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Abstract

We consider the distribution of the maximum MT of branching Brownian motion
with time-inhomogeneous variance of the form σ2(t/T ), where σ(·) is a strictly decreasing
function. This corresponds to the study of the time-inhomogeneous Fisher–Kolmogorov-
Petrovskii-Piskunov (FKPP) equation Ft(x, t) = σ2(1− t/T )Fxx(x, t)/2 + g(F (x, t)), for
appropriate nonlinearities g(·). Fang and Zeitouni (2012) showed that MT − vσT is

negative of order T−1/3, where vσ =
∫ 1

0
σ(s)ds. In this paper, we show the existence

of a function m′T , such that MT − m′T converges in law, as T → ∞. Furthermore,

m′T = vσT −wσT 1/3−σ(1) log T +O(1) with wσ = 2−1/3α1

∫ 1

0
σ(s)1/3|σ′(s)|2/3 ds. Here,

−α1 = −2.33811... is the largest zero of the Airy function Ai. The proof uses a mixture
of probabilistic and analytic arguments.

1 Introduction

The classical branching Brownian motion (BBM) model in R can be described probabilistically
as follows. Fix a law µ of finite variance on [2,∞)∩Z. At time t = 0, one particle exists and
is located at the origin. This particle starts performing standard Brownian motion on the real
line, up to an exponentially distributed random time, with parameter β0 = (2(Eµ[L]− 1))−1

(that is, branching occurs at rate β0). At that time, the particle instantaneously splits into a
random number L ≥ 2 of independent particles, and those start afresh performing Brownian
motion until their (independent) exponential clocks ring. There is an extensive literature on
this model and its discrete analog, the branching random walk, in particular concerning the
position of the right-most particle (see e.g. [M75, Br78, Br83, DS88, R11, A13]). In order to
state the main result, introduce the F-KPP travelling wave equation

φ : R→ (0, 1) increasing, 1
2φ
′′+φ′+β0(Eµ[φL]−φ) = 0, φ(−∞) = 0, φ(+∞) = 1. (1.1)

One has the following theorem:
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Theorem (Bramson [Br83]). Let Mt denote the position of the right-most particle at time t
in branching Brownian motion as defined above. Then there exists a solution φ to (1.1), such
that for all x ∈ R,

P(Mt ≤ t− 3
2 log t+ x)→ φ(x), as t→∞.

We discuss in this paper a variant of the BBM model, first introduced in [DS88], where
the motion of the particle(s) is controlled by a time-inhomogeneous variance. More precisely,
let σ ∈ C2([0, 1]) be a strictly decreasing function with σ(1) > 0 and inft∈[0,1] |σ′(t)| > 0. We
assume that the variance of the Brownian motions at time t ∈ [0, T ] is given by σ2(t/T ).

Let Mt = maxu∈N(t)Xu(t) denote the location of the rightmost particle at time t. The
cumulative distribution function of MT is F (·, T ), where F (x, t) is the solution of the time-
inhomogeneous Fisher–Kolmogorov-Petrovskii-Piskunov (FKPP) equation

∂F

∂t
(x, t) =

σ2(1− t/T )

2

∂2F

∂2x
(x, t) + β0(Eµ[F (x, t)L]− F (x, t)) , t ∈ [0, T ], x ∈ R

F (x, 0) = 1x≥0 . (1.2)

See [M75] for this probabilistic interpretation of the FKPP equation in the time homogeneous
case.

In [FZ12], the authors prove the following.

Theorem (Fang, Zeitouni [FZ12]). There exist constants C,C ′ > 0 so that

− C ≤ lim inf
T→∞

MT − vσT
T 1/3

≤ lim sup
T→∞

MT − vσT
T 1/3

≤ −C ′ < 0 , (1.3)

where vσ =
∫ 1
0 σ(s)ds.

(The derivation in [FZ12] is for the case that P (L = 2) = 1, but applies with no changes
to the current setup. The linear in T asymptotics, i.e. the speed vσ, can be read off with
some effort from the results in [DS88] and [BK04].)

Our goal in this paper is to significantly refine Theorem 1. To state our results, introduce
the functions v, w : [0, 1]→ R+ by

v(t) =

∫ t

0
σ(s) ds , (1.4)

and

w(t) = 2−1/3α1

∫ t

0
σ(s)1/3|σ′(s)|2/3 ds , (1.5)

where −α1 = −2.33811... is the largest zero of the Airy function of the first kind

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt , (1.6)

see [AS64, Section 10.4] for definitions; note that Ai satisfies the Airy differential equation
Ai′′(x)− xAi(x) = 0. Note also that vσ = v(1). Set

mT = v(1)T − w(1)T 1/3 − σ(1) log T.

Our main result is the following.
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Theorem 1.1. The family of random variables (MT −mT )T≥0 is tight. Further, there exists
a solution φ(x) to (1.1) and a function m′T with Cσ = lim supT≥0 |m′T −mT | <∞, such that
for all x ∈ R,

lim
T→∞

P(MT ≤ m′T + x) = φ(x/σ(0)).

Furthermore, for a fixed travelling wave φ, the constant Cσ above is uniformly bounded for

σ ∈ {σ : [0, 1] 7→ R+ : σ(0) + 1/σ(1) < c0, sup
t∈[0,1]

|σ′′(t)| < c0, inf
t∈[0,1]

|σ′(t)| > 1/c0} =: Ξc0 .

Parallel to our work, and an inspiration to it, was the study [NRR13], by PDE tech-
niques, of a class of time-inhomogeneous FKPP equations that includes (1.2). Compared
with [NRR13], we deal with a slightly restricted class of equations, but are able to obtain
finer (up to order 1) asymptotics and convergence to a travelling wave. We hope that our
techniques can be pushed to yield convergence in distribution of the family (MT −mT )T≥0
(instead of (MT−m′T )T≥0), in parallel with the recent results in [BDZ13], but this requires sig-
nificant changes in the approach of [BDZ13] (mainly, because unlike in the time-homogeneous
case, extremal particles at time T will, with positive probability, be extremal at some random
intermediate time between εT and (1− ε)T ). We therefore leave the adaptation for possible
future work.

We remark that Mallein [M13] has recently published results similar to ours which are
much less precise but hold for a rather general class of (not necessarily Gaussian) time-
inhomogeneous branching random walks.

The core of the proof of Theorem 1.1 is based on a constrained first and second moment
analysis of the number of particles that reach a target value but remain below a barrier
for the duration of their lifetime. Due to the time inhomogenuity of σ(·), the choice of
barrier is not straight-forward, and in particular it is not a straight line; “rectifying” it
introduces a killing potential. The analysis of the survival of Brownian motion in this potential
eventually leads to a time-inhomogeneous Airy-type differential equation which we study by
analytic means, exploiting the anti-symmetry of the differential operator. (As pointed out
to us by Dima Ioffe, a similar phenomenon with related T 1/3 scaling was already observed
in [G89, SF06].) These methods together lead to estimates of the right tail of MT which
are sharp up to a multiplicative factor (Proposition 3.1). By a bootstrapping procedure that
may be of independent interest, these estimates are then turned into convergence in law by
using a convergence result for the derivative Gibbs measure of (time-homogeneous) branching
Brownian motion.

The structure of the paper is as follows. In the next section, we introduce a barrier γT (·),
and show that with high probability, no particle crosses (a shifted version of) the barrier, see
Lemma 2.1. Using the barrier, we then control the distribution of extremal particles at all
times large enough (Lemma 2.2). In these lemmas, results concerning time-inhomogeneous
Airy-type PDE’s are needed, and the proof of those is given in Appendix A (Section 5).
Section 3 combines the results of Section 2 (taken at time T −T 2/3) together with an analysis
of the last segment of time of length T 2/3, and provides the first-and-second moment results
needed to obtain lower and upper bound on the right tail of MT . The proof of Theorem 1.1
is then completed in Section 4, using a result about the convergence of the derivative Gibbs
measure of (time-homogeneous) branching Brownian motion, which is given in Appendix B
(Section 6).
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Notation In the rest of this article (except in the appendix), the symbols C,C ′,C1,C2 etc.
stand for positive constants, possibly depending on c0 (see Theorem 1.1), whose values may
change from line to line. The phrase “X holds for large T” means that there exists T0, possibly
depending on c0, such that X holds for T ≥ T0. We further use the Landau symbols O(·)
and o(·), which are always to be interpreted with respect to T →∞, and which may depend
on c0 as well. Finally, the symbols P and E (possibly with sub-/superscripts) always stand
for the law of a branching Markov process (branching Brownian motion with time-varying
or constant variance and with or without absorption of particles) and the expectation with
respect to this law. On this other hand, the symbols P and E are used for probability and
expectation with respect to a single particle (i.e. a Markov process, usually a Brownian motion
or a three-dimensional Bessel process). The location of the initial particle is denoted by a
subscript, e.g. Px, without a subscript the initial particle is implicitly located at the origin.

Acknowledgements We thank Lenya Ryzhik for very stimulating conversations concerning
the PDE approach to time-inhomogeneous BBMs, and for making [NRR13] available to us
before we completed work on this paper. We also thank Bastien Mallein for describing to us
his progress on analogous questions for branching random walks.

2 Crossing estimates

Fix T . Define the curve γT : [0, T ]→ R by

γT (t) = Tv(t/T )− T 1/3w(t/T ).

In this section we prove two lemmas. The first lemma bounds, for any fixed K ≥ 1, the
probability that there exists a particle that reaches the curve γT (t) +K. The second lemma
estimates the expected number of particles that have stayed below the curve up to time t,
and reach a given terminal value at time t.

Lemma 2.1. There exists a constant C = C(c0), such that for large T, for any σ ∈ Ξc0 and
every K ∈ [1, T 1/3],

P(∃t ∈ [0, T ] : max
u∈N(t)

Xu(t) ≥ γT (t) +K) ≤ CKe−K/σ(0).

Proof. The proof goes by a first moment estimate of the number of particles hitting the curve
γT +K. For an interval I ⊂ [0, T ], let RI be the number of particles hitting the curve γT +K
for the first time during the interval I. Let Bt be a Brownian motion with variance σ2(t/T )
started from the point x under Px (see the remarks on notation in the introduction). For
a path (Xt)t≥0, define H0(X) = inf{t ≥ 0 : Xt = 0}. By the first moment formula1 for
branching Markov processes [INW69, Theorem 4.1] (also known as “Many-to-one lemma”)
we then have (taking x = K)

E[RI ] = E0

[
eH0(γT (t)+K−Bt)/21H0(γT (t)+K−Bt)∈I

]
= EK

[
eH0(Bt+γT (t))/21H0(Bt+γT (t))∈I

]
,

1Note that due to our choice of the branching rate β0, the expected number of particles in the system at
the time t is E[N(t)] = et/2, which is the reason for the exponential term arising in the formula.
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where the second equality follows from the fact that the law of K − Bt under P0 is equal to
the law of Bt under PK by symmetry. Applying Girsanov’s theorem we get that

E[RI ] = EK

[
exp

(∫ H0

0

γ′T (t)

σ2(t/T )
dBt +

H0

2
−
∫ H0

0

(γ′T (t))2

2σ2(t/T )
dt
)
1H0∈I

]
= e−Kγ

′
T (0)/σ

2(0)+o(1)EK

[
exp

(
1

T

∫ H0

0

(
−qT (t/T )Bt + T 1/3 w′(t)

σ(t/T )

)
dt

)
1H0∈I

]
,

where the last equation follows by integration by parts and the function qT , kT : [0, 1]→ R is
defined by

qT (t) =
|σ′(t)|
σ2(t)

+ T−2/3(w′/σ2)′(t).

For large T , this yields by (1.5) and the assumptions on σ and K,

E[RI ] = e−K/σ(0)+o(1)EK

[
exp

( 1

T

∫ H0

0

{
− qT (t/T )Bt

+ T 1/3α1qT (t)2/3
(
1
2σ

2(t/T )
)1/3}

dt
)
1H0∈I

]
(2.1)

Set

J(t) =

∫ t

0

1
2σ(s)2 ds . (2.2)

Define s0 := J−1(4T−1/3)T , so that CT 2/3 ≤ s0 ≤ C ′T 2/3 for large T . We will bound
separately E[R[0,s0]] and E[R[s0,T ]]. For the first term, (2.1) immediately gives

E[R[0,s0]] ≤ Ce
−K/σ(0) , (2.3)

because under PK , Bt is positive until the time H0 and the deterministic term in the integral
in (2.1) is bounded by a constant C. In order to bound E[R[s0,T ]], we note that the expectation
on the right side of (2.1) equals∫

I

1
2σ

2(t/T )
dG(K, y; t)

dy

∣∣∣
y=0

dt, (2.4)

where G(x, y; t) is the fundamental solution to the PDE (5.4), with Q(t) = qT (J(t/T )) (see
[G85, Sections 5.2.1 and 5.2.8] for an elementary, but somewhat non-rigorous presentation,
and [D84, Sections I.XI.7 and 2.IX.13] for the formal definition of parabolic measure and its
relation to hitting time distributions for Brownian motion). Now, by Proposition 5.2 and
(5.5), there exists a positive function Q∗(t) ≤ Q(t), such that for every t ∈ [s0, T ],

dG(K, y; t)

dy

∣∣∣
y=0
≤ T−1Cψ1

(
Q∗(t)K

) ∞∑
n=1

e−C
′n2/3

ψ′n(0) ≤ T−1CK,

where the last inequality follows from Lemma 5.1. Together with (2.1) and (2.4), this yields
for large T ,

E[R[s0,T ]] ≤ CKe
−K/σ(0). (2.5)

The lemma now follows from (2.3) and (2.5) and Markov’s inequality.
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We next control the expected number of particles that stay below the curve γT (·) + K
up to time t ≤ T and reach a prescribed value at time t. In what follows, for measures µ, ν
we use the notation µ(· ∈ dy) ≤ ν(· ∈ dy), y ≥ 0, to mean that for any interval I ⊂ R+,
µ(· ∈ I) ≤ ν(· ∈ I).

Lemma 2.2. Let t ∈ [J−1(4T−1/3)T, T ]. Then there exist constants C,C ′ > 0 (depending on
c0 only), such that for large T and for all K ∈ [1, T 1/3] and y > 0,

E[#{u ∈ N(t) : γT (t) +K −Xu(t) ∈ dy and Xu(s) ≤ γT (s) +K , ∀s ≤ t}]

≤
[
CKey/σ(t/T )−K/σ(0)T−2/3

∞∑
n=1

e−C
′n2/3∣∣ψq∗(t/T )n (T−1/3y)

∣∣] dy

where q∗(t) ≤ qT (t) and qT (t)− q∗(t) ≤ 2T−1/3 supt∈[0,1] |q′T (t)|.

Proof. By a similar argument as the one leading to (2.1), the expectation in the statement of
the lemma equals

eyγ
′
T (t)/σ

2(t/T )−Kγ′T (0)/σ
2(0)+o(1)G(K, y; t) dy,

where G(x, y; t) is the same as in the proof of Lemma 2.1. By the assumption on K, we have
Kγ′T (0)/σ2(0) = K/σ(0) + o(1) and by definition of γT , we have γ′T (t) ≤ σ(t/T ). The claim
now follows from the analytical Proposition 5.2 and (5.5) in Appendix A (Section 5).

3 Tail estimates

We derive in this section tail estimates on the distribution of MT summarized in the following
proposition.

Proposition 3.1. There exists a constant C = C(c0) and T0 ∈ R, such that for any σ ∈ Ξc0,
T ≥ T0 and K ∈ [1, T 1/3],

C−1Ke−K/σ(0) ≤ P(MT ≥ m(T ) +K) ≤ CKe−K/σ(0).

The proof of Proposition 3.1 goes by a suitably truncated first-second moment method,
inspired by analogous results in the time-homogeneous case [Br78, A13, R11, BDZ13]. The
key ingredients are estimates on a single Brownian particle with time-inhomogeneous variance
staying below a curve and reaching a certain point at a given time t. These results, which
have already been used in the previous section, are obtained in the appendix by analytic
methods. However, as in the time-homogeneous case, the first-second moment method applied
directly to the particles staying under the curve γT would not yield the O(1) precision on the
maximum at time T that we are aiming at, but would rather induce an error of magnitude
O(log log T ). This can be rectified in our case by slightly changing the curve in the time
interval [T − T 2/3, T ] in a way similar to the time-homogeneous case (namely, by having it
end at the point γT (T ) − σ(1) log T . Luckily, for the upper bound it is possible to shortcut
this approach, as Slepian’s inequality allows us here to directly use existing results in the
time-homogeneous case for the system during the time interval [T − T 2/3, T ] (see Section 3.1
for details).
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3.1 Proof of Proposition 3.1: Upper bound

Set t0 = T − T 2/3 and let K ≥ 2. Let (Ft)t≥0 be the natural filtration of the BBM. A union
bound gives,

P(MT ≥ m(T ) +K | Ft0) ≤
∑

u∈N(t0)

P(Xu(t0),t0)(MT ≥ m(T ) +K),

where P(x,t) denotes the law of BBM with variance σ2(·/T ) starting with one particle at the
point x at time t. We will estimate the summands on the right-hand side by comparison with
a BBM with constant variance. Set σ2c = T 1/3

∫ 1
1−T−2/3 σ2(t) dt. By the assumption on σ, we

have

m(T )− γT (t0) ≥ T

∫ 1

1−T−1/3

σ(t) dt− σ(1) log T − C ≥ σc
(
T 2/3 − 3

2 log T 2/3
)
− C1,

for some constant C1 that we fix for the remainder of this proof. Now, let (Xu(T 2/3))u and
(Xc

u(T 2/3))u be the positions of the particles at time T 2/3 in branching Brownian motion with
branching rate β0 and variance σ2((·+t0)/T ) and σ2c , respectively. Conditioned on the geneal-
ogy, we have E[Xu(T 2/3)2] = E[Xc

u(T 2/3)2] and E[Xu(T 2/3)Xv(T
2/3)] ≥ E[Xc

u(T 2/3)Xc
v(T

2/3)]
for every u and v, by the definition of σ2c and the fact that σ2 is decreasing. Hence, setting
Mc = maxuX

c
u(T 2/3), we have by Slepian’s inequality [S62] for every x ≥ 1,

P(γT (t0)+K−C1−x,t0)(MT ≥ m(T ) +K) ≤ P(Mc ≥ σc
(
T 2/3 − 3

2 log T 2/3
)

+ x)

The tail estimates for the maximum of time-homogeneous BBM are available e.g. in [Br83],
and we obtain that

P(γT (t0)+K−C1−x,t0)(MT ≥ m(T ) +K) ≤ Cxe−x/σc ≤ Cxe−x/σ(t0/T ) , (3.1)

for large T , uniformly in x ≥ 1.
Let A denote the event that no particle reaches the curve γT (t) +K − C1 − 1 until time

t0. Integrating2 the upper bound in Lemma 2.2 (taken at time t = t0) with respect to the
distribution in (3.1) now yields for K ≥ 2(C1 + 1) and large T ,

P({MT ≥ m(T ) +K} ∩A) ≤ CKe−K/σ(0)
(
〈ψ1, x〉+ T−1/3

∞∑
n=2

e−C
′n2/3 |〈ψn, x〉|

)
.

The upper bound in the statement of Proposition 3.1 now follows from this inequality, together
with the fact that P(Ac) ≤ CKe−K/σ(0) for large T by Lemma 2.1.

3.2 Proof of Proposition 3.1: Lower bound

As discussed above, the proof involves a second moment (“Many-to-two”) argument. In
order to carry it out, we need to modify the curve γT (·) at the last interval [T − T 2/3, T ].
Toward this end, fix K > 1 and let φT (t) be an increasing, twice differentiable function3

2We can integrate term by term because
∑∞
n=2 e

−C′n2/3

〈|ψn|, x〉 converges by point 4 of Lemma 5.1.
3The construction of such a function is possible for large enough T , for example by gluing together a

parabola on [T − T 2/3, T − T 2/3/2] and a line on [T − T 2/3/2, T ].
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such that φT (t) ≡ 0 on [0, T − T 2/3], φT (T ) = σ(1) log T , φ′T (t) ≤ 2σ(1) log T/T 2/3 and
φ′′T (t) ≤ 4σ(1) log T/T 4/3. Define the curve

ζT (t) = γT (t) +K − φT (t).

For s, t ∈ [0, T ], let

Gζ(x, y; s, t) dy = E(K−x,s)[#{u ∈ N(t) : Xu(r) ≤ ζT (r)∀s ≤ r ≤ t}1ζT (t)−Xu(t)∈dy]

denote the expected number of descendants at time t of a particle present at time s at
location K − x, so that the path of the descendant stayed below the curve ζT (·) until time t,
and reached, at time t, an infinitesimal neighborhood of the value ζT (t)− y. Similarly to the
proof of (2.1), we have

Gζ(x, y; s, t) dy = E(x,s)

[
exp

(∫ t

s

ζ ′T (r)

σ2(r/T )
dBr +

t− s
2
−
∫ t

s

(ζ ′T (r))2

2σ2(r/T )
dr
)
1Bt∈dy

]
= exp

(
ζ ′(t)

σ2(t/T )
y − ζ ′(s)

σ2(s/T )
x+

φT (t)− φT (s)

σ(1)
+ o(1)

)
G(x, y; s, t) dy,

(3.2)

where under P(x,s), (Bt, t)t≥s is the law of space-time Brownian motion with time-inhomogeneous
variance σ2(·/T ) started at the space-time point (x, s) and G(x, y; s, t) is the fundamental so-
lution to (5.4), with Q(t) = |σ′(J(t/T ))|/σ2(J(t/T )) + O(log T/T 2/3) (The o(1) term in the
last display comes from the time-inhomogeneity in the quadratic term of Girsanov’s theorem.)
In particular, if NT denotes the number of particles, at time T , whose trajectory stayed under
the curve ζT (·) and reached the interval [ζT (T )− 2, ζT (T )− 1] at time T , then, for large T ,

E[NT ] =

∫ 2

1
Gζ(0, y; 0, T ) dy ≥ CTe−K/σ(0)

∫ 2

1
G(K, y;T ) dy ≥ CKe−K/σ(0),

where the last inequality follows from Proposition 5.2 and (5.5).
As for the second moment, the second moment formula4 (“Many-to-two lemma”) for

branching Markov processes [INW69, Theorem 4.15] yields for large T ,

E[N2
T ] = E[NT ] + β0Eµ[L2 − L]

∫ T

0
dt

∫ ∞
0

dy Gζ(K, y; 0, t)

(∫ 2

1
Gζ(y, z; t, T ) dz

)2

≤ E[NT ] + Ce−K/σ(0)
∫ T

0
T dt

∫ ∞
0

dy G(K, y; 0, t)

(∫ 2

1
G(y, z; t, T ) dz

)2

e
−c1y+

φT (T )−φT (t)

σ(1) ,

(3.3)

for C1 = Q1/2, a constant that we fix for the rest of the proof. We split the integral into three
parts, according to intervals of time [0, T 2/3], [T 2/3, T − T 2/3] and [T − T 2/3, T ] and denote
the three parts by I1, I2 and I3. In order to estimate the first and third part, we bound the
Green kernel G(x, y; s, t) for t − s ≤ T 2/3 by the Green kernel of Brownian motion killed at
the origin. Namely, writing V (t) =

∫ t
0 σ

2(s/T ) ds, we have for t− s ≤ T 2/3 and x, y ≥ 0,

G(x, y; s, t) ≤ C√
t− s

exp

(
− (x− y)2

2(V (t)− V (s))

)(
xy

t− s
∧ 1

)
(3.4)

4It can be derived by conditioning on the splitting time of pairs of particles.
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For t ≥ T 2/3, we use Proposition 5.2 and (5.5) in order to bound G(K, y; 0, t) and G(y, z; t, T )
(for the latter, we consider the time-reversal of (5.4)). Note that |ψqn(x)| ≤ √qx for every

n, q, x. This yields G(K, y; 0, t) ≤ CT−1Ky and G(y, z;T − t, T ) ≤ CT−1y for every t ≥ T 2/3

and z ∈ [1, 2].
For the first part, we now get by exchanging integrals,

I1 ≤ T 2

∫ ∞
0

(T−1y)2e−C1y

(∫ T 2/3

0
G(K, y; 0, t) dt

)
dy ≤ C

∫ ∞
0

y2e−C1y(1 +Ky) dy ≤ CK,

for K ≥ 1 and large T . Here, we used the fact that by (3.4),∫ T 2/3

0
G(K, y; 0, t) dt ≤ C

∫ 1

0

1√
t

dt+ C

∫ ∞
1

Ky

t3/2
dt ≤ C(1 +Ky).

For the second part, we have

I2 ≤ CT 2

∫ T−T 2/3

T 2/3

dt

∫ ∞
0

T−3Ky3e−C1y dy ≤ CK,

For the third part, we note that by (3.4) and the assumptions on φT , we have for every y ≥ 0,
for large T ,

∫ T 2/3

1

(∫ 2

1
G(y, z;T − t, T ) dz

)2

e
φT (T )−φT (T−t)

σ(1) dt

≤ Cy2
∫ T 2/3/ log T

1
t−3 dt+ T 2/3T

(
T 2/3

log T

)−3 ≤ Cy2.
Furthermore, for t ≤ 1, we have

(∫ 2
1 G(y, z;T − t, T ) dz

)2
exp((φT (T )−φT (T−t))/σ(1)) ≤ C

for every y. This gives,

I3 ≤
∫ ∞
0

Ky3e−C1y dy +

∫ 1

0
CK dt ≤ CK.

In total, we have

E[N2
T ] ≤ E[NT ] + Ce−K/σ(0)(I1 + I2 + I3) ≤ CE[NT ].

This now yields,

P(NT ≥ 1) ≥ E[NT ]2

E[N2
T ]
≥ 1/C,

which finishes the proof of the lower bound in Proposition 3.1.

4 Proof of Theorem 1.1

Armed with the tail estimates provided by Proposition 3.1, the proof of Theorem 1.1 follows
by considering the descendants of the particles living at a large (but fixed) time t. Here are
the details:
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We assume without loss of generality that σ(0) = 1 (otherwise we can rescale space). Write
PT and ET in place of P and E, similarly, we write PT

(x,t) in place of P(x,t) (see Section 3.1).

Furthermore, we will denote by Phom and Ehom the law of (time-homogeneous) branching
Brownian motion with variance 1 and branching rate β0, starting with one particle at the
origin. In what follows, we fix y ∈ R and let t ≥ 0 large enough, such that |y| < log t− 2. We
will later let first T , then t go to infinity, i.e. we will choose t as a function of T , such that
t(T ) goes to infinity slowly enough as T →∞.

As in Section 3.1, let (Ft′)t′≥0 be the natural filtration of the BBM. Define the Ft-
measurable random variable Wt,T by

Wt,T = PT (MT ≤ m(T ) + y | Ft) =
∏

u∈N(t)

(
1−PT

(Xu(t),t)
(MT ≥ m(T ) + y)

)
.

Furthermore, define

Dt =
∑

u∈N(t)

(t−Xu(t))eXu(t)−t .

By Proposition 3.1 applied with the function σ̄(t′) = σ((t′(T−t)+t)/T ), there exists a constant
C and for each large T a function gt,T : R+ → [C−1, C], such that for each x ∈ [−t, t− log t],

1−PT
(x,t)(MT ≥ m(T ) + y) = exp

(
−gt,T ((y − x+ t)/

√
t)(y − x+ t)e−(y−x+t)

)
. (4.1)

By the continuity of PT
(x,t) in x, the functions gt,T are actually continuous, in particular, they

are Lebesgue-measurable.
As in Section 6 (note that if (Bt)t≥0 is a Brownian motion started at the origin, then

(t − Bt)t≥0 is a Brownian motion with drift +1 started at the origin), define the derivative
Gibbs measure

µt =
∑

u∈N (t)

(t−Xu(t))e−(t−Xu(t))δ(t−Xu(t))/
√
t .

Then, on the event At = {∀u ∈ N(t) : −t ≤ Xu(t) ≤ t− log t}, we get by (4.1)

Wt,T1At = exp

(
−e−y

∫ ∞
0

gt,T (y/
√
t+ x)µt(dx)

)
1At (4.2)

and Phom(At) → 0 as t goes to infinity [Br83]. Now, note that as T → ∞, the law of the
process until time t converges to its law under Phom, because conditioned on the genealogical
structure and the branching times, the particle motion until time t on each of the finitely many
branches of the genealogical tree converges to Brownian motion with variance 1. Moreover,
thanks to the continuity and positivity of the Gaussian density, we can construct a probability
space with probability measure P̃ which supports random variables (µ̃T )T≥0 and µ̃, such that,

under P̃, µ̃T follows the law of µt under PT , µ̃ follows the law of µt under Phom and µ̃T = µ̃
on an event G̃T with P̃(G̃T )→ 1 as T →∞. In particular,∫ ∞

0
gt,T (y/

√
t+ x)µ̃T (dx) =

∫ ∞
0

gt,T (y/
√
t+ x)µ̃(dx) on G̃T , for every y. (4.3)

By a diagonalization argument, we can now choose t = t(T ) growing slowly with T , so that
(4.3) continues to hold with this choice of t(T ). By Theorem 6.1, we have that for every
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bounded continuous function f ,

Ehom

[
f

(∫ ∞
0

gt(T ),T (y/
√
t(T ) + x)µt(T )(dx)

)]
−Ehom

[
f

(
D∞

∫
gt(T ),T (y/

√
t(T ) + x)ρ(dx)

)]
→T→∞ 0,

where ρ is the law of a BES(3) process at time 1, started at 0, and the variable D∞ is the
derivative martingale limit from Section 6. Using the above coupling we conclude that

ET
[
f

(∫ ∞
0

gt(T ),T (y/
√
t(T ) + x)µt(T )(dx)

)]
−Ehom

[
f

(
D∞

∫
gt(T ),T (y/

√
t(T ) + x)ρ(dx)

)]
→ 0. (4.4)

On the other hand, since ρ has a continuous density with respect to Lebesgue measure, we
have,

lim sup
T→∞

∣∣∣∣∫ gt(T ),T (y/
√
t(T ) + x)ρ(dx)−

∫
gt(T ),T (x)ρ(dx)

∣∣∣∣ = 0 (4.5)

Setting CT =
∫
gt(T ),T (x)ρ(dx), we get by (4.2), (4.4), (4.5) and dominated convergence,

lim
T→∞

PT (MT ≤ m(T ) + y − logCT ) = Ehom[e−e
−yD∞ ] = φ(x),

where φ is a solution to (1.1). This yields Theorem 1.1.
Remark: While a-priori, the constant CT depends on the particular choice of sequence t(T ),
it is clear that the conclusion of Theorem 1.1 implies that a-posteriori, it is independent of
this choice.

5 Appendix A: An Airy-type PDE with time-varying param-
eters

We are interested in the following parabolic PDE:

wt = ε−1
{
wxx − q(t)xw

}
, w(t, 0) = 0 ∀t ≥ 0, (5.1)

for q ∈ C1[0, 1], q > 0. We want to study its behaviour as ε→ 0.
Before solving this equation, we recall some facts about the Airy differential operator

Lψ = ψ′′ − xψ. Let L2(0,∞) be the space of square-integrable functions on (0,∞) and let
〈·, ·〉 be the associated scalar product with norm ‖ · ‖2. Recall the definition (1.6) of the Airy
function of the first kind Ai(x). We denote by −α1 > −α2 > · · · its discrete set of zeros, with
α1 = 2.33811... . The functions ψn defined by

ψn(x) =
Ai(x− αn)

‖Ai(· − αn)‖2
, n = 1, 2, . . .

then form an ONB of L2(0,∞) and ψn is an eigenfunction of L with eigenvalue −αn [VS04,
Section 4.4].

The following lemma collects some other facts about the functions ψn(x), which are prob-
ably well-known, although we could not find a reference to some of them.
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Lemma 5.1.

1. ‖Ai(· − αn)‖2 = |Ai′(−αn)| for all n. In particular, ψ′n(0) = 1 for all n.

2. αnn
−2/3 → 3π/2 as n→∞.

3. |ψn(x)| ≤ x for all n ≥ 1 and x ≥ 0.

4. For some numerical constant C, 〈|ψn|, x〉 ≤ Cn4/3 for all n ≥ 1.

Proof. The first and second points are [VS04, (4.52) and (2.52)], respectively. For the third
point, we first note that since Ai′′(x) = xAi(x), the local extrema of Ai′ on R are exactly
the zeros of Ai and the origin. Furthermore, by the first point of the lemma, |Ai′(−αn)| is
increasing in n and by [VS04, (3.50)], |Ai′(0)| < |Ai′(−α1)|. This yields |Ai′(x)| ≤ |Ai′(−αn)|
for all x ≥ −αn, from which the third point of the lemma follows. For the fourth point, we
first recall that for some x0, Ai(x) ≤ exp(−(2/3)x3/2) for x ≥ x0 [AS64, 10.4.59]. Together
with the first point of the lemma and the definition of ψn, it follows that 〈|ψn|1x≥αn , x〉 ≤
〈|ψ1|, x+ (αn−α1)〉 ≤ Cαn, for some numerical constant C. Furthermore, by the third point
of the lemma, we have 〈|ψn|1x≤αn , x〉 ≤ α2

n/2 for all n. Application of the second point of
the lemma now finishes the proof of the fourth point.

We get back to the equation (5.1). Define for a constant q the operator Lqu = uxx− qxu.
One easily checks that the function ψqn(x) = q1/6ψn(q1/3x) is an eigenfunction of Lq with
eigenvalue −αnq2/3 and the functions ψqn form an ONB of L2(0,∞). We further denote by
g(x, y; t) the fundamental solution of (5.1).

Proposition 5.2. Set Q1 = inft∈[0,1] q(t)
2/3 and Q2 = supt∈[0,1] |(log q)′(t)|. Suppose Q1 > 0.

Then there exist constants C1, C2 > 0 depending on Q1 and Q2, such that uniformly for all
x ∈ [0, 1], t ∈ [4ε, 1] and δ ∈ [ε,

√
ε] with δ/

√
ε → 0 as ε → 0 there exist sequences (c∗n)n≥2

and (c∗n)n≥2, with |c∗n| ∨ |c∗n| ≤ C1 exp(−C2(t ∧ δ)ε−1n2/3) and(
ψ
q∗(t)
1 + ε

∞∑
n=2

c∗nψ
q∗(t)
n

)
.
g(x, ·; t)
ψ
q(0)
1 (x)

exp

(
ε−1α1

∫ t

0
q(s)2/3 ds

)
.

(
ψ
q∗(t)
1 + ε

∞∑
n=2

c∗nψ
q∗(t)
n

)
,

where . denotes an inequality up to a multiplicative factor (depending on Q1 and Q2) tending
to 1 as ε→ 0 and q∗(t) ≤ q(t) ≤ q∗(t) with q∗(t)− q∗(t) ≤ 2(t ∧ δ)2ε−1 supt∈[0,1] |q′(t)|.

Before providing the proof of Proposition 5.2, we derive some a-priori estimates on solu-
tions of (5.1).

Lemma 5.3. Define Q1 and Q2 as in Proposition 5.2 and assume Q1 > 0. Let w(t, x) be
the solution to (5.1) with initial condition satisfying ‖w(0, ·)‖2 ≤ 1. Define for each t ≥ 0 the
function Wt(x) = exp(

∫ t
0 ε
−1α1q(s)

2/3 ds)w(t, x). Then there exist numerical constants C,C1,
such that for all t ∈ [0, 1],

1. ‖Wt‖2 ≤ 1,

2. |〈Wt, ψ
q(t)
1 〉 − 〈W0, ψ

q(0)
1 〉| ≤ CQ2+1

Q1
ε and

3.
(∑

n≥2〈Wt, ψ
q(t)
n 〉2

)1/2
≤ CQ2+1

Q1
ε
(
Q2+1
Q1

ε+ |〈W0, ψ
q(0)
1 〉|

)
+ exp(−C1ε

−1Q1t).
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Proof. After decomposing the solution of (5.1) in the eigen-basis determined by the Airy
functions, the proof proceeds by analyzing a coupled system of linear, time inhomogeneous,
ordinary differential equations.

Throughout the proof, C, C1 and C2 are some numerical constants which may change

from line to line. Define the vector c(t) = (c1(t), c2(t), . . .), where cn(t) = 〈Wt, ψ
q(t)
n 〉. From

(5.1), one gets

ċn(t) = −ε−1(αn − α1)q(t)
2/3cn(t) +

∑
k≥1

ck(t)q
′(t)〈ψq(t)k ,

d

dq′
ψq
′
n (t)

∣∣∣
q′=q(t)

〉,

whence

ċ(t) = (D(t) +A(t))c(t), D(t) = −ε−1q(t)2/3 diag(αi−α1)i≥1, A(t) = (log q)′(t)A. (5.2)

Here, A is the antisymmetric matrix

A = 1
6(I + 2((xψ′i, ψj))i,j≥1 = 1

6((xψ′i, ψj)− (xψ′j , ψx))i,j≥1,

where the equality is easily verified by integration by parts5.
SinceD(t)+A(t) andD(t′)+A(t′) do not commute unless q(t)2/3(log q)′(t′) = q(t′)2/3(log q)′(t),

there is no obvious explicit expression for the solution to (5.2). However, since D is diagonal
and A antisymmetric, we have

d

dt
‖c(t)‖22 =

d

dt
cT (t)c(t) = cT (t)(DT (t) +AT (t) +D(t) +A(t))c(t) = 2cT (t)D(t)c(t) ≤ 0,

by the positivity of q(t). This implies the first claim. In particular, |c1(t)| ≤ 1 for all t ≥ 0.
Setting c̄(t) = (0, c2(t), c3(t), . . .), the previous equation yields,

d

dt
c̄T (t)c̄(t) = 2c̄T (t)D(t)c̄(t)− 2c1(t)

∞∑
j=2

A1j(t)cj(t)

≤ −2ε−1q(t)2/3(α2 − α1)c̄
T (t)c̄(t) + 2|c1(t)| ‖(A1j(t))j≥2‖2‖c̄(t)‖2,

by the Cauchy–Schwarz inequality. By Parseval’s formula, ‖(A1j)j≥2‖2 ≤ ‖xψ′1‖2/3 < ∞.
This yields

d

dt
‖c̄(t)‖2 ≤ −C1ε

−1Q1‖c̄(t)‖2 + C2Q2|c1(t)|.

Note that the general solution to the equation f ′(t) = −af(t) + b is f(t) = (b/a) + Ce−at.
Since c̄(0) ≤ 1, Grönwall’s inequality now yields that

‖c̄(t)‖2 ≤ C(Q2/Q1)ε sup
s∈[0,t]

|c1(s)|+ exp(−C1ε
−1Q1t), (5.3)

In order to show the second claim, we note that by (5.2), for every t ∈ [0, 1],

|c1(t)− c1(0)| ≤
∫ t

0

∣∣∣∣∣∣
∞∑
j=2

A1j(t)cj(t)

∣∣∣∣∣∣ dt ≤ C
∫ t

0
‖c̄(t)‖2 dt,

where the last inequality follows from the Cauchy–Schwarz inequality as above. Together
with (5.3) and the fact that supt∈[0,1] |c1(t)| ≤ 1, this implies the second claim. The third
claim follows from this, together with (5.3).

5In fact, Aij = 2(−1)i+j(αi − αj)−3 for i 6= j, which can be easily verified by the equation [VS04, (3.54)],
however, we will not use this fact.
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Proof of Proposition 5.2. Fix t ∈ [4ε, 1] and δ ∈ [ε, t−3ε]. We can construct q∗, q∗ ∈ C1([0, t])
such that the following holds:
− Q1 ≤ q∗ ≤ q ≤ q∗
− q∗ ≡ q ≡ q∗ on [2ε, t− ε− δ],
− q∗ and q∗ are constant on [0, ε] ∪ [t− δ, t],
− sups∈[0,t] max{|(log q∗)

′(s)|, |(log q∗)′(s)|} ≤ Q2 and

− q∗ − q∗ ≤ 2(t ∧ δ)2ε−1 supt∈[0,1] |q′(t)|.
Now let x ∈ [0, 1]. Let w∗ and w∗ denote the solutions to (5.1) with q replaced by q∗ or
q∗, respectively, and with initial condition w∗(0, ·) = w∗(0, ·) = δ(· − x). By the parabolic
maximum principle [E98, Theorem 7.1.9], we then have w∗(t′, y) ≤ g(x, y; t′) ≤ w∗(t

′, y) for
all y ≥ 0 and t′ ∈ [0, t].

Write W ∗t′(y) = w∗(t′, y) exp(ε−1α1

∫ t′
0 q∗(s)2/3 ds) for all t′, y. For every n, we have by

the first point of Lemma 5.1 and the fact that ψ1(x) > 0 for all x > 0,

|〈W ∗0 , ψq
∗(0)
n 〉| = |ψq∗(0)n (x)| ≤ Cψq(0)1 (x),

for some constant C depending on Q1. By (5.2), we then have

|〈W ∗ε , ψq
∗(0)
n 〉| ≤ C exp(−(αn − α1)q

∗(0)2/3)ψ
q(0)
1 (x),

for every n, since the off-diagonal terms cancel by the fact that q∗ is constant on [0, ε].
Together with the second point of Lemma 5.1, this yields ‖W ∗ε ‖2 ≤ C1 for some constant C1

as ε is small enough. Furthermore,

〈W ∗ε , ψ
q∗(0)
1 〉 = 〈W ∗0 , ψ

q∗(0)
1 〉 = (1 + o(1))ψ

q(0)
1 (x),

where o(1) is a term depending on Q1 and Q2 which vanishes as ε→ 0. Applying Lemma 5.3

with initial condition w(0, ·) = W ∗ε /C1, we get that 〈W ∗t , ψ
q∗(t)
1 〉 = (1 + o(1))ψ

q(0)
1 (x) and(∑

n≥2〈W ∗t−δ, ψ
q∗(t)
n 〉2

)1/2
≤ C2εψ

q(0)
1 (x) for small ε, where C2 depends on Q1 and Q2. As

above, this now implies that for every n ≥ 2, for small ε,

|〈W ∗t , ψq
∗(0)
n 〉| ≤ exp(−CQ1(t ∧ δ)ε−1n2/3)C2εψ

q(0)
1 (x).

Together with the previous estimates, this finally yields the existence of a sequence of con-
stants (c∗n)n≥2 with |c∗n| ≤ exp(−CQ1(t ∧ δ)ε−1n2/3)C2, such that as ε→ 0,

w∗(t, ·) ≥ (1 + o(1)) exp

(
−ε−1α1

∫ t

0
q∗(s)2/3 ds

)
ψ
q(0)
1 (x)

(
ψ
q∗(t)
1 + ε

∞∑
n=2

c∗nψ
q∗(t)
n

)
.

An analogous formula holds for w∗. The statement now follows from the fact that
∫ 1
0 q
∗(s)2/3−

q∗(s)
2/3 ds = O((t ∧ δ)2) by construction.

Fix T > 0. In the application in Section 2, we need to consider PDE’s on the time interval
[0, T ]. The results obtained in the current section can be easily transported to the following
PDE on [0, T ]× R+:

ut(t, x) = 1
2σ

2(t/T )uxx(t, x) + {−T−1Q(t)x+ T−2/3α1Q(t)2/3
(
1
2σ

2(t/T )
)1/3}u(t, x), (5.4)
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with Dirichlet boundary condition at 0 and where Q ∈ C1([0, T ]) with Q(t) > 0 for all
t ∈ [0, T ]. Setting J(t) =

∫ t
0

1
2σ(s)2 ds as in (2.2), defining q(t) by q(J(t)/J(1)) = 2Q(t)/σ2(t),

and changing variables by

u(t, x) = w(J(t/T )/J(1), T−1/3x) exp

(
J(1)T 1/3α1

∫ J(t/T )/J(1)

0
q(s)2/3 ds

)
,

we see that the function w(t, x) solves (5.1) on [0, 1] × R+ with ε = J(1)T−1/3 and the q(t)
defined here. In particular, if G(x, y; t) and g(x, y; t) denote the fundamental solutions of
(5.4) and (5.1), respectively, then we have the relation

G(x, y; t) = J(1)T−1/3g(T−1/3x, T−1/3y; J(t/T )/J(1)) exp

(
J(1)T 1/3α1

∫ J(t/T )/J(1)

0
q(s)2/3 ds

)
.

(5.5)

6 Appendix B: Convergence of the derivative Gibbs measure
of (time-homogeneous) branching Brownian motion

In this section, we consider branching Brownian motion with (time-homogeneous) variance
σ2 = 1, drift +1 and reproduction law and branching rate as before. In particular, the left-
most particle drifts off to +∞ with zero speed, i.e. if Mt = minu∈N (t)Xu(t), then almost
surely, as t → ∞, Mt/t → 0 and Mt → +∞ [Br78]. Define the derivative Gibbs measure at
time t:

µt =
∑

u∈N (t)

Xu(t)e−Xu(t)δXu(t)/
√
t

The quantity Dt =
∫

1dµt is then known as the derivative martingale, and it is known
[LS87, N88, YR11] that Dt converges almost surely as t → ∞ to a (strictly) positive limit
D∞ whose Laplace transform is given by E[exp(−e−xD∞)] = φ(x), where φ is a solution to
(1.1).

Let ρ denote the law of a BES(3) process at time 1, started at 0, i.e.

ρ(dx) =

√
2

π
x2e−x

2/2
1x≥0 dx.

Theorem 6.1. In probability, µt converges weakly to D∞ρ. Moreover, for every family (ft)t≥0
of uniformly bounded measurable functions (i.e. supt,x |ft(x)| <∞), we have∫

ft dµt −D∞
∫
ft dρ→ 0, in probability.

Remark 6.2. Convergence in probability of the Gibbs measure

µ∗t =
√
t×

∑
u∈N (t)

e−Xu(t)δXu(t)/
√
t,

has recently been shown by Madaule [M11] for general branching random walks. While
Theorem 6.1 (at least the first statement) could be in principle recovered from the results in
[M11] (see in particular Proposition 3.4 of that paper), we present below for completeness a
fairly simple proof.
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Proof. Note that we can (and will) assume w.l.o.g. that ft ≥ 0 for each t ≥ 0. For every
s ≤ t, define the measure

µst =
∑

u∈N (t)

Xu(t)e−Xu(t)1(Xu(r)≥0 ∀s≤r≤t)δXu(t)/
√
t

Since minu∈N (t)Xu(t) → +∞ almost surely [M75], there exists a random time S, such that
we have µst = µt for all S ≤ s ≤ t. Since moreover Ds → D∞ almost surely, as s → ∞, it is
enough to show that almost surely, for any family of nonnegative functions (ft)t≥0 as in the
statement of the theorem,

lim
s→∞

lim sup
t→∞

∣∣∣E[e−
∫
ft dµst | Fs]− e−Ds

∫
ft dρ

∣∣∣ = 0, a.s. (6.1)

Let s ≤ t. Define fs,t(x) = ft(x
√

(t− s)/t). By the branching property and Jensen’s
inequality,

E[e−
∫
ftdµst | Fs] =

∏
u∈N (s)

EXu(s)[e
−

∫
fs,t dµ0t−s ] ≥ exp

− ∑
u∈N (s)

EXu(s)

[∫
fs,tdµ

0
t−s

] ,

(6.2)
We now have for every x ≥ 0, by the first moment formula for branching Markov processes
[INW69, Theorem 4.1] and Girsanov’s theorem, for every bounded measurable function f ,

Ex

[∫
fdµ0t

]
= et/2Wx[(Bt + t)e−(Bt+t)f((Bt + t)/

√
t)1(Br≥0 ∀r≤t)]

= e−xWx[Btf(Bt/
√
t)1(Br≥0 ∀r≤t)]

= xe−xEx[f(Rt/
√
t)] = xe−xEx/

√
t[f(R1)],

where under Px, (Rt)t≥0 is a three-dimensional Bessel process started at x [RY99, Sec-
tion XI.1]. The law of R1 under Px has a continuous density with respect to Lebesgue
measure for every x which converges uniformly to the density of ρ as x→ 0. It follows easily
from this that for every x ≥ 0,

Ex

[∫
fs,t dµ0t−s

]
− xe−x

∫
ft dρ→ 0, as t→∞. (6.3)

Equations (6.2) and (6.3) now yield the inequality “≥” in (6.1). In order to obtain the other
inequality, we have by Lemma 6.3 below, for some constants C,C ′,

Ex

[(∫
fs,t dµ0t−s

)2
]
≤ C ′E0

x[D2
t−s] ≤ Ce−x, (6.4)

where the superscript in E0
x indicates that the particles are killed upon hitting the origin. By

the branching property and the inequalities e−x ≤ 1 − x + x2 ≤ e−x+x
2

for x ≥ 0, we then
get by (6.4),

E[e−
∫
ftdµst | Fs] ≤ exp

 ∑
u∈N (s)

−EXu(s)
[∫

fs,tdµ
0
t−s

]
+ EXu(s)

[(∫
fs,t dµ0t−s

)2
]

≤ exp

(
−Ds

∫
ft dρ+ CWs + Es,t

)
, (6.5)
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where Ws =
∑

u∈N (s) e
−Xu(s) and

Es,t =
∑

u∈N (s)

−EXu(s)
[∫

fs,tdµ
0
t−s

]
+Ds

∫
ft dρ

is an Fs-measurable term. By (6.4) and the fact that ρ has a continuous density with respect
to Lebesgue’s measure, Es,t tends to zero almost surely, as t → ∞, for each fixed s. Since
Ws → 0 almost surely, as s → ∞ (see e.g. [LS87, N88]), the inequality (6.5) yields the
inequality “≤” in (6.1). This finishes the proof of the theorem.

Lemma 6.3. Let E0
x be the law of BBM as in the beginning of this section but where in

addition particles are killed upon hitting the origin. For some constant C, E0
x[D2

t ] ≤ Ce−x

for every x ≥ 0 and t ≥ 0.

Proof. We first note that (Dt)t≥0 is a martingale as well under E0
x. In particular, E0

x[Dt] =
xe−x for every x ≥ 0 and t ≥ 0. By the second moment formula for branching Markov
processes [INW69, Theorem 4.15], this gives for some constant C,

E0
x[D2

t ] = E0
x

[ ∑
u∈N (t)

Xu(t)2e−2Xu(t)
]

+ CE0
x

[ ∫ t

0

∑
u∈N (s)

Xu(s)2e−2Xu(s) ds
]
.

By the first moment formula for branching Markov processes and Girsanov’s theorem we get
as in the proof of Theorem 6.1,

E0
x[D2

t ] = e−x
(
Ex[B2

t e
−Bt1Bs≥0 ∀s≤t] + CEx

[ ∫ t∧T0

0
B2
se
−Bs ds

])
,

where T0 is the first hitting time of the origin. The term in the first expectation is bounded
by a constant. As for the second expectation, by the inequality x2e−x ≤ C ′e−x/2 and Ito’s
formula, we have

Ex

[ ∫ t∧T0

0
B2
se
−Bs ds

]
≤ 4C ′Ex[e−Bt∧T0/2 − e−x/2] ≤ 4C ′.

This yields the lemma.
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223–242. Birkhäuser Boston, Boston, MA

[NRR13] J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Power-like delay in time inhomogeneous Fisher-
KPP equations, Preprint (2013). Available at http://math.stanford.edu/∼ryzhik/bigdelay-
draft.pdf

[RY99] D. Revuz and M. Yor, Continuous martingales and Brownian motion, third edition, Springer-
Verlag, Berlin (1999)

[R11] M. I. Roberts, A simple path to asymptotics for the frontier of a branching Brownian motion,
Ann. Probab., to appear (2013). arXiv:1106.4771.

[S62] D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962),
pp. 463–501.

[VS04] O. Vallée and M. Soares, Airy functions and applications to physics, Imperial College Press,
London (2004).

[YR11] T. Yang and Y.-X. Ren, Limit theorem for derivative martingale at criticality w.r.t branching
Brownian motion, Stat. Prob. Letters 81, 2 (2011), pp. 195–200.

18


	Introduction
	Crossing estimates
	Tail estimates
	Proof of Proposition 3.1: Upper bound
	Proof of Proposition 3.1: Lower bound

	Proof of Theorem 1.1
	Appendix A: An Airy-type PDE with time-varying parameters
	Appendix B: Convergence of the derivative Gibbs measure of (time-homogeneous) branching Brownian motion

