Joint Radar-Communication Prototype Implementing Spectral-Spatial Agility and Index Modulation

Yihan Su¹, Dingyou Ma¹, Tianyao Huang¹, Yimin Liu¹, Eliya Reznitskiy², Haiyang Zhang², Nimrod Glazer², and Yonina C. Eldar²

¹ Department of Electrical Engineering, Tsinghua University, Beijing, China
² Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel
Contact: mdy16@mails.tsinghua.edu.cn

Introduction

● DFRC Systems for Vehicular Applications
 ➢ Future cars implement both radar and communications on the same platform
 ➢ Two implementing approaches:
 • Use individual systems
 • Jointly design a dual function radar-communications (DFRC) system
 ➢ Benefits of DFRC systems
 • Improve the spectrum efficiency
 • Reduce system size, weight and power consumption
 • Alleviate concerns for electromagnetic compatibility

Theory

● Index Modulation based DFRC System
 ➢ Index modulation (IM)
 • Embed communications bits in transmission parameters
 • Possible domains: Spatial, spectral and time
 ➢ IM based DFRC techniques
 • Embed message into the combinations of radar waveform parameters
 • Have minimal degradation to radar performance

Contributions

● Contribution of This Prototype
 ➢ Implementing spectral-spatial IM based DFRC system using low cost automotive radar
 ➢ The prototype realizes communication without degrading the radar performance
 ➢ This DFRC system is promising to be applied in future intelligent transportation applications

Hardware Implementation

● Architecture of the Prototype

Graphical User Interface

● Simulation Mode

● Realtime Mode

Experiment Results

Communication BER

Radar Recovery