescribed angles. The handle and static sets are in yellow and green,
respectively.

some extent. Particulary, in Table 5, we have measured the relative change of volume, i.e.,
[volumeew— volumeq|/volume,q, of two meshes under various deformations. As can be
seen, for medium scale deformations, the volume correction algorithm reduced the volume
change by an order of magnitude. Another example of volume correction algorithm is pre-
sented in Figure 13, where it can be seen that the method is correcting the detail's volume
as well as the global volume.

Interesting editing operators can be obtained by non-trivial static and handle sets. Figure 7
illustrates the effect of rectangular curve handle, with different boundary conditions over a
simple plane resulting in shape preserving (planar) isometric deformations. Figure 6 shows
a smooth wavy shape created by bending a plane, and figure 4 shows a bumpy ball with a
pinched-like deformation.

6. CONCLUSIONS

We have presented a method for shape preserving deformation. The approach we have
taken in this paper re-formulates the preservation of shape by means of a complete repre-
sentation of local rigid-invariant descriptors. In essence, our method aims at the preserva-
tion of the two fundamental forms. Isometries preserve the first fundamental form; that is
the area and angle, and among the isometries, we look further for the one that minimizes
the changes of the second fundamental form. The minimization is practically linear, thanks
to the reduction of the problem to a Dirichlet-type functional on a rotation field over the
mesh.

Since isometric deformations can cause volume changes of closed surfaces, we have es-
tablished a relation between the local volume and the surface curvature from which we
derived a local scaling field that can be applied to surface elements to correct local volume
changes. An interesting consequence is that the changes in the curvature data of the surface
can provide good means to control volume changes.

Note that one cannot preserve simultaneously the surface area and the volume of an ob-
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Fig. 17. The tip of the tentacle of the octopus is rotated byalians. Note preservation of details despite the
highly irregular triangulation of the mesh.

ject. An exciting avenue for future research is to investigate other complete local surface
descriptors, whose preservation yields a shape preservation of both surface and volume.
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Appendix A.

In this appendix we prove the relatidiii — H||2 = 1/2||0R||2. In order to do so we will

use standard exterior calculus of differential forms [Stoker 1989; do Carmo 1994; Ivey and
Landsberg 2003]. We build upon the notation introduced in Section 3. The general setting
is illustrated in Figure 3.

Letg:U c R> -V C M be a coordinate map. Note thitg:U c R> — f(V) C R%isa
coordinate map dfl. Next, define the differential 1-forms ¢hc R2, wi,Wj,i,] =123
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by the two relations

3 3
)= _ZWi(')Q , da(-) = leimj(-)ejv (15)
i= i=

Note that these relations describe the change of the frame and its position coded in the
frame itself. Also note that; ; = —w;;, as can be proved by differentiatirig, ej) = d
and using Eq. (15). Define the differential 1-formiswi j, i = 1,2,3 by

3
d(fog)(- ZW. de(-) = J;WLJ(-)%

It follows from the above that; = W. To prove this, note thgt_, Wi (dg*(e j))& =d(fo
0)(dg 1(ej)) = df(ej) = &, and use the linear independencepfo getw.( g le)) =

&,j =wi(dg*(ey)).

Since we have chosen the moving frame such &as normal to the surface, the 1-
form wz = 0. To see that note that due to the first equation in (M > dg(&) =

3 owi(é)e,EeT, -1 >R2 R? so necessarilws (&) = 0 for all £. From the structure
equations in Lemma C.2, we then have-@v; Awy 34+ W> AW, 3, and using the Lemma of
Cartan C.3 we get

Wy g =hy 1wy +hiowo . Waz = hp w4 haows. (16)

hij, i,j = 1,2, are the coefficients of the differential of the normal map, des,: ToM —

TpM, in the basise, e (as introduced in Section 3). The second fundamental form can
then be written byy; ; hi jwiwj, i,j = 1,2. Also note thaty » = hy 3. From the fact that

Wi = w;, we also have 8 wy AWy 3+ W2 AWs 3, and, using Cartan lemma again, we get

Wy 3 = hyaws +hyows Wp3 = Hz,lwl + HZ,ZWZ , (17)

where nOV\hii,j, i,j = 1,2 are the coefficients afés in €}, j = 1,2. Next we use the local
distance functiorlisty ¢ as defined in (1).

As mentioned before, we consider a rotation fiRldM — SQ(3), whereSQ(3) is the
rotation matrix group oiR® embedded ifR® with the induced metricR € SQ(3) is defined
by the relation®Rge =&, i = 1,2, 3. Using these relations we have

RZWi,jej =de; =dRe+Rde = dRe"‘RZWi,jej,
: J

Rearranging the left-most and right-most terms above we get
R 1dRe = ZAWi’jej, (18)
]

whereAw; ; = Wi j —w; j. In matrix notation we can rewrite (18) as
dR= RESE, (19)
whereE = (ey, &, €3) (g is a column vector) S= (Aw; j)j,i. Sincew;; = 0 andwy » =Wy »
we have
0 0 7AW1‘3
S=1 o 0 —Awps
AW1_3 AW2_3 0
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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The fact thatvy » = Wy » can be understood from the Lemma of Levi-Civitta C.4 and the
structure equations in Lemma C.2. From Equations (16) and (17) we have

Awyz = Ahg 1wy + Ahg owo,

AW273 = Ahz_lWJ_JrAhz’sz. (20)

0 0 —Ahyy 0 0 —Ahgo
Se)=| o o - |, S€&)=| 0 o0 -ah,]-
Ahyy Ahp; O Ay Ahgp 0

Note that the inducelR® norm on the rotation matrix group is the Frobenius norm. Next,
let us calculaté|OR|2 = [|[dR|2 = 37,_1(dR j,dR j), whereR= (R, ) are the entries in
the rotation matrixR. Writing dR j in the basisvi,w», we havedR j = R%J-WH- R%jwz
so(dR j,dR j) = (RF)2+ (R?;)%. Putting it all together we havgdR||2 = ¥ ;(R;)? +
(R?j)? = ||dR(ey) ||z +||dR(e)[|Z. Next, [|dR(&)[|# = traceRESe)E'ES&)'(RE)) =
IS(&)||2 by the invariance of the trace operator under similarity transformation. Finally,

Therefore

2 2 1 2
S (@)= 3ORJE
i,)=1

Appendix B.

Using the notation of Section 4, we now derive the 2-fariim the volumeD, such that the
requirement (9) are satisfied. L@, by, bs) denote the standard basisiR?, and denote
by M = (m;)?;_, € R®3 the matrix such that

(e1,€2,€3) = (by,bz,b3)M (21)
(W1, Wo,Wg) = (dxXg,dXp,dx3)M (22)

wheredy; is the co-frame of the (constant) frarbg i = 1,2,3. Next, we sparnu in the
basis of 2-formsu = ydx; A dxe + Adxg A dxg + Edx A dxg. From the first requirement
onu:

dxa Adxo Adxg = du = (Xxg — Ax, + Exg )X AdXo A dXg,
implying,
1 = (XX?, - )LXZ + 5)(1)) (23)
the subscripts; denote differentiation w.r.t;.
For the second requirement,= h-wy A wo,
xdxy Adxe+Adxy Adxs+EdAdg=u=
h(mg1dxg + mp1dxe + mMe1dxs) A (M0 X + Mp2d X 4+ Ma2dxs),
and if we denotd; = det(ml rrm) then the right-hand side of the last equation becomes
mjl mjz
h{Mz2dx; A dxo + My3dxs A dxs + MaszdXe Adxs},
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and therefore, by equating coefficients of the representation,
X =hM A =hMiz & =hMpa. (24)
Using (24) in (23) and noting that in the babjses = €1 x e, = (M3, —M13,M12) we get,
Oh-es=1-h(0-e3)

which is the desired result.

Appendix C.

LEMMA C.1. Definition (1) is independent of the choice of the moving frame.

Proof. We use the notation presented in Section 3. DenotE by(e,e;,e3) andE°® =

(€3,€5,e3) two local choices of moving frames, and denoteHbyH) the matrix which
represent the shape operadeg (d€s), in the basi®,, e; of T,M (€1,& of Ty, M).
Then,H° = M'HM is the matrix ofde; in the basisE®, whereE® = EM. We defined
E = (df)E thereforeE® = (d f)E® = (d f)EM = EM, that is the basi&®, defines by the
isomorphismd f a new basis off;(;, M which (asE and E°) satisfiesE® = EM so the
matrix representingfl in the basi€® is MHM. Therefore,

distf;  (p) = |[H — H|[2 = [M'(H — H)M|2 = dist { (p),

so the functiordisty ¢ is invariant to the choice of the moving frames and it is only depen-
dent on the surfack®l and the isometry.

LEMMA C.2. The structure equations. LetV C M be an open set of M, and assume
(e1,e2,€3) be a smooth orthonormal moving frame defined on M. Then the 1-forms defined
by Eq. (15) satisfy

dw = ZWk/\Wk,b

dwj = Zwi,k/\wk.,ja i,j,k=1,23

LEMMA C.3. Cartan’s Lemma. Let V" be a vector space of dimension n, and let
wi,...,Wr 1 V" —= R, r <n, be 1-forms in V that are linearly independent. Assume there
exist formsfy, ..., 6; : V — R such thats|_; w; A 6; = 0. Then

6 =3 ajwj, a;j=aj
]

LEMMA C.4. Lemma of Levi-Civitta. Let M be a Riemannian two-dimensional mani-
fold. LetVC M be an open set where a moving orthonormal frfege, } is defined, and
let {wy,w>} be the associated co-frame. Then there exist a unique 1-fasn=w—ws 1
such that

dw, = Wy 2 AW2 dw, = W2 1 AW1.
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Appendix D.

In this appendix we describe the two parametrizations we use for the Euclidian rotation
groupSQ(3). First theorthogonal parametrization

6°": (61,62, 6%) c [0,27) x [0, ) x [0,27) — SO3) c R® (25)

is defined as the composition of the two maps:

sin(61/2)sin(62)sin(63)
(91 2 93) ., | sin(61/2)sin(62)cog6%)

T sin(61/2)cog62)

cog61/2)

and,
% 1,2y2,222 2xy+2wz 2xz—2wy
Y 2Xy—2Wwz  1-2x2_272  2yz+2wx y (26)

vzv 2Xz+2wy  2yz—2wX  1-2x2—2y2

where(x y z w' is a quaternion. Using this parametrization we get the induced metric,
G =2Diag( 1 4sirf(61/2) 4sirf(6/2)sin?(62) ),

whereDiag(dp, ...,dn) denotes the diagonal matrix with the diagonal enttigs.., d,.

Second, we describe tltenformal parametrization

n*"": (n',n%n°) C R° SOB) C R, 27)

. . Anl an2 an3 A4—|712 .
defined by composition of the mag*, n?,n3%) — (||m\g+4’ HW\F"M’ HﬁlanH’ IIﬁ\‘\g'L) with

the map (26). The first map is known as the stereographic map. This parametrization gives
us the induced metriG = 128n(1)1, wherew(1) = 1/(||77||2+4)? andl denotes the 3 3
identity matrix.

Appendix E.

In this section we’ll show that under the conformal parameter (27), Eq. (3) boils down to
Eq. (5).

As detailed in Section Appendix D, the induced metric in the conformal coordinate system
is G = w(1)l, wherew(T) = 128/(||77]|* + 4)? and | denotes the % 3 dentity matrix.
Denote byRy = (N1,M2,M3) = NggnR: M — R, then

[dRIE = [|d(Ry) 13-
Next, since(er, ;) is an orthonormal basis of the tangent pldgh,
1d(Ry) 18 = trace( Ry )'G(ORy) = w(T7) (100 + 00>+ |00 %) = w(m) | 07|

Next, let us show that using the piecewise linear finite-element approach to discretize
Eg. (5) we obtain Eq. (7). In the notation of Section 3.3, we integrate (5) on each triangle
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T; as a linear transformation, for example,
1 12 1 & I 12 1
T W(T]) || n || Zarea(Ti) ]Z]_ yi] |n|] Tl|,| T W(n)
Using linear approximation to the integrand we get:

 ariryde = 5wty e, +wim).

Combining the above we get Eq. (7).
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