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Abstract: Suppose that the integers are assigned random variables {w;} (taking values in the unit interval),
which serve as an environment. This environment defines a random walk {X,} (called a RWRE) which,
when at ¢, moves one step to the right with probability w;, and one step to the left with probability 1 — w;.
When the {w;} sequence is i.i.d., Greven and den Hollander (1994) proved a large deviation principle for
Xn/n, conditional upon the environment, with deterministic rate function. We consider in this paper large
deviations, both conditioned on the environment (quenched) and averaged on the environment (annealed),
for the RWRE, which forces us to consider also the ergodic environment case. The annealed rate function is
the solution of a variational problem involving the quenched rate function and specific relative entropy. We
also give a detailed qualitative description of the resulting rate functions. Our techniques differ from those of
Greven and den Hollander, and allow us to present also a trajectorial (quenched) large deviation principle.
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1 Introduction and Statement of Results

1.1 Introduction and background

Let ¥ = [0,1]%, and let w = (w;)icz € ¥ be a collection of random variables which serve as an environment.
For each w € X, we denote by P, the distribution of the nearest neighbor random walk (X,,)n=0,1,2,... in the
environment w, which, when at location ¢, moves to ¢ + 1 with probability w; and to ¢ — 1 with probability
1 — w;. In the case when w is a realization of a stationary, ergodic sequence, X is called the random walk
in random environment (RWRE). This RWRE can serve as a model for diffusion and transport phenomena,
in a medium which is locally inhomogeneous, but homogeneous on large scales. In parallel to the case
of classical random walks, natural questions for the RWRE arise: transience vs. recurrence, law of large
numbers, limit theorems for the distribution, large deviations,.... Periodic environments strongly relate to
homogeneous ones, via homogeneization techniques, though environments with more randomness produce
a richer behavior for the walk. Fluctuations of the environment have a strong influence on the long time
asymptotics of the walk.

Define p; = pi(w) = (1 — w;)/wi, i € Z. Depending on the (ergodic) distribution 7 of the environment,
the random walk (X,) is either recurrent for n-a.e. w (if [ log po(w)n(dw) = 0), or transient for 7-a.e. w with
X, — 400 [resp. —oo] (if [log po(w)n(dw) < O [resp. > 0]), see [16, Chap. IV, Theorem 2.3 and Corollary
24]or [1). Let Z; := p;i+ pipi—1 + pipi—1pi—2+. .., and note that Z;” < oo, n-a.s. when the walk is transient
to the right. Further, if

ot = /(1 + 225 )(dw) < oo, (1)
then the random walk has the positive speed vy, i.e. for n-a.e. w, we have X,,/n — v, P,-a.s., c.f. [1]. If  is

a product measure, this was observed by Solomon [20], who proved that in this case, [(1+ 2Z; )n(dw) < oo
if (p) := [ po(w)n(dw) < 1 and then

1—{p)
") @
A transparent derivation of (1) appears below Lemma 1. We refer to the introduction sections of [11] and
[3], as well as to [12] and [19], for more about the history of the model and a description of limit laws not
mentioned above.

Recall that a sequence of probability measures p,, on a topological space satisfies the Large Deviation
Principle (LDP) with rate function I(-) if I(-) is non-negative, lower semicontinuous, and for any measurable
set G,

— inf I(z) <liminf 1 log pn(G) < lim sup 1 log pur, (G) < — inf I(x). (3)

T€G?® n—oo 1 n—oo T zeld

(Here, G° denotes the interior of G and G its closure. We refer to [4] for general background and definitions
concerning large deviations). For a product measure 7, the study of large deviations for the law of X, /n
was initiated by Greven and den Hollander in [11], where a Large Deviation Principle for the distributions
of X, /n under P, was derived, for n -a.e. w, with a deterministic rate function I{. (Of course, I}(v,) = 0).
We refer in the sequel to such statements as quenched statements, while statements concerning probabilities
with respect to the law P = n(dw) ® P, are referred to as annealed results. Random environments may
create some long “traps” which slow down the walk, resulting in large deviations probabilities whose rate of
decay is slower than exponential. Subexponential asymptotics, both quenched and annealed, are presented
in [3], [9], [18], [17]. In this paper we will focus on exponential rates of decay.

The approach of [11] to large deviation statements involves looking at the RWRE as a Markov chain in the
space of environments, and the quenched LDP is obtained by an appropriate contraction. More precisely,



the rate function is the solution of a variational problem and is shown to be the Legendre transform of
certain Lyapunov exponents. Our goal in this paper is to suggest a different point of view for obtaining
large deviation theorems, both annealed and quenched, for the general ergodic 7. We do so by building on
recursion ideas which can be traced back to [15], [14], and formed the key to [3], leading here to rather simple
proofs of the LDP’s. As an application of our methods, we show how functional LDP’s can be obtained
by essentially the same methods. As a by product of our method, we are able to deduce qualitative results
concerning the shape of the resulting rate functions.

After the bulk of this work was completed, we received a preprint of Zerner [24], where he uses similar
recursion ideas to analyze certain multi-dimensional RWRE’s. Among other results, Zerner shows how to
re-derive some of Greven and den Hollander’s results using a hitting time decomposition similar to ours. In
contrast with our results, the annealed case is not treated in [24].

1.2 Statement of main results

Turning to the description of our results, a crucial role in our approach is played by certain hitting times.
Let Ty, = inf{n: X, =k}, k=0,£1,£2,--- and

T =T — Th_1 k>0
Ty =T — Ty k<o,

with the convention that co — 0o = oo in this definition. It turns out that Large Deviation Principles for
T, /n are key to the LDP’s for X,,/n. We introduce the functions

e\ w) == B, [e’1,,<c00], fOw) :=logo(\w), GAn,u):=Iu— /f()\,w)n(dw). (4)

A characterization of ¢(\,w) in terms of continued fraction expansions is provided in Section 2, Lemma 1.
Define
Ip%(u) = sup G(A,n, u). (5)
AeR

As will be seen in Section 2, I>? is the rate function for the quenched LDP associated with T, /n.

Let M;(X¥), M$(X) and M{(X) be the spaces of probability measures, stationary probability measures,
and ergodic probability measures, on . Further, denote by M{(X)* := {n € M{(X) : [log po(w)n(dw) < 0}
the set of distributions for the environment making the walk recurrent or transient to the right. Let K C (0, 1)
be some fixed compact subset of (0,1). For any set M C M;(X), we denote MX = M N {n : supp(no) C
K c (0,1)}. For n € M{(Z)tE, define

vI (), 0<
) = { ol (257 () = [1og po(win(d)), 1

IA

q
I v<0, (6)

IN =

where the value at v = 0 is taken as [7(0) = lim, o vI;’?(1/v) . Let Inv : ¥ — ¥ denote the map satisfying
(Invw); = 1 —w_y, and let ™™ = noInv™'. For n € ME(X)K \ M (Z)HE, note that n'™v € M¢(2)HX and
define I1(v) = Iglm,(—v).

Our first main result is a quenched LDP for the distribution of X,,/n. It turns out that, even if one
is interested in the annealed LDP for the i.i.d. case only, one is forced to consider the quenched LDP for
certain ergodic, non product measures. This motivates the following extension of the quenched LDP of [11]
which is derived there in the case where 7 is a product measure.



Theorem 1 Assume n € M{(X)K. For n-a.e. w, the distributions of X, /n under P, satisfy a large
deviation principle with convez, good rate function I.

Our approach allows us to prove also an annealed LDP. Untypical environments will come into play,
so this requires some extra assumptions on the distribution a of the sequence w, allowing to compute
large deviations of the environment itself. We say that a € M§(X) is locally equivalent to the product of
its marginals if its restriction o™ to M1([0,1]") is equivalent to [[}_, a; for arbitrary n, i.e. if for any
measurable A C [0,1]", a{™(A) = 0 if and only if [Ja;(A) = 0. Now, let § : ¥ — ¥ denote the shift
on ¥, given by (6w)(i) = w(i + 1), and let h(-|a) denote the specific relative entropy with respect to any
a € My (). We say that a satisfies the process level LDP if the distributions of R, := L 2?2—01 dgi,, under «
satisfy the LDP in M;(X), equipped with the topology of weak convergence, with rate function h(-|a). Let
Fni=0({wo,-..,wn}). We will use the following Assumption (A) on «:

Assumption (A):

A1: « satisfies the process level LDP.

A2: « is locally equivalent to the product of its marginals and, for each n € M{ (X)X, there is a sequence
{n"} of ergodic measures with n"™ —= n weakly and h(n™|a) — h(n|a).

Product measures and Markov processes with bounded transition kernels satisfy A1, c.f. [7], as well as
A2, cf. [8], Lemma 4.8. For u > 1, let

Ime = inf [I"Y h . 7
o (u) ne}\%@)[ 21 (w) + h(n|a)] (7)
Let now
. vIZe (1), 0<v<1
Y= e, (), —1<w<o. ®

The following annealed LDP can be considered as the main result of this paper.

Theorem 2 Assume a € M{(X)E satisfies Assumption (A). Then, the distributions of X, /n under P
satisfy a LDP with convex, good rate function I¢.

We note that the quenched rate function I and the annealed rate function Ij are related by the following

variational formula:

W)= it [150) + o)) 9)
where vh(n|a) = oo if h(n|a) = co. In particular, we always have I§ < IZ. Properties of the rate function I},
and I2 for product measures «, are studied in Section 5 and summarized in a series of figures. An interesting
feature, first discovered in [11] in the quenched case with i.i.d. environment, is the occurence of linear pieces
of the rate function, which we explain in the next subsection. We show that a similar property holds for the
annealed rate function. Already at this point, the reader may have a glance at Figures 6 to 9, Section 5. We
also present in Section 5 qualitative properties of the rate functions encountered in this paper, quenched and
annealed. Note also that the minimizers 7 in (9) describe the environments favorable to large deviations of
the walk. In Section 5 we show that in general, these measures are one-dimensional Gibbs measures, with a
summable interaction related to the approximants of the continuous fractions ¢.

We conclude this section by a functional LDP. Let S, (t) := n_lXWJ, t =0,1/n,2/n,...,1, linearly
interpolated elsewhere. Throughout, we use the symbol £ to denote the class of Lipschitz functions of



Lipschitz constant bounded by 1, equipped with the supremum topology. Define the functional I,'graj’q L
[0, 00] by
A .

rireia(g) & / T3¢ (1))t

Theorem 3 Let n € M{(%)X.
1. Iffaj*q is a good rate function on L.
2. Forn -a.e. w, the distributions of S, (-) under P, satisfy in L a LDP with rate function I,‘,'aj’q.

The organization of the article is as follows: In the rest of this introduction, we describe our strategy
for proving Theorems 1 — 3, state auxiliary LDP’s for the hitting times T}, /n, and introduce some notations
and conventions. In Section 2 [resp. Section 3] we provide the proofs of the quenched [resp. annealed] LDP
for hitting times. Section 4 is devoted to the proof of Theorems 1 — 3. In Section 5 we describe the various
rate functions in the paper classifying their shapes, and we study also the environments which lead to an
(annealed) large deviation. Finally, Section 6 describes some questions and open problems.

1.3 General strategy and statements of associated hitting times LDP’s

We begin with a heuristic description of our approach, followed by the statement of some crucial auxiliary
LDP’s for certain hitting times. Recall the hitting times {73}, {T}}, and note that T,, = > ,_; 7%. Under
P, i.e. in the quenched setting, the hitting times {7} } are independent, although not identically distributed.

Therefore,
n n

Ew[exTann«m] = H Ew[ekrklrk<oo |Tk—1 < 00] = H W(Aaek_lw) )
k=1 k=1
with € denoting the shift as before, and therefore, disregarding technical conditions, one expects by the
ergodic theorem that

n—0o0

AN := lim n"'log B, [e’m 14, coo] = /loggo(A,w)n(dw), n— a.s.

Therefore, if A(\) were essentially smooth, one could expect to deduce a LDP for T,,/n by the Géartner-Ellis
theorem, c.f. [4], with (convex) rate function I7>(-). Unfortunately, the required smoothness can fail at the

boundary of the domain of A()), and some extra care is needed in deriving the LDP lower bound.

We note that the random variables {7} can be heavy tailed, i.e. they may not have exponential moments,
or they may possess only certain finite exponential moments. If they were i.i.d., this would imply that the
corresponding rate function in the LDP is not strictly convex and possesses linear pieces. Although the {71}
sequence is not identically distributed, this heuristics suggests that the same is true of I;*q(-). Indeed, we
show in Section 5 that I;’q(-) possesses linear pieces due to the blowup of certain exponential moments of
the hitting times.

Having derived the quenched LDP for T, /n, a simple duality argument allows one to derive the quenched
LDP for X,,/n. Indeed, the event

{X,/n < z} is comparable to {Tp, > n} = {Tpe/nz > 1/x},

and this will lead to (6) and (8). Of course, c.f. (6) and (8), linear pieces in the rate function for the hitting
times yield linear pieces in the rate function for the position.



The derivation of the annealed LDP in Theorem 2 starts also with the evaluation of the logarithmic
moment generating function of the hitting times 7;,. Then,

n
E, [N 17, coo] = exp (Z log <p(/\,9’“‘1w)> = exp (n / log ¢(A, w)Rn(dw)> :
k=1
Thus, if R,, satisfies the LDP under the ergodic measure «, invoking the abstract Laplace principle (Varad-
han’s lemma) one expects that

lim llogE[e’\T" 17, <o) = sup (/ log p(\, w)n(dw) — h(n|a)) .
n—oo N Wer (E)

From this point, the derivation of the annealed LDP for T, /n, with rate function I7?(-) given by the
variational formula (9), is based on convexity considerations and in particular on a min-max argument. This
forces us to study certain properties of the (quenched) rate function, en route to obtaining the variational
representation (7) of the annealed rate function for the hitting times. Note that even if « is a product
measure, one cannot a priori (and, as it turns out, also a-posteriori, c.f. Section 5.2) restrict the infimum in
(9) to product measures 7, and hence one has to consider the quenched LDP for non i.i.d. environments. As
in the quenched case, the LDP for the position X, /n (Theorem 2) follows from the LDP for T, /n by simple
duality arguments.

We now turn to state explicitly the LDPs for the hitting times T),/n which are needed in the program
described above. Define
Ty = Ey[ni|n < o] (10)
(with the value +oo allowed). Recall that a sequence of probability measures u,, satisfies the weak LDP with
rate function I(-) if the upper bound in (3) holds merely for compact sets.

Theorem 4 Assume n € M{(X)X. Then, for n-a.e. w, the distributions of T,/n under P, satisfy a
weak LDP with deterministic, convex rate function I79. Further, I79(-) is decreasing on [1, [ 7,m(dw)] and
increasing on [ [ 7,m(dw), o).

Theorem 4 obviously implies also a LDP for T_,/n, simply by symmetry (i.e., space reversal of the

measure 7). An intermediate step in our proof of Theorem 4, relating the rate function for the LDP of
T_,/n to the one of T}, /n, is provided by the following:

Proposition 1 Assume n € M{(X)X. Then,

/ log F [ 11, <ocln(dw) = / log B, [" 1, <o n(dw) + / log po(w)(dw) (11)

Further, if n € Mg (2)TK | then the distributions of T_,,/n under P, satisfy, for n -a.e. w, a weak LDP with
deterministic rate function

L™ 2= I79 () — / log po(w)n(dw), 1< u < oo. (12)

We note that both in Theorem 4 and Proposition 1, the LDP’s are weak due to possible positive probability
mass at +00. The LDP of Theorem 4 can be strengthened to a full LDP if n € M¢ ()X,

With I7>* defined in (7), the annealed statement corresponding to Theorem 4 is the following:

Theorem 5 Let o € M{(X)K satisfy Assumption (A). Then the distributions of T, /n under P satisfy a
(weak) LDP with convez rate function I7°.



1.4 Notations and conventions

We collect here various notations and conventions used throughout the paper. We will consider the following
sets of probability measures:

My(2)" = {n € M{(3): /log po(w)n(dw) < 0}, M(E) ™ := M(2) \ Mi(2)".

Recall that K C (0,1) is some fixed compact subset of (0,1), and that for any set M C M;(%), MK =
Mn{n :supp(ny) C K C (0,1)}. Set Wmin = Wmin(n) := min{z : z € supp no} where 7y denotes the marginal
of 7, Wmax = Wmax(n) := max{z : z € suppno}, and let pmax = Pmax () := (1 — Wmin)/Wmin- Then, we define

MY2 = {n € M{(S) : wmin(h0) < 1/2,0max(0) > 1/2} (13)
Throughout, all spaces of probability measures are given the topology of weak convergence.

Acknowledgments During the course of this work, we have benefited from discussions with many col-
leagues, including Amir Dembo, Frank den Hollander, Harry Kesten, Yuval Peres, Didier Piau and Alain-Sol
Sznitman. We thank Martin Zerner for sending us a copy of [24] prior to publication, and Jim Pitman for
the reference to [5].

2 Properties of (), w) and proofs of the quenched LDP for hitting
times.

In proving Theorem 4, it is useful to consider first the case n € M¢{ (X)X and prove for it a LDP for the
hitting times. Note that in this case, 1 < oo, 5-a.s. Our strategy for handling the case P, (7, = c0) > 0
will then be to first consider for n € M{(X)+¥ the LDP for the hitting times 7', /n, and then use a space
reversal.

As is often the case, certain properties of the moment generating function (A, w) play an important role
in the proof of the LDP. Recall that when 7 € M{ (X)X it holds that p(\,w) = E,[e*].

Lemma 1 For any A € R, we have that whenever (\,w) < 0o a.s. then

_ 1] po(w)| p-1(w)
P9 = T po@) M pa@) 19

Further, forn € ME(Z) ™K and 1 < u < Ey[n] := [ Ey[ni]n(dw) < oo, there exists a unique Ao = Ao(u,n)
such that Ag < 0 and

d
u= alogcp()\,w)‘ /\On(dw). (15)

Finally, for u as above

inf A\ —c0. 16
- o(u,n) > —oo (16)

Proof of Lemma 1. Pathwise decomposition yields the following formula for 7;:

nn=1x,—1+ (Tll +T{I +1)1x,=—— (17)



where 7{ +1 is the first hitting time of 0 after time 1 (possibly infinite) and 71 +7{' +1 is the first hitting time
of +1 after time 7{ + 1. Note that, under P,, the law of 7{ conditioned on the event X; = —1is Py-1,(71 € )
and, conditioned on the event 7{ < oo, 71’ is independent of 7{ and has law P, (m1 € -). Therefore, we have

90(/\7"‘)) = EU[eAT11T1<OO]
= Pw[Xl = 1] Ew I:eAT1171<OO|X1 =1+ Pw[Xl = _1] Ew I:e/\n 1T1<OO|X1 =-1

-1
= wee + (1 -w)E, [e)‘(”w )1T109—1<00] E, [e’\”ln<oo]eA

= weer + (1 —wp)er (X, 07 w)p(\,w) .

Hence, if p(A\,w) < oo then (), 07 1w) < 0o, and

_ woe™ _ 1
T T 0w o)~ AT p@)e ™ — pol@)p(n0 1) - (18)

p(A,w)

In the same way,
1

(L4 p1)e™ = p_ip(A, 072w)

e\, 0 tw) =

By iteration, we get the representation of ¢ as a continued fraction, i.e., (14). (For a reference on continued
fractions, see [13], [23]).

Let now n € M{(X)t¥. Then, the indicator can be dropped in the definition of p(\,w), and, with A < 0

and
_ Ew [Tl 6/\T1 ]

o) = [ Zpna) = [ Siosenwin(s). (19)
we have

g@z/&MWMZ&hL

and the strictly increasing, continuous function g(-) satisfies g(A\) > 1 and g(\) , 5=, 1. This implies (15).

o0

To complete the proof of (16), note that

1< Ew[ne’\“] . Pw[Tl = 1]€>‘ + E“,[Tle)“r1 ].leg] (20)
= E,[e’M] B P [ = 1]e* + E, [er 17122]
< woek + 63)\/2Ew[Tlf)\n—3>\/217_122] <1+ Ce)\/B ,
woe wo

for some constant ¢ independent of w or A. Taking A — —oo yields the uniform convergence of the right
hand side of (20) to 1, and hence (16). O

Remark : In the same way, taking expectations in (17) and iterating yields E,[r] =14 2Z;, cf (1).

We may now deal in more details with the behavior of ¢(),w) for positive A:
Lemma 2 Letn € Mf(2)"X. Then

(i) There is a deterministic 0o > Aerig > 0, depending only on 1, such that for A < Aeris, (A, w) < 0o forn
-a.e. w, and for X > Aait, (A, w) = oo forn -a.e. w.



#4) Let ueriy = 00 if [ B, [releie™ 1N(dw) = oo and ucriy = 4 log (A, w 1n(dw) else. For E[r] <
ax

—Acrit

u < Ucrit, there exists a unique Ao = Ag(u,n) such that Ao > 0 and (15) holds.

Remark: u.; can be infinite in the general ergodic case, for instance in the periodic case, e.g. for
n= %6(...,w1,w2,w1,w2,...) + %5(...,w2,w1,w2,w1,...) with w; > 1/27(4)2 > 1/2.

Proof of Lemma 2.
(i) Let A.(w) := sup{\ : E,[e*] < co}. Since, using (17), Eg,[e’t] > (1 — w;)E, [e*], we have X (fw) <
Ac(w). But A.(6w) and A.(w) have the same distribution hence )\ (Hw) = A (w) for n-a.e. w, ie. A, is

shift-invariant. Since 7 is ergodic, this implies that Ac(w) = [ A( = Aerit for n -a.e. w.
(ii) With g(\) as in (19), we have that g is strictly 1ncreasmg and contlnuous in A for A < Aeris, 9(0) =
E,[11] < 00, and g(\) ASND,, Uerit- O

Turning to the main business of this section, we have the:

Proof of Theorem 4 for n € M{(X)HK.

The claims on the convexity and monotonicity of I;*q(-) are a direct consequence of the definition and
Lemmas 1 and 2. Considering the bounds themselves, we start by showing that for 1 < v < E,[r], and
n € M(Z)HF,

11msup — log P, ZT] <u| < —supG(A,n,u) = =1 (u), (21)
n— o0 j=1 A<0

with G and I}*? defined in (4) and (5). Indeed, Chebyshev’s inequality implies that, for A <0,

1 /\zn T; Y
Pu.) _ < < [ j= J] nu .
- ZTJ <u E, 17 e
j=1
Note that, because for 5-a.e w, 71, ...,7, are finite and therefore independent under F,,,
1 ASY o 1< 1 &
- log E,, [e i ] = = Zlog E,[ei] = - ZO log E,pi[€*™]
n—1
= = Zlogcp (A, 07w) =% /10g<p win(dw) n-ae. w, (22)
7=0

due to the ergodic theorem for any fixed A. Let Q5 be the set of w’s such that (22) holds for all rational A
and for A = A¢rit. Then n(Q,.5.) = 1. Since the map A — log (A, w) is increasing, the limit in (22) holds on
Q... simultaneously for all real A. This proves (21) for w € Q4p.. Now, Lemma 1 implies that the supremum
in (21) is attained for A = A\g(u), and further is equal to the supremum over A € RR.

Still with n € M{(X)™ ¥, let u > E,[ri], and note that for A > 0, we have

j=1
and
1 <& 1=
— log P, - ;T] >u| < - J:Zologcp()\ 67 w) — \u =% /loggo dw) — Au for -a.e. w,



due to the ergodic theorem. Since A\ > 0 was arbitrary, we have

1 1 &
lim sup - log P, - ZTj >u| < —supG(A,n,u). (23)

n—00 j=1 A>0
Now Lemma 2 implies that the supremum in (23) is attained (with u < uerit) for A = Ag(u), and at A = Acrit
otherwise, and further is equal to the supremum over all A € IR. Hence,

1 1 &
lim sup - log P, - er >ul < =I7%(u). (24)

Taking w in ., the upper bound in the LDP for n € M¢ (X)X follows from (21), (24) and the convexity
of I79(-).
n

To prove the LDP lower bound in Theorem 4 for n € M¢ (%)™ X we follow a standard change of measure,
using independence of the 7;’s under F,. See [4, Pg. 31-33] for a similar argument. Fix u € (1,00),
M € (u+1,00) (eventually, we will take M — oo, and in fact for u < E[ri] we could take M = oo
throughout). Let

An,MZ{Tj SM,j:].,---,n},

and let 13%”(-) denote the law of {7;}?,, conditioned on A, . Note that {7;}}, are still independent,
although not identically distributed, under the law Pw,n. We let

(pM()Hw)

—— ATy = I AT1] —
QOM()H(")) e Ew[e 1T1§M] ) SOM()\aw) = Ew[e ] - Pw[Tl < M] )

logp(}) = / log(p(\, w))(dw) , log par()) := / log(par (A w))n(dw) , Car = / log Pyri < Mn(dw),

and

AM()\) = log @M()\) = logcpM()\) - CM .
Note that 0 > Car > [logwon(dw) > —o0 and Cyr — m—00 0 because 71 < 00, 7-a.s. We have

1 1< 1 L1 & 1
ZlogP, | = < —Su+d)| >—-logP, |~ - —Su+d ZlogP,[A,
~log n;nem ut8)| > ~log n;TJG(u w+8)| + ~log Pu[An,n]

where P, is the standard extension of (P, ;). Using now the fact that $ps(\,w) is smooth and convex, we
define, for M large enough, Apr(u) such that

/dlog@M()\,w
=

)
- d\ |}\:}\M(u)n(dw) '

Define Q,, = Q%M,,\M(u) such that, for each n,

dQ. 1 ~
dpw,n B Zn,w exp()\M(U) ]:Zl TJ) ’
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with Z,,, = H?Zl Gar(Aar(u),07w). Note that Q, is a product measure, and we have
1 n
Ezfj € (u—6,u+9)
j=1

> exp [ —ndr(u)(u+6) + 3 log Gar (Ane (w), 67) | O, % Sn-uf<s| . (@25)
j=1 =

By the ergodic theorem, with the last equality due to our choice of Aps(u),

/%irjdéw =% /d?’]/Tlde =u (26)
j=

on a set of 7-measure 1 which depends on v and M. Similar to the upper bound, we consider the set € p.
of all w’s such that, for all rational v and all integers M € (u + 1,00), (26) holds true, and also (22) with
&m(An(u),.) instead of ¢(A,.). Then n(.) =1, (26) holds on this set for all u € (1,00) by monotonicity
of A [ 7;dQu arn, as well as (22) with @ar(Aar(u),-) instead of ¢(), ) again by monotonicity.

The independence of the 7; under Q., implies that, for n large enough,

4

1 & 3M4
/ E;(TJ_EQW[TJ']) dQ. < pol

Hence, using (26) and the Borel-Cantelli lemma, we obtain for w € Q.

~ 1 —

Substituting in (25), taking logarithms, dividing by n, and letting n — oo and then § — 0, we conclude that

1 .
z il . - - z Y
}gr})llylrggfnlogP - ZT] €Eu—20u+d)| > ()\M w)u hnrr_1>1oréfn leloggoM()\M( u), 6 w)
= — (el — RO () (27)
= —(Am@u—logpm(Am(u)) — Cm
> ()\u —logom(A) — Curr:i= —In(u) — Cyr .

—su
A€
Let I*(u) = limsupy,_, . Iar(uw). Because par(-) is non-decreasing in M, so is —Ips(-), implying that I* (u) >
0 and, because I (u) < oo for large M, also I*(u) < co. Hence, the level sets {A : du—log o (A) > I*(u)}

are non-empty, compact, nested sets and hence contain some \* < oo in their intersection. By Lebesgue’s
monotone convergence, we get

logp(\") = lim logoar(A") < \u—I"(u),

implying that I;*9(u) := supycg(Au — logp())) > I*(u) and hence, in conjunction with (27), the lower
bound with rate function I;’q(u) for all w e Q.. O

11



As mentioned in the outline at the beginning of this section, we turn next to handle the hitting times T"_,, /n.
Define

p(\w) = E, [e)‘T‘llr_1<oo] . (28)

Let 7—1,7_2,7_3,...,7—N have the distribution of 7_1, 7_2, 7_3,...,7_n, conditioned on T_n < o0.

In fact the law of 7_; does not depend on N: the distributions of X(T N = (Xg,...,X7_p) under P,,
conditioned on T_n < 00, N = 1,2,... form a consistent family whose extension is again a Markov chain.

To see this, let Py v := P,[-|T-n < 00], restricted to Xg‘N. Denoting z7 := (z1,...,%,), compute (with
x; > —N),
P@,N[Xn+1 = :L'n+].,X1n = .’II?]
Pp N[XT = 2]
P [ Xpnt1 = 2pn+ 1, XP =27, T_N < 0]
P,[X] =27, T_n<o0]
Pw[Xn—i-l = .Z'n—}—l,Xl" = Z’?]Pgmn+1w[T_N_xn_1 < OO]
P [X] = 27| Pyen o[ I-N—q, < |
= P, Xnt1 = 2n+ 1 X7 = 27 Pyen+1,[T—1 < 0] = Wy, Ppan+1,[T—-1 < 0],

P n[Xnt1 = 2, +1|XT = 27]

where we used the Markov property in the third and in the fourth equality. The last term depends neither

on N nor on m?’l. Therefore, the extension of (Pg n)n>1 is the distribution of the Markov chain with
transition probabilities @; = w;Ppi+1,[T-1 < o0],i € Z. In particular, 7—1,7_2,7—3,... are independent

under P, and form a stationary sequence under P. Let

P\, w)

POw) = Bule ] = gt

(29)
We will show below the following LDP.

Theorem 6 With n € M{(Z)TX | the distributions of % Z?:l 7_; under P, satisfy, for n -a.e. w, o LDP
with deterministic rate function I>9.

An important step in the proof of Theorem 6 will be:
Lemma 3 For any n € M{(2)*, we have, with p(\,w) = E,[e’] and p(\,w) = E, [e}-1],
1oz o) = [Togpnwin(de). (30)

We next recall that if (w;)zez is such that X,, — +o00 P,-a.s. then

ZJO‘.;O HJ.:7H+1 Pi
1+ Z;ifn+1 H§:7n+1 Pi

Pw[mkin Xp < —n]=

for a proof, see e.g. [2, Pg. 65-71]. Hence, we have for n € M{(X)t ¥ that

1
/log P,[r—1 < oo]n(dw) = ILm - log P,[T_,, < o0] = /logpo(w)n(dw), 7 — a.s. (31)

12



Equipped with Theorem 6 and Lemma 3, we can give now the:
Proof of Proposition 1 Note that for A C [1,00), we have

1 1
P, EZT_jEA,T_n<OO =P, Ezlr_jeA P,[T_p < 9
]:

Jj=1

Proposition 1 now follows from Theorem 6, Lemma 3, (29) and (31). In particular, Lemma 3 and (31) imply
(11) for n € Mf(Z)TE. If n € M{(Z)~ K, applying (11) for ™ € Mf(X)™X implies (11) for 7, since
po(Inv w) = po(w)~". O

Still assuming Theorem 6 and Lemma 3, we can now complete the:
Proof of Theorem 4 for n € M{ (X)X

Clearly, [log po(w)n(dw) = — [log po(w)n™ (dw), and further the law of Z;‘Zl 7; under 7 is the same as
the law of 3°7; 7_; under '™ € M{(2)tX. Hence, the distributions of . 3%, 7; under P, satisfy, 7-a.s.,
the LDP with rate function

It ) + [ log m@in(d).
The conclusion follows by (11). U

Proof of Lemma 3. Considering (29) and (31), (30) is equivalent to

/ log $(\, w)ri(dw) = / log p(A, w)ri(dw) + / log po (w)11(dw) (32)

To prove (32), define A = {X : [logp(\,w)n(dw) < oo}. To circumvent integrability problems, we fix
M < o0, which could be taken as oo in the case A < 0, yielding a more transparent proof in this case.
Consider the event D s := {7_1 < T}, and define

¢"(\w) = Eu[e**; D

for A € A. Note that on Dy, Thy = 71 + 7 + T}, where 7_1 + 7] is the first hitting time of 0 after 7_; and
T}, is independent of 7_; and 7{, with the same distribution as Ths. This path decomposition now yields,
similarly to (17), that

E,[e*™; D] = Bu[eX™]5M (A, w)e(X, 07 w), (33)

implying, for A € A and all w with P,[Th < oo] =1,

1> Ew[e)‘TM;DM]

> e = M )0 (34)

and hence, for A € A,
—logp(X,0 'w) > log 3" (\,w),

implying by monotonicity also that —logp(), 0 'w) > log@(A,w). Since log@(A,w) > logpM (A, w) >
A +log(1 — wy), it follows that both log (A, w) and log ™ (\,w) are integrable for A € A.

Next, using again path decomposition one finds that, n-a.s.,

E, [e*™";Dy] = (1 —wo)e* +woe*Egy, [*™*; Dpr—1] B, [¢*™"; D] .

13



Hence, n-a.s,

- ~M— e M\ w

PP (0) = LR ),
and similarly, by (18),

—1 eixﬂo()‘aw)
po(W)p(A,w)p(A, 8 w) = T 1.
Then, 7-a.s,
~M -1 ~M G_AQO()\,LU) ~M
po(@) (1= 8" w)e(h070) Johw) = polwlphew) =B (hw) L 22 4+ B (3, w)

Therefore, n-a.s,
IOg Po (w) + log (P()\,w) - IOg @M()‘aw) = log(]- - SbM_l()‘a Gw)cp()\,w)) - log(l - @M()‘aw)‘p()‘a 0_1"‘))) )

and averaging over M = 2 to K and taking expectations (using stationarity and (33)!) yields, for A € A,

K
E[log po] + Eflog p(\,w)] — (K = 1)™" >~ E [log 3" (), w)]
M=2

—(K = 1)7" (E [log(1 = " (A, w)p(X,07w)) —log(1 = §' (X, fw)p (A, w))])

—(K-1)"1 (E [Iog %] + const> . (35)

But, using again the Markov property and stationarity of 7,

K
(K —1)7'E [log B, [eX™; D§]] = (K = 1)™' Y Elog By[e* 1,_,,57]] w2, Ellogo(h,w)],
M=1

due to monotone convergence, implying that the right hand side of (35) vanishes for K — co. Substituting
in (35) and using monotone convergence again, we get (32) for A € A. To get that the left hand side of (32)
is +00 for A € A°, assume otherwise, and reverse the role of ¢ and ¢ in the above proof, while replacing D s
byDMZ{Tl <T,M<OO}. Ol

Proof of Theorem 6. Note that all that is needed in order to mimic the argument given in the proof of
Theorem 4 for n € M¢ (X)X is the almost sure convergenceof n=1 3" log p(A,0~'w) to [ log p(A, w)n(dw),
which is ensured by the ergodicity of 5. [
Remarks:

1. In the recurrent case, {7_;} has the same law as {7_;}.

2. Lemma 3 implies, by differentiating (30) at zero, that the cumulants of 74 and 7_; have the same
expectation under 7. In particular, E,[7_1] = E,[m]. We note that Lemma 3 resembles results of [5],
although we do not see a direct relation between the two.

For future reference, we note some easy properties of the rate function I;°7(-). The reader is advised
to skip this part in first reading. Recall the notations introduced in (4). With 7, = E,[n|m < 0], let
M, = {n € M{(2)X : E,[r,] > u}. Then, for n € M,, one has by Lemma 1 (for n € M{(X)"* N M,) and
Proposition 1 (for n € M, \ M{(2)H¥) that

I (u) = sup [G(A,m,u)] = sup[G(A, n,u)] . (36)
AelR A<0

14



Similarly, let M, = {n € M{(X)K : E,[r,] < u}. Then, for n € M, , one has by Lemma 2 (for n €
M{(2)HE N M) and Proposition 1 (for n € M \ M{(Z)HK) that

I (u) = sup [G(A,m,u)] = sup[G(A, n,u)] . (37)
AeR A>0

Next, if n € M, then, by Jensen’s inequality,

supG(A,n,u) < sup [Au - )\/Ew[7'1|7'1 < oo]n(dw)] - /IOng[Tl < oo]n(dw)
A<0 A<0

= —/long[ﬁ < oo|n(dw)

where the last equality is due to the fact that the last supremum is achieved at A = 0. On the other hand,
the substitution A = 0 in the above reveals that

supG(A,m,u) > — /IOng[Tl < oo]n(dw) .
A<0

Hence, due to (31),

sup G\, 7,u) = / log po (w)dne(w) V 0, (38)
Similarly, if n € M,, then
sup GO\ 1,0) = / log po (w)dne(w) V0. (39)

We also note that the rate function I;-9(-) is convex, with minimum value [ log po(w)n(dw) V 0 achieved at
E,[7,]. Hence, for all n € M{(X)X,

sup G(\,n,u) = inf I1%(w), (40)
A<0 w<

and
sup G(A,n,u) = inf 1% (w). (41)
A>0 w>u

We conclude this section with some properties of (A, w) in the particular case that 7 is locally equivalent
to the product of its marginals, as defined before Assumption (A). These properties are needed in the study
of the annealed case.

Lemma 4 Let n € M{(Z)HE be locally equivalent to the product of its marginals. Then,

(3) If pmax < 1, then Aerit = —% 1og(4wmin (1 — Wmin)) > 0 and o(\,w) = E,[e*] < 00 iff A < Acrit-

Further, ueri := [ % log p(\,w) NN n(dw) < 0o unless n is degenerate, i.e. unless w = const n-a.s.

(”) If Pmax > 1, we have A¢rip = 0.

Note that without the condition of local equivalence to the product of marginals, one can have Aeri¢ > A, c.f.
the example in the remark following Lemma 2.

The next lemma is needed in the proof of Lemma 4. It can also be used to show that, if pmax < 1 and
n(wo # 1/2) > 0, the random walk has a positive speed v, > 0.
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Lemma 5 Let (by(w),b2(w), b3(w),...) be a stationary, ergodic sequence with 0 < by(w) <1, n - a.s., and
Ep[bi1(w)] < 1. Then we have E, [> 0, by -+ by] < oo.

Proof: Fix v such that 0 < v < 1 and n(by < v) > 0. Let ¢ := 0, ¢; := inf{n > 1: b, < v} and
tp41 = inf{n > tx : by, < v}. Due to our assumption on =, the ergodic theorem implies that E,[t1] < oo.
Clearly, by - - - b, <~* and therefore

Zbl"'bnSZ’Yk(tk_tk—l)- (42)
n=1 k=1

But E,[tr — ty—1] = Ey[t1] due to stationarity, and taking expectations in (42) yields

By |D b1 bn| < Eylta] > 7" <o0.
n=1 k=1
O
Proof of Lemma 4. Throughout, we take A > 0.
(i) Note that for Wmin = (- - - , Wmin, Wmin, Wmin, - - -), we have (by standard coupling) that
E,[e*"] < B, [e*"]. (43)

Let @(\) := E5_, [e’]. Note that, by the same recursion used to derive (18), based on (17), one knows
that if $(A) < oo then

?(A) = wmine/\ + e)‘(l - Wmin)(‘ﬁ()‘))2 ) (44)

1—v1—e2(2-%

26)‘(1 - wmin) ’

leading to

P(A) =

as long as A < A = —210g(4wmin(1 — wmin)). We have to show that for A > A, E,[e’] = oo for 7 -a.a.
w. Assume 7g(wmin) > 0. In a first step, we show that for each K > 0, there is Ax C ¥ with n(4g) > 0

and E,[e*’] > K forw € Ag. Let By == {w 1w = w_1 = W_9 = ... = W_p = Wmin}.- I nisa
product measure, 9(Bar) = (o(Wmin))™ > 0. If 7 is not a product measure, our assumption on 7 implies
that n(Bar) > 0 also, since By depends only on wg,w_1,...,w_y. For w € By, we have, using a coupling

argument, that
B[] > B [ Luin, x> ] 2 K (5)

for M = M(K) big enough, since

XT1 ]

lim Eg,..[e* L, x> M) = Eg,..[e

@Wmin = .
M— o0

This proves the first step by taking Ax = Byy(k)- Let now w € By(xy11- If E,[e*™] < oo then

Ey[e*™] > wmine* + (1 — wmin)e* K E, [e*]

and this is a contradiction if (1 — wmin)e*K > 1. If 5o(wmin) = 0, one has to approximate.
In order to show ueiy < 00, it is enough to prove that [ E,[re* ™ |n(dw) < oo. Let (A, w,C) :=
E,[(r1 A C)e*]. The same recursion as in (17) yields, for A < Acrit,

PAw,C) < woet + (1 —wo)etp(A, 07 w)p(A,w)
+(1 —wo)eMp(N, 07 w, C)p( A, w) + (1 — wo)erPp( A, w, C)p(X, 67 w)
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Note that for A < Aerit; (A, w) < B(A) for all w. This implies
P\, w,0) < a(X,wo) + b, wo) (A, 0w, C) (46)

where

_ woet + (1 —wo)er (@(N)? _ (1 -wo)e*p(N)
a()‘aw0) - 0 1— (1 — w(?)e’\@()\) ) b()‘a (.d()) - 1— (1 _ wo)e)\w()\) . (47)

Tteration of (46) yields, taking A = Aerit,

o0

Y(Acrit; wo, C) < a(Acrit, wo) + Z b(Acrit, wo) * * * b(Acrit, w—j)a(Acrit, w—j—1) (48)
7=0

But we know that a(Aerit, ) is bounded, because, using the value P(Aerit) = (lf’s—m“n)l/ 2, we have from (47)
that
woekcrit + (1 — wo)eAcrit (@()\Crlt))z < e/\crit + e/\crit (@(Acrlt))2

Further, using the same substitution,

a(Aerit, wo) = < 0.

b(Aerit, wo) = (49)
In particular, 0 < b(Acrit;wo) < 1 and, if 1 is not degenerate, Ep[b(Acrit, wo)] < 1. Lemma 5 now enables us
to integrate (48) with 7 and we see that [ ¥(Aerit, w, C)n(dw) is bounded uniformly in C.

Note that ucit = o0 in the degenerate case since

(ii) We use the same argument as in the proof of (i). Assume 7o(wo < 1/2) > 0. Let A > 0. In a first step, we
show that for each K > 0, there is Ax C ¥ with n(Ax) > 0 and E,[e*™] > K for w € Ak. Let By, := {w:
wo <1/2, w1 <1/2,w_5 <1/2,...,w_p < 1/2}. If 5 is a product measure, n(B%;) = (Mo(Wmin))¥ > 0.
If n is not a product measure, our assumption on 7 implies that n(B},) > 0 also, since B, depends only on
wo,W_1,...,w_pm. For w € B),, we have

E‘-"[eATl] Z E(-“al/?a1/2a1/27w15w2a'“) [e)“rl lmink X)csz] Z K
for M = M (K) big enough, since

lim FE(  1/2,1/2,1/2,w01,w2,..) (€2 Lining Xp>—m] = E(...,1/2,1/2,1/2,0.)1,0.)2,...)[6/\7-1] =00.

M— o0

This proves the first step by taking Ax = B ). Let now w € Bjy (- If E, [e*™] < oo then
1 1
E,[e’] > Ee’\ +(1- E)e’\KEw[eA”]

and this is a contradiction if 2e*K > 1. If njo(wo < 1/2) = 0, one has to approximate. ]

Remark: An inspection of the proof reveals that part i) of Lemma 4 still holds for any n € Mf(Z)H%

satisfying n({w; € [Wmin,wmin + €]}179) > 0 for all ¢ > 0, and My = M(Ko) such that (45) holds with
Ky = Ko(Wmin) := [2(wmin/(1 - wmin))1/2]-
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3 Proofs - annealed LDP’s for hitting times.

Recall the notation f(\,w) = log E,[e’1,, <o) = logp(A,w). In what follows, Wmin, Pmax, €tc. are
always defined in terms of a, whereas if a € M¢{(X)HE then Ay is defined as in Lemma 2, while if
a € M{(Z)E \ Mg(Z)HXE then Acrit := Aerit(a!™Y). Also, unless denoted otherwise, expectations are taken
with respect to a or P,. We recall that M;(X) is equipped with the topology of weak convergence, and
define the compact set

Do = {u € M ()™ : supp pio C supp o}

Lemma 6 Assume o € M{(X)K satisfies Assumption (A) and is mon-degenerate. Then, the function
(1, A) = [ f\ w)p(dw) is continuous on Dy X (—00, Acrit]-
Proof of Lemma 6. For k > 1, decompose ¢(\,w) as follows:

B[’ 17 <o0] = Eu[e™ ;71 < K] + Eu[er ;00 > 11 > K] = of (A w) + 95 (A w), (50)

where (\,w) — log p¥(\,w) is bounded and continuous. We also have

o5 ()‘: w) 905()‘(‘11“ w)
< I 1+ =22 ) <1 1+ ==—="""7.
0= Og( * SD’f(%w)> - Og( * Wmin€*

Hence, the required continuity of the function (g, A\) = [ f(A,w)p(dw) will follow from (50) as soon as we
show that for any fixed constant C; < 1,

lim sup /log (1 + M) pu(dw) =0. (51)

K—00 HEDa C]_

If & € M'/? (recall (13)), then Acrit = O and then one finds for each € > 0 a &, = (e, ) large enough such

that,
P,[oo > 711 > Ky
E, |1 1 .
H[og( + Pw[7'1<oo] <e€

Further, in this situation, for ergodic y, c.f. (31),

‘/fw¢AHQM)=(—3/k%pawnmmo)Ao. (52)

In particular, p — [ f(0,w)u(dw), being linear, is uniformly continuous on the compact set Do. Therefore,
using (50), one sees that for each p € D, one can construct a neighborhood B, of u such that, for each
v € B, N Dy,

Pw[oo>T1>fi,,+1]>] <e

v |1 1
E |:Og( + Pw[T1<OO]

By compactness, it follows that there exists an k = k(¢) large enough such that, for all u € D,,,

P,loo>mn >f~z])] e

E, (1 1
4%(+ Polr < o)

Using the inequality log(1 + cz) < clog(1l + z), valid for > 0, ¢ > 1, one finds that for x large enough,

sup /log (1 + %ﬁ) uldw) < e/Cq,

HEDq
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proving (51) for a € M'/2.
The case a ¢ M'/? is simpler: suppose wmin > 1 /2. Then, with A > 0, because supp po C supp ag,
Ew [e}\‘r1 1T1<00] < EEmin [e)\T1 1T1<OO] < oo

for p-a.e. w, where Wmin = (- - -, Wmin, Wmin, Wmin, - - -), and the last inequality is due to Lemma 4. On the
other hand, we have f(\,w) > A +logwp. We show that (A,w) — ¢(A,w) is continuous, which is enough to
complete the proof of the lemma. Write as before

E e’ 1, <o) = Eu[e? ;11 < K]+ Ey[er 500 > 1 > K] (53)

and observe that the first term in the right hand side of (53) is continuous as a function of w and the second
term goes to 0 for kK — oo, uniformly in w. More precisely,

E [e/\n 00 >T > K',] < E— [e critT1. $T1 > KZ]

where Eg

Wmin

under the measure n = g

[eritT1] < 0o and therefore Pg_, [11 > K] —x—00 0 due to the transience of the random walk

If Wiax < 1/2, apply the same arguments for a!"V. [l

Wmin *

Proof of Theorem 5.

Tjgu],wherel < u < oo.

Upper bounds: We begin by proving an upper bound for % log P [% > =1

We have, for A <0,

1 - - —Anu
E ZTJ' <ul < E |exp )‘Z'rj 1Tj<oo,j:l,...,n € (54)
But,
E exp AZT] 1T_7'<(X>,j=1,...,n = E H E ]]-T <OO]
; =

= E |exp Zf ,07w) :E[exp(n/f()\,w)Rn(dw))]

where R, = & E?;OI 0pi, € M1(X) denotes the empirical field.

By assumption, the distributions of R,, satisfy a LDP with rate function h(-|a). Lemma 6 ensures that
we can apply Varadhan’s lemma (see [4, Lemma 4.3.6]) to get

imsup 1o 7 [oxp (v [ £ )Ra))| < o [ som@) ~nola)| . 69

Going back to (54), this yields the upper bound

1 n
hmsup — 10 P |- 7, <u|l < inf sup [/ A, w)n(dw) — h(n|a —)\u]
maw J 08P | 3 o s | [ SO = bl

= —su inf  [G(A\,n,u) + h(n|a)] - 56
sup inf  [GOun,w) + hiala)] (56)
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Since g = — [ f(A\,w)u(dw) + h(u|e) is lower semi-continuous and M (X) is compact, the infimum in (56)
is achieved for each A, on measures with support of their marginal included in K, for otherwise h(n|a) = co.
Further, by (16), the supremum over A can be taken over a compact set (recall that oo > u > 1!). Hence,
by the Minimax Theorem (see [4, Pg. 151] for Sion’s version), the min-max is equal to the max-min in (56).
Further, since taking first the supremum in A in the right hand side of (56) yields a lower semicontinuous
function, an achieving 7 exists, and then, due to compactness, there exists actually an achieving pair A, 7.
We will show below that the infimum may be taken over ergodic measures only, that is

inf  sup (GO\,n,u) + h(nla)) = inf  sup (G(\,n,u) + h(n|a 57
ner(E)KAS%( (Asm,u) + h(n|a)) ner(z)ﬂgpo( (A, u) + h(n|a)) (57)
Then,
56) = — inf sup (G(\,n,u) + h(n|la)) = —  inf inf [I79(w) + h(n|a)] , 58
(56) nEMf(E)KAS%( (Asm,u) + h(n|a)) ner(z)ngu[" (w) + h(nla)] (58)

where the second equality is due to (40). Hence,

) 1 1 & . . . N
1171111_)sotc1>p . log P - jZ::lTj <ul| < —iléfuneﬂ/}?&)l{ [I79(w) + h(n|a)] = —;)r%fulaa(w). (59)

Turning to the proof of (57), we have, due to Assumption (A2), a sequence of ergodic measures with 5™ — 7
and h(n™|a) — h(fj|a). Let A\, be the maximizers in (57) corresponding to n™. We have

e s ([ [ r0.0m@)] + 1) < [ = [ 10w+ @

nEM; (X)X x<o

W.lo.g. we can assume, by taking a subsequence, that A,, = A* < 0. Using the joint continuity in Lemma
6, we have, for € > 0 and n > Ny(e),

i [ fOman @) +n0ria) < [xu= [ 5000 + niila) +<
¢ it o] )

But this shows the equality in (57), since the reverse inequality there is trivial. This completes the proof of
the upper bound for the lower tail (the case u = 1 being handled directly by noting that n=' 37, 7; < 1
implies that 7; =1,j =1,...,n).

We next turn our attention to the upper bound for the upper tail, that is to % log P [oo > % 2?21 Tj > ul,
where 1 < u < co. We have, for A > 0,
1 n n
P oo > E ZTJ Z u S E exp )\ZTJ 17-]-<oo,j=1,...,n e_/\nu (61)
Jj=1 Jj=1
But
Elexp (A 75 | In<oojmtoom| = E|]]Eo[e21r<0]
j=1 [ =1
n—1
= Elexp| Y f(\tw)||=E [exp (n/f(A,w)Rn(dw)>] .
=0




Lemma 6 now ensures that we can apply Varadhan’s lemma (see [4, Lemma 4.3.6]) to get

imsup +log 7 oxp (v [ f0 )R | < sup | [ sOvm@n) - nrke)] . (2

n—00 neEM;$ (%)

(The r.h.s. in (62) is 400 if A > Acrit(), simply by choosing n = a). Going back to (61), this yields the
upper bound

IN

1 1 &
li Z logP > = S>>
1msup n Og (o.] n ZT]_U

n—o0

it sup | [ 0w)n(de) ~ hiia)

A20pem; ()

= —su inf [G(A,n,u) + h(n|a)] . 63
sup i 1GO,,) + hale)] (63)

=1

Since g = — [ f(A\,w)u(dw) + h(u|e) is lower semi-continuous and M (X) is compact, the infimum in (63)
is achieved for each A, on measures with support of their marginal included in K, for otherwise h(n|a) = co.
Since (as can be checked using n = «), the supremum over A can be taken over the compact set [0, Acrit]
which depends only on «, there exists a pair A, 7j which achieves the infimum and the supremum in (63). The
Minimax Theorem (see [4, Pg. 151]) implies that the infimum and the supremum in (63) can be exchanged.
Exactly as we showed (57), we prove that

inf  sup (G(\,n,u) + h(nla)) = inf  sup (G(\,n,u) + h(n|a 64
e SR (GO, )+ h)) = sup (GO m.1) + A} (64)
Then,
63) =— inf sup(G(A,n,u) + h(n|a)) =— inf  inf |I7%(w) + h(n|a)| , 65
(63) ner(E)KAZPO( (A, m,u) + h(n|a)) ner(z)szu[" (w) + h(nle)] (65)

where the last equality is due to (41). Hence,

1
limsup — log P
n

n— oo

1 . : ; 1

%>~ ;Tj > u] < _ulgfunezvlf?(fz)K [I79(w) + h(n|a)] = —Jgfula (w). (66)
This completes the proof of the upper bound for the upper tail. Since we show below that I7»%(-) is convex,
the upper bound in Theorem 5 is established.

Proof of the lower bounds. We will use the following standard argument.

Lemma 7 Let P be a probability distribution, (F,) be an increasing sequence of o-fields and A, be F,-
measurable sets, n = 1,2,3,.... Let (Q,) be a sequence of probability distributions such that Q,[A,] — 1
and

. 1

limsup = H(Q,|P)| <h

n—o0 n Fn

where H(:-|P) - denotes the relative entropy w.r.t. P on the o-field F,, and h is a positive number. Then

n

we have )
liminf — log P[A,] > —h.
n—oc N

Proof of Lemma 7. From the basic entropy inequality ([6], p. 423),

log2 + H(Q,|P)

Fr
Qnl4n] < og(l +1/P[A,]) A, € Fn,
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we have —Q,[A,]log P[A,] < log2 + H(Q,|P) - Dividing by n and taking limits we obtain the desired

n

result. O

For € Mg(2)t, fix u+1 < M < oo, define Q,, as in the proof of the lower bound of Theorem 4, and let
Qn = Q. ®n(dw). Let A, = {|n~" Y1 T — u| < 8}. We know already that

QulAL] =% 0, m —as.,

and this implies
Q,lA8] —3 0.

n—oo

Let Fp :=o({7i}iy, {wi}j=_m), Ty = o({w;}j=_pr)- Note that

Qnl7, = Qulr, @ nlFs -

Hence,

H(Qq|P)

. = Hlo)

- n(dw) . (67)

o+ [ H@IR)

Considering the second term in (67), we have

» @R

7(dw) = —% /log Zpwn(dw) +)\M(u)/% qu@wn(dw)

Fn

=2 [ togon (0,0 () + ) [ 13" rdQun(a)

n

and we see, as in the proof of the lower bound of Theorem 4, that

v [ H@uIP)| 1) = A = Rarhss () < Tas ) = Co

Fn

We already know that
lim sup(Iny (u) — Cumr) < Ip9(u),

M—o0

while, considering the first term in (67), we know that

. 1
lim sup - H(n|a) o h(nla) .

n—oo n

Hence,

1 .
lim sup lim sup - H(Qy|P)

M—o00 n—oo

L < I3 + hiuja)

and we can now apply the standard argument. As in the quenched case, one derives the LDP lower bound
for n € Mf(Z)X \ Mg(Z)+HX by repeating the above argument with the required (obvious) modifications.

Finally, we prove the convexity of I7*(-). Note that the function

sup inf  [G(A,m,u) + h(n|a)] = sup [)\u + inf (—/f()\,w)n(dw) + h(n|a))] ) (68)

AeR NEM; (E)K AeR neEM; (X)X
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being a supremum over affine functions in wu, is clearly convex in u, while one shows, exactly as in (57), that

inf  sup [G(\,m,u) + h(n|a)] = inf  sup [G(\,n,u) + h(n|a 69
(SR (GOm0 b)) = it sup (G, + hrla)] (69)
and therefore
inf sup [G(A,n,u) + h(n|a)] = inf I (u) + h(n|a)] = I7%(u) .
S GO ) Al = inf (1) + hale)] = 12 ()

Recalling that supremum and infimum in (68) can be exchanged, this completes the proof of Theorem 5. [

4 Proofs - LDP’s for X,, and functional LDP’s.

The results in this section are relatively straightforward applications of the work done previously. We thus
emphasize in the proofs only the new elements which need to be introduced.

Proof of Theorem 1. By symmetry, it is enough to consider n € Mf (%)X,

1. Note that I7(0") = Aerie by Lemma 2, (5) and (6). Further,

w) = dim, |19+ [ log el

i
|’U| v—0t

and hence I{(-) is continuous at 0. Using the convexity of I7°? and the fact that z — zf(1/x) is convex

1 q — 1 —T,q
Jim I7(v) = lim |olI;4(

if f is convex, one sees that I is convex on (0,1] and on [-1,0), separately. Finally, (IZ)'(0") =
(I1)'(07) = [log po(w)no(dw) > (I3)'(07), establishing the convexity of I on [-1,1].

2. Let v > v,;. We have

[nv]
X, _ n
P, [TZU]SPw[TanJSn]—Pw WJEZI:TJSI_WUJ

Theorem 4 now implies

1 X 1
limsup — log P, [—" > v] < —wlp? (—) .
n

n—oo N v

In the same way, we have for any |[v —vy|/2 > >0and 0 < e < §/2,

P o492 22> 0-9) 2 R[4 =00 < Ty <1,

hence, Theorem 4 implies

n 1-
liminfl log P, [XT € (v —5,v+5)] > —vInT’q< ” 6) , 1 —a.ew,

n—oo N

and the lower bound follows by letting € — 0.
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3. Assume v, > 0. Let 0 < v < v,;. We have for any /2 > € >0, and § < |[v —v,|/2,

Ro-9<3

<0+ 0)] 2 P[00+ 2 T 201~ 9)].
The lower bound follows from Theorem 4.

We now prove the upper bound for P,[X,,/n < v],v < v,. The proof is technically more involved (except
if i is locally equivalent to the product of its marginals, see (79)). We start with the case v = 0. Let
€,0 > 0, with § < v,,. Then,

P,[X.<0] < P, [T[m;] > n] +P, [T[m;] <n, % < 0]

Tin
< Rffugzn)+ > R e ke (h+ 1)el] x
1/e<k,l;(k+1)e<1/§ "
T
Pa[n%[ n[(s"] € [le, (1 + 1)6[] sup P, [Xm < 0] (70)

—2nde<m—n(1—kH)de) <0

by the strong Markov property. Define the random variable

1
a = limsup — sup log P, [ X, <0]
n—oo TV m:—2nde<m—n<0
and note, using the inequality P,[X, < 0] > P,[X, < 0]infi<q Ppiy[Xn—m = —(n —m)] with a worst-
environment estimate, that

a — Cde < limsup 1 logP, [X, <0]<a (71)

n—oo T

with C' = —2log(1 —wmax) > 0. The first two probabilities in the right-hand side of (70) will be estimated
using Theorem 4. By convexity, the rate functions IffT’q are continuous, so that the oscillation

w(d;€) = max{|I7(u) — I} (u')| + I, 7% (u) — I, 7 (u')[;u,u’ € [1,1/8], [u — u'| < €}

tends to 0 with e, for all fixed . From the proof of Theorem 4, it is not difficult to see that the third term
in the right-hand side of (70) can be estimated similarly (it does not cause problems to consider Pyns,
instead of P,):

T_[ng]

1
lim sup - log Pyins,, [ € [le, (1 + 1)6[] < =6 (I, ™(le) —w(d;€)) 1 —a.ew.

n—oo 6

Finally, we get from (71) and (70)

—J _ q a(_ . -
a < Cde + max{—TI1(é), 1/69,11;1(1]5)3(“)631/6[ de(kL}(1/ke) + LI1(=1/l€)) + 20w(d;€) + (1—(k+1+2)de)a]} .
By convexity and since § < vy, it holds kI1(1/ke) +1I3(—1/le) > (k+1)I1(0) > (k+1)I1(5), and therefore
a' := a+ I}(d) is such that

a' < Cde+ ( [20w(8;€) + 26eL3(8) + (1 — (k+ 1+ 2)6e)a’]) '

max
1/e<k,l;(k+1)e<1/8

Computing the maximum for positive a', we derive that 2a’ < Ce+2(w(d;€) + €l (0)). Letting now € — 0
and § — 0, we conclude that

lim sup% log P, [Xn < O] < -I30) , n—as. (72)

n— oo
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For an arbitrary v € [0,v,[, we write

P, I:ﬁ < U] < F, [T[m)] 2 n] + Z P, [T[nv] € [kea (k+1)€[] sup PG[M]M [Xm < 0]
n kv e<h<1/e n min(1—(k+1)e)<m<n(1—ke)
(73)
where the two first probabilities in the right-hand side can be estimated using Theorem 4, and the last
one as in (72), following the lines above. This yields

1
lirrbr1_>sol<1)p - log P, [Xn < nv} < lilz’l_il)lp (Ig(v) \% v/eréll?%cl/e[—kdg(v/ke) -(1- ke)I,‘%(O)])

~I7 (v), (74)

by convexity.
4. The upper bound for general subsets of [0, 1] follows again by noting that the rate function I1(-) is convex.

5. The proof concerning deviations to the left follows the same path, replacing T3, by T",,. O

Proof of Theorem 2. All the statements follow from Theorem 5 by a rerun of the derivation of Theorem
1 from Theorem 4, except for the convexity of I and also the upper bound similar to (74). From the
convexity of IF™? it is clear that I is convex separately on [—1,0] and on [0,1]. If Auix = O we have
0 < 12(0) < I4(0) = 0, and then I% is convex on [—1,1] in this case. It remains to consider the case
Acrit > 0. We will assume that pmax < 1, the case pmin > 1 being proved with the same arguments for o™
instead of . Then for any n with h(n|a) < co (and in particular, pmax(n) < 1),

I;,—’q(u) > Acrit® — /IOg 90(/\crit; w)n(dw) > Acrit® — IOg ‘ﬁ()‘crit) )

Where @()\crit) = E(I]min

[e)‘“““] < 00, as in the proof of Lemma 4. Hence,

I8(0) = lim w™ ' I7%w) > Acis -

uU—r0o0

Since we already know that I%(0) < I%2(0) = Aeris, we conclude that I2(0) = Acrig- Due to separate convexity
it is enough, in order to prove convexity of I on [—1,1], to show that for v > 0

I5(v) + I5(-v) > 215(0) (75)

since this will imply that I¢'(0~) < I2'(0%). But

[B0) = eI =v int |15 + bl

v neM;s (2)K

1
> inf  [Aerie— — [ 1 Acrit, w)n(d h
> UWGA}?(E)K [ ¢ t'l) / ng( crit w)n( w) + (77|04)]

by the substitution A = Aeig in (5). With a similar computation for I2(—v) we then get

LWHLEY) 2 Dento - 0f [— / log p(Aerit, w)n(dw) — / log @(Acrit, w)n'(dw) + h(nla) + h(n'|a)
n:n 1
(76)
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with ¢ defined in (28), and we finally derive (75) by showing that

/ log ¢(Acrit, w)n(dw) + / log @(Acrit, w)n' (dw) < 0 (77)
for all n,n' € M{ (X)X such that h(n|a) + h(n'|a) < oc. Recall (34) and note that

‘;5(/\crita w)‘p()‘crita oilw) S 1

holds for all w with w; > Wmin, i € Z. The point here is, that (A, 0 'w) [resp., G(Aerit,w)] is measurable
with respect to the o-algebra F~ generated by w;, i < 0 [resp., F+ generated by w;, i > 0]. Taking logarithms
in the last inequality and integrating for the measure N, ® n" Lo We get

F

/ Log ¢ (herit, 6 w)n(dw) + / log $(Aesits )17 (d) < 0

proving (77) since 7 is translation invariant. Granted with the convexity, we now complete the proof of the
Theorem by showing that for v € [0, v/,

lim sup 1 logP[Xn < nv] < =I%(v), (78)
n—oo T

the statement analogous to (74). But the strategy is quite different, and much simpler, since « is locally

equivalent to the product of its marginals. Indeed we just proved I%(0) = Acrit, and from Lemma 4, if

Wmin < 1/2 then Aqis = 0 and the claim is trivial, but in the opposite case wmyin, > 1/2 that we consider now,

we have ey = X 1= —% log(4wmin (1 — Wmin)) > 0. We will use the exponential martingale M,, for the walk

in a fixed environment w,

n—1
M, :=exp (an - Z F(s,ka)>
k=0
with ['(s,w) = log(we® + (1 — w)e™*). Taking s := (1/2)1og((1 — Wmin)/wWmin) < 0 we see that ['(s,.) is

decreasing, so that a.s., I'(s,wx,) < I'(8,wmin) = —A. Therefore,
m—1 _
P,[Xm <0] < E,lexp(sXm)] < E, |exp(sXm — Z F(s,ka))] exp(—mA) = exp(—mI5(0)) (79)
k=0

for a-a.e. w. Inserting this in (73) and taking the average over the medium, we obtain

lim sup logP[Xn < nv] < lim sup ([—Ig(v)] v, max [=keli(o/ke) = (1= ke)fg(0)1> = —I%) ,

n—oo N e—0 v/e<k<1

using again convexity. This is (78), and the proof is complete.

Proof of Theorem 3. Fix A > 0 (eventually, A — 0). For ¢ € L, let
0o =0, 0j :min{tZGj_l : |¢(t) —¢(0j_1)| :A}/\l, j=1...,J,

define Y; = ¢(6;), and say that 1 < j € It if Y; > Y;_y and j € I otherwise. Define next the random
times

Y,
§0=0,§j=min{k>§j_1:sznA[K]J}/\n,jzl,...,J.
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Consider the event

J
= {36 -g0-0,-00) <5}
j=1
We begin by proving the
Lemma 8
lim lim sup Liog P, [AA 6] <= 3 AL —0m) = Y ALTUG; — 051) 1 ae., (80)
nreo jer+ jeI-
and
lim lim inf ElogP [AA 6] > — GZHAIW (6 —6;_1) EZI AL;™9(0; — 6,_1) 7 ace.. (81)
J Jel™

Proof of Lemma 8. The proof is no more than an exercise in book-keeping. Indeed, let M = maxY;,
M~ = —minY;, and note that [-M~, M+] = UM M /AL, where Ly = [~ M~ + (k- 1)A, — M~ + kA
With R; = [Yj AYj41,Y; VYj41], one obtains a partition of j € I (j € I7) into sets K", (K ), such that
Rj =Ly for j € K; (j € K,,). Note that |K; | — |K, |=0or 1, and |[K;| <AL

Next, let {7£}5°, be independent (given w) copies of the random variable 7;, and, with 7_; = inf{t > T} :
X, =i—1}—T;, let {7%,}22, denote independent (given w) copies of 7_;. Then, with respect to P,,

(M*+M™)/A 1 Yers
A5 = N N 5D 7 €O =i = 5,00 = 61 + 6}
k=1 ek}t =Y
Yz+1
N N { >o# —6p_1 — 8,00 — 6p_1 +0)}
ek, =Y
An application of Theorem 4 now yields the lemma. [

Lemma 8 possesses an analogue stated in terms of the process X; itself. Its proof repeats the same
argument and is therefore omitted. For simplicity in notations, we assume that A~! is integer valued.
Define (note that A now denotes discretization in time, not space!)

B ;=) {‘%XWA - ¢(jA)‘ < 6} :

=1

Lemma 9 m

gli%hgl_)sotip logP [Bg’é] < /ZAI‘I Z((j_l)A)) , N —a.e., (82)
and A

gg%hnnigfﬁlogp [BZ’J] > /ZAIq i((j_lm)) .0 —ae. (83)
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We may now return to the proof of Theorem 3.

1. In view of the compactness of £, the only issue is the lower-semicontinuity of Ig’“aj. This however is
obvious due to the convexity of IZ(-) on IR.

2. In view of the compactness of £ and the projective limits method, c.f. [4, Ch. 5.1], having established
Lemma 9, all that is needed is to prove that for any ¢ € L,

1/A

, o OGA) —o((G-1)A), [
AILanZI ATY( A ) = /0 IS ((t))dt . (84)

But this is obvious from dominated convergence since ¢ is differentiable a.e. (Lebesgue) with derivative
bounded in absolute value by 1. ]

5 Properties of the rate functions and the environment

We gather in this section some detailed properties of the various annealed and quenched rate functions
Iy, 1%, I, I encountered in this paper, and properties of the environment in the annealed setup which
leads to a large deviation. Throughout, we assume that 7 is ergodic and locally equivalent to the product
of its marginals, whereas a € M{(X)% will be taken to be a product measure. Note that under these
assumptions, all the above rate functions are convex and (c.f. (7) and (9)),

17%(u) < IP%(w),u 21, and Ig(v) < I5(v),v € [-1,1].

5.1 Properties and shape of the rate functions

With some abuse, we say that a measure n € M{(X)¥ is transient to the right (transient to the left,
recurrent) if X, is transient to +oo (transient to —oo, recurrent), n-a.s. We also introduce the notation
(1), = Enlrw], where we recall that 7, = E,[r|m < oo]. The following summarizes our main results
concerning the quenched rate functions. Additional details, e.g. the precise slopes of certain linear pieces
of the rate functions, are mentioned inside the proofs. We remind the reader that the term “increasing”
includes the case of not strictly increasing, etc. The reader may wish at this point to look at Figures 1 - 9
that summarize graphically our results.

Proposition 2 Assume that n is ergodic, locally equivalent to the product of its marginals and non-degenerate,
i.e. not concentrated on one point. Then,

Case A. [logpo(w)n(dw) = 0, i.e. n is recurrent. Then, I} and I are strictly convex, I is decreasing on
[1,00) with lim,_ I7%(u) = 0, while I}(0) = 0 and I}l increasing on [0,1], decreasing on [—1,0] and I}
is symmetric (see Figures 1 and 6).

Case B. [log po(w)n(dw) < 0, (T}, = o0, i.e. n is transient to the right with zero speed. Then, I and I? have
the same properties as in case A except that I is not symmetric (see Figure 7).

Case C. n € M2, [log po(w)n(dw) < 0, and (1), < 00, i.e. n is transient to the right with mized drifts and
positive speed. Then, 11 is strictly convez and decreasing on [1,(r), ], while I;>* = 0 on [(r),,00). I}
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is monotone increasing on [0,1], monotone decreasing on [—1,0], strictly convex on [—1,—v,] U [vy, 1],
Ii(v) = |v] | [ log po(w)n(dw)| for v € [~vy,0], and I3 =0 on [0,v,] (see Figures 3 and 8).

Case D. pmax < 1, i.e. all drifts point to the right and the walk is transient to +o00. Define ey and ucrit as in

Lemma 4. Then, I}>7 is strictly conver and decreasing on 1, <T>n], is strictly convex and increasing on
(7)) Uerit], and is linear on [uci,00). Further, I1(v s 1) = 0. The rate function I is decreasing and
it 0], decreasing linearly (with a smaller slope)
on [0,u,], and strictly convex on [u, 1], with Ii(vy) = 0 (see Figures 4 and 9).

strictly convex on [—1, —u_},], decreasing linearly on [—u

crlt

Case E. n € M'Y?, n is transient to —oo, with <T>n either finite or infinite. Then I is stm’ctly conver and
decreasing on [1,(r),), and I;>%(u) = Eyllog po] >0 for u > (1), (see Figure 2) For I, simply consider
Cases B and C under the transformation v — —v.

Case F. wmax < 1/2, i.e. all drifts point to the left. With (7’)17 < oo, ;77 is strictly conver and decreasing on

Inv

[1,{),], strictly conver and increasing on [(T),, Ucrit(n™")], and linearly increasing on [terit (N™Y), 00)

(see Figure 5). The rate function I} is obtained from Case D by the transformation v — —v.

We note that we do not discuss the regularity properties of I]l at 0. In the case of n a product measure, some

information on analyticity, obtained by considering the continued fraction defining ¢(A,w), may be found in
[11].

Proof of Proposition 2. In Theorem 4 we have already shown that I>? is decreasing and convex on
[1, E,[r,]] and increasing and convex on [E,[7,],c0). It follows from Lemma 1, Lemma 2 and Lemma 4 that
if n € Mf(X)* then I7»¢ is strictly convex on [1, uerit], and that for u > ucris one has that

I (u) = Aerieu — /log ©(Aerit, w)n(dw) . (85)
Note also that Aerit = 0 in cases A, B, C. Proposition 1 then allows one to make the appropriate transfer of
the results to all n € M (X)X, Finally, the results for I} follow those for I;>? by using the representation

(6), which allows for the transfer of strict convexity from the time variable to the space variable. U

We turn next to the annealed rate functions. Introduce the product measure & € Mf(2)K as follows:

dég 1 ( / 1 )‘1
-— = — ——ao(dw . 86
dag  po po(wo) olduo) (86)
Let u* := (1), = Ea[1,] € [1,00]. Note that the formula in the remark following Lemma 1 implies that
u* < 00 if Wwmax < 1/2, and define
u*, Wmax <1/2, (o, a€M{(D)*,
b= 0, O[EMl/2, ) b = U*J deMle(E)75
(T), > Wmin > 1/2. 00, otherwise.

Always, b > (1), and b’ < b. Note that & € M{(X)~ implies that

1 d
0< /logpo (wo) o (dwo) = fpo ngo( )0 (dwo) /logpo wo)ap (dwo)
J po * (wo)ao (duwo)

(where we used Jensen’s inequality to show the last inequality) and hence a € M{(X)~
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Proposition 3 Assume o € M{(Z)

K is a product measure, and non-degenerate. Then I7%(-) is increasing

on [b,00), constant on [b',b], and decreasing on [1,b'].

Remark: In fact, one sees from the proof below that whenever b # b’ then I7%(u) = I7%(b') for u > V.

More detailed information is also available. The classification of different cases follows the one in Propo-

sition 2.

Proposition 4 Assume o € M{(X)E is a product measure, and not concentrated on one point.

Case A.

Case B.
Case C.

Case D.

Case E.

Case F.

I is strictly decreasing with limit 0 at infinity. I is strictly decreasing on [—1,0] and strictly increasing
on [0,1], with I2(0) = 0 (and is not necessarily symmetric!).

Same as Case A.

I is strictly decreasing on [1,(7),], and is zero on [(T),,00). I% is zero on [0,vs] and is strictly
increasing on [va,1]. Further, define d = E,[p3]/Ealpo), with v* = (1—d)/(1+d) ifd <1 and v* =0
otherwise. Then, I% is strictly decreasing on [—1,0] and is linear on [—v*,0].

I7® is strictly decreasing on [1,(r),] and strictly increasing on [(T),,00), with I*((r),) = 0. 12 is
strictly decreasing on [—1,v,] and strictly increasing on [vy, 1], with I%(v,) = 0 and I2(0) = ) =
Assume in addition that there exists a non degenerate minimizer nt of n — —Ep[f(Aerit, w)]
which the conclusions of Lemma 4, part i) hold true and such that Aeris (M) = Acris (With Acrit 1= Acris() ).
In this case, I7® is linear on [ut,00) with ut = weit(n™) = Ey+ [Eu[mer ]/ E, [er™]] < oo, and
I% is linear on [0, (ut)™1].

Set p* = Eqolpy %]/ Ealpy '], and u* = (1+p*)/(1 — p*) if p* < 1, u* = oo otherwise. Then, I7® is strictly
decreasing on [1,u*] and I7%(u) = —log E,[py '] > 0 on [u*,00). For I2, simply consider Cases B and C
under the transformation v — —wv.

With p* <1 and u* as in Case E, I7® is strictly decreasing on [1,u*] and strictly increasing on [u*, o0).
Further, I7%(u*) = —log Eq[py '] > 0. For I2, simply consider Case D under the transformation v = —v.
Assume in addition that there ezists a non degenerate minimizer n~ of n = —Ey[f(Aeris, w)] + h(n|a) for
which the conclusions of Lemma 4, part i) hold true and such that Acrit(n™) = Aerit- In this case, I is
linear on [u™,00) with u™ = Ueit(n™) = E,- [Ew [rrereem1, o]/ E., [e’\cri‘”1n<oo]:| < 00.

Remarks:

1.

We will see examples at the end of this section where the additional assumption in Cases D and F is

satisfied. Checking instead the stronger assumption that n* [resp.,n~] is locally equivalent to the product
of its marginal with Aeris(77) = Acris and 7 [resp., Aerit (™) = Aeris and 7] non-degenerate, turns out to
be far more difficult.

2. It is worthwhile to note that in Case D, if in addition a minimizer 1, satisfying the additional assumptions,
exists for o™ (which belongs to case F) then I is linear on the interval [—(u~)~!,0] defined in Case F.

Before proving the above propositions, we state and prove some auxiliary facts.

Lemma 10 1. For any product measure a and any bounded continuous function U,

inf [h(n|a)+/\1'(w0)n0(dw0)] ZH(d0|ao)+/‘I’(w0)5£0(dwo),

nEM;(X)
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where & is a product measure and dég /dag = exp(—¥(wo))/ [ exp(—T(wo))ao (dwo).
2. Let © = {n € M{(X) : [ T(wo)no(dwo) > 0}. If « € O then

inf [h(n|a)+ (Ov / m(wo)no(dwo))] = inf [h(n|a)+ (Ov / \Il(wo)no(dwo))] . (87)

nEM;(X)

In particular, if also & € © then

inf [h(n|a) + (0 V/lIJ(wo)no(dwo)>] = H(&o|ao) +/l11(w0)070(dw0) . (88)
neM; (%)
Proof of Lemma 10: 1. We have, with F,, = o(wo, w1, - --,wWn—1),

1
h(n|a) = sup EH(77|a)|fn .

Therefore,
hnla) > Hmolao)
> / — T (wo)n(dwo) — log / e V) o (du)

where the second inequality is due to the variational characterization of relative entropy, c.f. for example [4,
Lemma 6.2.13]. Hence

h(nla) + / U (wo)n(dwo) > — log / Y0 o dup)

and equality is achieved for the measure a.

2. Assume (87) does not hold true. Then there exists a n* ¢ © such that

nerla) + (0V [ Wwos(dan) ) = hiorle) < int [wtale) + (0 [ #nm(aan)) |

Because a € ©, n* # «, and further, [ ¥(wp)ag(dwy) > 0, for otherwise a is a global minimizer, yielding a
contradiction. Take a convex combination 7y := fa + (1 — 6)n* such that [ ¥(wp)ng(dwe) = 0. Since the
product measure « satisfies Assumption (A), one can find a sequence 7 € M{(X) such that ny — 7y weakly
and h(ng|a) = h(ng|a). Therefore,

n—o0

lim sup h(g|a) + (0 v/ ‘I’(wo)ﬂg(dwo)> = h(ngla) < h(r*|a),
a contradiction. O

It is worthwhile to note that actually, one may compute explicitly the optimal n in (87) even when
& € O: it is a product measure with marginal Z[;l exp(BY (wo))ag(dwp), where —1 < 8 < 0 is chosen such

that [ exp(B8%(wo))¥(wo)dao(wo) = 0. Using this observation one may relax the assumptions in the lemma
to ¥ being merely bounded measurable.

Proof of Proposition 3. Since I’»* is convex, it is enough to show that whenever b’ is finite then it is a
minimizer, of I’»*, that the latter is constant on [b', b], and that if b’ = co then I2® is decreasing. We divide
the proof into the following cases:
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1. o € M{(X)*. Then, b = b = (1), € (1,00}, and I2*(d') = 0 (if ¥’ < oo) while, if b = oo,

limy, oo I2%(u) = 0.

2. Assume & € M{(X)~ (and then, as noted above, also @ € M{(X)7). Then b’ = v*. Assume first u* < oc.
Then,

I (w) < I (u”) + H(dolaw) = —log/Po(wo)_lao(dwo)a (89)

as can be checked by an explicit computation involving the definition of &. On the other hand, using in
the first equality the exact value of the minimum of I7+9(-), see the comment before (40), and (88) in the
second equality (with ¥(pg) = log po),

wirow) = it | (0v [ogpmlnym(dan) ) +h(rle)| = ~105 [ polen) Taaden). ()

neMs (X)

Hence, u* is a global minimizer of I7'* in this case.

If u* = o0, (90) still holds true while, for any u < oo,
I (u) < I2%(uw) + H(dolao) = I7%(u)— /logpo(wo)@o(dwo) - log/po(wo)_lao(dwo)
S —log/po(wo)*lao(dwo),

since & € M{(2)~. It follows that inf, I»*(u) = lim,_, I2%(u), as required.

3. Assume & € M{(X)" but @ € M{(X) . In this case b’ = oo, and one repeats the previous argument,
using this time that

lim I7%(u) < inf [/ log po(wo)n(dwo) + h(n|a)] ,
U0 {neM; (2): [ log po(wo)n(dwoe) >0}

while, using now (87),

I»%u) > inf [h(n|a) + (0 V/logpo(wo)no(dwo))]
neEM;(X)
- inf | [ 108 po(eom(dn) + nola)]|
{n€M; (2): [ log po(wo)n(dwo) >0}
implying as before that inf, I»*(u) = lim, 00 I2%(u) . U

Proof of Proposition 4

1. Properties of I7>*. The monotonicity of I7>* on the claimed intervals is a direct consequence of
Proposition 3, while the convexity is stated in Theorem 5. Further, (7) implies that if I7'9(u) = 0 then
I*(u) = 0, yielding the claimed zero values for I7:®.

To see the claimed strict monotonicity of I7'® in case A-D, note that by convexity, it is enough to show
that I7%(u) > 0 at a point u in order to show that it is strictly monotone there. But I7'*(u) = 0 only if
I7%(u) =0 by (7) and the fact that the infimum there is attained, leading to the monotonicity claim.

Cases E-F require slightly more work. Assume first that u* < oo, we already know, c.f. Proposition 3,
that u* is a global minimum of I7»®.
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To prove the strict monotonicity of I7** on [1,u*] when u* < oo, in both cases E and F, we check that
I7%(u) > —log E4lpy '] for u < u*, and then the convexity of I7® proves the required strict monotonicity.
To this end, note that & is transient to the left (because p* < 1). But, for any 7,

I79(u) + h(nla) > By [log po] + H(rolao) > — log / H(w)ao(dw),

where the first inequality is achieved only on product measures transient to the left, and the second, due
to Lemma 10, only when 19 = &p. But in the latter case, the first inequality is strict because v < u*
and Ej;[r,] = w*. Since the infimum over 7 is always achieved in the definition of I’'*, we conclude that
necessarily
inf [I79(u) + h(n|a)| > I (u*
int [ + Rrje)] > I37),
as claimed.

The strict monotonicity on [u*,00) in Case F is proved similarly, using that in Case F the quenched rate
function is strictly monotone, and repeating the above argument.

Finally, it remains to check the strict monotonicity on [1,00) in case E when u* = co. The argument
given above actually shows that I7:%(00) := limy 00 I7'*(u) = —log Ea[p, ], and hence it suffices to check
that I7*(u) > I7%(00). The argument is the same as above and therefore omitted.

We turn now to the linear part of I7'® in Case D. We checked in the proof of Proposition 2 that if the
conclusions of Lemma, 4, part i) are satisfied, then I;f is linear on [u™, c0). More precisely, like in (85) it

holds for u > u* that

I;f (u) = Aerith — /f()\crityw)n+ (dw)

Hence we have
17 (w) < I0f(w) + h(n*|a) = Acrieu — / FQerie, w)nt (dw) + h(nta). (91)

On the other hand, it follows from the large deviation lower bound together with the substitution A = A¢yit
n (63) that

T,
—I7%u) < limsup-— logP [—>u]

n—oo

< — inf [Amtu_ / £ Oerit @)1(dw) + h(n]e)

neM; (%)
= et [ O (@) - h(ya)
since T is a minimizer. Therefore the equality holds in (91), and I»® is linear on [u™, 00). The proof of
existence of a linear part in Case F is similar.

2. Properties of I?. All the stated properties of I? follow immediately, using (8), from the properties of
I, except for checking that in Case D, I2(0) = Acrit- But this was obtained in the proof of Theorem 2. [

We conclude this section by providing a class of examples where the additional assumption in Proposition

4, Cases D and F, is satisfied, resulting with the existence of linear pieces for I7'*. We concentrate on Case
D, as the construction for Case F is similar.
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Choose wmin > 1/2, ao(Wmin) > 0, ao(Wmax) > 0, and wWmax — Wmin small enough. (What is meant by small
enough will become clear in the course of the construction). Due to the remark below the proof of Lemma 4
it is enough to ensure that any ergodic minimizer n* of the function F(n) = — [ f(Acrit, w)n(dw) + h(n|a),
satisfies, for a fixed My depending on wmin only, that nt({w; = wmin}?i%ﬂ) > 0, and that 77 (Wmax) > 0.
We argue by contradiction. Assume that nt({w; = Wmin }124™) = 0. Then,

1
+
h(n™|a) > oM t1] 2 Vo 12 log 1 — o (Wmin) Mo +2

H+
2 T3 (" |e)

=:4. (92)

Recall that o(Acrit,w) < P(Aerit) = (Wmin/(1 — wmin))l/ 2 and note that estimates similar to (44) and the
substitution of the value for A.t lead to the bound

W()\crita w) > SO()‘crit; (--7 Wmax, Wmax; - - ))

\/wmin ( 1- wmin) - \/wmin ( 1- wmin) — Wmax (1 - wmax)
= 1 = f(/\crit)
—Wmax

The estimates F(a) < —log 9(Aerit) and F(nT) > 6 —log @(Aarit) (following from (92)) imply that if wmay is

close enough t0 wmin then F(n*) > F(a), a contradiction. The proof that ng (wWmax) > 0 being similar, only
simpler, we conclude our construction.

5.2 Description of the annealed environment leading to a large deviation

The minimizing measures for the variational problem (9) are of particular interest, for they hint at the
environment which creates atypical behavior. We discuss below the simpler (though equivalent) question for
the hitting times rate function. Recall that the infimum in (7), I7%(u) = inf,cpre(s)[I7(u) + h(nla)], is
achieved.

Proposition 5 Assume that a is a product measure, not concentrated on a single point. Let u € (1,00), such
that I7>® does neither have a minimum at u nor a linear part at u (i.e., IL'® is not linear in a neighborhood
of u). Then the minimizers in (7) are one-dimensional Gibbs measures with summable, translation invariant
interaction, and they are not product measures. In particular, this implies that I7*(u) < I»%(u) for all such
u’s.

Proposition 5 says that in general, even though « is a product measure the best environments for creating
large deviations are not product measures. Here are some interesting exceptions, the first two of them we
already met in Propositions 2 and 4:

1) For u = (1), minimizing I7;* in Cases C and D, the minimizer in (7) is @. The same holds in Case C for
u> (1),

2) For u = u* in Cases E, F and for v > u* in Case E (minimizing I’’*), the minimizer is the product
measure & introduced in (86).

3) Since I,;%(1) = [logwo n'(dw) for all ' € M{ (%), with the supremum in (5) being for A = —oo, the
minimizer n in (7) for u =1 (or in (9) for v = 1) is the product measure with

dmo wo

dag [ woag(dwy)
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Note that the nature of the solutions to the variational problem remains an open question when u belongs
to a linear, but non constant, part of the rate function, see the remark below the proof.

Proof of Proposition 5. We start with the case when u is smaller than the minimizer of I7:%, i.e., u < (7)
in Cases A to D, u < u* in Cases E, F. For such a u, we have from (56), (58),

a

e =sup nt D [ F0.n(d) + o)
A<0 €M ()

Recall that the supremum is achieved, and note that all maximizers A are nonzero, due to the strict mono-

tonicity of I"»* around u stated in Proposition 4. Let A(u) be the set of maximizers A. The set of maximizers
n € Mf(X) of the function

/ O\ w)n(dw) — hinla) (93)

for A ranging over A(u) coincides with the set of minimizers in (7). We prove that such n’s are Gibbs
measures, constructing their potential. For M > 0 we consider the RWRE with reflection at site —M
(i.e., with environment (..., 1,w_pr41,W ar42,---), and we denote by E*HM the corresponding expectation.
With a recursion we find as in (14)

1
oA w) = B M1, o] = I IC)

erMl+pw) o e M+ punWw) —erpun(w)

that is, the M-th approximant of the continued fraction ¢. Since A < 0 and since

£,NT A £,NT A
SON()‘v w) = Ei)e [e o 1T1<00,X.2*M+1 on [O,Tl]] + Enl;e [e m 17—1<00,X_ hits —M on [0,7—1]]

for N =M, M + 1, we have

0 < om — @ar < EMHD (94)

using that 71 > 2M + 1 when X hits —M on [0,71], and that EX*"N[erM 1, .o x >_ w41 on [0,r]] achieves
the same value for N = M, N = M + 1. Recalling ¢y = e* we introduce the decomposition

A
F=At Y am . gmlw) = log 210
M>0 M (A7 w)
where gjs depends only on w_yy,...,ws. Combining (94) with woe* < @ar < 1 we see that ||gar]|ec < Ce?AM

with some finite C' depending on wmin, and then Y~ ,, M||gam|lcc < co. This implies that the maximizers n
of (93) are one-dimensional Gibbs measures, with translation invariant, summable potential (Jv;V C Z)
given by Ji_ari(w) = gu('w) and Jy = 0if V is not an interval. Refer to [10] for an account on Gibbs
measures, and note that the potential Jy depends on A\. We show now that the ”potential at the origin”
Ho = ) Jji—m,i), where the sum extends over 4, M such that i — M < 0 < 4, is not wo-measurable, which
implies that those Gibbs measures 7 are not product measures ([10], Sect.2-4). The series Hy is equal to the

limit as n — oo of
n

i Z gM(elw) — Zlog SD(H'w) _ log Ew[eATann<oo]

i=0 M>i = wifw) Eg"[eATr 17, <oo]

where the second equality comes from the strong Markov property. Introducing the stopping time ( =
inf{n > 7_1; X,, = 0} € (0, 00], we have E,[e*T" 1<, <oo] = Eu[e’" 11, <oo| Ew[€1¢<T, <o0] by the strong
Markov property, and therefore

by = E, M 11, <00] _ EuleM"17, <01, <(]
. —

A¢
B0 B 0eAT +6n Eule™*1car, <oo] -

17, <o) 17, <o)
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Solving in ¢,, we obtain

- E,le*"1
(1 - Eu[e*1¢cr, <ool) " lim le 1T <oo T <

— ,Ho
n— 00 ELef,O[e)\Tn =e€ S (03 OO)

17h<mJ

where the first factor depends on w_; when X\ # 0, but the second factor does not. From this we conclude
that Hy is not wg-measurable, which ends the proof in the first case.

In the opposite case, i.e., for u larger than the minimizer of I7** but not on a linear part, I7>*(u) is given
this time by (63) due to (65) and (66), and all maximizers A belong to (0, Aerit)- The proof works the same,
except that the bounds in (94) will be replaced by

0<omM+1—pum < Ei;ef’M-i_l[e)\n 17—1<00,X_ hits —M on [o,n]] < e )(2M+1)90(/\I;@min)

with some X' € (), Arit), and combined with e* < ¢ < @(A, @min) Which is finite. O

Remarks:

1. The definition of g»; above reveals a nice interplay between the Gibbs decomposition of function f appear-
ing in (93) as an interaction, and the approximants ¢ of the continued fraction . The interpretation of
these approximants in terms of reflection is most natural. The key property (94), which implies summability
of the potential, can be alternatively derived for A < 0 from standard approximation results in continued
fraction theory; see Pringsheim Theorem, page 92 in [13] and its proof. All this shows the particular interest
of formula (14).

2. When u belongs to a linear, but not constant, part of the annealed rate function, the maximizer A is equal
t0 Aerit > 0. Exponential convergence of the series ) gas breaks down, and we believe that the minimizers
1 exhibit long range dependence.

6 Concluding remarks and open problems

1. Our quenched results cover the case when 7 is ergodic, without being locally equivalent to the product
of its marginals. However, the shape of the quenched rate function in this case can be different. For
instance, one can construct examples where there are no linear pieces in I;°? in Case C above.

2. In general, we do not know how to solve the annealed variational problem in (9) more explicitly than in
Proposition 5, and hence we do not have explicit expressions for I$. One case where this problem can be
solved is when |v| = 1. More precisely, for v = 1 we have

X% n—1
=0
and

(RO

n—1 n—1

1I wi] = [1 Eaolwol -

i=0 i=0

Hence, taking logarithms, dividing by n and taking limits, one concludes that IZ(1) = — [ logwoao(dwo) ,
I3(1) = —log [ woao(dwo) . In particular, I$(1) < IZ(1) as soon as a is non-degenerate.

3. We speculate that the extra assumption stated in Proposition 4, Cases D and F, is always satisfied, and
is not limited to the class of example constructed at the end of the last section. Recall that these extra
assumptions imply the existence of linear pieces for I’°.
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4. Asintheii.d. environment case studied in length in [3], [9], [18], [17], one may look for refined asymptotics
in the flat pieces of I;>? or I]]. When ) is equivalent to the product of its marginals, we believe it to exhibit
the same qualitative behavior as in the i.i.d. case, that is polynomial decay in the case wmin < 1/2 < Wmax
and sub-exponential decay when wp;, = 1/2. Refined asymptotics for the multi-dimensional case were
obtained in [22]. Some explicit computations are possible in the Markov environment case, we do not
pursue this direction here.

5. When the support of ag includes the points 0 or 1, our proofs break down (even if ag({0} U {1}) = 0).
We believe that under strong enough assumptions on the rate of decay of the ag([0,1] \ [¢,1 — ¢€]), the
analysis can still be pushed through.

6. The multi-dimensional case presents many challenges. Important works in this domain are [24], [22], but
many questions remain open, most notably what happens when 0 ¢ conv supp a, what is the annealed
rate function, and what is the relation of the latter to the quenched rate function.
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