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of Technology and University of Minnesota

Suppose that the integers are assigned the random variables {wy, (x}
(taking values in the unit interval times the space of probability measures
on R4 ), which serve as an environment. This environment defines a random
walk {X;} (called a RWREH) which, when at x, waits a random time
distributed according to px and then, after one unit of time, moves one step to
the right with probability wy, and one step to the left with probability 1 — wy .
We prove large deviation principles for X; /¢, both quenched (i.e., conditional
upon the environment), with deterministic rate function, and annealed (i.e.,
averaged over the environment). As an application, we show that for random
walks on Galton—Watson trees, quenched and annealed rate functions along
a ray differ.

1. Introduction and statement of results. The study of random walks
in random environments (RWRE) was initiated in the mid-1970s, and in the
last decade there was a resurgence of interest and results for this model; see
[16] and [18] for recent reviews. Much of the interest in the topic lies in trapping
phenomena, a term coined to describe local “pockets” in the environment where
the walker spends a relatively large time.

In this paper, we study large deviations for a generalization of the RWRE on Z
that is obtained by allowing for random holding times. We begin by giving a
formal definition of the random walk in random environment with holding times
(RWREH). Fix ¢ > 0, and S; :=[¢e,1 — €] x Mf(@g, where EJF = R; U {oo}
(with the usual one-point compactification at co) and M7 (R.) denotes the space
of Borel probability measures p on R, such that u(Ry) > e. An environment
@ € SZ =: Q, has coordinates &, = (wy, 1) € S¢. For each ® € Q,, we define the
RWRE {Z,} on Z as the Markov process with Zy = 0 and transition probabilities

Po(Zpy1 =2+ 1|Z, =2) = o,
Po(Zny1=2—1Z,=2)=1—w,.
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Next define

|
—_

J
Q=) (H(Z)+1),

i=0

where {H;(x)};eN xez are independent random variables with (i, being the law
of H;(x) for eachi € N. Setting 5, = max{j: ©; <}, define the RWREH {X,} by
X; = Zs,. In words, {X;} is a process which, when at site x, waits for a holding
time distributed according to p, before, one unit of time later, jumping to one
of its nearest neighbors, with jumps to the right occurring with probability w,.
The environment @ is chosen according to the probability measure P, and
fixed thereafter. Let M| (Q,) and Mf(ﬁg) denote the stationary, or stationary
and ergodic, respectively, probability measures on 2., with respect to the shift
0 :Q, — Q, such that (d®); = @; ;1. We will always assume that

(Co) P e Mf(ﬁg) and Ep(log uo([0, k(@)])) > —oo for some k(@) such that
Ep(k(w)) < o0.

This condition on g is quite mild. For example, it is satisfied under the
“ellipticity” condition that 1o([O0, ¢~ 1) > ¢ for some ¢ > 0 and P-a.e. w. It holds
also in the absence of uniform ellipticity, for instance, if ©, are atomic measures
at unbounded /., provided E p (ho) < oo [take « (@) = hg], or if p, are the laws of
Exponential(1/y,) random variables with Ep(log(1 + y9)) < oo as in the model
considered in [6].

We let P; denote the law of the process {X;}, conditioned on a realization
€ Q, (the guenched law). We use P both for P x P and for its marginal on ZR+
induced by {X;};>0, and refer to both as the annealed law.

The typical behavior of the RWREH is readily obtained, as in the case of the
RWRE, by a hitting time decomposition. Define

T, =inf{t > 0: X; =n}, n € Z.

Using the same arguments as in [18], one has that

X
Tt — vp, P-ae.,
where
1 / )
- EQ‘,(T )P(dw) < 00,
[ Ea(T1) P(dw) 1
(1L1)  wp= | _
— ) E— T_ P d ,
fEa')(T_l)P(dJ)) / o(T—-1)P(dw) < o0
0, otherwise.

Our interest lies in obtaining large deviations results, both quenched and
annealed, for the RWREH. For the definition of the large deviation principle (LDP)
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and for background we refer to [4]. For one-dimensional RWRE, large deviations
were first derived in [8] for the quenched setting, and extended into an annealed
LDP by Comets, Gantert and Zeitouni [1], who also provide a variational formula
relating the annealed and quenched LDPs. For RWRE in Z¢ the quenched LDP (in
the so-called nestling situation) was derived in [19], while the quenched LDP
without a nestling assumption and the annealed LDP were recently obtained by
Varadhan [17].

Our interest in the large deviations for the RWREH originated from three
different sources:

1. In [2], we considered large deviations for random walks on Galton—Watson
trees. We showed that, in contrast to RWRE on 7Z and in contrast to the
conjectured behavior of RWRE on Z¢, the quenched and annealed large
deviation rate functions for the random walk on Galton—Watson trees coincide.
We conjectured in [2] that restricting attention to a particular ray in the tree, one
should recuperate the differences between quenched and annealed behavior. In
Section 5 we show using our analysis of the RWREH that this is indeed the
case.

2. In [1], the large deviations for the RWRE, both quenched and annealed, are
considered. While preparing the notes in [18], we noted that some of the proofs
do not carry over to the setup where holding times are present. Addressing this
issue here, we substantially modify those parts of the proof in [1] that relied on
“worst case domination.” Even in the context of the standard RWRE, these new
proofs have, we believe, an independent interest.

3. In [6], the authors considered a model of simple random walk on Z with
heavy-tailed random holding times and proved that the suitably rescaled process
converges to a singular diffusion. Thus, already the presence of random holding
times causes a nonstandard behavior. This led us naturally to consider the more
general RWREH model, where both random holding times and random drifts
are present. Our assumptions on the environment, at least in the quenched
setting, allow us to derive LDPs for the model of [6].

Our main goal in this paper is to study the large deviations, both quenched and
annealed, of X,/t. In doing so, we follow the basic strategy of [1]: study hitting
times and then relate deviations of hitting times to deviations of the walk. More
precisely, we first study the quenched large deviations of 7,,/n proving that its
rate function is deterministic and, in the case limsup,,_, ., Z, = oo, P-a.e., can
be written as the Legendre transform of the average of the quenched logarithmic
generating function of the hitting time 77. Then, using space reversal invariance
[cf. (3.12)], we obtain the quenched large deviations of 7_,/n (Theorem 1). The
proofs in this part of the paper closely follow those in [1].

The next step involves the derivation of annealed LDPs for T7,/n (see
Theorem 2). As in [1], a crucial element of the proof is the use of Varadhan’s
lemma to relate the quenched and annealed limits of normalized logarithmic
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moment generating functions (often called in this context Lyapunov exponents).
This forces us to impose the additional restrictions (C1)—(C3) on the environment.
It is here that our proofs first significantly depart from the proofs in [1].
Domination by a “worst case environment” and explicit computations provide
there the integrability needed for Varadhan’s lemma. Since such domination does
not exist for the RWREH, due to the interaction between holding times and local
drifts, we take a different approach here.

The final step in the derivation of the LDP is to transform estimates on
deviations of 7, into estimates on deviations for X; (Theorem 3 for the quenched
setup and Theorem 4 for the annealed one). One direction of this transformation
is trivial: namely, {X; > tx} C {T|;x) < t}. The other direction requires a further
departure from the proofs of [1] in the absence of coupling with a worst case
environment. The heart of the matter is Lemma 4, dealing with the rate of decay
of the probability of the walk to backtrack after a large time has elapsed.

Having described our general strategy, we turn to state our results. To this end,
set

o, @) = Eg(e17,20),  fOh, @) =loge(r, @),
G, P,u)y=xu— Ep(f(r,)),

and define I;;q(u) =sup,cr G(A, P, u). In the same way, set

0@ = E(e I o0).  fT (@) =logeT (1, &),
G~ (A, P,u)=)u— Ep(f~(n. @),
and define 7, "% (u) = sup, g G~ (A, P, u).

THEOREM 1 (Quenched LDP for 7,,/n). Assume (CO). For P-almost every @,
the sequence T,/n satisfies a weak LDP in R under Pg with the convex rate
function I;’q(u), and the sequence T_, /n satisfies a weak LDP in R under P

with the convex rate function I;T’q(u). Further,

(12) 157 ) = 17" (u) + Ep(log po),

where py = (1 — wy)/wx.

An annealed LDP for 7, /n requires additional notation and assumptions on P.
Equip M7 (R,) with the topology induced by weak convergence and S, with
the corresponding product topology. Putting on €2, the product topology and
on M () the corresponding topology of weak convergence, we see that S,
Q. and M;(Q,) are compact metric spaces. Hereafter 7|,, denotes the restriction
of n € M1(2) to {&)i};’;_ol. We say that n € M () is locally equivalent to the
product of its marginals if, for any A € S' and m finite, n|,, (A) = 0 if and only if
(n11)™(A) = 0. We consider the following assumptions:
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(C1) The empirical process R, = n-! Z?;(l) 8yi; satisfies under P the LDP in
M () with good rate function /(-| P). Here we assume that the specific
entropy A(n|P) = lim,,— oo m ' H (3|,n| P|,n) with respect to P exists for any
stationary n, and set h(n|P) = oo for nonstationary 7.

(C2) P is locally equivalent to the product of its marginals. Moreover, for any
stationary measure 1 € M;(2,) with h(n|P) < oo, there is a sequence
{n"} C M{(Q,) with n”* — n and h(n"|P) — h(n|P), such that n"|; = n|;
for all n. There also exists a sequence of measures 1" that are locally
equivalent to the product of their marginals, having all these properties,
except possibly n"*|1 # nl1.

(C3) There exist a nonrandom b < oo and a function k(-) > 0, such that P-a.e.
wo([0, b)) = 0 and ([0, b + 8]) > k(8) for all § > 0.

As noted for example in Theorems 3.10 and 4.1 and Lemma 4.8 of [5], the
conditions (C1) and (C2) hold if the stationary and ergodic P corresponds to
a Markov process with transition kernel P(wy41|®y,) whose Radon—Nikodym
derivative with respect to some reference probability measure on S, is bounded
and bounded away from 0 [in particular, (C1) and (C2) hold if P is a stationary
product measure]. Note that (C3) is a quantitative version of a “uniform ellipticity”
condition referring to the holding times distributions.
We now have the following theorem.

THEOREM 2 (Annealed LDP for T,,/n). Assume (C0)—(C3). Then the se-
quence T, /n satisfies a weak LDP in R under P with the convex rate function

Ip%w)=inf_ [179w)+h(n|P)],
neMs (Qe)

and the sequence T_, /n satisfies a weak LDP in R under P with the convex rate
function

17wy = inf_ [1,;79u) + h(n|P)].
neMf(Qe)

We next state the large deviations of the rescaled positions X;/¢.

THEOREM 3 (Quenched LDP for X, /t). Assume (CO). For P-almost every @,
X/t satisfies an LDP under Pg with the good convex rate function 1 g ):

(@) If P(uo({o0}) > 0) =0, then

1
vllt;q<—), v >0,
v

(1.3) I (v) =

g 1

vl p —| , v <0,
v

and I;I, (0) :=limy_¢ I?,(v).
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(b) If P(po({oo}) > 0) > 0, then

£
inf vI;,’q (—), v>0,
£€[0,1] v
1.4 It (v) = _ ¢
(1.4) P inf |v|IPT’q(—>, v <0,
£€[0,1] [v]
0, v=0.

The corresponding annealed statement for the positions X, /¢ follows.

THEOREM 4 (Annealed LDP for X;/t). Assume (C0)—(C3).

(@) If P(uo({oo}) > 0) =0, then X,/t satisfies an LDP under P with the good
convex rate function 1%, where
1
vllﬁ’a<—), v >0,

v

—raf 1
[v[ip (m>, v <0,
and I5(0) :=1limy_.o I3 (v).
() If P(uo({oo}) > 0) > 0, assume further that, for some ¢ < 00, kg < 00 and
P-almost-every w,
(1.6) max Ep(uj({oo))|F )= e  Vk=ko,
1<j<k

(1.5) 14 (v) =

where ¥, = o ({wy, x <m}). Then X/t satisfies an LDP under P with the good
convex rate function

14
inf vllﬁ’a(—), v >0,
¢e[0,1] v
1.7 1% (v) = 14
(L.7) P(U) inf |U|I;t’a(—>, v <0,
£€[0,1] |v]
0, v=_0.

Clearly, (1.6) holds if P is a stationary product measure (and, more generally,
under suitable mixing conditions).

We conclude with a discussion of the resulting rate functions. An advantage
of our approach is that it yields a variational formula linking annealed and
quenched rate functions (see the statement in Theorem 2) with intuitive appeal: the
annealed rate function balances the exponential cost of modifying the environment,
measured by an entropy term, and the quenched rate function in the new
environment.

A detailed study of the properties of the rate functions for the RWRE appears
in [1]. A good part of it can be transferred to the context of RWREH but we will not
do so, in order to avoid boring the reader. Nevertheless, the following information
on the rate functions which is immediate from our analysis, is worth noting.



1002 A. DEMBO, N. GANTERT AND O. ZEITOUNI

PROPOSITION 1. Assume (CO) for the quenched statements and (C0)—(C3)
for the annealed ones:

(@) If P(uo({oo}) > 0) =0 (i.e., holding times are finite P-a.e.), then I;I,(-)
and 1§ (-) can only vanish on the interval between 0 and vp, and they do vanish
there if Aerit(P) = 0 (see definition in Lemma 1). If Ait(P) > 0, then the above
mentioned rate functions vanish only at vp.

(b) If P(uo({oo}) > 0) > 0 (i.e., holding times are infinite with positive
probability), then the rate functions I;],(-) and 1% (-) vanish only at the origin.
If u(P) < oo [see definition in (2.3)], then the quenched rate function is piecewise
linear in a neighborhood of the origin.

REMARK. For i.i.d. environments and a.e. finite holding times the shape of
the rate functions for RWREH is similar to that of the RWRE: any nestling walk
[i.e., an environment for which 0 is in the convex hull of supp(2wg — 1)] has
Acrit(P) = 0 by a comparison with the embedded RWRE Z,,. Consequently, it
exhibits subexponential rate of decay of slowdown probabilities if vp # 0. In
contrast with the RWRE, here one may have subexponential rate of decay of
slowdown probabilities even for a nonnestling walk by having holding times with
infinite exponential moments. Further, for i.i.d. environments with possibly infinite
holding times, we may find the rate function vanishing only at O with linear pieces
on both sides of 0, a situation that cannot occur in the RWRE setup.

The structure of the article is as follows: in the next section, we study key
properties of the rate functions, leading to Propositions 1-3. Applying Propositions
2 and 3, we prove in Section 3 our hitting time results, Theorems 1 and 2. Section 4
provides the proofs of Theorems 3 and 4, our LDPs for the rescaled position.
Throughout these sections we emphasize those elements of the proofs that differ
from [1]. Section 5 is devoted to the statement and proof of our results concerning
the (biased) random walk on a Galton—Watson tree. Open problems and discussion
appear in Section 6.

2. Properties of the rate functions. We begin with the following strengthen-
ing of [1], Lemma 2:

crit —

LEMMA 1. Forany P € MY () there exist constants herit = Acrit(P), A
Agit(P) € [0, 00) such that, for P-a.e. @,

~2 - <el A=A
(2‘1) (p()\”cz)) 58 ’ )\' chrlt’ 90—()\”&)) — _— (f'lt
=00, A > Acrit = 00, A > A

We will see later (see Remark 1) that A _;, (P) = Acric(P).
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PROOF OF LEMMA 1. By the transformation {(wy, ix)} — {(1 — wy, (ty)}, it
is enough to consider ¢(X, ). By path decomposition, for each A,

PO, @) = woe Euy (e 11 200)
+ (1 — w) Euy (e 1 o000, 0 @) (0, @),

where H is a random variable with distribution o, and E,,, denotes expectation

2.2)

with respect to j1. Thus, ¢(A, @) < oo implies that (A, 8 ~'@) < oo, yielding by
the ergodicity of P that 1y, &)<co 1 constant P-a.e., for all A rational at once.
This, and the monotonicity of ¢ (A, @) in A, immediately yield the existence of a
deterministic A¢pj; (possibly Aqip = 00), with (A, @) < oo for all A < A, P-a.e.
By definition, ¢ (XA, @) <1 for A <0, whereas for A > 0, the fact that (A, ®) < o0
implies by (2.2) that

1 1 et
oM, 07 w) <

=< < —, P-ae.
(11— CUO)E/JLO(IH«)o)e)L &?

We conclude that ¢ (A, @) < e~ 2 for all A < Aerir, P-a.e. Since

Ep[e 11, 00] = € P3(1 < Ty < 00) > wopio(Ry)e* > g2e P-ae.,

and with ¢ (A, ) uniformly bounded on (—0o0, Agt), it thus follows that Ay < 00
and by monotone convergence, also ¢ (A, @) < e 2 < oo for P-ae. @ O

Set
Eq(Th17, <o0)
Eo(17<00)
Since A — f (A, ) =log E& (T < 00) +log P; (T < 00) is convex and finite

for A < At and P-a.e. o, it follows that
Eo(Tie* 117, <o)
Ec?)(e}”Tl 1T1 <00)

is a nonnegative, nondecreasing function. By (2.2) and (CO) we have that, for any
A <O0and P-ae. o,

(2.3) u=u(P)= P(dw) €[1, o0].

2.4) g) =

d
P(dw) = / d_)\f()h @) P(dw),

(., @) = woe™ O 1o ([0, k (@)]),

implying that, for some o < oo and all A € R,

25) Ep(f(r, @) >1loge+ (14 Ep(k)) min(0, 1) + Ep(log uo([0, k (©)]1))
> —a(l+[2]).

In view of Lemma 1, it follows that Ep (| f (A, ®)|) < oo hence g(A) = %Ep(f()»,
w)) < o0 and

u_:=u_(P)= A{i‘r_noog()x) = Ep(inf{u > 0: uo([0,u]) > 0}) + 1 < o0.
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Clearly, uy = uy(P) = limy_n,_, g(A) > u = g(0) exists (with possible value

u4+ = 400). Since g(A) is strictly increasing and continuous in A, we see that,

for any u € (u_, uy), there exists a unique A, € (—00, A¢rt) such that g(A,) = u.

Further, if u < u, then A, <0, and hence

(2.6) 1p%(w)=supG(r, P,u)=G(hy, P,u)=supG(r, P,u), u<i.
LeR A<0

For u > u we have that sup,.g G(A, P, u) = G(A¢rit, P, u), whereas A, > 0 if

uy > u > u, hence also

2.7) 1,7 (u) =sup G(r, P,u) =supG(r, P, u), u>i.
LeR A>0

Further, we have the following.

PROPOSITION 2. For any P satisfying (CO), the convex rate function I]r;q (:)is
infinite on (—oo, u_(P)), finite on (u_(P), 00), nonincreasing on [u_(P), u(P)]
and nondecreasing on [u(P), 00). Moreover, if u(P) < oo, then I]T;q(IZ(P)) =
G(0, P,u(P)), while if u(P) = 00, then ,eit(P) = 0. Further, for all u,

(2.8) supG(h, P,u) = inf 19 (w)
2>0 w=u

and

(2.9) supG (A, P,u) = inf I;%(w).
<0 w=<u P

PROOF. From the definition we see that / ;’q is convex and lower semicontinu-
ous. Since G (0, P, u) > 0, it is also nonnegative. Suppose u| < up < u(P). Then,
by (2.6),

supG (A, P,uy) =supG(A, P,u;) =sup[riu; — Ep(f(r,®))]

reR A<0 A=0
> sup [Auz — Ep(f (A, ®))] =supG (A, P, uy).
A=<0 reR

To see that 1 ;’q is nondecreasing on [i(P), 00), use a similar argument with (2.7)
instead of (2.6).

If u <u_(P), then supg{u — g(§)} <0, and since G(0, P, u) > 0 we see that
G, P,u) =G, P,u) + fo)‘(u — g(&))dé — oo if A — —o0, resulting with
I;,’q(u) = 00. In contrast, setting A, := Acri¢ if # > u (P), it follows by (2.5) that
159 w) = GOy, Pou) < Myu + (1 + |Ay]) < 0o forany u > u_(P).

Recall that Py (T; < oo) > €2 for all @, and by Jensen’s inequality we have that
forall A € R,

A/ Ea(T1|Ty < 00) P(dd) < Ep(log Eg(e*| Ty < 00))

= Ep(f(h, @) — Ep(f(0,d)).
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If u(P) < oo, this implies that G(A, P,u(P)) is maximal at A = 0, hence
I]T;q(ﬁ(P)) =G0, P,u(P)), whereas if u(P) = oo, then Ep(f (A, ®)) = oo for
all A > 0, hence Aqi(P) =0 by Lemma 1.

Turning to prove (2.8) and (2.9), consider first u(P) = oo, in which case
I]T;q(') is nonincreasing and (2.9) follows from (2.6). Further, the convex, lower
semicontinuous function A — Ep(f(A,®)) is then infinite if A > 0. Hence, by
duality of Fenchel-Legendre transforms, for all u,

inf 7% (w) = inf Ip%(w) = —Ep(f(0,®)) =GO, P,u)=supG(r, P, u),

w>u weR A>0
which amounts to (2.8). Suppose now that u(P) < oo. Since 1 It;q (-) is nondecreas-
ing on [u(P), 0o) we get (2.8) for u > u(P) out of (2.7). Moreover, I;’q(u) is
nonincreasing for u < u(P); hence for such u the right-hand side of (2.8) equals
1,9 (P)) = G(0, P,i(P)). Further, then G(A, P,u) < G(x, P,u(P)) for all
A > 0, with equality if A = 0, implying the left-hand side of (2.8) also equals
G (0, P,u(P)), thus completing its proof. The proof of (2.9) is similar. Combin-
ing (2.6) with the monotonicity of I;,’q(u) gives (2.9) for u < u(P), whereas for
u > u(P) both sides of (2.9) equal G(0, P, u(P)). U

Turning to the study of the annealed rate functions, we begin with a lemma
giving a characterization of A.(17) for “nice” n. The lemma corresponds to [1],
Lemma 4, but in contrast to [1], Lemma 4, its proof does not use domination and
explicit computations, which are not available here.

LEMMA 2. Assume n € My () is locally equivalent to the product of its
marginals. Let ¥ :=suppn|; C S;. Then

(2.10) Aerit(n) = inf_ Ao(@) =: A >0,
wexZ

where Ac(@) ;= sup{ir: Eg(e*h 17, <00) < 00}. Moreover,
(2.11) 9O, @) <e>  VYA<iau(n)Voexl

Suppose 0" is a sequence in MY (2,) such that " (%) = 1 and all the n"* are
locally equivalent to the product of their marginals. If n" — 7 for some 7 €
M (2;) such that n K 7, then

(2.12) )\crit(nn) — Acrit(1).
PROOF. Let g, (¢) :=min(m —t, 1)1jo ,,)(¢) and

(2.13) OO, @) := Eg (e g (T1)).

Note that ¢, (A, ®) is continuous on .. Indeed, ¢,,(A,®) depends only on
(w0, w—1, - .., ®_m+1). Moreover, it is the sum over the contributions ¢, (A, ®, Z)
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of the finitely many possible paths z of the RWRE Z; =z;,i =0, ..., j, where
70 =0,z; =1and z; <0 for i < j < m. Fixing such a path, denote by i, the
law of T} = ©; conditional on {Zo, Z1, ..., Z;}. With f > e g, (t) bounded and
continuous on R,

om(A, 0,2) = l_[ [% + (Zig1 — Zi)(a)zi - %)]/(; emgm(t)///:z(dt),
i=0
is continuous in (wg, w—_1,...,®w—_u+1) and [, hence also in {@,,x =0,...,

—m + 1}.

Fixing A < Agrit(n) we know from Lemma 1 that (2.11) holds for n-a.e. ®. We
next show that (2.11) holds for all & € £%. Suppose to the contrary that (%, &) >
¢~2 for some @ € ¥ %. By monotone convergence and continuity of ¢,,, there exists
m large enough such that the open subset G := {(@g, ..., ®—m+1) 1 @m (X, ®) >
72} of S7" intersects supp(n|1)™ at (o, ..., ®_n+1). Clearly (n]1)™(G) > 0, and
with 7 locally equivalent to the product of its marginals, also 7|, (G) > 0. Recall
that o(A, @) > @, (A, ®), implying that n(p(X,®) > ¢ %) > 0 in contradiction
with Lemma 1.

If A < A, then by definition (A, w) < oo for all w € >%: hence Aerit(n) = A
by Lemma 1. Consequently, Acri(n) > . For any o € »Z the inequality (2.11)
implies that A.(®) > Acric(n); hence by definition also x> Aerit(1)-

Turning to prove (2.12), note that as supp#n”|; € X, we have from (2.10) that
Aerit(™) > A = Aqie(n) and if A > Agc(n), then (A, @) = 0o > ¢~ 2 for some
& € X”. Taking m and the open G C S™ as in the preceding proof of (2.11),
we have that 71|, (G) > 0. Since n < 77 and n"* — 7, also n"|,,(G) > 0 for all n
large enough. Consequently, n" (¢p(X, ®) > e >0, implying that A > Acc(n™")
for all n large enough (cf. Lemma 1). Considering A | Acric(7) completes the proof
of (2.12). [

With MP = MF (Q.) :={v € M1(Q;) :suppv C (supp P|1)Z}, the next lemma
is the analogue of [1], Lemma 6. This is also where we use the “uniform ellipticity”
condition (C3) on the holding time distributions.

LEMMA 3. Suppose P € Mf(ﬁg) satisfies (C3) and is locally equivalent
to the product of its marginals. Then, the function (A,v) +— [ f(L, ®)v(d®) is
continuous on (—oo, Aqit(P)) X M1P.

PROOF. Let
En(d,v) :=/loggom()»,d))v(dc7))

for the bounded, continuous function ¢, (A, -) of (2.13). Note that |¢,, (A, @) —
@m (A, @)| — 0 as A’ — A, uniformly in @. Considering hereafter m > b + 3, we
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have by (C3) that

1
2.14) @, @) = 0E (AT V1<) > e HOTDp(1) = —
Ch

The function &, (A, v) is then continuous on R x M;(Q,). By the inequality
logx <x — 1 and the preceding lower bound on ¢,, we have that

(A, ®) - -
0< IOg (m) = C)L((p()h @) — Qm (X, CU)) = CAEJ)(EATIIOO>T1>m—1)

< e har PN B (e PITip ).
Fixing A < Aqit(P) and @ € (supp P| D%, we thus deduce from (2.11) that
0<loge(r,w) —logw,(,, ®) < g_zcke()‘_)‘crit(P))(m_l)‘
Hence, for any A < Aq((P) andv e M 1P , it holds that
’ f FO, @)(d@) — En(h, V)| < 872, @ HenPHO=1),

The claimed continuity follows as &,,(-, -) is continuous and | [ f (A, ®)v(d®) —
En(A,v)| = 0 for m — oo, uniformly in MIP. O

We next provide for 1 (-) representations analogous to those of Proposition 2.

PROPOSITION 3. Assuming (C0)—(C3), let

(2.15) L(A):= sup [/ fA, o)n(dw) — h(an)].
neMlP
Then, for any u € R,
(2.16) I;,’a(u) = sup [Au—L)],
A<Acrit(P)
(2.17) inf 7, (w) = sup[Au — L(X)]
w=u Ar<0

and if it (P) > 0, also

(2.18) inf I;%(w)= sup [Au— L]
wzu 0=<A<Agit(P)

In particular, 1 ;’a () is a convex rate function, and is nonincreasing if At (P) = 0.

PROOF. Since A — [ f(A,®)n(d®) is convex, nondecreasing for any n €
Mf), sois A — L(). Note that L(A) > [ f (X, ®)P(d®) = oo for any A > Agic(P)
(see Lemma 1). In contrast, [ f(%,®)n(dw) < —2loge for all A < Agit(P)
and ne M f) [cf. (2.11)], implying that L(A) is finite and bounded for such A.
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Moreover, A+ [ f (1, ®)n(d®) is continuous on (—00, Aqit(P)] for any n € MIP
[by Lemma 3 in the case A < Ait(P), and by monotone convergence in the case
A Aerit(P) since @(Agrit(P), ) < ¢~2 for all @ in the support of n]. Therefore,
L(-) is lower semicontinuous and its Fenchel-Legendre transform

J(u):=sup[iu — L(A)]= sup [ru— L)],

reR A<Aerit(P)
is convex, lower semicontinuous [and if A4 (P) = 0, also nonincreasing].
Obviously, J (#) = oo for u < 0. We prove below that I;,’a(-) = J(-). This is all we
need if Aci(P) = 0, whereas if A (P) > 0, then J (1) = max(J_(u), J+ (1)) with
J—(u) := sup, _o[Au — L(2)] nonincreasing and J4 (u) := supg<; <, . (p)[Au —
L ()] nondecreasing. By duality of Fenchel-Legendre transforms inf,cr J (1) =
—L(0) € [0, 00). Moreover, considering A — 0 we see that J (1) > —L(0) and
J_(u) > —L(0) for all u. With I;,“(-) = J(-), we then easily get (2.17) and (2.18)
out of (2.16).

Since n — G (X, n,u)+ h(n| P) is convex, lower semicontinuous on the convex,
compact set M 1P , for any A < A, and A — G (X, n, u) is concave, continuous on
(—00, Aaiit(P)], by the min—max theorem (see [15], Theorem 4.2”), we conclude
that
Jw)= inf sup [G(A,n,u)+h(n|P)]

neMP A< (P)

= sup [G(A,n,u)+h(|P)]
A<Acrit(P)

(2.19)

Here, 7 is a global minimizer of the lower semicontinuous function n — h(n|P) +
SUp; 3. () O (A, n, u) on the compact set Mf). Since h(n|P) = oo foralln ¢ MF,
it follows from (2.19) that, for any u € R,

J(u)< inf  sup[G(A,n,u) +h(n|P)]=15"(u).
neEM{(Qe) AeR

To show the converse inequality, we assume without loss of generality that J (1) <
oo and approximate the stationary 7 of (2.19) by “nice” ergodic measures. To this
end, note that (C3) implies that, for all . <0, 6 > 0 and P-a.s.,

> B (@M1 2o0) = k(8)e™ 0T,

Since 77 > H{(0) + 1 with equality whenever Z; = 1, this implies that f (A, ®) —
AMb+1)e [logek(é)em, 0] hence also

(2.20) Au—>b—1-35)—log(ck(§)) > G(A,n,u)>r(u—b—1)

forallne M 1P and A < 0. In particular, since J(u#) < oo, by (2.19) and (2.20) we
know that u > (b +1). Fixing u = b+ 1+26 and § > 0, it follows from (2.20) that

(2.21) I,f’q(u) = sup G(A,n,u),
A>—K
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for K = K, = 6'|log(ek(8))] < 0o and all n € M{. Let ijp = (1 — )7 +
1P e MF, noting that h(ije|P) = (1 — $)h(ij|P) < co. By (C2), there exist
ny € M{(S2,) that are locally equivalent to the product of their marginals, with
n} — f¢ and h(n}|P) — h(ij¢|P) as n — oo. Since P K fj¢, we see by (2.12)
that Acric(ny) — Acrit(P) as n — oo. By a diagonalization argument, we thus have

e € ME(Qe) N MF, with

e — 1, h(@¢|P) — h(n| P), Aerit(Me) = Acrit(P)-
In particular, for any & > 0 and £ large enough G(, 7j¢, u) = —00 if A > Aqit(P) +
& > Aait(1e), implying together with (2.21) that

1p"(u) < h(7e| P) + sup G, Te, u)
—K <A=Acrit(P)+§

<h(@e|P) +28u+ sup G (A, 1¢, u)
—K<A<Ait(P)—§

< h(@e| P) + 3&u + G (e, e, w),
for some ’X( € [—K, Ait(P) — &€]. Passing to a subsequence if needed, Xg =
[—K, Acit(P) — &]. Considering ¢ — oo we deduce by applying Lemma 3 for
(he, 7e) = (, 1), that
174w) < G, i1, u) + h([|P) + 36u < J(u) + 3&u

[the rightmost inequality follows from (2.19)]. Since & > 0 and u > b + 1 are
arbitrary, the proof of (2.16) is thus complete, except possibly at u = b+ 1. Turning
to deal with this remaining case, note that P-a.e. T > b + 1 by (C3). Hence, by
monotone convergence for any n € MY,

179(b+ 1) = — inf [ log Eg(e* T =0"D17 o )n(dd)
(2.22) n AeIR{/ !
= — [ Toglenuo(tbh Il (.

Since it suffices to consider A — —o0 in (2.22), it follows from (2.19) that

(2.23) J(b+1)=h1lP)— /log[wouo({b})]ﬁh(dc?)o)

[where both sides have value +o0 if 7(uo({p}) = 0) > 0]. Assuming without loss
of generality that J(b + 1) <00 and in particular that k(5| P) < oo, we have
by (C2) a sequence n" € M7 (2,) with n"|; =7y foralln and h(n"|P) — h(y|P).
Noting that for all n both " ¢ M 1P and
156+ 1) =~ [ loglwouo((EDIili ).
by (2.22), we deduce from (2.23) that
I;,’“(b +1)< liminf{Intﬁq(b +D+r0"|P)Y=J0b+1).
n—oo
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This concludes the proof of (2.16) and with it that of the proposition. [J
We conclude this section with the proof of Proposition 1.

PROOF OF PROPOSITION 1. Throughout this proof we use A¢rit, #—, # and u 4,
for Acrit(P), u—_(P), u(P) and u, (P), respectively.

By the discussion preceding (2.6) the nonnegative function I;’q(u) is strictly
convex on (#_, u4). By Proposition 2, if Acq > 0, then u4 > u and we have that
15 (u) > 0 for all u # ii. In contrast, if Aeic = 0, either 7,7 (u) > 0 for all u € R,
or I;,’q(u) = 01if and only if u > i. By (3.12) the same applies for the nonnegative

rate function I;T’q(-). Moreover, by (1.2), if Ep(log pg) < 0, then I;T’q is strictly
positive while I,r;q is strictly positive in case E p(log pg) > 0.

When (C1)—(C3) also hold, recall that n — h(n|P) is a good rate function
that vanishes only at » = P. Combining in this case the variational formulas
of Theorem 2 and the continuity of n — E,(f(A,®)) and n — E,(f~ (A, ®))
[using (3.12) to deduce the latter from Lemma 3], we conclude that I]T;a(u) =0if
and only if u is such that /7 (u) = 0, and 1, " (u) = 0 if and only if 7, " (u) = 0.

Dealing with part (a) of the proposition, suppose that P (ug({oo}) > 0) =0 and
Ep(log pg) <0, in which case T1 < oo, P-a.e. Comparing (1.1) to (2.3) we see
that u = 1/vp, implying that if Ep(logpp) = 0, then also u = 00 and Acrje =0
(see Proposition 2). As we show in (4.1) and in (4.18) both I;], (0) = Agrit and
I15(0) = Acrie. In view of (1.3) and (1.5) we see that if Acj > 0, both good rate
functions If,(v) and I3 (v) vanish only at v = vp, whereas they vanish at v = 0 if
Acrit = 0 and if in addition vp > 0, they vanish also for all v € [0, vp]. The same
consideration applies in the case Ep(logpg) > 0: here T_ < oo, P-a.e., so that
u = —1/vp and if both Ay q = 0 and vp < 0, then the functions Ilqg(v) and I3 (v)
vanish at the interval [vp, 0].

Turning to part (b) of the proposition, whereby P (o({oo}) > 0) > 0, note that
then for all u,

157u) = GO, P,u) = —log P(T} < 00) >0,
1,7 ) > G~ (0, P,u) = —logP(T_ < 00) > 0.

Thus, with all four rate functions / ;,q, 1 ;t’q, 1 ;,’a and / ;T’a being strictly positive,

it follows by (1.4) and (1.7) that IIqJ and /p only vanish at the origin. If i < oo,
then by Proposition 2 and (1.2), both functions 1, and I, " have their (positive)
global minimum at i, resulting by (1.4) with linear pieces for / ?, on [—1/u, 1/u].

O

3. Proof of the LDPs for hitting times 7,/ n.

PROOF OF THEOREM 1. With Ty =0and ; =T; — T;_1,i =1,2,..., we
have that conditioned on {17; < 00,i =1, ..., n} the random variables i, ..., T,
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are independent under Pg. Hence, for any @ and A < A,

n
B Ea(e"1p,<00) = Ea (e =21 py_ (1 <o0) = [ 0 (1. 0' @),
i=1
where the second equality is due to the Markov property. By Lemma 1 and (2.5)
it follows that Ep (| f (X, @)|) < oo for all A < Ag¢. An application of Birkhoff’s
pointwise ergodic theorem then yields that

1
- log E@(e”" 17,<00)

(3.2) |

n
==Y f(r.0'0) — /f()\,a))P(da)), P-ae.,
n i1 n—oo

first for all A rational and then for all A < A¢j¢ by monotonicity. Fixing u € R, by
Chebyshev’s inequality, for all @ and A <0,

T,
(3.3) P@(;n < u) <e MUEq (M7, 00).

Thus, by (3.2), P-a.e. for all u,

1 T,

(3.4) limsup—log P@(—n < u) < —supG(A, P,u) = — inf I;,’q(w),
n—oo N n A<0 w=u

where (2.9) was used in the rightmost equality. The upper bound on the upper tail

is derived similarly. Indeed, using Chebyshev’s inequality with A > 0,

T,

and hence, as in (3.4), using now (2.8), P-a.e. for all u,

(3.5) limsupllog Pa-,<oo > T > u) <—supG (A, P,u)=— inf I;%(w).
n—oo N n A>0 wzu

Suppose u < 0o. Any closed set F C [1, 00) is contained in [1, 1] U [u3, co) for
some u1 < i < uy such that u; € F and up € F (ignoring u; if F C[1,u] and
uy if F Clu, 00)). So, by the monotonicity of I]T;q(-) (proved in Proposition 2),
the inequalities (3.4) and (3.5) yield the upper bound for a general closed set F'.
If u =00 and K C[1, 0c0) is compact, then K C [1, u1] for some u; € K and (3.4)
yields the upper bound needed for the weak LDP of Theorem 1.

Due to the continuity of I;,’q (-) in the interior of its domain, implied by
Proposition 2, it suffices to prove the complementary lower bound for (small) open
intervals centered at rational # > u_. To this end, assume first that u_ < u < u .
Define a probability measure Qg , such that

dQc?),n _
dP; Zno

exp()\uTn)lTn<oo, Zn,c?) = Ea’)(exp(kuTn)lT,,<oo),
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and let Qg ,, denote the induced law on {7i, ..., 7,}. Due to the Markov property,
@C;,,,, is an n-fold product measure, whose marginals do not depend on n, hence
we write Q; instead of @@, .- Note that, for any § > 0,

<3)

> exp(—nuku — 18|l + Y f s 9i5)))§‘(

i=1

T,
P@(—n—u
n

(3.6)

Ty
——u
n

<5>.

12
) - ; ;Eaei&;(n)njgo EP(E@&,(TI)) = g()‘u> =u, P-ae.,
i=

Since P is ergodic and u < u, it holds that
T,
n

(3.7) EQw<

where we have also used (2.4). With A, < A, it also holds that there exists
a B > 0 such that
Ep(Eg,(e/™) < oo,

implying by Chebyshev’s inequality and independence that

-~ n
(38) Q@( 7 —u|= 8) njgoo, P-a.e.,
Combining (3.8) with (3.6), we get
] T,
liminf — logPL;,< — —ul < 8)
n—-o0 n n

1 & ;
> —hy = 8|kl +liminf ~ 3 f(h, 0'®)

i=1
= —ury — 8|Ay| + EP(f()\ua d)))
= —G(hy, Pou) — 8|hyl = =157 () — 8|2l P-ae.

(3.9

[the first equality is due to Birkhoff’s ergodic theorem and the last one to (2.6)].
This completes the proof of the lower bound in case u < u since § > 0 is arbitrary.

Suppose u > u is finite. Fixing a rational u > u let £ = [(« + 1)/2] and for
m > 2¢ + 1 define

0
En(@):=m+2 ) k(0'd).
i=—{

Set fin (A, ) =logEg (e 17,<¢,,(@))» a monotone, convex function of A, noting
that, for P-a.e. o,

0
Po(u+2 < Ty < (@) = e [T 1:(10.4(6'@)1)* > 0.
i=—{¢
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Consequently, for any A > 0,

Asm (@) = fn (A, @)
(3.10) 0 .
>2(u+2)+ @20+ Dloge +2 > log u; ([0, k(6" @)]),
i=—1{

implying that Ep (| f;; (X, ®)]) < co by (CO) and the stationarity of P. It follows
that the concave functions G, (A, P,u) = Au — Ep(fn (A, ®)) are finite and
smooth in A > 0, with G,,,(A, P,u) — —oo for A — oo by (3.10). Thus, the
monotone function g, (A) = %Gm(k, P, u) is negative for all A large enough,
whereas it is not hard to check that g,,(0) > u — & > 0. So, for all m > mq(u)
there exists A, ,, € [0, oo) such that g, (A, ») = 0. The proof of the lower bound
proceeds similarly to that for u < u, except for truncating the variables {z;} by
considering the n-fold product law @a,’gm of {r1,..., 7y} under the probability
measure Qg p ¢, defined by

dQg 1 z ‘
Qa),n,Sm — 1_[ e}»u_m Ti 1‘[,‘ <t
dPg Za'),n,ém ie1 -

n
Zontn = H Eoia)(eku""TllTl ggm(eia)))-
i=1

Adapting in such a manner the argument leading to (3.9), one obtains the bound

1 T,
lim liminf — log P@( Lyl < 8) > —Gu(Aym, P, u)
§—0 n—>© p n
=—supG,, (A, P,u) :=—1,(u), P-ae.
r>0

(for details, see [1], proof of Theorem 4). With G, (A, P, u) nonincreasing in m,
so are the finite, nonnegative constants I,,(u). Denoting by I, (u) the finite,
nonnegative limit of 7, (u), the intersection of the nonempty, compact, nested sets
(A>0:Gp(\, P,u) > Is(u)}, m > mo(u), contains a point A, ~. By monotone
convergence

Ioo) < lim Gp(hyoo, Pott) = G (b0, Pou) < 15 (),
m—0oQ

completing the proof of the lower bound.

We conclude the proof by deriving (1.2). To this end, fixing m < oo, let Tl(m)
and T_(”f) be the hitting times corresponding to the truncated holding times
m < H;(x) < o0,

Hr e ="
! | H ), otherwise.
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. (m) _ (m) .
With Z© = log Eg (e’ lTl(m)<oo) and Z, := log Eg(et 1 IT,(']’)<0<>)’ fixing

A € R it follows verbatim from the proof of [18], Lemma 2.3.22, that
(3.11) Ep(Z,))=Ep(Zy) + Ep(log po)

(possibly with both sides being infinite if A > 0). Recall that 77 (or 7_) is finite if
and only if Tl(m) (or T_(T) resp.) is finite for some m. So, in the case A < 0 we have
that 0> Z, | Z3 and 0> Z} | ZX, implying by monotone convergence that

(3.12) Ep(log E@(eAT*IILKOO)) = Ep(log E@(eATllTKoo)) + Ep(log po).

Similarly, if A > 0 we have that 2loge < Z,, 1 Z5, and 2loge < Z} 1 Z1, so
taking m — oo in (3.11) yields (3.12) by monotone convergence. The latter allows
us to relate I;’q(-) and I;T’q(-), in the same way as in the case without holding
times. [J

REMARK 1. Note that (3.12) implies that A _; (P) = Acit(P).

PROOF OF THEOREM 2. Since the proof of the annealed weak LDP for 7_,, /n
is almost identical to that for 7, /n, we present in the sequel only the latter.

We begin the proof of the upper bound in Theorem 2 with the upper tail in case
Acrit(P) > 0. Integration of (3.1) yields that, for all A < A¢ic(P),

E(e* 17, 20) = Ep<exp (n / f, @)Rn@z@))).

By (C1), {R,} satisfies an LDP with good rate function 4(-|P). As R, € Mf) and
{n:h(n|P) < o0} C MP, where v — [ £\, @)v(dw) is bounded and continuous
(by Lemma 3), it follows from Varadhan’s lemma (see [4], Theorem 4.3.1) that

1
lim —logE(e*"17, o) = sup </f()»,a))n(d5))—h(n|P)>
(3.13) ">on ( ) yeM?

=L().

Fix u > 0. Combining (3.13) and Chebyshev’s inequality for each A (P) > A > 0,
we get the upper bound

1 T,
lim sup — log]P’(oo > 2> u) < - sup  [Au— L(A)]
(3.14) n—oo N h 0<A<Acric(P)

s T,a
= ul)gf;tlp (w),

where the equality follows from (2.18).
Applying the same argument with A < 0 and using (2.17), yields that

1 T,
(3.15) limsup—log]P’(—n < u) < — inf I;,’a(w).
n w=<u

n—-oo N
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If Acrit(P) = 0, then I;’a(-) is nonincreasing (see Proposition 3); hence (3.15)
yields the upper bound for any compact K C [1, co) as needed for the weak LDP of
Theorem 2. Similarly, for Acq(P) > O, the upper bound for a general compact set
follows from (3.14), (3.15) and the convexity of I;,’a(-) (proved in Proposition 3).
It suffices to prove the lower bound in Theorem 2 for (v — §,u + 6) with
u € [1, 00) such that I;,’a(u) < oo and §é | 0. Fixing such u and § there exists
ne Mf(ﬁg) such that Inr’q(u) 4+ h(n|P) < I;,’a(u) + 8 < oo. In particular, u >
u_(n). Applying [1], Lemma 7, as in the proof of [1], Theorem 6, but here with the
measures Qp p @ N(dw) if u € (u—_(n), ut(n) and Qs n.m @ N(do) if u > uy(n)
[so we can use the strong law (3.8) for n-a.e. @], we obtain the bound
T,

——u

1
liminf — logIP<
n

n—o00 p

<8) = =13 ~ halP).

for all # > u_(n). By continuity of the convex rate function Inf’q(u) asu | u_(n)),
this bound applies also for u = u_(n). Taking 6 | O completes the lower bound in
Theorem 2 and hence finishes the proof of this theorem. [J

4. Proof of the LDPs for rescaled positions X;/¢.

PROOF OF THEOREM 3. (a) We start by showing that 173(.) of (1.3)is a

convex, good rate function. Recall that u_(P) > 1; hence Il‘i(v) = oo for all
v ¢ [—1,1] [see (1.2) and Proposition 2]. Moreover, with Act = Aqrit(P), by
Lemma 1, (1.2) and the definition of / ;’q (-) we have that

1) Ih) =vlicoEpogpo) + sup {r—|Ep(f (1)}

A=Acrit

for all v # 0. In particular, 173(.) is convex and lower semicontinuous on (0, co)
and (—o0, 0), separately. Using the linear lower bound of (2.5) it is easy to check
that lim, o / g (v) exists and equals Ayj;. Further, 173(.) is continuous at 0 by (4.1).
It remains to show the convexity of / 1q3(~) at 0, namely that, for all vy, vy > 0,

Vi1 (—v2) + vl p(v1) > (1 + V) IE0) = (V1 + V2) Aerit-

By (4.1) (giving a lower bound for the sup by plugging in A = A¢), this follows
from the inequality

0> EP(log po) + 2EP(f()\crita CT))),
which by (3.12), is a consequence of the fact that

4.2) 0> f~ Crerits @) + f erit, 07 '),

for P-almost every @ € Q. [integrate (4.2) with respect to the stationary
measure P]. Indeed, by the Markov property

it T,
Eg(e™"™M1r | 70 <o0)

= E; (e}\critTfl 17, <TM)E9—15,(€}L°mT1 17, <OO)E5)(ekcrnTM 1TM<oo)-
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Recall that E;(e*eriT 17,,<00) < 00 for P-almost every @ and all M < oo
[see (3.1)]. Thus,

Eﬁ)(e)\critTMlT 1<TM<OO)

- Aerit T— Aerit T

= E(ereitTu ] ) = Ea(e" 11 <1y ) Eg-15(€"" 17y <o0).-
D) Ty <00

Taking the logarithm and considering M — oo, one obtains (4.2).

Because | X; — X;| < |t — s|, it suffices to consider the LDP bounds for the
sequence X,,,n =0, 1, ..., which we do hereafter (without further notice), in order
to simplify notation.

Starting with the lower bounds, as | X; — Xs| < |t —s|,forv#0and 1 > § > 0,

X
PL;,(—” €(v—28,v +25)> > Pa((1 = 8)n < Tipyy < (1+8)n),
n

and Theorem 1 implies that, P-a.e. for all v # 0 and § > 0,

1
1 X —vI;’q (—), v >0,
liminf — log Pg,(—" €(w—28v+ 25)) > v
n—oo n n —1,q9 1
vlp m , v<O0.

Similarly, taking 1 > 6 > u > 0,
Xn
Pg,(— € (—28, 28)) > Py((1 =8)n < Ty < (14 8)n),
n
hence by Theorem 1,

liminfl log P@(ﬁ e (=26, 28)) > —uI;’q <l), P-ae.,
and considering rational u | 0 completes the proof of the LDP lower bound.

We next deal with the complementary upper bounds. Assuming without loss of
generality that Ep(log pg) < 0, we have that T < oo for P-almost every o [recall
that here H;(x) < oo for all i, x], and vp = 1/u(P) > 0. Since n'X, e[-1,1],
it suffices to show that, P-a.e.,

1 X
4.3) limlimsup—long,(—"e(v—g,v—i—g))f—lg(v) Vvl <1
¢l0 n—»oo N n

(cf. [4], Theorem 4.1.11). The next lemma, whose proof is deferred, is key to the
proof of (4.3).

LEMMA 4. Assume (CO). Suppose P (uo({oo}) > 0) =0 and E p(log pg) < 0.
Let T =supp P and S, =inf{t > n: X; <O0}. Then

1
4.4) lim sup — log sup P; (S, < 00) < —Agit(P).

n—oo N wel
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We now prove (4.3) for v =0. For any @ and A > 0,
sA"P@< inf X < An) < Pg,( inf X, < 0) = Pi(Sy < 00).
>n >n
In particular, since 173 (0) = Agrit(P) and
@) Pol(Xy € (~gn.om) = Po inf X, = cn) <6767 Pa(S, < ),
>n

(4.4) implies that (4.3) holds for v = 0. Considering next v £ 0 and ¢ € (0, |v])
such that u = v — ¢ - signv is rational, note that, for any § € (0, 1) such that,
1/(u) is integer,

Xn
P&)<7G(U—§,U+§))

(4.6)
(|u8)~! Tinug
< e~ Z Pa-,< nlul e [(k—1)6, k8]> Pg[nu]c;)(S[n_nk(sw” < oo)
k=1

With & = ké|u| <1, it follows from Theorem 1 and Proposition 2 that, P-a.e.,

. 1 T[nu]
lim sup — log P@( ] e[k —1)8, k8])

n—»oo N n\u
£

< —|u|1,(fig“”>”q(m) + lulw(lul, 8),

4.7

for all k and rational u, § > 0, where
w(r, 8) :=max {|Ip7(s) — 1,70 + 11,7 (s) — I, ()]
s,teu(P),1/r],|s —t| < 8}.

Let IV = {®:0%& € T Yk € Z}, noting that P(I'') = 1 by stationarity (in fact
['" =T), whereas by (4.4),

. 1
(4.8) limsup — log sup Py (Sp—ng] < 00) < —(1 — &) Agrit(P).

n—oo N woel”
Substituting (4.7) and (4.8) in (4.6), and using the relation (1.3) we deduce that,
P-ae.,

. 1 Xy
hmsup—long,(7 e(w—-¢, v—i—;))

n—-oo N

o a4 _5 _
< S61{%{1]{51,3(5>+(1 S)IP(O)}—i-Iulw(lul,S) 2¢ loge.

As the finite, convex, rate function I;’q(-) is continuous on (#_(P), o0), the
oscillation w(r,§) — 0 for § | 0 and any fixed r < co. With I;I,(-) convex and
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lower semicontinuous, taking é | O then ¢ | O we obtain the bound of (4.3) and
complete the proof of the theorem in the case P (ug({oo}) > 0) =0.
(b) For Ilqg (v) of (1.4), v # 0 we have by the same reasoning that led to (4.1),
the analogous representation,
I} (v) = vl o Ep(log po) +€€i§)f sup {Al — |[v|Ep(f (A, @)}

P A<Aerit
(4.9) _
= vly<oEp(log po) + iupo{/\ —|Ep(f(r, @)},
<

where the second equality follows by an application of the min—max theorem ([15],
Theorem 4.2") for the function (£,A) — Al — [V|Ep(f(A,®)) (£ € [0,1], A €
(—00, Acrit]), which is convex in £ and concave and continuous in A [the continuity
of L~ Ep(f(A,®)) follows from (2.1), (2.5) and dominated convergence]. Here
too Ilqg(v) = oo for all v ¢ [—1, 1], whereas by (4.9), Ilqg(~) is convex and lower
semicontinuous on (0, co) and (—oo, 0), separately. Combining the linear lower
bound (2.5) with the representation (4.9) we see that lim,_,¢ I?,(v) = 0; that is,
1 g(~) is continuous at 0. Since 173(.) > 0, its convexity at O trivially holds.

As for the LDP lower bounds, let £ > 0 be such that P (uo({oo}) > &) =p > 0.
Fixing a rational v # 0, we have, for all £ € [0, 1],

n

Xn
Pg,( G(U—28,v+28)>

> P@(T[nv] € (Un —dn,tn + 5n))P9[nu]5)(|X(1_g)n| < 5n)
whereas

Py (| X (1=0)n| < 8n) > g ~ max wj(foo}) :== e, (@).
{j:1j—[nv]l<én}

We thus get the LDP lower bound with rate function (1.4) out of that of Theorem 1
(including also the case of v = 0), provided &, (®) > & for all n large enough. By
Birkhoff’s pointwise ergodic theorem this holds for P-almost every o, as
1 3 sp
- 1, . —pl </,
- j; nyleoh>E = P| < 3o

n

2o

‘1 )
= Lot — P
nj:1 4

for all n > ny(§, ), whereby obviously &, (@) > & whenever n(|v| — §) > nop.

To prove the complementary upper bounds, namely, (4.3), since now [ g 0) =0,
it suffices to consider v # 0. For the same choice of ¢ € (0, |v|) and rational
u=v — ¢ -signv we have that

Xy
(4.10) P@(;E(U—{,U-ﬁ-{)) EP@(T[,W] fn).
Considering n — o0, it thus follows from Theorem 1 and (1.4) that

. 1 Xn q
lim sup — log PC;)(— ew—2¢, U+é’)) < —Ip(u),
n

n—oo N
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which holds P-a.e. for all v and ¢ as above. With I;’,(-) lower semicontinuous,
taking ¢ | O completes the proof of (4.3) and hence that of the theorem. [

PROOF OF LEMMA 4. Recall that our assumptions imply that vp = 1/
u(P) > 0. The lemma is trivial for vp = 0 as then Aq; = 0. Assuming hereafter
that vp > 0, let b, (@) = P3(S, < 00), a, :=sup{b,(®):w € I'}, and T = inf{r >
1: X; = 0}. By the strong Markov property of the embedded RWRE, denoting
by Pg (+) the law of the random walk started at y in the environment @ (where we
omit y if y = 0), it holds that, for all k, w and all y < O,

P2 (Sk < 00) > P2 (Y < k)Py(Sk < 00) + P2(Y > k) > Py(Si < 00).

Since

XS —

X5~ (S < 00)[ Sy < 00)

P (Smk < 00) > € Pg(Sm < 00) E(
> &Py (Sm < 00) Py (Si < 00),

it follows that bji(w) > (eby (®))’, hence also a jk = (eay)’ for all positive
integers j. This and the ellipticity estimate e**! < ea; < ax1 < ax imply that
k1 logay — a, for some a € [loge, 0].

We next show that n ! logb,(®) — a as n — oo, for P-a.e. ®. To this end, fix
8> 0 and k < oo large enough for k' logay > a — 8. There exists an @ € I' such
that k= ! log by (@) > a — 26. Therefore, one may find a finite ¢ large enough such
that k= 'log P3(Sx <€) >a —38. Let Z = (Zo, Z1, ..., Z¢), 2= (20,21, - - - 2¢)
and ©® = (01, ..., ©y), and use the notation P,(A), or P,(A), for events A which
depend on the environment only via w := (w—g¢, ..., w¢) O = (U—g, ..., L),
respectively. Note that

Gy:= U [©0:0; <¢,0;41 >k}
{0<j<t—1:2;<0}

are open subsets of Rﬂ and

(4.11) P (Sk <£)=2Pw(Z=z)PM(®eGZ|Z=Z).

A finite number of z vectors is considered in (4.11), for each of which »
P,(Z = z) is continuous on €, while u — L(O|Z = z) :Mf(]RJr)ZEJrl —
M, (Rﬁ) are also continuous [where £(@®|Z = z) denotes the conditional distri-
bution of @ given the event Z = z]. By (4.11), we see that @ — Pg(Sx < £) is
lower semicontinuous on Q.. Consequently, there exists an open set A C Q. such
that P(A) > 0 and

k~'og P3(Sx <€) >a—45, VaeA.
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Now let g(@) > 0 be the smallest integer such that 0=8@g e A. Since P(A) > 0,
it follows from ergodicity that g(w) < oo for P-almost every @, in which case

b, (@) = P3(S, < 00)
(4.12) > 5@ P oo (S < 00) = £8P [Py yi(Sk < 00)]™/¥]
> gg(cb)[gpe_g@@(sk < E)]rn/ld > 8g(a_))[8ek(a—48)]|'ﬂ/k]’
yielding for P-almost every @, the bound,

lilrgi(gfn_l log b, (@) > k! loge—45+a > k! logz?—4(‘5—Himsupn_1 log b, ().

n—oo

Taking k — oo followed by (rational) § | 0, we conclude that
(4.13) a= lim n~'logb,(®), P-ae.
n—oo

Fixing 1 > 8§ >0, u € (0,vp/(1 + vp)), let 8 denote the finite set of integer pairs
(k,€) such that 1 +1/6 < min(k, £) and (k + ¢ — 2)6u < 1. We have by the strong
Markov property that

bp (@) < Py(Tinuy = n(1 —u))

+ Y P@<T[W]e[(k—1)8,k8[>

(k.0)es nu

4.14)

T
x Pg[m,]c-o< m’:”] = 1)5,25[)

X Pg(Stn—n(k+0yus) < 00),

where we use the convention b; (®) = Pz (S; < 00) =1 for ¢ < 0. Observing that

m
Egni (€11, <00) = [ [ 9~ (. 0" @),
i=1

we follow the derivation of (3.4) and (3.5) to deduce in analogy to (4.7) that, with
y =4Léu <2,

. 1 T—[nu]
lim sup — log Pe[nu]a)( e[ —1)s, E(S[)
nu

n—oo N

5—)/];13(—&) +uw(z,5), P-a.e.
y 2

By convexity of I;I,(-), with & = kéu,

(4.15)

sz,%(g) - (—%) > (& +1)15(0).
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So, with (k + £)é > 2, by (4.7), (4.14) and (4.15), for P-almost every @ and all
n > ng(w),

bn (CT)) < en(2uw(u/2,8)+5) |:e—n(1—u)llqg(u/(l—u))

_ q _
(4.16) + > e "(HZ)‘S”IP(O)b[n—n(k+£)3u](w)}
(k.0)es

<C_max f{e b, j(@),
2nu<j<n

where C = C (8, u) < oo and

J:mmh1—m¢(T%iy¢mﬁ—5%@m43ﬁ>+0.

It is easy to check that, for u > 0, y,, >0, C < o0,

. 1
vy < C max {e_ijn_j}, Vn>ng =— limsup—logy, <—J.

2nu<j<n n—oo N

Consequently, from (4.16) we have that

1
4.17) limsup — log b, (@) < —J, P-ae.
n

n—oo

Since J — I;’, (0) when taking first § | O then u | 0, it follows from (4.13) and
(4.17) that a < —I}(0) as stated. [

PROOF OF THEOREM 4.  (a) With u_(n) > 1 for any n € M{(Q,) we have that
Inr’q(u) = In_r’q(u) = oo forall u < 1 [see Proposition 2 and (1.2)], hence I;’, (v) =
oo for v #£ [—1, 1]. Since I;;a(-) and I;t’a(-) are rate functions, /5 () of (1.5) is
a good rate function provided it is continuous at 0, which we show next. Denoting
throughout Acrit = Acrit(P), recall that L(X) < —2loge for L(-) of (2.15) and all
A < Aerit (see proof of Proposition 3). Hence, I;,’a(u) > Aeritt + 2loge by (2.16),
implying that

oo T,a 1
liminfulp (—) > Acrit-
ul0 u
With the same argument applying for 1, "“(-), we get that
(4.18) liminf 75 (v) > Acrit.
v—0
By definition, 7% (v) < I} (v) for v # 0. As I} (v) — Agrit for v — 0 (see proof

of Theorem 3), we conclude that I (v) — Acrie = I5(0) when v — 0, completing
the proof that I (-) is a good rate function. Since I;;a(-) and I;r’a(-) are convex,
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it follows immediately that /() of (1.5) is convex separately on (0, co0) and on
(—o00, 0). The convexity of this function at 0 amounts to the inequality

(4.19) vilp(—v2) +v2lp(v1) = (V1 + v2)Acrit,

which we prove next. As P € MY (2,) is locally equivalent to the product of its
marginals, the bound (2.11) results with (4.2) holding for all ® € (supp P|1)Z.
Note that £~ (X, @) depends only on {@y, x > 0} while f(x, 0 '@®) depends only
on {®y, x < —1}, so integrating (4.2) with respect to 7|(..a .0 ) ® 1l@p.a1...)
yields that

0> En’(f_()\crit, d))) + En(f()‘crit, d))),

for any stationary n, n’ € MIP. Then, for all such n, n” and vy, vy > 0,

_ 1 1 1 1
In/t’q <—> + I,f’q <—) = <— + —))Lcrib
v v vy U

With h(n|P) = oo forall n ¢ MP, also

1 1 1 1
)+ () = (5 e
P vy + P vy = v2+v1 crit

resulting by (1.5) with (4.19).

The annealed LDP lower bounds in the case P (o({oo}) > 0) =0 follow from
the lower bounds of Theorem 2, by the same reasoning as in the proof of the
quenched bounds in Theorem 3. Turning to the upper bounds, it suffices to show
that, for any v,

1 X
(4.20) limlimsup — log]P’(—n elw—-¢,v+ ;‘)) <—Ip(v).
tl0 n—oo N n
Assume without loss of generality that Ep(log pg) < 0, in which case Lemma 4
applies. Starting with v = 0, we have by (4.5) that
P(X, € (—¢n,¢n)) < e™¢" sup Py(S, < 00),

wel
and since /% (0) = Acic(P), we have (4.20) by an application of Lemma 4. Recall
that P(I'") = 1 for I/ = {&:0%® € T Vk € Z}. Hence, by (4.6) for any v # 0,
€, |v))andu =v — ¢ -signv,

]P’(ﬁe(v—g“,v—kg“))
n

(Ju|$)~!
T
<e2n 3 P(M e [(k —1)3, ka]) sup ity (Sin—nksluf] < 00).
=1

nlul el
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Thus, combining (4.8), Theorem 2 and the relation (1.5) we have that

1 X
limsup—log]P’(—n e(—g¢, v+§)>
n

n—-oo N

. aft
< —2ctoge — inf, {er(£)+ (1~ —dlubicu ]
Since I3 (-) is convex and lower semicontinuous, with Acric = I5(0), taking 6 | O
followed by ¢ | 0 we arrive at the bound (4.20).

(b) Considering I (-) of (1.7), note that I (v) = vllﬁ’a(u* A 1/v) for any v > 0,
where u* > 1 is a global minimizer of I;’a(u), setting u* = oo in case I;’a(-) is
nonincreasing. Since 7,(-) is a convex rate function, the lower semicontinuity
and convexity of I5(-) on (0, 0o) are easily verified. Applying the same reasoning
to the convex rate function /7, "“(-) we get the convexity and lower semicontinuity
of I5() of (1.7) at (=00, 0). Recall that this nonnegative function is bounded
above by Ig(v) of (1.4), which converges to 0 as v — 0. The function /% (-) of (1.7)
is thus convex and continuous at 0, hence a convex good rate function on R.

Turning to the LDP lower bounds, note that for v > 0, 0 <§ < £ <1 and all
n > ko/8 by our assumption (1.6),

Xn
IP(— e(w—28v+ 25))
n

> 825"P<T[nv] € (£ = 8&)n, (£ +8)n), 5n1<nja<x25n Hy([nv]+j) = oo)

> e Ep (P@(T[,,U] € (€ —8)n, (€ +8)n))
x Ep ((Sn;njafxmM[nv]+j({oo})|3’[;v])>
> ¢ g 2NP(T, 1 € (€ — 8)n, (L +8)n).

Consequently, for any v > 0 and all £ € (0, 1], by Theorem 2,

limliminfl logP’(ﬁ e(w—26,v+ 25)) > —vlf,’a<£>.
810 n—>o0 p n v
Optimizing over £ € [0, 1] we arrive at the stated LDP lower bound for v > 0. The
same argument applies for 7_,,], leading to the stated lower bound for v < 0, and
since P(X,, =0) > Ep(ug({oc})) > 0, we have the lower bound also for v = 0.
As for the upper bound, it suffices to consider (4.20) for v # 0, where by (4.10)
we have that, with u = v — ¢ - signv,

Xn
P<7 IS (U—C,U-i-é')) SP(T[,W] fn).
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Considering n — oo, by Theorem 2 and the relation (1.7) we have that

1 X

lim sup — log]P’<—n cew—¢,v+ é‘)) < —Ip(u),
n—oo N n

and with I?,(-) lower semicontinuous, taking ¢ | O completes the proof of (4.20)

and hence that of the theorem. []

5. Negative speed for random walks on Galton—-Watson trees. Let Z be
a random variable taking values on {1, 2, ...} with finite mean m = E(Z) > 1.
Consider the Galton—Watson (GW) measure on rooted trees, which is the family
tree of a supercritical branching process starting from the first ancestor (called the
root), with each particle independently producing a random number of children
according to the law of Z. The modified Galton—Watson (MGW) measure is
obtained by changing the distribution of the number of children at the root to that
of Z—1.

The augmented Galton—Watson (AGW) measure on nonrooted trees containing
a special ray —oo <> 0 <> oo is then constructed as follows. Starting with Z,
we connect neighboring integers by an edge, and attach to each point x € Z
an independent MGW-tree T,. We write the resulting infinite, unrooted tree as
T = U,ez Tx, where the roots of Ty and Ty are connected by an edge. The
parent v* of a vertex v € T N T, is defined as the parent of v in T, if v is
not the root of T,, and as x — 1 if v = x € Z, that is, if v is the root of T,.
An alternative construction of the AGW measure starts with a GW tree and the
“rightmost” vertex v of distance n from the root, renaming it O, while renaming
the set D,,, of vertices at distance m from the root as Em_n and then taking weak
limits, resulting in a measure on infinite trees with a special ray —oo <> co marked
(see [10] for details). Fixing 0 < A < oo and a tree w chosen according to AGW,
the A-biased random walk {S,} on w is the Markov chain such that if j* is the
parent of a vertex j having k children ji, ..., ji, then

v [F3 . A‘
Px,w[Sn+1 =j1Sn=Jjl= m,

P)i),w[Sn-&-l :ji|Sn = ]] = m,
where v € w is a fixed starting point (see [11]). We denote by Pf’ » the
“quenched” distribution of the walk {S,} conditioned on the tree @ and by Py’ :=
f Pf’wAGW(da)) the corresponding “annealed” measure. We write Py, for Pﬁ ©
and P, for P)E) .

For x on the special ray, let H(x) + 1 be the first hitting time of the set
{x —1,x 4+ 1} [possibly H(x) = +oo] and let p, be the distribution of H (x)
under P}i »- Letwy :=1/(A+1). Note that w, is deterministic and does not depend
on x. Then the projection of {S,} on Z, denoted {X,}, is a RWREH with i.i.d.
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environment @ = {(wy, iy)}. Indeed, the distribution P of @ (under the measure
AGW on trees with a special ray) is a (stationary) product measure where if Z
is bounded, then also P|; € M (S.) for some ¢ > 0, for which (C3) applies with
b = 0. Let P be the distribution of {X,} under Py, and [P the distribution of
{X,} under P;. Then we are in the RWREH model. Since P is a product measure,
(C1) and (C2) are clearly satisfied. Hence we can apply our previous results. In
particular, we have by Lemma 1 and (3.12) a deterministic Ay € [0, 00) such that
Ey wle'T-117_, _] s finite if and only if 7 < Acrir, for AGW-a.e. @. Moreover, by
Theorems 1 and 2 we have the weak LDP forn ' 7_,, (and n~'7},) under P; and P,
with quenched and annealed rate functions I;t’q and I,"“, respectively. By
Theorems 3 and 4 we also have the LDP for n~1 X,, under the measures P; and P,
with good rate functions I;’, and I, respectively (where P (uy({oo}) > 0) =0 if
and only if A > m, cf. [10]). Moreover, we have seen in (3.2) that, for AGW-a.e.
w and all ¥ < A,

(5.1) lim l1o Exo(e'™1 )=—-G~(t, P,0)
. n—00 g gL\ w T_p<o0) =— » 15 Y),
whereas we have seen in (3.13) that
1
(5.2)  lim —logEx(e'T"17_,.00) =— inf [G™(t,n,0) + h(n|P)].
nmeon WGMT’P(ﬁe)

In particular, by Lemmas 1 and 3 and Varadhan’s lemma, if I;T’q = I;T’a, then
the limits in (5.1) and (5.2) must be equal for all # < Acj.

Let |S, | denote the distance of §,, from O in the tree w. In [2] we derived the
LDP for n~!|S,| under both quenched and annealed measures, showing among
other things that the rate function for both LDPs is the same. As announced in [2],
Section 7, item 4, we show next that this is not the case for the rate functions
1,77 and I, of the LDP of n=!7_,.

PROPOSITION 4. If Z is bounded and nondegenerate, then for t < Acit there
existsann e M f’P(ﬁg) such that
—G™(t,P,0) = Ep(log Ex(e'™" 17, <o0))
< E,(log E@(e’T*11T71<oo)) —h(n|P),
except if t =0 and P(T_| < o0) = 1. That is, the limits in (5.1) and (5.2) are

different, and consequently I;T’q #+ I;r’a.

PROOF. Fixing 0 < A < oo, recall that T_, = Y% ' (Hx(Zy) + 1) (in
distribution), where o,, = inf{k > 0: Z; = —n} for the biased simple random walk
{Zy} starting at Zg = 0 such that Z; — Z;_; = 1 with probability 1/(1 + L) and
Zi — Zir_1 = —1 otherwise. Recall that for fixed o, {H;(x), k € N} are i.i.d.,
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for each x, with distribution p,, and the biased simple random walk {Z;} is
independent of { Hy(x), k € N}. Under the measure AGW, u, is an i.i.d. sequence.
Fixing ¢ < Acrig let

o
Vi(x) i=1og B (" POV coc) = 1 +og )~ € i ().

h=0
Note that
op,—1
g(n) :==log Ex(e'""17., <o) =log ESRW<EP (eXp ( > Vz(Zk))>),
k=0

where Esrw(-) denotes integration over all paths of the biased simple random
walk {Z;}. Since V;(x), x € Z, are i.i.d. random variables, they are positively
correlated. This allows us to apply the FKG inequality for the increasing
functions exp(ZZ"z’al Vi(Zy)) and exp(ZZ”:J;’:n_l Vi(Zy)), for each fixed path
(Zo, 24, ..., Zs,,,,—1), yielding that

om—1 Opntm—1
g(n+m) zlogESRw<Ep<exp( > vt<zk>))Ep<exp< > vt<zk>))).

k=0 k=0,

Applying the strong Markov property of Z; at the stopping time o,,, where Z, =
—m, it follows by the translation invariance of both the law of 6 +— {Z.,9 — Zy}
and that of {V;(-)}, that

om—1
g(n+m) > log Espw (Ep (exp ( > VM»)))

k=0

op—1
+ log Esrw (EP (GXP ( > Vz(Zk))>)
k=0

=g(m) +g(n).

Using the superadditivity of g and Jensen’s inequality (for log x), it follows that

liminfn~'g(n) > g(1) = log Ex (¢'"'17., <o0)
(5.3)

> / log Ex (€117, —o) AGW(dow)

and the last inequality is strict as soon as ¢~ (t, ®) := El,w(e’T”lT_Koo) is a
nondegenerate random variable. Note that the limits in (5.1) and (5.2) correspond
to the right-hand and left-hand sides of (5.3), respectively. Thus, it suffices to show
that, for Z nondegenerate, if ¢~ (¢, ®) = c(¢) for AGW-a.e. w for some (finite)
constant c¢(¢) > 0, then necessarily t = 0 and ¢(¢) = 1 [hence, Py »(T-1 <00) =1
for AGW-a.e. w].
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Turning to this task, note that we may add the ray 0 <> oo to the MGW tree Ty,
thus making it a GW tree. With this identification, let kp > 1 be the number of

children of 0 and let Ny := ZZ;II 15, —o be the number of visits to vertex 0 by Si

prior to 7_1. Note that T_1 =1 + Ng + ZZNZO1 T(f (wr,;), where r; denotes the child
of 0 visited by Sy immediately after its (i — 1)st visit of 0, with w,, the GW tree
rooted at that child and T(f (wy,) the time spent in this tree between the (i — 1)st
and ith visits to 0. Note that Py ,,(No = £) = (ko/ (ko + M)A /(A + ko)) and the
GW trees w,, belong to the finite collection of kg trees rooted at children of 0,
each being an independent realization of the same law as the original GW tree w.
Consequently, denoting by Ej, expectation conditional on ko,

Ny . No
@ (t,@) =€ Ey, (e’N‘) [1Ero, (T 1T(;-<oo)) =e¢'Ey, (e’N‘) [Te G, d)ri)).

i=1 i=1

If o7 (t, w) = c(t) for AGW-a.e. w, then the same applies for the finite collection
¢~ (t, wy;) for AGW-a.e. w, implying that c(¢) is a solution of the identity

(5.4) c(t)e™ = Egy((c(t)e")N).

It is easy to verify that if Z is nondegenerate, so shall be the random variable
Eko(qNO), provided g # 1, 0 < g < oo. Thus, if ¢~ (t, ) = c(t) for AGW-a.e.
o and Z is nondegenerate, necessarily c(¢)e’ = g = 1, which by (5.4) is possible
only in case t =0 and c(0) = 1, as stated. [

6. Discussion and open problems.

1. We recall that CLT and stable limit laws for transient RWRESs in an i.i.d.
environment are derived in [9]. For recurrent RWRESs, limit laws are derived
in [14]. Process level limit laws of the form of singular diffusions are derived
in [6] for the simple random walk with random holding times. It is natural to
expect that even for i.i.d. environments the RWREH exhibits a rich spectrum
of limit distributions due to the competition between traps coming from large
holding times and those coming from the local drifts of the embedded RWRE.
In particular, we expect a CLT to hold true whenever E(TE“) < oo for some
e>0.

2. The study of sharp asymptotics in the slowdown regime for the RWRE has
been carried out in a series of papers [3, 7, 12, 13]. Subexponential decay
of slowdown probabilities is possible only for a.e. finite holding times, in
which case it seems that the techniques of these papers can be extended to
the RWREH. The possible subexponential rates of decay for the RWREH are
influenced by the tails of the holding time distribution, and hence not limited to
those present in the RWRE model.
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