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Abstract

We consider the possibility of using locally supported quasi-interpolation
operators for the approximation of univariate non-smooth functions. In
such a case one usually expects the rate of approximation to be lower than
that of smooth functions. It is shown in this paper that prior knowledge
of the type of ’singularity’ of the function can be used to regain the full
approximation power of the quasi-interpolation method. The singularity
types may include jumps in the derivatives at unknown locations, or even
singularities of the form (x− s)α , with unknown s and α . The new approx-
imation strategy includes singularity detection and high-order evaluation
of the singularity parameters, such as the above s and α . Using the ac-
quired singularity structure, a correction of the primary quasi-interpolation
approximation is computed, yielding the final high-order approximation.
The procedure is local, and the method is also applicable to a non-uniform
data-point distribution. The paper includes some examples illustrating the
high performance of the suggested method, supported by an analysis prov-
ing the approximation rates in some of the interesting cases.

1 Introduction

High-quality approximations of piecewise-smooth functions from a discrete set
of function values is a challenging problem with many applications in fields
such as numerical solutions of PDEs, image analysis and geometric model-
ing. A prominent approach to the problem is the so-called essentially non-
oscillatory (ENO) and subcell resolution (SR) schemes introduced by Harten
[9]. The ENO scheme constructs a piecewise-polynomial interpolant on a uni-
form grid which, loosely speaking, uses the smoothest consecutive data points
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in the vicinity of each data cell. The SR technique approximate the singularity
location by intersecting two polynomials each from another side of the sus-
pected singularity cell. In the spirit of ENO-SR many interesting works have
been written using this simple but powerful idea. Recently, Arandifa et al.[1]
gave a rigorous treatment to a variation of the technique, proving the expected
approximation power on piecewise-smooth data. Archibald et al.[2, 3] have
introduced the a polynomial annihilation technique for locating the cell which
contains the singularity. A closely related problem is the removal of Gibbs phe-
nomenon in the approximation of piecewise smooth functions. This problem
is investigated in a series of papers by Gottlieb and Shu [8]. The methods sug-
gested by Gottlieb and Shu are global in nature, using Fourier data informa-
tion. These methods are also applicable for uniformly sampled function data,
and recently even extended to non-uniform data by Gelb [7]. For a comprehen-
sive review of these methods and recent developments see [11]. The method
presented here relies upon local approximation tools, and thus the singularity
detection algorithm is essentially local, similar to the ENO-SR scheme.

Let g be a real function on [a,b], and let X = {xi}N
1 ⊂ [a,b] be a set of data

points, xi < xi+1. We assume that g ∈ PCm+1[a,b] ,where PCm+1[a,b] denotes the
function space of Cm[a,b] functions with a piecewise continuous m + 1 deriva-
tive. Consider approximations to g by quasi-interpolation operators of the type

Qg(x) =
N

∑
i=1

qi(x)g(xi), (1)

where {qi}N
i=1 are compactly supported functions, qi ∈Cµ [a,b], satisfying a poly-

nomial reproduction property:

Qp = p, p ∈Πm, (2)

where Πm is the polynomial space of degree equal to or smaller than m. Such
operators are very useful in achieving efficient approximations to smooth func-
tions. Namely, let h, the separation distance, be the size of the largest open in-
terval J ⊂ [a,b] such that J∩X = /0, and let us assume that supp{qi} = O(h), i =
1, ...,N. Then, if the quasi-interpolation operator Q has a bounded Lebesque
constant, ∑

N
i=1 |qi(x)| ≤C, it follows that

g(x)−Qg(x) = O(hm+1), x ∈ [a,b]. (3)

In this paper we give as examples quasi-interpolation by splines [6] and by
moving least-squares approximations [12].
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The aim of this paper is to present a simple framework for enhancing such
operators to well approximate piecewise-smooth functions. In particular we
wish to obtain the same approximation order as in approximating smooth data,
and furthermore, we would like the singular points in the approximant to be
good approximations to the singular points of the approximated function.

2 Quasi-interpolation of piecewise-smooth functions

We consider piecewise-smooth functions f ∈ PCm+1[a,b]\{s}, s ∈ (a,b), which
are PCm+1 smooth except for a single point x = s. We assume that the singu-
larity type is known, but its parameters, such as the singularity location and
magnitude, are unknown. Throughout the paper we deal with jump singulari-
ties of the derivatives of f , but the discussion can easily be adapted to different
singularity types. For instance, we also present an example with singularities
of the type (x− s)α

+, α ∈R+ where (x)+ = x when x≥ 0 and (x)+ = 0 otherwise.
Note that in this example the bαc+ 1 derivative limit from the right of s is not
finite.

We thus assume that f can be written as follows:

f (x) = g(x)+ r(x), (4)

where g(x) ∈ PCm+1[a,b], and

r(x) =
m

∑
j=0

∆ j

j!
(x− s) j

+ . (5)

We note that
∆ j = f ( j)(s+)− f ( j)(s−).

The error in the quasi-interpolation approximation to f , using data values
at the points X , can be written as

E f (x) = f (x)−Q f (x) = g(x)−
N

∑
i=1

qi(x)g(xi)+ r(x)−
N

∑
i=1

qi(x)r(xi) = Eg(x)+Er(x),

where Eg(x),Er(x) denote the error functions of approximating g(x),r(x) using
Q, respectively.

We assume the quasi-interpolation operator Q has a bounded Lebesque
constant and hence the expected O(hm+1) approximation order is realized for
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smooth functions. Therefore, |Eg(x)| = O(hm+1), where h is the fill-distance of
the data X as defined above, and the deterioration of the approximation is la-
tent within the term Er(x).

If the singularity model (type) is known, then Er(x) is known analytically.
In our case, assuming r is of the form (5), we have

Er(x) =
m

∑
j=0

∆ j

j!
H j(x;s), (6)

where

H j(x;s) = (x− s) j
+−

N

∑
i=1

qi(x)(xi− s) j
+. (7)

Hence, Er(x) = Er(x;s, ∆̄) is a simple known function of the singularity param-
eters s and ∆̄ = {∆ j}m

j=0. Also in our hands, are the values {E f (xi)}, and accord-
ing to the above observations

Er(xi) = E f (xi)+O(hm+1) . (8)

Therefore, the general idea for enhancing the quasi-interpolating approx-
imation operator is by fitting a function of the form (6) to the actual errors
{E f (xi)} in the quasi-interpolation approximation. As we argue below, the
function Er(x) is of finite support of size O(h). Furthermore, the operator E

annihilates certain polynomials, and this leads to natural orthogonality rela-
tions, with respect to the standard inner product. In order to take advantage
of these properties we shall use the standard least-squares fitting. We expect
that using other norms will give similar results. The overall procedure is thus
as follows: First, we find approximations s∗ and ∆̄∗ = {∆∗j}m

j=0 to the singularity
parameters s and ∆̄ by a least-squares fitting:

(s∗, ∆̄∗) := argmin
s′,∆̄′

N

∑
j=1

{
E f (x j)−Er(x j;s′, ∆̄′)

}2 (9)

Next, we correct the original quasi-interpolant, and define the new approxima-
tion to f as

Q̄ f (x) = Q f (x)+Er(x;s∗, ∆̄∗). (10)

Remark 2.1 The least-squares fitting problem (9) leads to a system of equations which
is linear in the unknowns ∆̄∗ and algebraic (polynomial) in s∗.
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Remark 2.2 The approximation Q̄ f is piecewise Cµ , with possible jump discontinu-
ities in the derivatives at s∗. It is easy to verify that if g ∈ Πm and r is of the form (5),
then

Q̄(g+ r) = g+ r. (11)

Note that the above reproduction property does not automatically provide an O(hm+1)
approximation order, since the overall process is non-linear.

Remark 2.3 The functions H j(x;s) are of finite support of size O(h). This follows
from the definition of H j(x;s) and the fact that Q reproduce polynomials of degree less
or equal to m. This consequently implies that the correction term Er(x;s∗, ∆̄∗) is of
finite support of size O(h).

In the following theorem we summarize the main properties of the new
approximant Q̄ f (x). For the sake of briefness and clarity we assume that the
points xi are equidistant, that is, xi = a + ih, i = 0, ...,N, h = b−a

N and that the
quasi-interpolation basis functions are all shifts of one function:

qi(x) = q
( x

h
− i
)

,

where supp{q(Z)} = [−e,e]∩Z, e = 2,3, .... In fact, to achieve polynomial re-
production over the whole interval [a,b], one should use some special basis
functions near the end points of the interval. However, since we assume that
the singularity of f is at a fixed point s ∈ (a,b), and since we consider asymp-
totics as h→ 0, and q(·) is of a finite support, it is enough to consider a shift
invariant basis. In order to retain the polynomial reproduction over [a,b], and
maintain the simplicity of a shift invariant basis, we augment the point set with
e extra points on each side, that is, xi = a+ ih, i =−e, ...,N + e.

Theorem 2.1 Assume Q is a quasi-interpolation operator reproducing polynomials
in Πm. Let f be a continuous function in [a,b] of the form (4) with ∆1 6= 0. The
approximant Q̄ f (x) defined above satisfies the following properties:

1. Q̄ f has the same smoothness as Q f except for the point s∗ where it has the sin-
gularity type of the singularity model.

2. |s− s∗|= O(hm+1) and |∆ j−∆∗j |= O(hm+1− j), j = 1,2, ...,m.

3. Q̄ f has full approximation order, that is,

| f (x)− Q̄ f (x)|= O(hm+1).
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Proof. Claim 1 follows directly from the definition of the correction term
E(x;s∗, ∆̄∗). In order to prove claims 2 and 3, we first note that the parameters
s∗ and ∆∗ minimizing (9) certainly satisfy

N

∑
j=0

{
E f (x j)−Er(x j;s∗, ∆̄∗)

}2 ≤
N

∑
j=0

{
E f (x j)−Er(x j;s, ∆̄)

}2
.

Existence of a minimizer s∗ is proved in Appendix A. Next, it follows from
Remark 2.3 that there is a fixed number (independent of h) of indices j such
that Er(x j;s∗, ∆̄∗) 6= 0 or Er(x j;s, ∆̄) 6= 0. Combining this with the fact that

E f (x j)−Er(x j;s, ∆̄) = O(hm+1) ,

we get
Er(x j;s, ∆̄)−Er(x j;s∗, ∆̄∗) = O(hm+1). (12)

Therefore, we can conclude that the corrected approximation gives the right
approximation order at the data points:

| f (x j)− Q̄ f (x j)|= O(hm+1) .

For the proof of claim 3 we shall use (12) in order to show that

Er(x;s, ∆̄)−Er(x;s∗, ∆̄∗) = O(hm+1) , ∀x ∈ [a,b] .

This part of the proof is less obvious, and is rather lengthy:

From the definitions we have that

Er(x;s, ∆̄)−Er(x;s∗, ∆̄∗) =

∑
m
j=1

∆ j
j!

[
(x− s) j

+−∑i qi(x)(xi− s) j
+

]
−∑

m
j=1

∆∗j
j!

[
(x− s∗) j

+−∑i qi(x)(xi− s∗) j
+

]
(13)

Next, note that

(x− s) j
+−∑

i
qi(x)(xi− s) j

+ =−(x− s) j
−+∑

i
qi(x)(xi− s) j

−, 0≤ j ≤ m, (14)

and similarly for s∗. These identities can be understood via the polynomial
reproduction property of Q. Let us define the following polynomials of degree
m:

p(x) =
m

∑
j=1

∆ j

j!
(x− s) j , p∗(x) =

m

∑
j=1

∆∗j
j!

(x− s∗) j. (15)
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W.l.o.g. we assume that s≤ s∗, otherwise the following can be adapted accord-
ingly. Using (13) and (14) we get:

Er(x;s, ∆̄)−Er(x;s∗, ∆̄∗) = ∑
i

qi(x)


Λ1

i x < s

Λ2
i s≤ x < s∗

Λ3
i s∗ ≤ x

, (16)

where

Λ
1
i =


0 xi < s

−p(xi) s≤ xi < s∗

p∗(xi)− p(xi) s∗ ≤ xi

Λ
2
i =


p(xi) xi < s

0 s≤ xi < s∗

p∗(xi) s∗ ≤ xi

(17)

Λ
3
i =


p(xi)− p∗(xi) xi < s

−p∗(xi) s≤ xi < s∗

0 s∗ ≤ xi

, i =−M− e, ...,N + e

Next, denote by ν the maximal index such that xν < s. Then using (12) with

s s∗

xτxν

0 e−e

a(·)

Figure 1: Illustration for the proof of Theorem 2.1.

j = ν− e+1≡ η , and using the compact support of q, we are left with

O(hm+1) = Er(xη ;s, ∆̄)−Er(xη ;s∗, ∆̄∗) = qν+1(xη)Λ1
ν+1.

Since qν+1(xη) = q(−e) 6= 0, we get that

Λ
1
ν+1 = O(hm+1).

Next, by considering the point xη+1 we get

O(hm+1) = Er(xη+1;s, ∆̄)−Er(xη+1;s∗, ∆̄∗) =

qν+1(xη+1)Λ1
ν+1 +qν+2(xη+1)Λ1

ν+2 = O(hm+1)+qν+2(xη+1)Λ1
ν+2,
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and since qν+2(xη+1) = q(−e) 6= 0 we have

Λ
1
ν+2 = O(hm+1).

We can continue in the same manner showing

Λ
1
i = O(hm+1) , ν +1≤ i≤ ν + e. (18)

In a similar manner we also get

Λ
3
i = O(hm+1) , τ−1≥ i≥ τ− e, (19)

where τ is the minimal index such that s∗ ≤ xτ . Next, let us show that for a
small enough h there is at most one mesh point between xν to xτ , that is, ei-
ther τ = ν + 1 or τ = ν + 2. Otherwise, if xν+2 < s∗, since e ≥ 2, then p(xν+2) =
−Λ1

ν+2 = O(hm+1). But since ∆1 6= 0, and xν+2− s > h, we have p(xν+2) = θ(h)
which yields a contradiction for small enough h. So in the last part of the proof,
we deal with each of the two possible cases: τ = ν +1 and τ = ν +2.

Case 1: If τ = ν +1, in this case we have

Λ
3
i = p(xi)− p∗(xi) = O(hm+1) , i = τ− e, ...,ν , (20)

Λ
1
i = −p(xi)+ p∗(xi) = O(hm+1) , i = τ, ...,ν + e,

that is, we have 2e points where the polynomial p− p∗ has an O(hm+1) value.
Since p− p∗ is a polynomial of degree less than or equal to m and necessarily
2e≥ m+1, we get that for x ∈ [xτ−e−2,xν+e+2]

p(x)− p∗(x) = O(hm+1). (21)

This has several consequences: First, setting x = s∗ we get

p(s∗) = O(hm+1),

hence, since ∆1 6= 0, we get that |s− s∗| = O(hm+1). Secondly, for x < s (s∗ ≤ x),
we see that all relevant Λ1

i (Λ3
i ) are O(hm+1) and therefore we have that

Er(x;s, ∆̄)−Er(x;s∗, ∆̄∗) = O(hm+1) , x < s,s∗ ≤ x.

Finally, for s≤ x < s∗, Er(x;s, ∆̄)−Er(x;s∗, ∆̄∗) =

ν+e+2

∑
i=τ−e−2

qi(x)Λ2
i =

ν+e+2

∑
i=τ−e−1

qi(x)p(xi)+O(hm+1) = p(x)+O(hm+1) = O(hm+1),
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where the first equality uses (17) and (21) and the second equality is due to
polynomial reproduction.

Case 2: If τ = ν + 2. In this case we only have 2e− 1 points (i = τ − e, ...,ν + e)
where p− p∗ is O(hm+1). In order to obtain such a relation at yet another point,
we use the extra information we have, namely,

p(xν+1) =−Λ
1
ν+1 = O(hm+1). (22)

Using (17), (18), (19) we have

O(hm+1) = Er(xν+1;s, ∆̄)−Er(xν+1;s∗, ∆̄∗) =
ν+e+1

∑
i=τ−e−1

qi(xν+1)Λ2
i =

ν+e+1

∑
i=τ−e−1

qi(xν+1)p(xi)+qν+e+1(xν+1)(p∗(xν+e+1)− p(xν+e+1))+O(hm+1) =

p(xν+1)+qν+e+1(xν+1)(p∗(xν+e+1)− p(xν+e+1))+O(hm+1).

Observing that qν+e+1(xν+1) = q(−e) 6= 0 and using (22), we get

p∗(xν+e+1)− p(xν+e+1) = O(hm+1),

and we can continue as in the first case.
Finally, let us prove |∆ j −∆∗j | = O(hm+1− j). First note that we have that there
exist 2e consecutive points xi1 , ...,xi2e ∈ X such that p(xi j)− p∗(xi j) = O(hm+1).
Next let us write p− p∗ in the Lagrange basis

p(x)− p∗(x) =
2e

∑
j=1

(
p(xi j)− p∗(xi j)

)
L j(x),

where the functions L j(x) =
∏χ 6= j(x−xiχ )

∏χ 6= j(xi j−xiχ ) , j = 1, ..,2e form the Lagrange basis.

Since
dJ

dxJ

∣∣∣∣
x∈[min{xi j },max{xi j }]

L j(x) = O(h−J),

we get that
dJ

dxJ

∣∣∣∣
x=s∗

(p(x)− p∗(x)) = O(hm+1−J).

On the other hand, for any J = 1, ...,m, differentiating p(x)− p∗(x) J times and
substitute x = s∗ we have

dJ

dxJ

∣∣∣∣
x=s∗

(p(x)− p∗(x)) = ∆J−∆
∗
J +

m

∑
j=J+1

∆ j

( j− J)!
(s∗− s) j−J .
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Since |s− s∗|= O(hm+1) the previous two equations imply that

|∆∗J−∆J |= O(hm+1−J).

�

2.1 Algorithm

From a practical point of view, we suggest two algorithms for alleviating quasi-
interpolants Q to accommodate piecewise-smooth data with known singular-
ity family type Q̄: First, in the case of jump in the first derivative we provide
a closed-form formula for locating the singularity and approximating the sin-
gularity parameters. The algorithm and its analysis are provided in Section 3.
The computational complexity of the algorithm in this case is O(N) (where N is
the number of data points).

Second, in the general case, the algorithm is as follows. First, an initial
(rough) guess s0 to the singularity location s is constructed. This can be done
in several ways. We have used for example

s0 = argmin
s′

∑
j
|E f (x j)||x j− s′|2.

This boils down to the centroid of the error E f . Another option could be to use
the ENO scheme for locating a cell or few cells that might contain the singu-
larity. The initial guess provides us with |s0− s| = O(h) approximation of the
singularity location and its computational complexity is O(N), where again N is
the number of data points. It Should be noted that in the case that h is not small
enough, the algorithm may provide an erroneous approximation, especially in
cases of detecting high order singularities. In the second step a minimization
of the functional (9) is done by minimizing the functional as a (rational) func-
tion of s′ in a constant number of intervals adjacent to the initial guess s0. That
is, denote by ∆̄′ = ∆̄′(s′) the minimizer of (9) with respect to a fixed s′, then the
functional

N

∑
j=1

{
E f (x j)−Er(x j;s′, ∆̄′(s′))

}2
,

is minimized with respect to s′ in the above mentioned intervals. The compu-
tational complexity of the second step is constant, that is, independent of N.
This follows from the fact that the support of Er contains only a fixed number
of data points (assuming a quasi-uniform data set).
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3 A closed form solution for a special case

As explained in Remark 2.1, the least-squares fitting problem (9) leads to a
system of equations which is linear in the unknowns ∆̄∗ and algebraic (polyno-
mial) in s∗. However, in the special case where f has jump discontinuities at s

only in its value and its first derivative we can present a closed form solution
of (9). In this case we have also observed some superconvergence of the ap-
proximation s∗ to s, which we prove below. This case is a particular instance of
functions which are linear combinations of smooth functions and spline func-
tions.

In that case (6) reduces to

Er(x;s′, ∆̄′) = ∆
′
0H0(x;s′)+∆

′
1H1(x;s′), (23)

Assume s ∈ (xk,xk+1], in such a case the sum to be minimized in (9) becomes

∑
N
j=1
{

E f (x j)−∆′0
[
(x j− s′)0

+−∑
N
i=1 qi(x j)(xi− s′)0

+
]

−∆′1
[
(x j− s′)+−∑

N
i=1 qi(x j)(xi− s′)+

]}2 =

∑
N
j=1
{

E f (x j)−∆′0
[
(x j− xk+1)0

+−∑i≥k+1 qi(x j)
]

−∆′1
[
(x j− xk+1)0

+(x j− s′)−∑i≥k+1 qi(x j)(xi− s′)
]}2

(24)

After rearranging we get

∑
N
j=1
{

E f (x j)− (∆′1s′−∆′0)
[
−(x j− xk+1)0

+ +∑i≥k+1 qi(x j)
]

−∆′1
[
(x j− xk+1)0

+x j−∑i≥k+1 qi(x j)xi
]}2

.
(25)

And the functional is quadratic in the variables (∆′1s′−∆′0) and ∆′1.

Obviously, the minimizer in this case is not unique. Therefore, let us con-
sider the case where ∆0 = 0, that is, f is continuous. In that case (25) reduces to
a 2×2 linear system in the variables

∆̃
′
1 := ∆

′
1 , s̃′ := ∆

′
1s′.

Denote the functions

φk(x) = x(x− xk+1)0
+−∑i≥k+1 qi(x)xi,

ψk(x) = −(x− xk+1)0
+ +∑i≥k+1 qi(x).

(26)
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By the polynomial reproduction property of the quasi-interpolation operator it
follows that both φk and ψk are of compact support of size O(h). Then equation
(25) turns into

N

∑
j=1

{
E f (x j)− s̃′ψk(x j)− ∆̃

′
1φk(x j)

}2
. (27)

Let us define the matrix A = (ψ , φ) where φ ,ψ are column vectors defined by

φ j = φk(x j) , ψ j = ψk(x j). (28)

Then, the normal equations for system (27) is:

AtA

(
s̃′

∆̃′1

)
= At (E f (x1), ...,E f (xN))t . (29)

Hence, the algorithm for calculating the approximations s∗,∆∗1 to the true
singularity parameters s,∆1 can be described concisely as follows: for each in-
terval [xi,xi+1], minimize the functional in (9) constrained to the interval [xi,xi+1],
that is, solve (29): if s′ = s̃′/∆̃′1 ∈ [xi,xi+1] it is the minimum of (9) in that inter-
val. Otherwise, evaluate the functional at the ends s′ = xi,∆

′
1 = ∆′1(s

′) and the
same for xi+1. The minimum of the functional on this interval will be attained
at one of the ends. Finally denote by s∗,∆∗1 the values which yielded the global
minimum of the functional (9).

Note that we have used the symbol ∆′(s′) to denote, as remarked in (2.1),
that fixing s′ in functional (9) results in a linear system for ∆. In Appendix A
this system is proved to be non-singular.

3.1 Approximation order analysis

An important virtue of the above method is that, by using m−th degree quasi-
approximation operator, we get an O(h2(m+B)−1) approximation order to the
location of the singular point, where m + B is the maximal degree of the poly-
nomials reproduced by the quasi-interpolation operator at the nodes. In this
section we provide the analysis of this approximation order. Regarding differ-
ent types of singularities (not only jump in the first derivative) we have also
observed some superconvergence properties; in Section 5 we present some nu-
merical experiments demonstrating this phenomenon and compare it to the
subcell resolution method of similar degree.
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We return to the settings of equidistant point xi = a + ih, −e ≤ i ≤ N + e,
h = b−a

N , and to basis functions qi(·) which are shifted versions of a “mother
basis function” q(x), that is,

qi(x) = q
( x

h
− i
)

.

Let us set k such that s ∈ [xk,xk+1]. The normal equations (29) which are
solved for the s̃∗, ∆̃∗1 are

AtA

(
s̃∗

∆̃∗1

)
= AtE f = At

(
A

(
s̃

∆̃1

)
+ ε

)
= AtA

(
s̃

∆̃1

)
+At

ε, (30)

where ε stands for the errors in approximating the smooth part of f , that is
ε j = Eg(x j), and s̃ = s ·∆1 , ∆̃1 = ∆1 where s,∆1 are the true singularity position
and the jump in the first derivative, respectively.

In order to prove the desired approximation result |s∗− s|= O(h2(m+B)−1), it
is enough to prove

|s̃∗− s̃|= O(h2(m+B)−1) , |∆̃∗1− ∆̃1|= O(h2(m+B−1)).

By (30) we have (
s̃∗− s̃

∆̃∗1− ∆̃1

)
= (AtA)−1At

ε. (31)

It is quite easy to get a bound of the form

‖(AtA)−1At‖= O(h−r),

with some r > 0 where ‖ · ‖ = supv6=0
‖·v‖∞
‖v‖∞ , ‖v‖∞ = maxi{|vi|} . And since ε =

O(hm+1) we will generally only get

‖(AtA)−1At
ε‖= O(h−r+m+1).

The key property which yields the higher approximation order is that the vec-
tors φ and ψ are orthogonal to some polynomial vectors X ` = {x`

i }N
i=0, ` =

0,1, ..., `′. Then, if ε is smooth, it can be well approximated by polynomials,
and therefore it will follow that ‖Atε‖ decreases faster than ‖At‖‖ε‖ as h→ 0.

In the following we prove the main ingredients of the superconvergence
result.
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Lemma 3.1 Let B ∈N+ such that Q reproduce polynomials of maximal degree m+B

on the nodes X ; then we have the following orthogonality relations:

〈φ ,X `〉= 0 ` = 0,1, ...,m+B−2,

〈ψ,X `〉= 0 ` = 0,1, ...,m+B−1.

Proof. First denote the operator T by

T (ξ ) j = ξ j−∑
i

qi(x j)ξi, (32)

then the vectors φ ,ψ (28) can be written as follows:

φ = T (r1) , ψ = T (r0),

where r0
j = (x j− xk+1)0

+ and r1
j = x j(x j− xk+1)0

+. Since T has finite support on
R∞ and T ({p( j)}) = 0 for all p ∈Πm+B(R) it can be written as

T = R∆
m+B+1 = ∆

m+B+1R,

where ∆ is the forward difference operator, that is, (∆ξ ) j = ξ j+1 − ξ j and R

has compact support. Next we make use of the summation by parts (S.B.P.)
formula:

N

∑
i=−M

fi∆gi = [( f )·(g)·]
N+1
−M −

N

∑
i=−M

gi+1∆ fi. (33)

Using (33) m + B− b times, b = 0,1, and since (∆m+B+1−ν rb) j = 0, j = 0,N + ν

for all ν ≤m+B−b plus the fact that ∆m+B−b annihilates polynomial sequences
{p( j)} for p ∈Πm+B−1−b(R) the lemma is proved. �

Lemma 3.2 There exists a matrix Q ∈RN+1×2, such that

1. A can be written as

A = Q

(
1 xk+1

0 h

)
,

where Q j,i 6= 0, i = 1,2 only for some fixed number of indices j around k.

2. QtQ and ‖Qt‖ are independent of h.

Proof. Using the notation of previous lemma,

A

(
1 −xk+1

0 1

)
=
(
T (x·− xk+1)0

+,T (x·− xk+1)+
)

=
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(
T (·− (k +1))0

+,T (·− (k +1))+
)( 1 0

0 h

)
.

Therefore

A =
(
T (·− (k +1))0

+,T (·− (k +1))+
)( 1 xk+1

0 h

)
≡Q

(
1 xk+1

0 h

)
.

This shows (1). Next, note that T is translation invariant. Indeed, denote by E

the translation operator, that is (EX) j = x j−1, then

T E(·) = ET (·).

Hence, we have that

T (·− (k +1))0
+ = T Ek+1(·)0

+ = Ek+1T (·)0
+.

And similarly
T (·− (k +1))+ = Ek+1T (·)+.

We therefore see that the column vectors of the matrix Q consist of shifted
versions of the constant (independent of h) vectors

T (·)0
+ , T (·)+.

Therefore, the second claim of the lemma is evident. �

Lemma 3.3 The normal matrix AtA ∈R2×2 is invertible and we have

‖(AtA)−1At‖= C1h−1. (34)

Proof. For the first part it is enough to show that the vectors φ ,ψ are linearly
independent. Using (33) ν = m+B times, we get, as shown in Lemma 3.1,

〈ψ,Xm+B−1〉= 0. (35)

However, we also get

〈φ ,Xm+B−1〉 = (−1)m+B−1 [(R∆r1)·+m+B−1(∆m+B−1Xm+B−1)·
]N+1

0 (36)

= (−1)m+B−1hm+B−1(m+B−1)!(R∆r1)N+m+B

= (−1)m+B−1hm+B(m+B−1)!(R(1))N+m+B

6= 0,
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where the second equality follows from the fact that ∆r1 equals zero near the
left boundary, and in the last inequality 1 j = 1, R(1)N+m+B = C1 6= 0 since m+B

is the maximal reproduction degree of T on the nodes X . Finally, from (36) and
(35) it follows that φ ,ψ are linearly independent. Furthermore, (34) is evident
from Lemma 3.2. �

Finally, we can prove the stated approximation order result:

Theorem 3.1 Let f be a function of the form

f (x) = g(x)+∆1(x− s)+,

where g ∈ PC2(m+B). Let Q be a quasi-interpolation operator of order m as defined in
(1). Further assume that |s−x j| ≥ chm,x j ∈X for some constant c. Then, the algorithm
described in Section 3 results in the approximation

|s∗− s|= O(h2(m+B)−1) ; |∆∗1−∆1|= O(h2(m+B)−1).

Proof. It is enough to prove

|s̃∗− s̃|= O(h2(m+B)−1) , |∆̃∗1− ∆̃1|= O(h2(m+B−1)).

By Theorem 2.1 we have that |s∗− s| = O(hm+1). Combining this with the as-
sumption that |s− x j| ≥ chm we get that, for small enough h, s∗ is in the same
interval as s, that is s∗ ∈ [xk,xk+1]. In this case we have from (31) that

|∆̃1− ∆̃
∗
1|, |s̃− s̃∗| ≤ ‖(AtA)−1At

ε‖,

where ε = R∆m+B+1g(X). By Lemma 3.1 we have that both φ ,ψ annihilates
polynomials of degree m+B−2, that is

〈φ ,X `〉= 〈ψ,X `〉= 0 , ` = 0,1, ...,m+B−2.

Therefore by expanding g to its Taylor series through order 2(m+B)−1, that is
g = gT +O(h2(m+B)), we have that

‖(AtA)−1At
ε‖= ‖(AtA)−1AtO(h2(m+B))‖= O(h2(m+B)−1),

where in the last equality we used Lemma 3.3.
�
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4 Noise at isolates data points

The classical approach to detecting and fixing noise at isolated data points [5,
4, 10] is based on using the divided difference operator. One assumes the data
is corrupted with noise at some data point xk, that is,

f (xi) = g(xi)+ εδ (xi− xk),

where δ (z) equals one if z = 0, and zero otherwise. The method for detecting
xk and approximating the value ε is based on observing distinct pattern of the
error

∆
m{εδ (xi− xk)}i = ε

(
m

i

)
(−1)m−i,

This error increases in absolute value as m increases in contrast to the divided
difference of the smooth part g which generally decreases as m increases. The
above pattern is searched for in the data to locate the corrupted data point
xk, and then a suitable ε∗ ≈ ε is calculated. Finally the input data points are
corrected by subtracting this ε∗ from the detected data point value. We are
not aware of an explicit method for computing ε or any result addressing the
approximation order of this method.

This method is closely related to our approach and can be easily understood
as a particular instance where the singularity model used is a jump at a single
data-point

r(x) = εδ (x− xk).

Since we assume the noise is at one of the data points, we can explicitly check
every data point x j, and calculate ε∗j to minimize (9). Using the normal equa-
tions the minimizer is

ε
∗
j =

〈E f (X),H(X ;x j)〉
〈H(X ;x j),H(X ;x j)〉

,

where
{

H(X ;x j)
}

i = δ (xi− x j)−qk(xi). Then one uses the j and corresponding
ε∗j which minimize (9) among all possible data points to rectify the input data
at point x j.

Using similar analysis to Section 3.1 it is easy to prove the following,

Theorem 4.1 Let f be a function of the form

f (x) = g(x)+ εδ (x− xk),
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where ε ≥ 0 and g ∈ PC2(m+B)+2. Let Q be a quasi-interpolation operator of order m

as defined in (1) which reconstructs polynomials of order m + B at the data points.
Then, for small enough h, the above procedure finds xk, and approximates the noise
level ε to the order O(h2(m+B)+2), that is

|ε∗− ε|= O(h2(m+B)+2).

Proof. For every s′ = x j the functional in (9) becomes

‖E f − ε
∗
j H j‖2 =

〈
E f −

〈E f ,H j〉
〈H j,H j〉

H j,E f −
〈E f ,H j〉
〈H j,H j〉

H j

〉
,

where we substituted the minimizer ε∗j = 〈E f ,H j〉
〈H j ,H j〉 , and H j = H(X ;x j). Using the

fact that E f = Eg+Er = O(hm+1)+ εHk we then get

‖E f − ε
∗
j H j‖2 = ‖εHk−

〈εHk,H j〉
〈H j,H j〉

H j‖2 +O(hm+1),

which for small enough h attains its minimum only for j = k.

After finding xk, the normal equations for (9) are

HtHε
∗ = HtE f (X) = HtEg(X)+HtHε,

where H = H(X ;xk). Expanding g to its Taylor series through order 2(m+B)+1,
we get, similarly to Theorem 3.1,

HtH(ε∗− ε) = HtHEg(X) = O(h2(m+B)+2),

and since HtH ≥ c > 0 for some c independent of h we get the desired approxi-
mation order. �

5 Numerical experiments and concluding remarks

In this section we present a few numerical experiments with the method pre-
sented above. First, in Figure 2 we present an example of approximating a
function with the singularity model of the form c|x− s|α+, where c,s,α are un-
known. Here, we used cubic Moving Least Squares on irregular nodes as
a quasi-interpolation operator Q. Experimentally, for the case of equidistant
points an approximation order O(h8) to s has been observed.
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Figure 3 demonstrates an approximation of a smooth function with a jump in
the second derivative using only a few data points (8 or 17). Here we used
the Moving Least Squares on irregular nodes. (c) and (e) demonstrate the ro-
bustness and accuracy of the optimization process. Following Remark 2.1, the
minimization of the functional in (9) reduces to a non-linear minimization in a
single variable s′. By Appendix A, in each interval the functional boils down
to a rational function of s′ with no poles.
Figure 4 demonstrates an approximation of a function with a jump in the first
derivative. In this example we used quadratic quasi-interpolating splines on
regular nodes.
In Figures 5-7 we compare the approximation order of the singularity location,
that is |s∗− s|, with the subcell resolution method [1]. In these comparisons we
have used the same number of nodes in both methods to locate the singularity
within a given cell. In these examples we consider singularity models different
from the one we treated in Section 3.1. As shown in Figure 7, the polynomial
intersection method is not very efficient in the case of a smooth function with
a jump in the second derivative.
In Figure 8 we present a two-dimensional example, where a 2D-function’s sin-
gularity curve also possesses a point singularity. In this example we have used
the univariate detection algorithm twice: First we approximated the singular-
ity along the x-axis for each row of data points, and then used the resulting ap-
proximations as univariate functional data along the y-axis to locate its point
singularity. The figure depicts the resulting approximated curve singularity
along with the true singularity curve.
We experimented with the method applying it to a smooth function. The re-
sults are presented in Figure 9. Among other things, in this example the mag-
nitude ∆∗1 tend to zero at the rate of O(h5). This experiment shows that “ghost
singularities” may be identified by checking the convergence of ∆∗1 to zero. On
the other hand, it shows that such singularities do not affect the approximation
to the function.
Finally, we have experimented with data samples contaminated with noise
(Figure 10). Generally, the tradeoff between the noise size ε and the mesh size
h can be explained as follows: For a function with a jump singularity at its k-
th derivative we expect, using a quasi-interpolation method Q of degree m, an
O(hm+1) approximation order away from the singularity and the error becomes
O(hk) in a vicinity of the singularity. Hence, as long as the errors near the sin-
gularity are larger than the noise level ε , the detection method still works. An
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example is presented in Figure 10.

In this paper we have presented a new method for alleviating quasi-interpolation
techniques to approximate piecewise-smooth data, retaining their approxima-
tion power. This is done by a general method of fitting the error in approximat-
ing the singularity to the error in the approximation. The method is particu-
larly efficient for locally supported quasi-interpolation operators, and is shown
to be very effective for uniform and non-uniform distributions of data points.
We have demonstrated the generality of the method by applying it to several
singularity models. In the case where not all the function’s derivatives have
jump discontinuity, we observed a higher order of approximation of the lo-
cation and size of the jumps. In particular we have proved an O(h2(m+b)−1)
approximation order to the singularity location and magnitude for functions
with a jump in their first derivative. In that case we have also provided a
closed-form solution to the minimization problem.
We believe that the general methodology of locally fitting a singularity model
to the errors in a non-interpolatory approximation procedure bears further pos-
sible applications in higher dimensions.

Appendix A

Theorem A.1 Fixing s in (9) results in a non-singular linear system for ∆̄ =(∆1, ...,∆m).
In particular the functional in (9) is a rational function of s in each interval [xk,xk+1],
with no poles in the interval.

Proof. It is enough to show that the vectors H1(X ;s),H2(X ;s), ...,Hm(X ;s), where
(H j(x;s))i = H j(xi;s) and H is defined in (7), are linearly independent.
Note that

H j(X ;s) = T (X− s) j
+ = R∆

m+1(X− s) j
+,

where T is defined in (32). Let B ∈ N+ such that Q reproduce polynomials of
maximal degree m+B on the nodes X . Using the summation by parts formula
(33), m+B− j and m+B− j +1 times we get

〈H j,X `〉 = 0, `≤ m+B− j−1 (37)

〈H j,Xm+B− j〉 6= 0,
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Figure 2: Approximation of a function with an unknown singularity of the type
c|x− s|α+, where the magnitude c, location s and the exponent α are unknown.
(a,c) show the approximations using cubic MLS. A dashed line represents the
unknown function f and the solid line denotes the MLS approximant. (b,d)
show the MLS augmented with the fitted singular function. In (a-b) the data
were taken from a smooth function with singularity at s = π/100 and exponent
α =
√

3 and in (c-d) the unknown exponent is α = 1/
√

3.
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Figure 3: Approximation of a C1 function with a jump discontinuity in the
second derivative, that is, f (x) = 8(x− π

100 )2
+ +e−x2

+0.3sin(2x)−x−1. The data
sites are irregular in this case. (c) depicts the logarithm of the error functional
value (9) as a function of the single parameter s′. (d) shows the fitted function
Er(x;s′, ∆̄′) to the error data {E f (x j)}, depicted with circles. In (a) the unknown
function f is shown by a dashed line and the MLS approximation by a solid
line. (b) shows the MLS augmented with the singular function (d). (e) and (f)
show the logarithm of the error functional and the fitted function Er(x;s′, ∆̄′)
for twice the number of data points.
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Figure 4: Approximation of a function with a jump discontinuity in the first
derivative, that is, f (x) = |x− π

100 |+e−x2
+0.3sin(5x). (a) depicts the fitted func-

tion Er(x;s′, ∆̄′) to the error data {E f (xi)} (circles). (b) shows the approximation
using quadratic quasi-interpolating B-splines. In dashed line is the unknown
function f . (c) shows the approximant (b) augmented with the singular func-
tion (a).
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Figure 5: Comparison with the subcell resolution method w.r.t the total num-
ber of points used. The singularity model here takes into account a jump in the
first and the second derivatives. The function used f (x) = |x− π/3|+

√
2(x−

π/3)2
+ + e−x2

+ 0.3sin(5x). A graph of log |s− s∗| versus logh is depicted. The
total number of points used is written by the relevant curve. Circle markers
denote the method presented in the paper. Asterisks markers show the poly-
nomial intersection (subcell resolution) method.
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Figure 6: Comparison with subcell resolution method w.r.t the number of
points used. The singularity model here takes into account jumps upto (and
including) the third derivative. The function used f (x) = |x− π/3|+

√
2(x−

π/3)3
+ + e−x2

+ 0.3sin(5x). A graph of log |s− s∗| versus logh is depicted. The
total number of points used is written by the relevant curve. Circle markers
denote the method presented in the paper. Asterisks markers show the poly-
nomial intersection (subcell resolution) method.
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Figure 7: Comparison with subcell resolution method w.r.t the number of
points used. The singularity model here takes into account a continuous first
derivative and a jump in the second and third derivative. The function used
is f (x) =

√
2(x− π/3)2

+ + e−x2
+ 0.3sin(5x). A graph of log |s− s∗| versus logh

is depicted. The total number of points used is written by the relevant curve.
Circle markers denote the method presented in the paper. Asterisks markers
show the polynomial intersection (subcell resolution) method.
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Figure 8: 2D example. The dashed curves in (b) and (c) denote the true sin-
gularity curve, and the continuous curves are the approximated singularity
curve using a two-step procedure. The circles denote the x−singularity de-
tection phase results. The function used in this case is f (x,y) = e−y2−0.5x4 −
0.4 +

∣∣x+ π

100 −0.1sin(2.5y)+0.4(y− π

20 )+
∣∣. Numerical evaluation of the singu-

larity location along the curve, s = π

20 , yields the approximation order |s∗− π

20 |=
O(h5).
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h 0.16 0.08 0.04 0.02

Q max error on nodes 6.46 ·10−3 4.60 ·10−4 2.95 ·10−5 1.85 ·10−6

Q̄ max error on nodes 6.27 ·10−3 4.49 ·10−4 2.95 ·10−5 1.84 ·10−6

Q max error 1.09 ·10−2 8.55 ·10−4 8.37 ·10−5 9.36 ·10−6

Q̄ max error 3.72 ·10−2 9.61 ·10−4 8.37 ·10−5 9.26 ·10−6

|∆∗1| 1.54 0.059 0.002 6.13 ·10−5

Figure 9: The results of applying the method (using quadratic quasi-
interpolating B-splines) to data sampled from smooth function f (x) = e−x2

+
sin(5x). The left column depicts the Q̄ approximant in a solid line and the func-
tion f in a dashed line. In the right column the error of Q̄ is a solid line and the
error of Q is a dashed line. In (a-b) h = 0.16, (c-d) h = 0.08, (e-f) h = 0.04. The
table at the bottom summarizes the results. Note that the decreasing rate of ∆∗1
is O(h5) in this case.



29

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-2

-1

0

1

2

3

4

5

6

7

8

-0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) (c)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-2

-1

0

1

2

3

4

5

6

7

8

-0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(d) (e)

Figure 10: Approximation using a noisy data set sampled from a function
with a jump discontinuity in the first derivative. (a) depicts the fitted func-
tion Er(x;s′, ∆̄′) to the error data {E f (xi)} (circles). (b) shows the MLS cubic
quasi-interpolant. In dashed line is the unknown function f (zoom-in view in
(c)). (d) shows the rectified quasi-interpolant Q̄ (zoom-in view in (e)).
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respectively. And since the vectors XB, ...,Xm+B−1 are linearly independent the
lemma follows. �

As a simple consequence of this theorem we prove a global minimizer s∗ of
the functional in (9) exists:

Corollary A.1 There exists a global minimizer s∗ ∈ [a,b] to the functional in (9).

Proof. We show a minimizer to the functional where ∆̄′ is taken as a function
of s′, that is ∆̄′ = ∆̄′(s′). By Theorem A.1 we have that the functional in (9)
is a continuous function of s′ defined on a closed interval and therefore from
standard argumentation has a global minima inside this interval.�
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