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Abstract. We consider the quenched and the averaged (or annealed) large deviation rate functions Iq and

Ia for space-time and (the usual) space-only RWRE on Zd. By Jensen’s inequality, Ia ≤ Iq.
In the space-time case, when d ≥ 3 + 1, Iq and Ia are known to be equal on an open set containing the

typical velocity ξo. When d = 1+1, we prove that Iq and Ia are equal only at ξo. Similarly, when d = 2+1,
we show that Ia < Iq on a punctured neighborhood of ξo.

In the space-only case, we provide a class of non-nestling walks on Z
d with d = 2 or 3, and prove that

Iq and Ia are not identically equal on any open set containing ξo whenever the walk is in that class. This

is very different from the known results for non-nestling walks on Zd with d ≥ 4.

1. Introduction

1.1. The models. Consider a discrete time Markov chain on the d-dimensional integer lattice Z
d with d ≥ 1.

For any x, z ∈ Z
d, denote the transition probability from x to x + z by π(x, x + z). Refer to the transition

vector ωx := (π(x, x + z))z∈Zd as the environment at x. If the environment ω := (ωx)x∈Zd is sampled from
a probability space (Ω,B, P), then this process is called random walk in a random environment (RWRE).
Here, B is the Borel σ-algebra corresponding to the product topology.

For every y ∈ Z
d, define the shift Ty on Ω by (Tyω)x := ωx+y. In order to have some statistical homogeneity

in the environment, P is generally assumed to be stationary and ergodic with respect to (Ty)y∈Zd . In this
paper, we will make the stronger assumption that

(1.1) P is a product measure with equal marginals.

In other words, ω = (ωx)x∈Zd is a collection of independent and identically distributed (i.i.d.) random
vectors.

The set R := {z ∈ Z
d : P(π(0, z) > 0) > 0} is the range of allowed steps of the walk (here and throughout,

we often use 0 to denote the origin in Z
d when no confusion occurs). Let (ei)

d
i=1 denote the canonical basis

for Z
d. The walk is said to be space-time if

(1.2) R = Rst := {(z1, . . . , zd) ∈ Z
d : |z1| + · · · + |zd−1| = 1, zd = 1},

and it is said to be space-only if

(1.3) R = Rso := {±ei}d
i=1.

In either case, we will assume throughout the paper that there exists a κ > 0 such that P(π(0, z) ≥ κ) = 1
for every z ∈ R. This condition is known as uniform ellipticity.

Space-time is a natural term for the case (1.2) since then, the walk decomposes into two parts. Its

projection on the ed-axis is deterministic and can be identified with time. The motion in the span of (ei)
d−1
i=1

can be thought of as a variation of space-only RWRE where the environment is freshly sampled at each time
step. To emphasize this decomposition, we will write the dimension as d = (d − 1) + 1. For example, when
d = 3, we will say that the dimension is 2 + 1.

For every x ∈ Z
d and ω ∈ Ω, the Markov chain with environment ω induces a probability measure

Pω
x on the space of paths starting at x. Statements about Pω

x that hold for P-a.e. ω are referred to as
quenched. Statements about the semi-direct product Px := P×Pω

x are referred to as averaged (or annealed).
Expectations under P, Pω

x and Px are denoted by E, Eω
x and Ex, respectively.

See [25] for a survey of results and open problems on RWRE.
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It is clear that no model satisfies both (1.2) and (1.3). Nevertheless, it turns out that many of the results
that hold for space-only RWRE are valid under also the space-time assumption, and it is fair to say that
space-time RWRE is easier to analyze than space-only RWRE because (1.2) ensures that the walk never
visits the same point more than once.

1.2. Regeneration times. In the next subsection, we will give a brief survey of the previous results on
large deviations for RWRE in order to put the present work in context. Some of these results involve certain
random times which are introduced below for convenience.

Let (Xn)n≥0 denote the path of a space-only RWRE. Consider a unit vector û ∈ Sd−1. Define a sequence

(τm)m≥0 of random times, which are referred to as regeneration times (relative to û), by τo := 0 and

τm := inf {j > τm−1 : 〈Xi, û〉 < 〈Xj , û〉 ≤ 〈Xk, û〉 for all i, k with i < j < k}
for every m ≥ 1. (Regeneration times first appeared in the work of Kesten [9] on one-dimensional RWRE.
They were adapted to the multidimensional setting by Sznitman and Zerner, c.f. [18].) Because we assumed
the environment ω = (ωx)x∈Zd to be an i.i.d. collection, if the walk is directionally transient relative to û,
i.e., if Po (limn→∞〈Xn, û〉 = ∞) = 1, then Po (τm < ∞) = 1 for every m ≥ 1. In this setup, as noted in [18],
the significance of (τm)m≥1 is due to the fact that

(

Xτm+1 − Xτm
, Xτm+2 − Xτm

, . . . , Xτm+1 − Xτm
, τm+1 − τm

)

m≥1

is an i.i.d. sequence under Po.
The walk is said to satisfy Sznitman’s transience condition (T) if

Eo

[

sup
1≤i≤τ1

exp {c1 |Xi|}
]

< ∞ for some c1 > 0.

(Here and throughout, the norm | · | denotes the ℓ2 norm). When d ≥ 2, Sznitman [17] proves that (1.1),
(1.3) and (T) imply a ballistic law of large numbers (LLN), an averaged central limit theorem and certain
large deviation estimates.

Condition (T) holds as soon as the walk is non-nestling relative to û, i.e., when the random drift vector

(1.4) v(ω) :=
∑

z∈R
π(0, z)z satisfies ess inf

P

〈v(·), û〉 > 0.

The walk is said to be non-nestling if it is non-nestling relative to some unit vector. Otherwise, it is referred
to as nestling. In the latter case, the convex hull of the support of the law of v(·) contains the origin.

In the case of space-time RWRE, regeneration times are defined naturally by taking û = ed and τm = m
for every m ≥ 1. Clearly, the space-time walk is always non-nestling relative to û = ed.

1.3. Previous results on large deviations for RWRE. Recall that a sequence (Qn)n≥1 of probability

measures on a topological space X is said to satisfy the large deviation principle (LDP) with a rate function
I : X → R+ ∪ {∞} if I is lower semicontinuous and for any measurable set G,

− inf
x∈Go

I(x) ≤ lim inf
n→∞

1

n
log Qn(G) ≤ lim sup

n→∞

1

n
log Qn(G) ≤ − inf

x∈Ḡ
I(x).

Here, Go is the interior of G, and Ḡ its closure. See [4] for general background regarding large deviations.
We will focus on the following large deviation principles for walks in uniformly elliptic environments.

Theorem 1.1 (Quenched LDP). For P-a.e. ω,
(

Pω
o

(

Xn

n ∈ ·
))

n≥1
satisfies the LDP with a deterministic

and convex rate function Iq.

Theorem 1.2 (Averaged LDP).
(

Po

(

Xn

n ∈ ·
))

n≥1
satisfies the LDP with a convex rate function Ia.

There are many works on large deviations for space-only RWRE. We briefly mention them in chronolog-
ical order. Greven and den Hollander [7] prove Theorem 1.1 for walks on Z under the i.i.d. environment
assumption. They provide a formula for Iq and show that its graph typically has flat pieces. Zerner [26]
establishes Theorem 1.1 for nestling walks on Z

d in i.i.d. environments. Comets, Gantert and Zeitouni [3]
generalize the result of [7] to walks on Z in stationary and ergodic environments. Also, they prove Theorem
1.2 for walks on Z in i.i.d. environments and give a formula that links Ia to Iq. Varadhan [20] generalizes
Zerner’s result to stationary and ergodic environments without any nestling assumption. He also proves
Theorem 1.2 for walks on Z

d in i.i.d. environments and gives a variational formula for Ia. Rassoul-Agha
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[12] generalizes the latter result of [20] to certain mixing environments. Rosenbluth [15] gives an alternative
proof of Theorem 1.1 for walks on Z

d in stationary and ergodic environments, and provides a variational
formula for Iq . Yilmaz [23] generalizes the result of [15] to a so-called level-2 LDP. Berger [1], Peterson and
Zeitouni [11], and Yilmaz [21] obtain certain qualitative properties of Ia. Rassoul-Agha and Seppäläinen
[14] generalize the result of [15] to a so-called level-3 LDP.

In the case of space-time RWRE, Rassoul-Agha and Seppäläinen [13] prove Theorem 1.1 by adapting the
quenched argument in [20]. Theorem 1.2 does not require any work. Indeed, Assumption (1.2) implies that
the walk under Po is a sum of i.i.d. increments. The common distribution of these increments is (q(z))z∈R
where q(z) := E[π(0, z)] for every z ∈ R. Therefore, Theorem 1.2 in the space-time setup is simply Cramér’s
theorem, c.f. [4].

In addition to the works mentioned in the last two paragraphs, there are two more results on large
deviations for RWRE that are relevant to this paper. We state them in detail.

Theorem 1.3 (Yilmaz [22]). Assume (1.1) and (1.2). If d ≥ 3 + 1, then Iq = Ia on a set Ast × {ed}
containing the LLN velocity ξo, where Ast is an open subset of R

d−1.

Theorem 1.4 (Yilmaz [24]). Assume (1.1), (1.3), d ≥ 4, and that Sznitman’s (T) condition holds for some
û ∈ Sd−1.

(a) If the walk is non-nestling, then Iq = Ia on an open set Aso containing the LLN velocity ξo.
(b) If the walk is nestling, then

(i) Iq = Ia on an open set A+
so,

(ii) there exists a (d − 1)-dimensional smooth surface patch Ab
so such that ξo ∈ Ab

so ⊂ ∂A+
so,

(iii) the unit vector ηo normal to Ab
so (and pointing inside A+

so) at ξo satisfies 〈ηo, ξo〉 > 0, and
(iv) Iq(tξ) = tIq(ξ) = tIa(ξ) = Ia(tξ) for every ξ ∈ Ab

so and t ∈ [0, 1].

It is worthwhile to emphasize that the equality Iq = Ia does not extend, in the setup of Theorems 1.3
and 1.4, to the whole space. Indeed, for any d ≥ 1,

(1.5) Ia < Iq at the extremal points of the domain of Ia.

By continuity, this inequality holds also at some interior points. See Proposition 4 of [24] for details.

1.4. Our results. For space-time RWRE, it is natural to ask whether Theorem 1.3 can be generalized to
d ≥ 1 + 1 or 2 + 1. The answer turns out to be no.

Theorem 1.5. Assume (1.1) and (1.2). If d = 1 + 1, then Iq(ξ) = Ia(ξ) < ∞ if and only if ξ = ξo, the
LLN velocity.

Theorem 1.6. Assume (1.1) and (1.2). If d = 2 + 1, then Ia < Iq on a set (Gst × {e3}) \ {ξo}, where
Gst ⊂ R

2 is open and Gst × {e3} contains ξo.

In the case of space-only RWRE on Z, a consequence of Comets et al. [3], Proposition 5, is that Iq(ξ) =
Ia(ξ) < ∞ if and only if ξ = 0 or Ia(ξ) = 0. In particular, Theorem 1.4 cannot be generalized to d ≥ 1. Our
next result shows that the conclusion of Theorem 1.4 is false for a class of space-only RWRE’s in dimensions
d = 2, 3.

Definition 1.7. Assume d ≥ 2, and fix a triple p = (p+, po, p−) of positive real numbers such that p− < p+

and p+ + po + p− = 1. For any ǫ > 0, a probability measure P on (Ω,B) is said to be in class Mǫ(d, p) if

(a) (1.1) and (1.3) hold,
(b) P(π(0, ed) = p+, π(0,−ed) = p−) = 1,

(c) P(ǫ/2 < |π(0, e1) − po

2(d−1) | < ǫ) = 1, and

(d) P is invariant under the rotations of Z
d that preserve ed. (We will refer to this as isotropy.)

Theorem 1.8. Assume d = 2 or 3. Fix a triple p = (p+, po, p−) as in Definition 1.7. Then there exists an
ǫo = ǫo(p) such that if ǫ < ǫo and P is in class Mǫ(d, p), then the quenched and the averaged rate functions
Iq and Ia are not identically equal on any open set containing the LLN velocity ξo.

The proofs of our results are based on a technique that combines the so-called fractional moment method
with a certain change of measure (which we will refer to as tilting the environment). This technique has
been developed for analyzing the so-called polymer pinning model, c.f. [5, 19, 6], and it has been recently
refined by Lacoin [10] for obtaining certain lower bounds for the free energy of directed polymers in random
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environments. Comparing with the polymer setup, an extra complication occurs in the RWRE model due
to the dependence of the transition probabilities of the walk on the environment. (In the polymer model
discussed above, the walk is a simple random walk, and the environment only appears in the evaluation of
exponential moments with respect to the random walk.) The difficulty in the RWRE setup, and much of
our work, lies in overcoming this dependency. For space-time RWRE, this task is greatly simplified because
each site is visited at most once. For space-only RWRE, where this is not true, we employ a perturbative
approach that unfortunately restricts the class of models considered, see Section 4 for further comments.

Here is how the rest of the paper is organized: In Section 2, we consider space-time RWRE and prove
Theorems 1.5 and 1.6 by adapting the relevant arguments given in [10]. In Section 3, we focus on space-only
walks that are non-nestling relative to ed, and modify the previous proofs by making use of regeneration
times. This way, we establish a result (see Theorem 3.4) analogous to Theorems 1.5 and 1.6. The only
difference is that Theorem 3.4 is valid under a certain correlation condition, c.f. (3.17). Finally, we prove
Theorem 1.8 by checking that (3.17) holds whenever P is in class Mǫ(d, p) with some triple p (as in Definition
1.7) and a sufficiently small ǫ > 0.

2. Inequality of the rate functions for space-time RWRE

2.1. Reducing to a fractional moment estimate. Assume d ≥ 1+1. Recall (1.2). Consider a space-time
random walk on Z

d in a uniformly elliptic and i.i.d. environment. For every θ ∈ R
d, define

φ(θ) :=
∑

z∈R
e〈θ,z〉q(z)

where q(z) := E[π(0, z)]. Since the walk visits every point at most once, Eo [exp{〈θ, XN〉}] = φ(θ)N for every
N ≥ 1.

Define the logarithmic moment generating functions

Λq(θ) := lim
N→∞

1

N
log Eω

o [exp{〈θ, XN〉}] and Λa(θ) := lim
N→∞

1

N
log Eo [exp{〈θ, XN〉}] = log φ(θ).

By Varadhan’s Lemma, c.f. [4], Λq(θ) = supξ∈Rd {〈θ, ξ〉 − Iq(ξ)} = I∗q (θ), the convex conjugate of Iq at θ.
Similarly, Λa(θ) = log φ(θ) = I∗a(θ).

For every N ≥ 1, θ ∈ R
d and ω ∈ Ω, define

WN (θ, ω) := Eω
o [exp{〈θ, XN〉 − N log φ(θ)}].

Given any α ∈ (0, 1), Jensen’s inequality and the bounded convergence theorem imply that

Λq(θ) − log φ(θ) = lim
N→∞

1

N
log WN (θ, ·) = E

[

lim
N→∞

1

N
log WN (θ, ·)

]

= lim
N→∞

1

N
E [log WN (θ, ·)] = lim

N→∞

1

Nα
E [log WN (θ, ·)α]

≤ lim sup
N→∞

1

Nα
log E [WN (θ, ·)α](2.1)

≤ lim
N→∞

1

Nα
log (E [WN (θ, ·)])α = 0.

Lemma 2.1. Assume (1.1) and (1.2). Fix any α ∈ (0, 1). If d = 1 + 1, then

(2.2) lim sup
N→∞

1

N
log E [WN (θ, ·)α] < 0

whenever θ /∈ sp{e2}, the one-dimensional vector space spanned by e2.

Lemma 2.2. Assume (1.1) and (1.2). Fix any α ∈ (0, 1). If d = 2 + 1, then there exists a β > 0 such that
(2.2) holds whenever dist(θ, sp{e3}) ∈ (0, β).

Remark 2.3. For every θ ∈ sp{ed}, (1.2) implies that WN (θ, ·) = 1 and Λq(θ) = log φ(θ).

When d = 1 + 1, it follows from (2.1) and Lemma 2.1 that Λq(·) < log φ(·) on {θ ∈ R
2 : θ /∈ sp{e2}}.

By convex duality, Ia < Iq on {∇ log φ(θ) : θ /∈ sp{e2}}. It is easy to see that the latter set is equal to
((−1, 1) × {e2}) \ {ξo}. In combination with (1.5), this proves Theorem 1.5.
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Similarly, when d = 2 + 1, Lemma 2.2 implies that Ia < Iq on {∇ log φ(θ) : dist(θ, sp{e3}) ∈ (0, β)}. One
can check that this set is of the form (Gst × {e3}) \ {ξo} where Gst ⊂ R

2 is open and Gst × {e3} contains ξo.
This proves Theorem 1.6.

The rest of this section is devoted to proving Lemmas 2.1 and 2.2.

2.2. Decomposing into paths. Assume d = 1 + 1 or 2 + 1. Let Vd := Z
d−1 × {0} ⊂ Z

d. Fix an n of the
form k2, with k an integer to be determined later (e.g., for d = 1 + 1, this n is chosen so that the conclusion
of Lemma 2.4 below holds). When d = 1 + 1, let

(2.3) Jy :=

[

(y′ − 1

2
)
√

n, (y′ +
1

2
)
√

n

)

× {0} ⊂ R
2

for every y = (y′, 0) ∈ V2. Similarly, when d = 2 + 1, let

Jy :=

[

(y′ − 1

2
)
√

n, (y′ +
1

2
)
√

n

)

×
[

(y′′ − 1

2
)
√

n, (y′′ +
1

2
)
√

n

)

× {0} ⊂ R
3

for every y = (y′, y′′, 0) ∈ V3.
Take N = nm for some m ≥ 1. For every θ ∈ R

d, ω ∈ Ω and Y = (y1, . . . , ym) ∈ (Vd)
m, define

(2.4) W̄N (θ, ω, Y ) := Eω
o [exp{〈θ, XN〉 − N log φ(θ)}, Xjn − ⌊jnξ(θ)⌋ ∈ Jyj

for every j ≤ m]

where ξ(θ) = ∇ log φ(θ). (For u ∈ R
d, ⌊u⌋ denotes the closest element of Z

d to u. If there is more than one
closest element, then take the one whose index is the smallest with respect to the lexicographic order.) Note
that 〈ξ(θ), ed〉 = 1 because 〈z, ed〉 = 1 for every z ∈ Rst.

Since Vd is contained in the disjoint union ∪y∈Vd
Jy, we see that WN (θ, ω) =

∑

Y W̄N (θ, ω, Y ). Hence,
WN (θ, ω)α ≤∑Y W̄N (θ, ω, Y )α by subadditivity, and

(2.5) E[WN (θ, ·)α] ≤
∑

Y

E
[

W̄N (θ, ·, Y )α
]

.

In the rest of this section, we will treat the cases d = 1 + 1 and d = 2 + 1 separately.

2.3. Tilting along a path (d = 1 + 1). Our aim is to prove Lemma 2.1 which states that E[WN (θ, ·)α]
decays exponentially in N . Let us say a few words about our strategy. For any function g(θ, ·) on Ω,

E[WN (θ, ·)α] = E
[

(WN (θ, ·)g(θ, ·))αg(θ, ·)−α
]

≤ E [WN (θ, ·)g(θ, ·)]α E
[

g(θ, ·)− α
1−α

]1−α
(2.6)

by Hölder’s inequality. For every i ≥ 1, Eω
Xi

[exp{〈θ, Xi+1 − Xi〉 − log φ(θ)}] and 〈θ, v(TXi
ω) − ξo〉 are

correlated, c.f. (2.23), where v(·) denotes the random drift vector. We could try to exploit this fact by
tilting the environment at the points on the path in a clever way, e.g., by choosing a g(θ, ·) that penalizes

the environments for which 1
N

∑N
i=1〈θ, v(TXi

ω) − ξo〉 deviates from zero. This way, we could make the first
expectation in (2.6) small. However, there is a problem: we do not know where the path is, and if we naively
tilt the environment everywhere, then the second expectation in (2.6) might become too large. Fortunately,
it is possible to resolve this issue by first decomposing E[WN (θ, ·)α] as in (2.5) (so that we know roughly
where the path is), and then tilting the environment on a tube which contains most of the path with a high
probability.

Given m ≥ 1, θ /∈ sp{e2}, C1 ≥ 1 and Y = (y1, . . . , ym) ∈ (V2)
m, let

(2.7) Bj := {(s, i) ∈ Z
2 : (j − 1)n ≤ i < jn,

∣

∣(s, i) − ⌊iξ(θ)⌋ −
√

nyj−1

∣

∣ ≤ C1

√
n}

for every j ∈ {1, . . . , m}. Here, yo = (0, 0). Recall that n = k2 for some integer k.
Fix a large K and a small δn, both to be determined later (depending on the choice of α, see (2.12), (2.13)

and Lemma 2.4). Define fK(u) := −K1Iu≥eK2 and

(2.8) g(θ, ω, Y ) := exp
m
∑

j=1

fK (δnD(Bj)) > 0 ,

where

(2.9) D(Bj) :=
∑

(s,i)∈Bj

a(θ, (s, i)) for every j ∈ {1, . . . , m},
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and a(θ, x) := 〈θ, v(Txω) − ξo〉 for every x ∈ Z
2, c.f. (1.4). Note that E[a(θ, x)] = 0.

As before, take N = nm. By Hölder’s inequality,

E[W̄N (θ, ·, Y )α] = E
[

(W̄N (θ, ·, Y )g(θ, ·, Y ))αg(θ, ·, Y )−α
]

≤ E
[

W̄N (θ, ·, Y )g(θ, ·, Y )
]α

E
[

g(θ, ·, Y )−
α

1−α

]1−α
.(2.10)

Let us control the second term in (2.10). Bj ’s are pairwise disjoint and they each have n(2C1
√

n + 1)
elements. Since the environment is i.i.d.,

E
[

g(θ, ·, Y )−
α

1−α

]

= E



exp



− α

1 − α

m
∑

j=1

fK (δnD(Bj))







 =

m
∏

j=1

E

[

exp

(

− α

1 − α
fK (δnD(Bj))

)]

= E

[

exp

(

− α

1 − α
fK (δnD(B1))

)]m

≤
(

1 + e
α

1−α
K

P

(

δnD(B1) ≥ eK2
))m

.(2.11)

Note that, by Chebyshev’s inequality,

P

(

δnD(B1) ≥ eK2
)

≤ e−2K2

δ2
nE
[

D(B1)
2
]

= e−2K2

δ2
nE





∑

(s,i)∈B1

a(θ, (s, i))2





= e−2K2

δ2
nn(2C1

√
n + 1)E

[

a(θ, (0, 0))2
]

≤ e−2K2

δ2
n3C1n

3/2
E
[

a(θ, (0, 0))2
]

since, by the i.i.d. assumption on the environment, only the diagonal terms survive. Take

(2.12) δn = C
−1/2
1 n−3/4 ,

where C1 is still to be defined (and will be chosen as in Lemma 2.4). Then, the RHS of (2.11) is bounded
from above by

(

1 + 3E
[

a(θ, (0, 0))2
]

e
α

1−α
K−2K2

)m

≤
(

1 + 12e
α

1−α
K−2K2

)m

≤ 2m

as soon as

(2.13) 12e
α

1−α
K−2K2 ≤ 1.

Recalling (2.5) and (2.10), we see that

(2.14) E[WN (θ, ·)α] ≤ 2m
∑

Y

E
[

W̄N (θ, ·, Y )g(θ, ·, Y )
]α

.

2.4. Estimating the expectation under the tilt (d = 1 + 1). For every m ≥ 1, θ /∈ sp{e2}, ω ∈ Ω and
Y ∈ (V2)

m, let N = nm as before. By the Markov property,

W̄N (θ, ω, Y ) =
∑

x1,...,xm∈Z2

Eω
o [exp{〈θ, XN 〉 − N log φ(θ)}, Xjn − ⌊jnξ(θ)⌋ = xj ∈ Jyj

∀j ≤ m]

=
∑

x1,...,xm∈Z2

Eω
o [exp{〈θ, Xn〉 − n log φ(θ)}, Xn − ⌊nξ(θ)⌋ = x1 ∈ Jy1 ]

× Eω
x1+⌊nξ(θ)⌋[exp{〈θ, Xn − (x1 + ⌊nξ(θ)⌋)〉 − n logφ(θ)},

Xn − ⌊2nξ(θ)⌋ = x2 ∈ Jy2 ]

× · · ·
=

∑

x1,...,xm∈Z2

Eω
o [exp{〈θ, Xn〉 − n log φ(θ)}, Xn − ⌊nξ(θ)⌋ = x1 ∈ Jy1 ]

× E
T⌊nξ(θ)⌋+√

ny1
ω

x1−
√

ny1
[exp{〈θ, Xn − (x1 −

√
ny1)〉 − n log φ(θ)},

Xn − ⌊nξ(θ)⌋ = x2 −
√

ny1 ∈ Jy2 −
√

ny1

]

× · · · .
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Recall (2.8) and (2.9). It follows from the i.i.d. environment assumption that

E
[

W̄N (θ, ·, Y )g(θ, ·, Y )
]

=
∑

x1,...,xm

E [Eω
o [exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ = x1 ∈ Jy1 ]

× E
T⌊nξ(θ)⌋+√

ny1
ω

x1−
√

ny1

[

exp{〈θ, Xn − (x1 −
√

ny1)〉 − n logφ(θ) + fK(δnD(B1))},
Xn − ⌊nξ(θ)⌋ = x2 −

√
ny1 ∈ Jy2 −

√
ny1

]

× · · · ]
=

∑

x1,...,xm

Eo[exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ = x1 ∈ Jy1 ]

× Ex1−
√

ny1

[

exp{〈θ, Xn − (x1 −
√

ny1)〉 − n logφ(θ) + fK(δnD(B1))},
Xn − ⌊nξ(θ)⌋ = x2 −

√
ny1 ∈ Jy2 −

√
ny1

]

× · · ·
≤ Eo[exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ ∈ Jy1 ]

× max
x1∈Jy1

Ex1−
√

ny1

[

exp{〈θ, Xn − (x1 −
√

ny1)〉 − n log φ(θ) + fK(δnD(B1))},

Xn − ⌊nξ(θ)⌋ ∈ Jy2 −
√

ny1

]

× · · ·
= Eo[exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ ∈ Jy1 ]

× max
x1∈Jo

Ex1 [exp{〈θ, Xn − x1〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ ∈ Jy2−y1 ]

× · · · .

Plugging this in (2.14), we conclude that

E[WN (θ, ·)α] ≤



2
∑

y∈V2

max
x∈Jo

Ex [exp{〈θ, Xn − x〉 − n log φ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ ∈ Jy]
α





m

.

The RHS of this inequality decays exponentially in m if the term in the parentheses is strictly less than 1.
Since N = nm and n was fixed, this proves Lemma 2.1 (and hence Theorem 1.5), provided that we have

Lemma 2.4. Assume (1.1) and (1.2). If d = 1 + 1, α ∈ (0, 1), θ /∈ sp{e2} and δn = C
−1/2
1 n−3/4, then

(2.15)
∑

y∈V2

max
x∈Jo

Ex [exp{〈θ, Xn − x〉 − n logφ(θ) + fK(δnD(B1))}, Xn − ⌊nξ(θ)⌋ ∈ Jy]
α

< 1/2

whenever n, K and C1 are sufficiently large.

(The proof is valid with the constant 1/2 replaced by any arbitrarily small positive number.)

2.5. Finishing the proof of Theorem 1.5. It remains to give the

Proof of Lemma 2.4. We write the sum in (2.15) as

(2.16)
∑

y∈V2

max
x∈Jo

Ex [· · · ]α =
∑

y∈V2:

|y|>R

max
x∈Jo

Ex [· · · ]α +
∑

y∈V2:

|y|≤R

max
x∈Jo

Ex [· · · ]α

with some large constant R, to be determined. Since fK(u) = −K1Iu≥eK2 ≤ 0, the first sum on the RHS of

(2.16) is bounded from above by

∑

y∈V2:

|y|>R

max
x∈Jo

Ex

[

exp{〈θ, Xn − x〉 − n log φ(θ)}, |Xn − ⌊nξ(θ)⌋ −
√

ny| ≤
√

n

2

]α

≤
∑

y∈V2:

|y|>R

Eo

[

exp{〈θ, Xn〉 − n log φ(θ)},
∣

∣

∣

∣

Xn − ⌊nξ(θ)⌋√
n

− y

∣

∣

∣

∣

≤ 1

]α

.(2.17)
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Consider a tilted space-time walk on Z
2 (in a deterministic environment) with transition probabilities

qθ(z) := q(z) exp{〈θ, z〉 − log φ(θ)} for z ∈ Rst. Let P̂ θ
o denote the probability measure it induces on paths.

Note that the LLN velocity under P̂ θ
o is

∑

z∈Rst

zq(z) exp{〈θ, z〉 − log φ(θ)} = ∇ log φ(θ) = ξ(θ).

With this notation, (2.17) is equal to

∑

y∈V2:

|y|>R

P̂ θ
o

(∣

∣

∣

∣

Xn − ⌊nξ(θ)⌋√
n

− y

∣

∣

∣

∣

≤ 1

)α

≤
∑

y∈V2:

|y|>R

P̂ θ
o

(∣

∣

∣

∣

Xn − ⌊nξ(θ)⌋√
n

∣

∣

∣

∣

≥ |y| − 1

)α

which, by Chebyshev’s inequality, can be made arbitrarily small (uniformly in large n) by choosing R
sufficiently large.

The second sum on the RHS of (2.16) is bounded from above by

(2R + 1)max
x∈Jo

Ex [exp{〈θ, Xn − x〉 − n log φ(θ) + fK(δnD(B1))}]α .

Therefore, to conclude the proof of Lemma 2.4, it suffices to show that

(2.18) Eo [exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1 − x))}] ≤
(

1

8R

)α−1

for every x ∈ Jo.
Similar to B1 defined in (2.7), introduce a new set

B̄1 := {(s, i) ∈ Z
2 : 0 ≤ i < n, |(s, i) − ⌊iξ(θ)⌋| ≤ (C1 − 1/2)

√
n}.

Note that B̄1 ⊂ B1 − x for every x ∈ Jo since |x| ≤ √
n/2.

Eo [exp{〈θ, Xn〉 − n log φ(θ) + fK(δnD(B1 − x))}]

= e−KEo

[

exp{〈θ, Xn〉 − n log φ(θ)}, δnD(B1 − x) ≥ eK2
]

+ Eo

[

exp{〈θ, Xn〉 − n log φ(θ)}, {Xi : 0 ≤ i < n} 6⊂ B̄1, δnD(B1 − x) < eK2
]

+ Eo

[

exp{〈θ, Xn〉 − n log φ(θ)}, {Xi : 0 ≤ i < n} ⊂ B̄1, δnD(B1 − x) < eK2
]

≤ e−K + P̂ θ
o

(

{Xi : 0 ≤ i < n} 6⊂ B̄1

)

(2.19)

+ Eo

[

exp{〈θ, Xn〉 − n log φ(θ)}, {Xi : 0 ≤ i < n} ⊂ B̄1, δnD(B1 − x) < eK2
]

.

The first term in (2.19) is small when K is large. Donsker’s invariance principle ensures that the second
term can be made arbitrarily small (uniformly in n) by choosing C1 sufficiently large.
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Let us focus on the third term in (2.19). For any sequence (An)n≥1 of natural numbers,

Eo[exp{〈θ, Xn〉 − n logφ(θ)}, {Xi : 0 ≤ i < n} ⊂ B̄1, δnD(B1 − x) < eK2

]

≤ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, {Xi : 0 ≤ i < n} ⊂ B̄1, δn

∑

(s,i)∈B1−x

(s,i)6=Xi

a(θ, (s, i)) < −An]

+ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, {Xi : 0 ≤ i < n} ⊂ B̄1, δn

n−1
∑

i=0

a(θ, Xi) < eK2

+ An]

≤
∑

x1,...,xn−1

E[Eω
o [exp{〈θ, Xn〉 − n log φ(θ)}, Xi = xi ∀i < n] , δn

∑

(s,i)∈B1−x

(s,i)6=xi

a(θ, (s, i)) < −An]

+ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δn

n−1
∑

i=0

a(θ, Xi) < eK2

+ An]

=
∑

x1,...,xn−1

Eo [exp{〈θ, Xn〉 − n log φ(θ)}, Xi = xi ∀i < n] × P(δn

∑

(s,i)∈B1−x

(s,i)6=xi

a(θ, (s, i)) < −An)(2.20)

+ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δn

n−1
∑

i=0

a(θ, Xi) < eK2

+ An]

≤ max
x1,...,xn−1

P(δn

∑

(s,i)∈B1−x

(s,i)6=xi

a(θ, (s, i)) < −An)

+ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δn

n−1
∑

i=0

a(θ, Xi) < eK2

+ An]

≤ A−2
n δ2

n2C1n
3/2

E
[

a(θ, (0, 0))2
]

(2.21)

+ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δn

n−1
∑

i=0

a(θ, Xi) < eK2

+ An].

Here, (2.20) follows from the independence assumption on the environment, and (2.21) is an application of

Chebyshev’s inequality. Since δn = C
−1/2
1 n−3/4, the first term in (2.21) goes to zero as n → ∞ if An → ∞.

Choose An such that An → ∞ and An = o(n1/4) as n → ∞. For any µ ∈ R
+, the second term in (2.21)

is equal to

Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δn

n−1
∑

i=0

(a(θ, Xi) − µ) < eK2

+ An − µnδn]

≤ MnEo[exp{〈θ, Xn〉 − n logφ(θ)}
n−1
∑

i=0

(a(θ, Xi) − µ)2](2.22)

+ MnEo[exp{〈θ, Xn〉 − n log φ(θ)}
∑

i6=j

(a(θ, Xi) − µ)(a(θ, Xj) − µ)]

by Chebyshev’s inequality, where Mn =
(

δn

µnδn−An−eK2

)2

= O(n−2).

By the FKG inequality (c.f. [8]),

Eo [exp{〈θ, X1〉 − log φ(θ)}a(θ, (0, 0))] = E [Eω
o [exp{〈θ, X1〉 − log φ(θ)}] a(θ, (0, 0))](2.23)

> E [Eω
o [exp{〈θ, X1〉 − log φ(θ)}]] E [a(θ, (0, 0))] = 0

since Eω
o [exp{〈θ, X1〉 − log φ(θ)}] and a(θ, (0, 0)) are easily checked to be either both strictly increasing

functions (when 〈θ, e1〉 > 0) or both strictly decreasing functions (when 〈θ, e1〉 < 0) of the random variable
π((0, 0), (1, 1)). If we choose

(2.24) µ = Eo [exp{〈θ, X1〉 − log φ(θ)}a(θ, (0, 0))] ,
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then the second term in (2.22) vanishes by the independence assumption on the environment. Finally,
observe that the first term in (2.22) is equal to

nMnEo

[

exp{〈θ, X1〉 − log φ(θ)}(a(θ, (0, 0)) − µ)2
]

= O(n−1). �

2.6. Proof of Theorem 1.6. Let us recall a few points regarding the arguments in Subsections 2.3 – 2.5.
There, since d = 1 + 1, the volume of B1 (defined in (2.7)) is O(n3/2). The variance of D(B1) (c.f. (2.9))
scales like that volume. We take δn = O(n−3/4) so that the variance of δnD(B1) is O(1). With this choice,
nδn → ∞ as n → ∞. As we saw, this fact is crucial in the proof of Theorem 1.5.

In this subsection, we will assume that d = 2 + 1. For every m ≥ 1, 1 ≤ j ≤ m, θ /∈ sp{e3}, C1 ≥ 1 and
Y = (y1, . . . , ym) ∈ (V3)

m, we define

(2.25) Bj := {(r, k) : r ∈ Z
2, (j − 1)n ≤ k < jn,

∣

∣(r, k) − ⌊kξ(θ)⌋ −
√

nyj−1

∣

∣ ≤ C1

√
n},

similar to (2.7). Note that the volume of this new set is O(n2). If we were to define D(B1) analogously to
(2.9), then we would have to take δn ≤ O(n−1) in order to make the variance of δnD(B1) not grow with n,
in which case nδn remains bounded. Hence, the proof for d = 1 + 1 does not directly carry over to the case
d = 2 + 1.

To resolve this issue, following [10], we will modify the proof by redefining D(B1) and δn. (We will
continue using these names so that we can refer to the parts of Subsections 2.3 – 2.5 that carry over word
by word.) The modification amounts essentially to using a tilting that is quadratic, instead of linear, in the
local drift, as follows.

For every (r, k) and (s, l) with r, s ∈ Z
2 and k, l ≥ 1, let

(2.26) V ((r, k), (s, l)) :=
1

|k − l|1I{|(s,l)−(r,k)−⌊(l−k)ξ(θ)⌋|<C2

√
|k−l|}

if k 6= l, and set it to be equal to zero if k = l. Here, the constant C2 ≥ 1 will be determined later. Given
any n integer and x1, . . . , xn ∈ Z

3 with 〈xk, e3〉 = k, it follows easily from (2.26) that

for any s ∈ Z
2, l ∈ {1, . . . , n},

n
∑

k=1

V (xk, (s, l)) ≤ 2 logn,

n
∑

k=1

∑

(s,l)∈B1

V (xk, (s, l)) ≤
∑

1≤k,l≤n
k 6=l

1

|k − l|
(

2C2

√

|k − l|
)2

≤ 4C2
2n2,

∑

(s,l)∈B1

(

n
∑

k=1

V (xk, (s, l))

)2

=

(

max
(s′,l′)

n
∑

k=1

V (xk, (s′, l′))

)

∑

(s,l)∈B1

n
∑

k=1

V (xk, (s, l))

≤ (2 logn)(4C2
2n2) = 8C2

2n2 log n, and(2.27)

∑

(r,k)∈B1,

(s,l)∈B1

V ((r, k), (s, l))2 ≤
n
∑

k=1

(2C1

√
n)2

n
∑

l=1

1I{k 6=l}
|k − l|2 (2C2

√

|k − l|)2

= 16C2
1C2

2n
∑

1≤k,l≤n
k 6=l

1

|k − l| ≤ 32C2
1C2

2n2 log n.(2.28)

Recall the tilted law P̂ θ
o introduced in the proof of Lemma 2.4.

Lemma 2.5. For any δ > 0, there exists a C2 ≥ 1 such that ν(n, X) :=
∑

1≤i,j≤n V (Xi, Xj) satisfies

P̂ θ
o (ν(n, X) < n log(n − 1)/2) ≤ δ

for every n ≥ 2.

Proof. For any realization of X = (Xi)i≥1,

ν(n, X) ≤
∑

1≤i,j≤n
i6=j

1

|i − j| =: H(n).
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Observe that

Êθ
o [ν(n, X)] =

∑

1≤i,j≤n

Êθ
o [V (Xi, Xj)] =

∑

1≤i,j≤n

i6=j

1

|i − j| P̂
θ
o (|Xi − Xj − ⌊(i − j)ξ(θ)⌋| < C2

√

|i − j|).

When C2 is sufficiently large, the CLT implies that

P̂ θ
o (|Xi − Xj − ⌊(i − j)ξ(θ)⌋| < C2

√

|i − j|) ≥ (1 − δ/2)

for any i 6= j. Therefore, Êθ
o [ν(n, X)] ≥ (1 − δ/2)H(n). Applying Markov’s inequality, we see that

P̂ θ
o (ν(n, X) < H(n)/2) = P̂ θ

o (H(n) − ν(n, X) > H(n)/2) ≤ δ.

This implies the desired result since H(n) ≥ n log(n − 1). �

For any θ ∈ R
3 and x ∈ Z

3, define a(θ, x) := 〈θ, v(Txω) − ξo〉 as before, where v(ω) =
∑

z∈R π(0, z)z.

Lemma 2.6. There exists a β > 0 such that

µ := Eo [exp{〈θ, X1〉 − log φ(θ)}a(θ, (0, 0, 0))] > 0

whenever dist(θ, sp{e3}) ∈ (0, β).

Proof. For every θ /∈ sp{e3}, let

F (θ) := E{Eω
o [e〈θ,X1〉]Eω

o [〈θ, X1〉]} and G(θ) := Eo[e
〈θ,X1〉]Eo[〈θ, X1〉] = φ(θ)〈θ, ξo〉.

Our aim is to show that F (θ) > G(θ).
Write θ = ce3 + θ′ for some c ∈ R and θ′ ∈ R

3 such that 〈θ′, e3〉 = 0. Then, F (θ) = ecF (θ′) + cecφ(θ′)
and G(θ) = ecG(θ′) + cecφ(θ′). Therefore, it suffices to show that F (θ′) > G(θ′).

Clearly, we have

∇F (θ)|θ=0 = ∇G(θ)|θ=0 = Eo[X1] = ξo.

Also, for any u, u′ ∈ R
3, with D2F denoting the Hessian of F ,

〈u, D2F (θ)u′〉
∣

∣

θ=0
= 2E{Eω

o [〈X1, u〉]Eω
o [〈X1, u

′〉]}

and

〈u, D2G(θ)u′〉
∣

∣

θ=0
= 2Eo[〈X1, u〉]Eo[〈X1, u

′〉] = 2〈ξo, u〉〈ξo, u
′〉.

By Schwarz’ inequality (which is strict since the walk is uniformly elliptic in the directions other than e3),

inf
|u|=1

〈u,e3〉=0

(

〈u, D2F (θ)u〉
∣

∣

θ=0
− 〈u, D2G(θ)u〉

∣

∣

θ=0

)

> 0.

Finally, Taylor’s theorem implies the existence of a β > 0 such that F (θ′) > G(θ′) whenever |θ′| ∈ (0, β). �

Now, we are ready to give the new definition of D(B1) which is suitable for d = 2 + 1. For any θ ∈ R
3

such that dist(θ, sp{e3}) ∈ (0, β) (with β as in Lemma 2.6), let

(2.29) D(B1) :=
∑

(r,k)∈B1,

(s,l)∈B1

V ((r, k), (s, l))a(θ, (r, k))a(θ, (s, l)).

Note that V ((·, k), (·, k)) = 0 for every 1 ≤ k ≤ n. Since E[a(θ, 0)] = 0, it follows from the independence of
the environment that E[D(B1)] = 0. Also, E[D(B1)

2] ≤ 1024|θ|4C2
1C2

2n2 log n by (2.28) and the fact that
|a(θ, 0)| ≤ 2|θ|.

If we choose

δn := n−1(log n)−1/2,

then the variance of δnD(B1) is O(1). Once we have this fact, the arguments in Subsections 2.3 – 2.5 carry

over until (2.18). So, it suffices to show that Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δnD(B1 − x) < eK2

] is small for
all x ∈ Jo when n and K are large. In the estimate below, we will (WLOG) take x = 0.
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Let γ = 1/2, and observe that

Eo[exp{〈θ, Xn〉 − n log φ(θ)}, δnD(B1) < eK2

]

≤ Eo[exp{〈θ, Xn〉 − n log φ(θ)}, ν(n, X) ≥ γn log(n − 1), δnD(B1) < eK2

]

+ Eo [exp{〈θ, Xn〉 − n log φ(θ)}, ν(n, X) < γn log(n − 1)]

= Eo[exp{〈θ, Xn〉 − n log φ(θ)}, ν(n, X) ≥ γn log(n − 1),

δn(D(B1) − µ2ν(n, X)) < eK2 − µ2δnν(n, X)] + P̂ θ
o (ν(n, X) < γn log(n − 1))

≤ MnEo[exp{〈θ, Xn〉 − n logφ(θ)}(D(B1) − µ2ν(n, X))2, ν(n, X) ≥ γn log(n − 1)](2.30)

+ P̂ θ
o (ν(n, X) < γn log(n − 1))

≤ MnEo[exp{〈θ, Xn〉 − n logφ(θ)}(D(B1) − µ2ν(n, X))2] + P̂ θ
o (ν(n, X) < γn log(n − 1)).(2.31)

Here, (2.30) follows from the elementary inequality 1Ia<b ≤ a2/b2 with a = δn(D(B1) − µ2ν(n, X)) and

b = eK2 − µ2δnν(n, X) < 0, and

(2.32) Mn =

(

δn

µ2δnγn log(n − 1) − eK2

)2

.

Choose C2 sufficiently large so that the second term in (2.31) is small for all n ≥ 2 by Lemma 2.5.
It remains to control the first term in (2.31). Note that

D(B1) − µ2ν(n, X)

= 2µ

n
∑

k=1

∑

(s,l)∈B1

V (Xk, (s, l))(a(θ, (s, l)) − µ1I{Xl=(s,l)})

+
∑

(r,k)∈B1,

(s,l)∈B1

V ((r, k), (s, l))(a(θ, (r, k)) − µ1I{Xk=(r,k)})(a(θ, (s, l)) − µ1I{Xl=(s,l)}),

and

Eo[exp{〈θ, Xn〉 − n log φ(θ)}(D(B1) − µ2ν(n, X))2]

≤ 8µ2Eo






exp{· · · }





n
∑

k=1

∑

(s,l)∈B1

V (Xk, (s, l))(a(θ, (s, l)) − µ1I{Xl=(s,l)})





2






+ 2Eo






exp{· · · }







∑

(r,k)∈B1,

(s,l)∈B1

V ((r, k), (s, l))(a(θ, (r, k)) − µ1I{Xk=(r,k)})(a(θ, (s, l)) − µ1I{Xl=(s,l)})







2





=: 8µ2
E1 + 2E2

(2.33)

by the inequality (a + b)2 ≤ 2(a2 + b2).
One should note at this stage that in fact, even though µ was chosen to equal the mean under the tilted

measure of a(θ, 0), it is not necessarily the case that the mean of D(B1)−µ2ν(n, X) under that tilted measure
vanishes. This makes the control of Ei somewhat messy, involving a local CLT (Lemma 2.7).

We turn to the details of the computation. E1 can be written as a double sum over pairs (s, l), (s′, l′) ∈ B1.
If (s, l) 6= (s′, l′), then it is clear from independence that this pair does not contribute to E1 on the event
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{Xl 6= (s, l)} ∪ {Xl′ 6= (s′, l′)}. Therefore,

E1 = Eo



exp{· · · }
∑

(s,l)∈B1

(

n
∑

k=1

V (Xk, (s, l))(a(θ, (s, l)) − µ1I{Xl=(s,l)})

)2




+
∑

k,k′,l,l′:
l 6=l′

Eo [exp{〈θ, Xn〉 − n log φ(θ)}V (Xk, Xl)V (Xk′ , Xl′)(a(θ, Xl) − µ)(a(θ, Xl′) − µ)]

=: Eo



exp{· · · }
∑

(s,l)∈B1

(

n
∑

k=1

V (Xk, (s, l))(a(θ, (s, l)) − µ1I{Xl=(s,l)})

)2


+
∑

k,k′,l,l′:
l 6=l′

E1(k, k′, l, l′)

≤ (2|θ| + µ)2Eo



exp{· · · }
∑

(s,l)∈B1

(

n
∑

k=1

V (Xk, (s, l))

)2


+
∑

k,k′,l,l′:
l 6=l′

E1(k, k′, l, l′)

≤ (2|θ| + µ)28C2
2n2 log n +

∑

k,k′,l,l′:
l 6=l′

E1(k, k′, l, l′)(2.34)

by (2.27) and the fact that |a(θ, ·)| ≤ 2|θ|.
If l′ > max(k, k′, l), then E1(k, k′, l, l′) is equal to zero since we can condition on the path up to l′ and use

the fact that, for any (xi)
l′
1 ,

Eo

[

exp{〈θ, Xn − Xl′〉 − (n − l′) log φ(θ)}(a(θ, Xl′ ) − µ)
∣

∣

∣ (Xi)
l′

1 = (xi)
l′

1

]

= 0

by the definition of µ, c.f. Lemma 2.6.
If l < l′ < k′ < k, then V (Xk, Xl) and V (Xk′ , Xl′) create a slight complication since Xk and Xk′ are not

independent of Xl′+1 − Xl′ . Indeed,

E1(k, k′, l, l′) =
∑

x1,...,x
l′

z∈R

Eo

[

exp{· · · }(a(θ, Xl) − µ)(a(θ, Xl′) − µ), (Xi)
l′

1 = (xi)
l′

1 , Xl′+1 − Xl′ = z
]

× Êθ
o [V (Xk, xl)V (Xk′ , xl′ ) |Xl′+1 = xl′ + z],

and the latter expectation depends on z. (If it were independent of z, we could simply take the sum over
z ∈ R and conclude that E1(k, k′, l, l′) = 0.) However, for any z, z′ ∈ R,

∣

∣

∣
Êθ

o [V (Xk, xl)V (Xk′ , xl′ ) |Xl′+1 = xl′ + z] − Êθ
o [V (Xk, xl)V (Xk′ , xl′) |Xl′+1 = xl′ + z′]

∣

∣

∣

≤
∑

x
k′ :

V (x
k′ ,x

l′ )>0

(k′ − l′)−1
∣

∣

∣P̂ θ
o (Xk′ = xk′ |Xl′+1 = xl′ + z) − P̂ θ

o (Xk′ = xk′ |Xl′+1 = xl′ + z′)
∣

∣

∣

× Êθ
o [V (Xk, xl) |Xk′ = xk′ ]

≤ 4C2
2 (k′ − l′)(k′ − l′)−1O((k′ − l′)−3/2)(k − l)−1 = O((k − l)−1(k′ − l′)−3/2)

uniformly in (xi)
l′
1 , c.f. Lemma 2.7 (given below). Hence,

∑

l<l′<k′<k

E1(k, k′, l, l′) ≤ O(n2 log n).

It is easy to see that this technique works for E1(k, k′, l, l′) in all other cases, and we get E1 ≤ O(n2 log n)
by (2.34).

E2 is a quadruple sum over (r, k), (r′, k′), (s, l), (s′, l′) ∈ B1 that is symmetric in (r, k) and (s, l) (as well
as in (r′, k′) and (s′, l′)). Recall that V ((r, k), (s, l)) = 0 when (r, k) = (s, l). If (r, k) /∈ {(r′, k′), (s′, l′)},
then it is clear from independence that there is no contribution to E2 on the event {Xk 6= (r, k)}. The
contribution from the complementary event can be estimated using Lemma 2.7, just like in the case of E1.
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Putting everything together and recalling (2.28), we see that

E2 ≤ 2Eo






exp{· · · }

∑

(r,k)∈B1,

(s,l)∈B1

(

V ((r, k), (s, l))(a(θ, (r, k)) − µ1I{Xk=(r,k)})(a(θ, (s, l)) − µ1I{Xl=(s,l)})
)2







+ O(n2 log n)

≤ 2(2|θ| + µ)4Eo






exp{〈θ, Xn〉 − n logφ(θ)}

∑

(r,k)∈B1,

(s,l)∈B1

V ((r, k), (s, l))2






+ O(n2 log n)

≤ 2(2|θ| + µ)432C2
1C2

2n2 log n + O(n2 log n)

≤ O(n2 log n).

Finally,

MnEo[exp{〈θ, Xn〉 − n log φ(θ)}(D(B1) − µ2ν(n, X))2] ≤ Mn(8µ2
E1 + 2E2) ≤ O((log n)−1)

by (2.32) and (2.33). This concludes the proof of Theorem 1.6, apart from

Lemma 2.7. For any z, z′ ∈ R,

sup
x∈Z3

|P̂ θ
z (Xm = x) − P̂ θ

z′(Xm = x)| ≤ O(m−3/2) as m → ∞.

Proof. Let Gθ be the centered Gaussian density on R
2 that has the same covariance with (〈X1, e1〉, 〈X1, e2〉)

under P̂ θ
o . For any z ∈ R, it is shown in Theorem 22.1 of [2] that

sup
x

∣

∣

∣

∣

P̂ θ
z (Xm = x) − 2

m
Gθ

( 〈x − z − mξ(θ), e1〉√
m

,
〈x − z − mξ(θ), e2〉√

m

)∣

∣

∣

∣

≤ O(m−3/2) as m → ∞.

Here, the supremum is taken over all x = (x1, x2, x3) ∈ Z
3 such that x1 +x2 +m+1 is even and x3 = m+1.

(Otherwise, P̂ θ
z (Xm = x) is equal to zero.) Since supy∈R2 |∇yGθ(y)| < ∞, the desired result follows from

the triangle inequality. �

3. Inequality of the rate functions for space-only RWRE

3.1. Reducing to a fractional moment estimate. Consider space-only RWRE on Z
d with d ≥ 1. Assume

that the walk is non-nestling relative to the canonical basis vector ed. By Jensen’s inequality, the quenched
and the averaged logarithmic moment generating functions

Λq(θ) := lim
N→∞

1

N
log Eω

o [exp{〈θ, XN〉}] and Λa(θ) := lim
N→∞

1

N
log Eo [exp{〈θ, XN 〉}]

satisfy Λq(θ) ≤ Λa(θ) ≤ |θ| for every θ ∈ R
d.

Recall the definition of regeneration times (τn)n≥0 (relative to ed) given in Subsection 1.2. Let

β := inf{i ≥ 0 : 〈Xi, ed〉 < 〈Xo, ed〉} ∈ [1,∞].

By the non-nestling assumption, there exist constants c2, c3 > 0 such that

(3.1) ess inf
P

Pω
o (β = ∞) ≥ c2 and ess sup

P

Pω
o (τ1 > n) ≤ e−c3n

for every n ≥ 1, c.f. [16]. These bounds clearly imply that

(3.2) ess sup
P

Eω
o [ exp{cτ1}|β = ∞] ≤ c−1

2 ess sup
P

Eω
o [exp{cτ1}] =: H(c) < ∞

whenever c < c3.
For every c ∈ (0, c3], introduce the set

(3.3) C(c) := {θ ∈ R
d : 2|θ| < c}.
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Lemma 3.1. For every θ ∈ C(c3),

(3.4) Eo[ exp{〈θ, Xτ1〉 − Λa(θ)τ1}|β = ∞] = 1.

Λa is analytic on C(c3). ∇Λa(0) = ξo. The Hessian Ha of Λa is positive definite on C(c3). For every c < c3

and θ ∈ C(c), the smallest eigenvalue of Ha(θ) is bounded from below by a positive constant that depends
only on c and the ellipticity constant κ of the walk.

Proof. See the proofs of Lemmas 6 and 12 of [21]. In particular, the desired lower bound for the smallest
eigenvalue of Ha is evident from equation (2.10) of that paper. �

Given any N ≥ 1, θ ∈ C(c3) and ω ∈ Ω, define

ŴN (θ, ω) := Eω
o [exp{〈θ, XτN

〉 − Λa(θ)τN}] and

WN (θ, ω) := Eω
o [ exp{〈θ, XτN

〉 − Λa(θ)τN}|β = ∞].

Lemma 3.2. For every θ ∈ C(c3), if

lim sup
N→∞

1

N
log ŴN (θ, ·) < 0

holds P-a.s., then Λq(θ) < Λa(θ).

Proof. Let θ ∈ C(c3). Then, θ ∈ C(c) for some c < c3. By hypothesis, for P-a.e. ω, there exist C3 ≥ 1 and

c4 > 0 (both depending on ω) such that ŴN (θ, ω) ≤ C3e
−c4N for every N ≥ 1.

Given any n ≥ 1 and K ≥ 1, it follows from Chebyshev’s inequality and (3.2) that

Eω
o [exp{〈θ, Xn〉 − Λa(θ)n}]

= Eω
o [exp{〈θ, Xn〉 − Λa(θ)n}, n < τ⌊ n

K
⌋] +

n
∑

j=⌊ n
K

⌋
Eω

o [exp{〈θ, Xn〉 − Λa(θ)n}, τj ≤ n < τj+1]

≤ e2|θ|nPω
o (n < τ⌊ n

K
⌋) +

n
∑

j=⌊ n
K

⌋
Eω

o [exp{〈θ, Xτj
〉 − Λa(θ)τj}]ess sup

P

Eω′

o [ exp{2|θ|τ1}|β = ∞]

≤ e(2|θ|−c)nEω
o [exp{cτ⌊ n

K
⌋}] +

n
∑

j=⌊ n
K

⌋
Ŵj(θ, ω)ess sup

P

Eω′

o [ exp{cτ1}|β = ∞]

≤ e(2|θ|−c)nEω
o [exp{cτ1}]

(

ess sup
P

Eω′

o [ exp{cτ1}|β = ∞]

)⌊ n
K

⌋−1

+
n
∑

j=⌊ n
K

⌋
Ŵj(θ, ω)ess sup

P

Eω′

o [ exp{cτ1}|β = ∞]

≤ e(2|θ|−c)nH(c)⌊
n
K

⌋ + H(c)

n
∑

j=⌊ n
K

⌋
C3e

−c4j .

Take K sufficiently large, and conclude that

Λq(θ) − Λa(θ) = lim
n→∞

1

n
log Eω

o [exp{〈θ, Xn〉 − Λa(θ)n}] < 0. �

Lemma 3.3. For every θ ∈ C(c3), if

(3.5) lim sup
N→∞

1

N
log E [WN (θ, ·)α] < 0

for some α ∈ (0, 1), then Λq(θ) < Λa(θ). Hence, by convex duality, Ia < Iq at ξ = ∇Λa(θ).

Proof. For any N ≥ 1 and θ ∈ C(c3), it follows from the renewal structure and (3.4) that

E[Pω
o (β = ∞)WN (θ, ·)] = Po(β = ∞)Eo[ exp{〈θ, XτN

〉 − Λa(θ)τN}|β = ∞]

= Po(β = ∞) (Eo[ exp{〈θ, Xτ1〉 − Λa(θ)τ1}|β = ∞])
N

= Po(β = ∞).
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Given any α ∈ (0, 1), by the same reasoning as in (2.1),

(3.6) lim sup
N→∞

1

N
log ŴN (θ, ·) ≤ lim sup

N→∞

1

Nα
log E

[

ŴN (θ, ·)α
]

, P-a.s.

On the other hand, if 2|θ| < c < c3, then we see by subadditivity, Chebyshev’s inequality, and (3.2) that

E

[

ŴN+1(θ, ·)α
]

= E









∑

x∈Zd

Eω
o [exp{〈θ, Xτ1〉 − Λa(θ)τ1}, Xτ1 = x]WN (θ, Tx·)





α



≤ E





∑

x∈Zd

(Eω
o [exp{〈θ, Xτ1〉 − Λa(θ)τ1}, Xτ1 = x])

α
WN (θ, Tx·)α





≤ E





∑

x∈Zd

(Eω
o [exp{2|θ|τ1}, τ1 ≥ |x|1])α

WN (θ, Tx·)α





≤ E





∑

x∈Zd

(

e(2|θ|−c)|x|1Eω
o [exp{cτ1}]

)α

WN (θ, Tx·)α





≤ H(c)α
E [WN (θ, ·)α]

∑

x∈Zd

e(2|θ|−c)α|x|1.(3.7)

The desired result follows immediately from (3.6), (3.7) and Lemma 3.2. �

3.2. The correlation condition. In this subsection, we will consider space-only RWRE on Z
d with d = 2, 3,

assume that the walk is non-nestling relative to ed, and outline how one can modify the arguments given in
Section 2 in order to reduce (3.5) to a simpler inequality.

We start with d = 2. For every n ≥ 1 of the form k2, and for every y = (y′, y′′) ∈ Z
2, let

Jy := [(y′ − 1

2
)
√

n, (y′ +
1

2
)
√

n) × [(y′′ − 1

2
)
√

n, (y′′ +
1

2
)
√

n) ⊂ R
2,

c.f. (2.3). Take N = nm for some m ≥ 1. For every θ ∈ C(c3), ω ∈ Ω and Y = (y1, . . . , ym) ∈ (Z2)m, define

W̄N (θ, ω, Y ) := Eω
o [ exp{〈θ, XτN

〉 − Λa(θ)τN}, Xτjn
− ⌊jnζ(θ)⌋ ∈ Jyj

for every j ≤ m
∣

∣β = ∞],

c.f. (2.4), where

(3.8) ζ(θ) := Eo[Xτ1 exp{〈θ, Xτ1〉 − Λa(θ)τ1}|β = ∞].

By subadditivity,

E[WN (θ, ·)α] ≤
∑

Y

E
[

W̄N (θ, ·, Y )α
]

,

c.f. (2.5). Given any C1 ≥ 1, Y = (y1, . . . , ym) ∈ (Z2)m and j ∈ {1, . . . , m}, let

Bj = Bj(yj−1, yj) := {(s, i) ∈ Z
2 : (j − 1)n〈ζ(θ), e2〉 +

√
n(y′′

j−1 + 1/2) ≤ i < jn〈ζ(θ), e2〉 +
√

n(y′′
j − 1/2),

|(s −
√

ny′
j−1) −

〈ζ(θ), e1〉
〈ζ(θ), e2〉

(i −
√

ny′′
j−1)| ≤ C1

√
n},

c.f. (2.7). Also, redefine a(θ, ·) by setting

a(θ, x) := 〈θ, v(Txω)〉 − E[〈θ, v(·)〉]
for every x ∈ Z

2, where v(ω) =
∑

z∈R π(0, z)z as before. Note that, under the assumptions stated in
Definition 1.7, we have E[〈θ, v(·)〉] = 〈θ, ξo〉. However, this equality does not necessarily hold in general.

With these modified definitions, the arguments in Subsections 2.3 and 2.4 easily carry over, once one
replaces the i.i.d. random variables

E
TXi

ω
o [exp{〈θ, X1〉 − log φ(θ)}]

by the variables

E
TXτi

ω
o [exp{〈θ, Xτ1〉 − Λa(θ)τ1}|β = ∞] .
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Therefore, in order to prove (3.5), it suffices to show that

(3.9)
∑

y∈Z2

max
x∈Jo

Ex [exp{〈θ, Xτn
− x〉 − Λa(θ)τn + fK(δnD(B1))}, Xτn

− ⌊nζ(θ)⌋ ∈ Jy |β = ∞]α < 1/2

when ζ(θ) is as in (3.8) and n, K, C1 are sufficiently large, c.f. Lemma 2.4. Here, α ∈ (0, 1) is fixed,

fK(u) := −K1Iu≥eK2 and δn = C
−1/2
1 n−3/4, as before.

We imitate (2.16), and write the sum in (3.9) as

(3.10)
∑

y∈Z2

max
x∈Jo

Ex [· · · ]α =
∑

y∈Z2:
|y|>R

max
x∈Jo

Ex [· · · ]α +
∑

y∈Z2:
|y|≤R

max
x∈Jo

Ex [· · · ]α

with some large constant R, to be determined. Just like in the space-time case, the first sum on the RHS of
(3.10) is bounded from above by

(3.11)
∑

y∈Z2:
|y|>R

P̂ θ
o

(∣

∣

∣

∣

Xn − ⌊nζ(θ)⌋√
n

∣

∣

∣

∣

≥ |y| − 1

)α

.

Here, P̂ θ
o is redefined to be the probability measure on paths induced by the random walk (in a deterministic

environment) whose transition probabilities are given by

qθ(x) := Eo[ exp{〈θ, Xτ1〉 − Λa(θ)τ1}, Xτ1 = x|β = ∞], x ∈ Z
2.

(Note that
∑

x∈Z2 qθ(x) = 1 by (3.4).) If Êθ
o denotes the corresponding expectation, it is clear that

(3.12) Êθ
o [exp{c|X1|}] < ∞ for every c ∈ (0, c3 − 2|θ|).

Therefore, by Chebyshev’s inequality, (3.11) can be made arbitrarily small (uniformly in large n) by choosing
R sufficiently large.

The second sum on the RHS of (3.10) can be controlled by showing that

(3.13) max
y∈Z2:
|y|≤R

max
x∈Jo

Ex [exp{〈θ, Xτn
− x〉 − Λa(θ)τn + fK(δnD(B1))}, Xτn

− ⌊nζ(θ)⌋ ∈ Jy |β = ∞]

is small when n, K and C1 are sufficiently large. In the space-time case, the verification of the analogous
statement, i.e., (2.18), relied on the fact that

(3.14) Eo[exp{〈θ, Xn〉 − n log φ(θ)}
n−1
∑

i=0

a(θ, Xi)]

grows linearly in n, c.f. (2.21) and (2.22). In the space-only case, the drift vectors at the points off the path
do not contribute to the mean of D(B1) under the tilted measure, and the drift vector at any point on the
path contributes only once even if it is visited multiple times. Therefore, the statement concerning (3.14)
needs to be replaced by the statement that

(3.15) Eo[exp{〈θ, Xτn
〉 − Λa(θ)τn}

∑

x∈S(X,τn)

a(θ, x)|β = ∞]

grows linearly in n. Here, for any j ≥ 1,

(3.16) S(X, j) := {Xi : 0 ≤ i < j}.
In the space-time case, the variance of D(B1) under the tilted measure was shown to be O(n3/2) since the

only non-vanishing terms were those corresponding to points x, y ∈ Z
2 such that x = y. In the space-only

case, steps of the walk between consecutive regeneration times are not independent, and we therefore need
to also consider terms corresponding to x and y that are both on the path in the same regeneration block.
However, since regeneration times have exponentially decaying tails, the total contribution of such terms is
O(n), and the variance of D(B1) under the tilted measure is still O(n3/2).

With these modifications, the argument in Subsection 2.5 enables us to deduce (3.5) provided that (3.15)
grows linearly in n. By the renewal structure, the latter is equivalent to the following correlation condition:

(3.17) µ := Eo[exp{〈θ, Xτ1〉 − Λa(θ)τ1}
∑

x∈S(X,τ1)

a(θ, x)|β = ∞] > 0.



18 ATILLA YILMAZ AND OFER ZEITOUNI

(This replaces the choice of µ for the space-time case, see (2.24).) For d = 3, after modifying (3.13) by
(i) taking the first maximum over {y ∈ Z

3 : |y| ≤ R}, (ii) replacing the sets Jy and B1 by their three
dimensional analogs, and (iii) redefining D(B1) as in (2.29), one can employ the reasoning above in order
to reduce (3.5) to showing that (3.13) is small when n, K and C1 are sufficiently large. After that, one can
set δn := n−1(log n)−1/2, apply the same kind of modifications to the argument given in Subsection 2.6, and
further reduce (3.5) to (3.17). In particular, note that Lemma 2.7 continues to hold under the new definition

of P̂ θ
o , thanks to (3.12). We omit the (routine) details.

We have arrived at the following theorem.

Theorem 3.4. Consider space-only RWRE on Z
d with d = 2, 3. Assume (1.1), (1.3) and that the walk is

non-nestling relative to ed. Then, there exists an open set Aso ⊂ R
d with the following properties:

(i) Ia is strictly convex and analytic on Aso,
(ii) ξo ∈ Aso, and
(iii) for every ξ ∈ Aso, the strict inequality Ia(ξ) < Iq(ξ) holds if (3.17) is satisfied at θ := ∇Ia(ξ).

Proof. Recall (3.3), and define

Aso := {∇Λa(θ) : θ ∈ C(c3)}.
It follows from Lemma 3.1 and the inverse function theorem that Ia is strictly convex and analytic on Aso

which is an open set containing ξo.
Take any ξ ∈ Aso. Note that θ := ∇Ia(ξ) satisfies ξ = ∇Λa(θ) by convex duality. As outlined above,

(3.17) implies (3.5). Hence, the desired result follows from Lemma 3.3. �

3.3. Proof of Theorem 1.8. Consider space-only RWRE on Z
d with d = 2, 3. Fix a triple p = (p+, po, p−)

of positive real numbers such that p− < p+ and p+ + po + p− = 1. Assume that P is in class Mǫ(d, p) for

some small ǫ > 0, c.f. Definition 1.7. Assume that ǫ ≤ po

4(d−1) so that the ellipticity constant κ of the walk

satisfies

(3.18) κ ≥ min

(

p+, p−,
po

4(d − 1)

)

.

Lemma 3.5. There exist C4 ≥ 1 and c5 > 0 (depending only on p) such that |Λa(θ)−〈θ, ξo〉| ≤ C4|θ|2 holds
for every θ ∈ C(c5).

Proof. Recall (3.1). Note that c3 depends only on the law of the regeneration times which, in turn, is
determined by the fixed triple p. Moreover, the ellipticity constant κ of the walk satisfies (3.18). Fix any
c5 < c3. The desired result follows immediately from Lemma 3.1. �

Consider the set

Ct(c5) := {θ ∈ C(c5) : 〈θ, ed〉 = 0}.
(Here, the subscript stands for transversal.) Take any θ ∈ Ct(c5). Recall the notation in (3.16). Since P is
in class Mǫ(d, p), it is easy to see that

(3.19) ξo = (p+ − p−)ed, 〈θ, ξo〉 = 0, and |a(θ, x)| = |〈θ, v(Txω)〉| ≤ 2ǫ(d − 1)|θ|
for every x ∈ Z

d. Similarly, the isotropy assumption ensures that

Z(θ) = Z(θ, X, τ1, ω) :=
∑

x∈S(X,τ1)

a(θ, x)

satisfies

(3.20) Eo[Z(θ)|β = ∞] = Eo[τ1Z(θ)|β = ∞] = 0.

Our aim is to show that

(3.21) Eo[exp{〈θ, Xτ1〉 − Λa(θ)τ1}Z(θ)|β = ∞] > 0

for certain choices of θ, to be determined later. Expanding the exponential on the LHS of (3.21), we see that

Eo[exp{〈θ, Xτ1〉 − Λa(θ)τ1}Z(θ)|β = ∞] ≥ Eo[(1 + 〈θ, Xτ1〉 − Λa(θ)τ1)Z(θ)|β = ∞] − C5|θ|3(3.22)

= Eo[〈θ, Xτ1〉Z(θ)|β = ∞] − C5|θ|3.(3.23)
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Indeed, (3.22) follows from |Z(θ)| ≤ 2ǫ(d − 1)|θ|τ1 and

1 + 〈θ, Xτ1〉 − Λa(θ)τ1 ≤ exp{〈θ, Xτ1〉 − Λa(θ)τ1} ≤ 1 + 〈θ, Xτ1〉 − Λa(θ)τ1 + 2|θ|2τ2
1 exp{2|θ|τ1},

C5 is some constant that depends only on p and c5 and finally, (3.20) implies (3.23).
In order to estimate (3.23), we first provide a more convenient representation of the RWRE. Let (bi)i≥0

be an i.i.d. sequence of random variables taking values in {ed, 0,−ed}, with

P (b1 = ed) = p+, P (b1 = 0) = po, and P (b1 = −ed) = p−.

Let (fi)i≥0 be another i.i.d. sequence of random variables (independent of (bi)i≥0) taking values in the set
{±ej : 1 ≤ j < d} ∪ {0}, with

P (f1 = 0) =
2ǫ(d − 1)

po
and P (f1 = ±ej) =

1

2(d − 1)
− ǫ

po
if 1 ≤ j < d.

For any ω ∈ Ω, the walk (Xi)i≥0 under Pω
o can be constructed by setting

Xi+1 − Xi := bi + (1 − |bi|)fi + (1 − |bi|)(1 − |fi|)Ui ,

where (Ui)i≥0 is a sequence of independent random variables taking values in {±ej : 1 ≤ j < d}, with

Pω(Ui = ±ej|Fi) =
π(Xi, Xi ± ej) − ( po

2(d−1) − ǫ)

2ǫ(d − 1)
.

Here, Fi = σ(X1, . . . , Xi). Note that the laws of the sequences (bi)i≥0 and (fi)i≥0 do not depend on the
environment, and that τ1 is a function of (bi)i≥0 only.

Let

Ni :=

i−1
∑

j=0

1I1=(1−|bi|)(1−|fi|) .

Introduce the events L0 := {Nτ1 = 0}, L1 := {Nτ1 = 1}, and L2 := {Nτ1 ≥ 2}. Let G := σ((bi, fi)i≥0).
Note that the events L0, L1 and L2 are G-measurable, and so is the event {β = ∞}. On the event L0, the
walker never sees the environment until τ1, and thus Xτ1 is G-measurable. Also, for any i ≥ 0, on the event
{Xi /∈ S(X, i)} (i.e., when Xi is a fresh point), a(θ, Xi) is independent of Fi and G under Po. Therefore, by
isotropy,

Eo[Z(θ)|G] = Eo

[

τ1−1
∑

i=0

a(θ, Xi)1IXi /∈S(X,i)

∣

∣

∣

∣

∣

G
]

= 0.

Putting these observations together, we see that

(3.24) Eo[〈θ, Xτ1〉Z(θ), L0, β = ∞] = Eo[〈θ, Xτ1〉Eo[Z(θ)|G], L0, β = ∞] = 0.

On the other hand, it is easy to check that Po(L2) ≤ c6ǫ
2 for some c6 = c6(p). By Hölder’s inequality,

(3.25) |Eo[〈θ, Xτ1〉Z(θ), L2, β = ∞]| ≤ Po(L2)
2/3Eo[|〈θ, Xτ1〉Z(θ)|3, β = ∞]1/3 ≤ c7ǫ

7/3|θ|2

for some c7 = c7(p) > 0. (Recall that a(θ, ·) ≤ 2ǫ(d − 1)|θ|, c.f. (3.19).)
Finally, let Lℓ

1 = L1 ∩ {(1 − |bℓ|)(1 − |fℓ|) = 1, ℓ < τ1}. Then,

(3.26) Eo[〈θ, Xτ1〉Z(θ), L1, β = ∞] =

∞
∑

ℓ=0

Eo[〈θ, Xτ1〉Z(θ), Lℓ
1, β = ∞].

For every ℓ ≥ 0,

Eo[〈θ, Xτ1〉Z(θ), Lℓ
1, β = ∞] = Eo[〈θ, Xℓ〉Z(θ), Lℓ

1, β = ∞](3.27)

+ Eo[〈θ, Xℓ+1 − Xℓ〉Z(θ), Lℓ
1, β = ∞]

+ Eo[〈θ, Xτ1 − Xℓ+1〉Z(θ), Lℓ
1, β = ∞].
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By computations similar to the one involving L0, the first and the third terms on the RHS of (3.27) are zero.
The second term is equal to

Eo[〈θ, Xℓ+1 − Xℓ〉〈θ, v(TXℓ
ω)〉, Lℓ

1, β = ∞] = Po(L
ℓ
1, β = ∞)E[Eω [〈θ, Uo〉]〈θ, v(ω)〉]

= Po(L
ℓ
1, β = ∞)E









∑

z 6=±ed

π(0, z) − ( po

2(d−1) − ǫ)

2ǫ(d − 1)
〈θ, z〉



 〈θ, v(ω)〉





=
Po(L

ℓ
1, β = ∞)

2ǫ(d − 1)
E
[

〈θ, v(ω)〉2
]

.

Therefore, by (3.26),

Eo[〈θ, Xτ1〉Z(θ), L1, β = ∞] =
Po(L1, β = ∞)

2ǫ(d − 1)
E
[

〈θ, v(ω)〉2
]

.

It is easy to see that Po(L1, β = ∞) ≥ c8ǫ for some c8 = c8(p) > 0 if ǫ is small enough. Also, part (c) of
Definition 1.7 ensures that E

[

〈θ, v(ω)〉2
]

≥ c9ǫ
2|θ|2 for some c9 = c9(p) > 0. Hence,

(3.28) Eo[〈θ, Xτ1〉Z(θ), L1, β = ∞] ≥ c10ǫ
2|θ|2

for some c10 = c10(p) > 0. Combining (3.24), (3.25) and (3.28) gives

Eo[〈θ, Xτ1〉Z(θ)|β = ∞] − C5|θ|3 ≥ c10ǫ
2|θ|2 − c7ǫ

7/3|θ|2 − C5|θ|3(3.29)

=
(

(c10 − c7ǫ
1/3)ǫ2 − C5|θ|

)

|θ|2.

If ǫ < (c10/c7)
3, then, for every θ ∈ Ct(c5) such that 0 < |θ| < (c10 − c7ǫ

1/3)ǫ2/C5,

Eo[exp{〈θ, Xτ1〉 − Λa(θ)τ1}Z(θ)|β = ∞] > 0

by (3.23) and (3.29).
Finally, Theorem 3.4 implies that Ia < Iq on the set

{∇Λa(θ) : θ ∈ Ct(c5), 0 < |θ| < (c10 − c7ǫ
1/3)ǫ2/C5}

whose closure contains the LLN velocity ξo = ∇Λa(0). We have proved Theorem 1.8.

4. Open problems

Our technique of proof puts several restrictions on the class of models treated. The following are natural
questions we have not addressed.

(1) Does Theorem 1.8 extend to all space-only RWRE in dimension d = 2, 3, or at least to those satisfying
Sznitman’s condition (T)? Note that, for non-nestling walks, it suffices to show that the correlation
condition (3.17) is satisfied on a sequence (θn)n≥1 that converges to zero, c.f. Theorem 3.4.

(2) In case
∑

π(0, z)〈z, e〉 is random for any e ∈ Rso, is it true that Iq(ξ) = Ia(ξ) only when ξ = 0 or
Ia(ξ) = 0, as is the case in dimension d = 1?

In our proof of Theorem 1.8 (specifically, in the proof of the correlation condition (3.17)), we used the
isotropy assumption in order to get rid of a centering term under the (untilted) measure; this does not seem
essential and probably, the lack of isotropy could be handled in the perturbative regime. However, getting rid
of the perturbative restriction, or of the non-randomness in the ed direction, requires additional arguments.
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