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Abstract

It is a common procedure for scattered data approximation to use local polynomial fitting
in the least-squares sense. An important instance is the Moving Least-Squares where the
corresponding weights of the data site vary smoothly, resulting in a smooth approximation.
In this paper we build upon the techniques presented by Wendland and present a somewhat
simpler error analysis of the MLS approximation. Then, we show by example that the√

N factor, which appears in the bound on the Lebesgue constant in [10], where N is the
number of points used in the approximation, can be realized. Hence, we device a method
for choosing the weights smoothly so that the corresponding Lebesgue constant can be
bounded independently of N. This is done by employing Voronoi weights. We conclude
with some numerical examples exhibiting the effectiveness of the suggested method for
highly irregular data sites.
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1 Introduction

The Moving Least-Squares (MLS) method is a method for scattered data approx-
imation [1–3,5,7,4]. Given a scattered data set (X ,F) = {(xi, fi)}N

i=1 in some do-
main, X ⊂ Ω ⊂ Rd , the m-degree MLS method, fits for each point x ∈ Ω, a poly-
nomial p ∈ Πm(Ω) and evaluates it at x. Here, Πm(Ω) denotes the d-variate poly-
nomial space of total degree m. The local polynomial is fitted in a weighted least-
squares sense with weights decaying smoothly with the distance from x, resulting
in a smooth overall approximant.

An error analysis for the m-degree MLS has been given by [8]. Levin proved (under
some conditions on X) an O(hm+1) approximation order of the m-degree MLS ap-
proximant, where h is the fill distance of the data X defined later on. Later, Wend-
land [10,11] succeeded in formulating a more concrete error analysis where the
constants in the error bound are explicitly formulated in terms of the problem pa-
rameters. Wendland has exploited the recent norming sets idea by Jetter , Stockler
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and Ward [6] which allows one to find a norm on RN equivalent to a norm on
Πm(Ω). Wendland established the following error bound to the MLS approxima-
tion: ∣∣ f (x)−MLS f (x)

∣∣≤ ‖ f − p∗‖L∞(B(x,C2h))

(
1+C1(#Iδ (x))1/2

)
, (1.1)

where h is the fill distance of X , B(x,r) denotes a closed ball of radius r centered
at x, δ = C3h, #Iδ (x) is the number of points in X ∩B(x,δ ), and p∗ is the local
best approximating polynomial to f . The constants C1,C2,C3 are given explicitly
in terms of the domain parameters, the degree polynomial m and the weights in the
MLS approximation. Wendland’s error analysis implies that the MLS error bound
depends upon the local points’ density. In particular, Wendland’s error bound may
become very large in the case of non-quasi-uniform data. In this context there are
two interesting questions: Can this bound be realized, that is, is it sharp? If so,
how can the MLS procedure be alleviated in situations of non-uniform data sites’
distribution? In this paper we show that the answer to the first question is affirmative
and suggests a way of choosing the MLS weights to produce an approximant which
its corresponding error bound is independent of the points’ distribution. We call the
new version Stable Moving Least-Squares (Stable MLS).

The paper is organized as follows: In Section 2 we suggest a new formulation of
the MLS operator, based on a certain extension of the inverse sampling operator
[6,10], which generalizes the existing MLS formulation. Using the norming sets
methodology by Jetter, Stockler, Ward and Wendland we are able to formulate a
somewhat simpler and shorter error analysis to the MLS approximation. In this
section we also prove a simple error formula for the MLS approximant. In Section
3 we describe how to choose the MLS weight function by using not only radial
weight distributions but “spatially-aware” weight distribution to achieve stable ap-
proximation independently of the points’ density. We conclude in Section 4 with
several numerical experiments.

2 The MLS operator as an extension of the inverse sampling operator

First, let us lay out a definition of the MLS approximation operator in a more gen-
eral context. We will show that the MLS operator can be defined by setting a family
semi-inner-products inRN , where N is the number of data sites. Recall that a semi-
inner-product does not possess the positivity property of an inner-product.

Let us consider domain Ω⊂Rd which satisfies the cone condition (see E.g. [11]),

Definition 2.1 A domain Ω⊂Rd is said to satisfy the cone condition if there exist
constants r > 0,θ ∈ (0,π) and a vector valued function ξ : Ω→ Sd−1 ⊂Rd , where
Sd−1 is the unit sphere, such that for every point x ∈Ω the cone

C(x,ξ (x),r,θ) := {x+λy : y ∈ Rd,‖y‖2 = 1,〈y,ξ (x)〉 ≥ cosθ ,λ ∈ [0,r]}
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is contained in Ω. ‖ · ‖2 is the Euclidian norm in Rd .

Let X = {xi}N
i=1⊂Ω be a set of irregular data sites inside the domain, and fi = f (xi)

samples of some smooth function f ∈ Cm+1(Ω) at those data sites. Let us also
define the fill distance h of X in Ω:

Definition 2.2 h = hX ,Ω := maxy∈Ω minxi∈X ‖y− xi‖2.

h is the radius of the largest open ball with a center in Ω which does not contain a
point from X .

Let x ∈Ω be an arbitrary point, and denote V = Πm(Ω). Define the sampling oper-
ator [11] T : V → T (V )⊂ RN by

TX(p) = T (p) = (p(x1), ..., p(xN)) .

In the function space Cm+1(Ω) we use the maximum norm ‖ f‖L∞(Ω), and in RN we
use a weighted semi-inner-product 〈·, ·〉x: ξ ,ν ∈ RN ,

〈ξ ,ν〉x =
N

∑
i=1

wx
i ξiνi,

wx
i ≥ 0, with the induced semi-norm ‖ · ‖x. Here we differ from [11] where the l∞

norm is used in RN .

If T is injective, then X is said to be a norming set [6,11]. Let us define:

Definition 2.3 X is norming set w.r.t. ‖ · ‖x if ‖T (v)‖x = 0 implies that v = 0, for
all v ∈V .

Correspondingly, the norming constant is defined to be

‖T−1‖= sup
06=z∈T (V )

‖T−1z‖L∞(Ω)

‖z‖x
= sup

06=p∈V

‖p‖L∞(Ω)

‖T (p)‖x
. (2.1)

Define Lx : RN → T (V )⊂ RN to be the best approximation operator from the sub-
space T (V ) in the semi-norm ‖ · ‖x, namely, the least-squares projection. Let us
prove that Lx is well-defined:

Theorem 2.4 Let X be a norming set w.r.t. ‖ ·‖x , then for every z ∈RN there exist
a unique projection Lx(z), such that

‖z−Lx(z)‖x ≤ ‖z− z′‖x,

for all z′ ∈ T (V ), and equality holds only for z′ = Lx(z).
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Proof. 〈·, ·〉= 〈·, ·〉x is an inner-product on T (V ) by assumption. Denote by {e1, ...,eJ}⊂
T (V ), J = dim(V ) an orthonormal basis to T (V ). Define Lx(·) by:

Lx(z) =
J

∑
j=1
〈z,e j〉e j.

It is easy to check that
z−Lx(z) ∈ T (V )⊥. (2.2)

Therefore, by Pythagoras Theorem for all z′ ∈ T (V ),

‖z− z′‖2
x = ‖z−Lx(z)‖2

x +‖Lx(z)− z′‖2
x ≥ ‖z−Lx(z)‖2

x ,

and the existence is proved. For uniqueness, let s ∈ T (V ) be such that

‖z− s‖x ≤ ‖z−Lx(z)‖x.

Then, from the first part of the proof we have that

‖z− s‖x = ‖z−Lx(z)‖x. (2.3)

From (2.2) it follows that z−Lx(x)⊥ Lx(z)− s and therefore from (2.3)

‖z−Lx(z)‖2
x +‖Lx(z)− s‖2

x = ‖z− s‖2
x = ‖z−Lx(z)‖2

x ,

subtracting ‖z−Lx(z)‖2
x from right-most and left-most sides we get

Lx(z)− s = 0,

from the fact that ‖ · ‖x is a norm on T (V ). �

Henceforth, let us assume X is a norming set w.r.t ‖ ·‖x. Now, let us use the projec-
tion Lx(·) in order to define the MLS operator as the following extension of T−1 to
RN :

M f ,X(x) :=
{

T−1Lx f
}

[x],
where f = ( f1, ..., fN)t ∈RN is the data. We also define the MLS local fitted poly-
nomial at x by

P f ,X ,x(y) :=
{

T−1Lx f
}

[y],
where y is the argument of the polynomial. Furthermore,

M f ,X(x) = P f ,X ,x(x).

The MLS operator reproduces polynomials, this can easily be seen from the above
definition since Lx is the identity operator on T (V ): Let p ∈V

Mp,X(x) := {T−1LxT (p)}[x] = {T−1T (p)}[x] = p(x). (2.4)
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An interesting point is that the MLS operator can be seen as a norm preserving
extension of the inverse sampling operator. For that end let us define a norm on the
(sub-) space S of linear operators A :RN→V such that A(z) = 0 for all z satisfying
‖z‖x = 0. We denote

‖A‖= sup

z ∈RN

‖z‖x > 0

‖A(z)‖L∞(Ω)

‖z‖x
. (2.5)

This defines a norm on the above described linear space of operators since if ‖A‖=
0, then for z satisfying ‖z‖x > 0 we have from the definition (2.5) that A(z) = 0,
and for z satisfying ‖z‖x = 0 we have A(z) = 0 from the definition of S. Note that
our extension of the inverse sampling operator is an operator in that space, that is
‖T−1Lxz‖L∞(Ω) = 0 for z satisfying ‖z‖x = 0. This can be understood from Theorem
2.4 by taking z satisfying ‖z‖x = 0 and z′ = 0 and getting

0≤ ‖z−Lx(z)‖x ≤ ‖z‖x = 0

and therefore Lx(z) = 0.

Theorem 2.5 The MLS extension of the inverse sampling operator is norm-preserving,
that is

‖T−1‖= ‖T−1Lx‖,
where T−1 : T (V )→V , T−1Lx :RN →V with the norm defined in (2.5).

Proof. First, for all z ∈RN , ‖z‖x > 0

‖T−1Lx(z)‖2
L∞(Ω)

‖z‖2
x

=
‖T−1Lx(z)‖2

L∞(Ω)

‖z−Lx(z)‖2
x +‖Lx(z)‖2

x
≤
‖T−1Lx(z)‖2

L∞(Ω)

‖Lx(z)‖2
x

≤ ‖T−1‖2.

The fact that ‖T−1‖ ≤ ‖T−1Lx‖ follows from the fact that T−1 = T−1Lx on T (V ).
�

Let us write the MLS operator in coordinates, that is, using the bases B(y) =
{b1(y), ...,bJ(y)} for V and B̃ = {b̃1, ..., b̃J}, where b̃ j =

(
b j(x1), ...,b j(xN)

)t for
T (V ). By the normal equations for the MLS projection,

B̃tWB̃Λ = B̃tWT ( f ), (2.6)

where B̃ =
(
b̃1, ..., b̃J

)
, W = diag

(
wx

1, ...,w
x
N
)
, Λ = (λ1, ...,λJ)

t . Therefore the MLS
polynomial P f ,X ,x can be calculated by

P f ,X ,x(y) = B(y)
(
B̃tWB̃

)−1 B̃tWT ( f ) = B(y)Λ =
J

∑
j=1

λ jb j(y). (2.7)
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2.1 Error formula

First, we prove a simple and useful error formula for the MLS polynomial. This for-
mula can be seen as a generalization of the well-known error formula for univariate
interpolation [9]

Theorem 2.6 Let f ∈ Cm+1(Ω), α = (α1, ...,αd), |α| ≤ m and ν = (ν1, ...,νd),
|ν |= m+1 multi-indices. There exist ξi,ν ∈ (0,1) such that

Dα f (x)−DαP f ,X ,x(x)=−α!
N

∑
i=1

∑
|ν |=m+1

Dν f (x+ξi,ν(xi− x))
ν!

(xi−x)ν [T−1Lx]α,i,

(2.8)
where [T−1Lx]α,i is the (α, i) coordinate of the matrix

(
B̃tWB̃

)−1 B̃tW which cor-
responds to the transformation T−1Lx in the bases E, B̃ where E is the standard
basis.

Proof. First, note that the MLS operator is invariant to translations, that is,

M f (·),X(x) = M f (·−c),X+c(x+ c).

Therefore, we can assume w.l.o.g that x = 0.

Expanding f to its Taylor series around x = 0, evaluated at x = xi,

f (xi) = ∑
|ν |≤m

Dν f (0)
ν!

xν
i + ∑

|ν |=m+1

Dν f (ξi,νxi)
ν!

xν
i ,

where ξi,ν ∈ (0,1). Using the polynomial reproduction property (2.4) we have

f (0)−P f ,X ,0(0) = f (0)−T−1L0 f (X)[0] =−T−1L0R,

where

R =

(
∑

|ν |=m+1

Dν f (ξ1,νx1)
ν!

xν
1 , ..., ∑

|ν |=m+1

Dν f (ξN,νxN)
ν!

xν
N

)t

.

We can choose the basis bi(y) freely, so let us take the standard basis (y)β , |β | ≤m.
In that case

Dα |y=0T−1L0R = (DαB(0))
(
B̃tWB̃

)−1 B̃tWR. (2.9)

Note that
DαB(0) = α!eα ,
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where eα ∈ R1×J is the zero vector except for a one at the α entry. Therefore we
have

Dα |y=0
(

f (y)−P f ,X ,0(y)
)

=−DαB(0)
(
B̃tWB̃

)−1 B̃tWR =−α!
N

∑
i=1

[T−1Lx]α,iRi,

where [T−1Lx]α,i is the (α, i) entry of the matrix
(
B̃tWB̃

)−1 B̃tW . Note that for
α = 0̄, [T−1Lx]α,i are actually the basis (shape) functions of the MLS. �

It should be noted that in the proof we use the extra assumption that the line between
the data points x and xi is contained in the domain Ω.

2.2 Error analysis

Let us now present a convergence analysis of the MLS operator, based on the new
MLS formulation and the notion of norming sets.

A useful error bound can be achieved by the following argumentation: Let X be a
norming set w.r.t ‖ · ‖x, denote by δx the support of 〈·, ·〉x, that is,

δx = max
i:wx

i >0
‖x− xi‖2.

For any set D ⊂ B(x,δx)∩Ω such that x ∈D ,we have

|M f ,X(x)− f (x)| ≤ ‖T−1LxT ( f )− f‖L∞(D)

≤‖ f − p∗‖L∞(D) +‖T−1LxT ( f )−T−1LxT (p∗)‖L∞(D),

and since ‖T ( f )−T (p∗)‖x ≤ ‖ f − p∗‖L∞(B(x,δx)∩Ω)
(
∑

N
i=1 wx

i
)1/2 we have,

|M f ,X(x)− f (x)| ≤ ‖ f − p∗‖L∞(B(x,δx)∩Ω)
{

1+‖T−1Lx‖‖1‖x
}

, (2.10)

where

‖T−1Lx‖= sup

z ∈RN

‖z‖x > 0

‖T−1Lx(z)‖L∞(D)

‖z‖x
.

From Theorem 2.5, (2.10) becomes

|M f ,X(x)− f (x)| ≤ ‖ f − p∗‖L∞(B(x,δx)∩Ω)
{

1+‖T−1‖‖1‖x
}

, (2.11)
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where ‖T−1‖ = sup06=z∈T (V )
‖T−1(z)‖L∞(D)

‖z‖x
is the norming constant. The Lebesgue

constant Lc is defined to be the minimal constant such that

|M f ,X(x)− f (x)| ≤ Lc‖ f − p∗‖L∞(B(x,δx)∩Ω).

From Eq. (2.11) we have
Lc ≤ 1+‖T−1‖‖1‖x. (2.12)

According to (2.11), in order to prove the MLS approximation order, one should
use a semi-inner-product 〈·, ·〉x such that δx ≤ C h, where C is some constant. In
that case ‖ f − p∗‖L∞(B(x,δx)∩Ω) will exhibit the desired (full) approximation order
O(hm+1). This can be seen by using for example the truncated Taylor series for f
around x. For such δx we look for a sub-domain D ⊂ B(x,δx)∩Ω such that the
norming constant ‖T−1‖, and therefore the Lebesgue constant, can be bounded
independently of the fill distance h.

We proceed by adopting some argumentations from Wendland [11]. In particular,
we use the following three results, where the last one is a slight modification of
Wendland’s original result.

Lemma 2.7 A cone C = C(x,ξ ,r,θ) contains the ball B(x + h
sinθ

ξ ,h) for h ≤
r sinθ

1+sinθ
.

For a domain Ω which satisfies the cone condition with constants r,θ , let us set a
constant κ = κ(θ) = 3sin2

θ

16(1+sinθ)2 .

Lemma 2.8 A cone C =C(x,ξ ,r,θ) with r > 0 and 0 < θ ≤ π/5, satisfies the cone
condition with constants θ̃ = θ and r̃ =

√
3κr.

Lemma 2.9 Let Ω be a domain which satisfies the cone condition with constants
r,θ . Assume the fill distance h of the set X = {xi}N

i=1 satisfies h ≤ κ

m2 r. Let x ∈ Ω

be an arbitrary point, and set δ = m2

κ
h, C = C(x,ξ ,δ ,θ) its corresponding cone.

Then, for every p ∈Πm(C), ‖p‖L∞(C) = 1, there exists a ball Bh = B(y,h)⊂C and
for every point xi ∈ X ∩Bh |p(xi)| ≥ 1

2 .

Proof. First note that the condition on h assures that C ⊂ Ω. Next, consider p ∈
Πm(C), ‖p‖L∞(C) = 1 and let x∗ ∈C be such that |p(x∗)|= ‖p‖L∞(C) = 1. By Lemma
2.8 we have that C satisfies the cone condition with constants r̃ =

√
3κδ and θ̃ = θ .

Hence there exists a cone C̃ = C(x∗, ξ̃ (x∗), r̃,θ)⊂C. Now, since

h =
κδ

m2 =
κ

m2
r̃√
3κ

=
1

4m2 r̃
sinθ

1+ sinθ
≤ r̃

sinθ

1+ sinθ
, (2.13)

from Lemma 2.7 we have that Bh := B(y,h)⊂ C̃ where y = x∗+ h
sinθ

ξ̃ (x∗). Notice
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that Bh∩X 6= ∅. Next, for any xi ∈ Bh∩X we apply Markov’s inequality

|p̃′(t)| ≤ 2
r̃

m2‖p̃‖L∞[0,r̃]

to the univariate polynomial

p̃(t) := p
(

x∗+ t
xi− x∗

‖xi− x∗‖

)
.

Using that

‖x∗− xi‖ ≤ ‖x∗− y‖+‖y− xi‖ ≤ h
1+ sinθ

sinθ
,

and 4m2h = r̃ sinθ

1+sinθ
(see Eq. (2.13)) we get:

|p(x∗)− p(xi)| ≤
∫ ‖xi−x∗‖

0
|p̃′(t)|dt ≤‖x∗−xi‖

2
r̃

m2‖p̃‖L∞[0,r̃]≤
1+ sinθ

sinθ

2h
r̃

m2≤ 1
2
.

Recalling that |p(x∗)|= 1 the result follows. �

Using the above lemmas we can prove the following theorem which is a modified
result of Wendland’s result [10].

Theorem 2.10 Let Ω be a domain which satisfies the cone condition with constants
r,θ . Fix x ∈ Ω. Assuming that the fill distance h of the set X = {xi}N

i=1 satisfies
h≤ κ

m2 r. Then, X is a norming set w.r.t ‖·‖x, and for δ = m2

κ
h, the Lebesgue constant

for approximation at x is bounded as follows,

Lc ≤ 1+2‖1‖x

(
inf

B(y,h)⊂C
‖T (χB(y,h)(·))‖x

)−1

,

where C = C(x,ξ ,δ ,θ), 1 = (1,1, ..,1) ∈ RN and χB(y,h)(·) is the characteristic
function of the set B(y,h).

Proof. Denote V = Πm(C), where C = C(x,ξ (x),δ ,θ) is a cone such that C ⊂ Ω

(The assumption on h and δ assures that δ ≤ r). The Lebesgue constant Lc satisfies
(2.12). Next, we wish to bound the norming constant

‖T−1‖= sup
p∈V

‖p‖L∞(C)

‖T (p)‖x
= sup
‖p‖L∞(C)=1

1
‖T (p)‖x

. (2.14)

By Lemma 2.9, for every p ∈ V , ‖p‖L∞(C) = 1 there exist a ball Bh = B(y,h) ⊂C
such that for every point xi ∈ X ∩Bh |p(xi)| ≥ 1

2 . Thus it follows that ‖T (p)‖x ≥
1
2‖T (χB(y,h))‖x. Now from (2.14) we have

‖T−1‖ ≤ 2
(

inf
{y:B(y,h)⊂C}

‖T (χB(y,h))‖x

)−1

,
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and using (2.12) we obtain the desired result. �

For each choice of the weights w̄(x) = (wx
1, ...,w

x
N), one gets a method of approxi-

mation. For example taking a compact support, smooth, decreasing function φ(r),
such that

φ(0) = 1 , φ(1) = 1/2 , φ(2) = 0,

and setting

wx
i = φ

(
‖x− xi‖

δ

)
we get the standard MLS method. Set

δ =
m2

κ
h =

16(1+ sinθ)2m2h
3sin2

θ
.

In this case,
δx ≤ 2δ .

Theorem 2.10, can then be used to bound the Lebesgue constant Lc:

Lc ≤ 1+2
(

#I2δ

maxi∈I2δ
wx

i

mini∈Iδ
wx

i

)1/2

≤ 1+2
√

2#I2δ , (2.15)

where Iµ = Iµ(x) denotes the indices set Iµ(x) := {i : xi ∈ B(x,µ)∩X}, and #Iµ(x)
is the size of this set. Now, taking D = C(x,ξ ,δ ,θ) in (2.11) we get the desired
result:

|M f ,X(x)− f (x)| ≤ ‖ f − p∗‖L∞(B(x,2δ )∩Ω)(1+2
√

2#I2δ ).
This bound is similar to the one presented in [10], and we see that the square root
of the number of points #I2δ used in the approximation appears in the bound. As
the following example shows, this bound can indeed be realized (up to a constant
factor).

Consider Ω = [0,3/2]⊂R and X = {0,1, ...,1,1+ ε, ...,1+ ε}, where the points 1
and 1+ε repeat n times each and ε = 1√

n . Taking linear polynomials, i.e., m = 1 and
B(y) = {1,y}, and constant unit weights, the Lebesgue functions (see [10]), which
is another way of defining the Lebesgue constant, for point evaluation at x = 0 turns
out to be

Lc = 1+
2n
√

n
3n+2

√
n+1

≥C1
√

n,

for some constant C1. To see this note that from Equation (2.7) the approximation
at x = 0 is

P f ,X ,0(0) = B(0)
(
B̃t B̃
)−1 B̃tT ( f ).

Therefore the Lebesgue function at the point x = 0 is the sum of absolute values
of the first row of the matrix

(
B̃t B̃
)−1 B̃t . This matrix can be written explicitly for

the specified X to yield the above term of the Lebesgue power function. It should
be noted that in this work we defined the Lebesgue constant a little differently than
the power function, however, the power function is the actual term which appears
in the derived error bound in this paper and previous works.

10



Fig. 1. In this figure we show the Voronoi diagram for irregular data samples, and the
corresponding |Di| for each site is proportional to the radii of the red circles.

3 Stable Moving Least-Squares (Stable MLS)

The dependence of the error in the MLS approximation process on the number of
points used in the local approximation (see Eq. (2.15)) is a drawback, especially in
cases of highly non-uniform scattered data, that is, cases where the points’ density
changes drastically over the domain.

In order to overcome this drawback, we advocate a different choice of w̄(x) for
which the Lebesgue constant is bounded independently of the number of points
used in the local approximation. Here we shall make use of the result in Theorem
2.10 which can be used to express the bound in terms of the weights.
An important restriction is that we will not take wx

i = 0 unless ‖xi− x‖2 > δx. The
reason is that we do not want to enlarge the fill distance h of the set which will
in turn lead to larger support δ used in the approximation and hence increase the
bound on the best approximation part of inequality (2.11): ‖ f − p∗‖L∞(D). From this
it is clear that simply throwing away points might deteriorate the approximation.

We subdivide Ω as Ω = ∪i∈Iδ
Di, where Di is the Voronoi cell for xi inside the

domain Ω with volume |Di|, see for example Figure 1. If there are repetitions of
points xi1 = xi2 = ... = xik we take a single representative xi1 in the construction of
the Voronoi cells. Note that since |Di∩D j|= 0 for i 6= j we have

|∪i Di|= ∑
i
|Di|.
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We define the weights to be

wx
i = φ

(
‖x− xi‖2

δ

)
|Di|

#{x j ∈ X : x j = xi}
, (3.1)

where #{x j ∈ X : x j = xi} is the number of repetition of xi in X .

Lemma 3.1 Let X = {xi}N
i=1⊂Ω be data sites in some domain Ω with correspond-

ing fill distance h. Let Ω = ∪N
i=1Di be a decomposition of the domain Ω into the

Voronoi cells of the data sites X. Then the following holds:

(1) For every x ∈ Ω s.t. B(x,3h) ⊂ Ω, where h is the fill distance of X and I3h(x)
is defined as above,

∑
i∈I3h(x)

|Di| ≥ |B(x,h)|.

(2) ∑i∈Iδ (x) wx
i ≤ |B(x,δ +2h)|

Proof. 1. Let z ∈ B(x,h) be an arbitrary point. Since h is the fill distance there exist
some xi ∈ X∩B(x,h) with ‖z−xi‖2 < 2h≤‖z−x j‖2 for every j ∈ {1,2, ...,N}\I3h.
Therefore z will be in some Voronoi cell Di, i ∈ I3h. Hence B(x,h) ⊂ ∪i∈I3hDi and
Claim 1 follows.

For 2, let z ∈Ω\B(x,δ +2h) (note that B(x,δ +2h) is a closed set here). Assume,
in negation, that z ∈ ∪i∈Iδ

Di then there exists xi ∈ X ∩B(x,δ ) such that ‖xi− z‖2 ≤
‖x j−z‖2 for every x j ∈X∩(Ω\B(x,δ )). Consider the ball B∗ := B(z+h xi−z

‖xi−z‖2
,h).

There exist some x∗ ∈ X ∩B∗, and by triangle inequality we get ‖z− x∗‖2 ≤ 2h
however ‖xi− z‖2 > 2h, and this is a contradiction. Therefore z ∈ D j where x j in
not in B(x,δ ), so ∑i∈Iδ

|Di| = | ∪i∈Iδ
Di| ≤ |B(x,δ + 2h)|, using also |φ(r)| ≤ 1,

Claim 2 follows. �

Lemma 3.1 leads to the following result:

Theorem 3.2 Let Ω be a domain which satisfies the cone condition with constants
r,θ . Fix x ∈ Ω. Assuming that the fill distance h of the set X = {xi}N

i=1 satisfy
3h≤ κ

m2 r, set δ = 3m2

κ
h, and define w̄(x)∈RN by (3.1). Then the Lebesgue constant

is bounded as follows,

Lc ≤ 1+2
√

2
(

2+6
m2

κ

)d/2

,

and the error bound for the approximation is in turn,

|M f ,X(x)− f (x)| ≤ ‖ f − p∗‖L∞(Bδ )

{
1+2

√
2
(

2+6
m2

κ

)d/2
}

.

12



Proof. By Theorem 2.10 where h is replaced by 3h we have

Lc ≤

1+2

(
∑i∈I2δ (x) wx

i

inf{y:B(y,3h)⊂B(x,δ )}
{

∑i∈I3h(y) wx
i
})1/2

 .

Using Lemma 3.1 we have ∑i∈I3h
wx

i ≥
1
2 ∑i∈I3h

|Di| ≥ 1
2 |B(x,h)| and ∑i∈I2δ

wx
i ≤

|B(x,2δ +2h)|. Hence

inf
{y:B(y,3h)⊂B(x,δ )}

{
∑

i∈I3h(y)
wx

i

}
≥ 1

2
|B(x,h)|,

and therefore,

∑i∈I2δ
wx

i

inf{y:B(y,3h)⊂B(x,δ )}
{

∑i∈I3h(y) wx
i
} ≤ 2

|B(x,2δ +2h)|
|B(x,h)|

.

Hence the Lebesgue constant can be bounded independently of the number of
points used:

Lc ≤ 1+2
√

2
(
|B(x,2δ +2h)|
|B(x,h)|

)1/2

= 1+2
√

2
(

2δ +2h
h

)d/2

.

In our case δ = 3m2

κ
h and the theorem follows. �

Remark 3.3 The MLS approximation with Voronoi weights is smooth. Note that
defining the weight w̄(x) as suggested in Theorem 3.2 obviously keeps the weights
smooth and therefore results in a smooth (as smooth as φ ) MLS approximant [8,11].
For example, m = 0 results in the Shepard’s type approximant

M f ,X(x) =
∑i fi φ

(
‖x−xi‖2

δ

)
|Di|

∑i φ

(
‖x−xi‖2

δ

)
|Di|

,

where here we omit the repetition term #{x j ∈ X : x j = xi} for brevity.

4 Numerical experiments

In this section we present some numerical experiments comparing the classical
MLS operator to the Stable MLS presented above. The benefit in using the Stable
MLS comes into play mostly in highly irregular data samples X . This is demon-
strated by two examples: First, in Figure 2 we compare the Lebesgue functions
(see [10]) for several scenarios of irregular data samples. Note that the Lebesgue
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functions remain almost unchanged (≈ 2) in all cases presented, and recall that the
Lebesgue functions are greater or equal to 1.

Second, we show that highly irregular data sites may cause some artifacts in the
MLS approximant, which are alleviated by the Stable MLS, see Figure 3.

As to the computational complexity of the newly proposed method, it has the same
computational complexity of the standard MLS apart from a preprocessing step.
The weights used in the Stable MLS operator (3.1) are simply the usual radial
weights φ(‖x− xi‖2/δ ) scaled by the factors ψi = |Di|

#{x j∈X :x j=xi} . These factors are
computed in a preprocess step where the volume of the corresponding Voronoi cells
of the data X are computed, divided by the multiplicity of each point.
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(a)

(b) (c)

Fig. 3. A highly irregular data distribution (3K point) with a cluster of points is depicted in
(a). The cluster contains about 90% of the points in the domain. The function f (x,y) = e6x

is sampled over the data points and approximated using standard MLS in (b). The approx-
imation is computed over the blue rectangle domain in (a). (c) shows the corresponding
Stable MLS approximation. Note the artifact in the MLS approximant which is rectified in
the Stable MLS approximant.
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