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Abstract We provide a full large deviation principle (LDP) for the uniform measure on certain
ensembles of convex lattice polygons. This LDP provides for the analysis of concentration of the
measure on convex closed curves. In particular, convergence to a limiting shape results in some
particular cases, including convergence to a circle when the ensemble is defined as those centered
convex polygons, with vertices on a scaled two dimensional lattice, and with length bounded by a
constant. The Gauss-Minkowskii transform of convex curves plays a crucial role in our approach.

1 Introduction

The problem of finding the limit shape of convex lattice polygons in the unit square with respect
to the uniform distribution, posed by the first author, was recently solved (see [9],[1],[8]). A
variational principle describing the solution in terms of a maximization of affine length for smooth

strictly convex curves is further developed in [9], see also [2],[10].

Our goal in this paper is twofold: first, we extend, using a technical lemma borrowed from [1],
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the result of [9] to more general ensembles of convex curves and put it in the context of the theory
of large deviations. This then allows us to generalize the results of [9] and [1] concerning limit
shapes to other situations, see for a representative example Corollary 2 below. We thus recover
and extend the results in [2], and provide a tool for handling the concentration question under a

variety of constraints.

The space of convex curves does not possess a natural linear structure, making it harder to
formulate Legendre duality and its associated LDP. Therefore, an important tool in our approach
is the mapping, via the Gauss-Minkowskii transform (area measure), of the problem from a question
involving convex curves to a problem involving a subset of the set of positive measures on S'. The
duality between continuous functions and measures on S' allows then one to identify the rate
function of the large deviations principle with a Legendre transform of an appropriate function.

This latter function is related to a “pressure”, c.f. Corollary 3 below.

Our large deviations approach allows one to define the notion of limit shape in greater generality
than in [1],[2],[8],[9], and to put on the problem various constraints, such as length, area, etc. In
particular, we show (c.f. Corollary 1 below) that the uniform measure on the set of convex lattice
polygons of total length bounded by L concentrates on a limit shape which is a circle. This is in
contrast to the limit shape for the uniform measure on the set of convex lattice polygons contained in
the unit square, obtained in [1],[8],[9], which is a concatenation of four parabolas. The discrepancy
between the two solutions is due to the influence of the boundary of the square on the shape of
polygons. We also identify certain situations where the minimizer in the large deviation principle

is not unique, leaving open the question of existence of concentration in those case.

The structure of the article is as follows: in the next section, we define precisely the set-up,
define the Gauss-Minkovskii transformation, state our main results, and make various comments.

The last section is devoted to proofs.

2 Definitions and statements of results

For any convex closed curve in IR?, we denote by C, the subset of R2 encircled by v, by A, the
area of C, and by L, the length of 7. Let 'y 4 denote the set of closed convex curves vy in R?
satisfying 0 € Cy, Ay < Aand L, < L. Let TL’ A denote the quotient of I';, 4 with respect to shifts

in IR? obtained by imposing that the barycenter of v € Tp,4is0. Let Ty = U2, Ty ; (due to the



Euclidean isoperimetric inequality, T'y, ; =T’z ;41 for i > L?/4x). We equip I'z 4, I 4 and T, with
the topology induced by the Hausdorff distance on subsets of IR?2. This makes both T 1,4 and TL, A

into compact Polish spaces.

Our study concerns polygonal curves with vertices on the two dimensional lattice. Thus, let

CLP,, 1,4 denote the (finite) set of all convex polygons -y in IR? satisfying the following conditions

A1) The vertices of v belong to % Z X = 7.

S|

A2) 0e€C,,.
A3) A, := Area enclosed by vy < A.

A4) L. := Length of the perimeter of v < L.

By the Euclidean isoperimetric inequality, one always has L? > 4wA. In what follows, we will
always omit A from the notations if it is not an active constraint, i.e. if 4TrA = L2. We denote by

V,’;“’A the uniform measure on CLP,, , 4.

It is convenient to consider CLP,, 1, 4, the quotient of CLP,, ;, 4 with respect to the translation
by a vector in IR? obtained by imposing the barycenter of v € CLP,, 1,4 to be 0. Denote by hA

the uniform measure on CLP,, 1, 4.

In order to study concentration properties of {v14} and {7%4}, we introduce the Gauss-
Minkowskii map. Let M(S!) denote the linear space of signed measures of bounded variation on
S, equipped with the topology of weak convergence corresponding to the duality of C(S') and
M(S'). We denote the Lebesgue decomposition of any p € M(S?) by u = p® + u®, where u® is the

absolutely continuous part of u and p® is the singular part.

Let M, (S') (Mg (S')) denote the subset of positive measures (respectively, with total mass
bounded by L). Let M2 (S') (Mg2(S')) denote the subset of M, (S') (respectively, My (S')) of
measures possessing zero barycenter. There exists a natural map (the Gauss-Minkowskii transfor-

mation, c.f. [4] and Lemma 1 below) from the set of convex sets T'z, to the set of measures M2(S?),
defined by
py(A) =Leb{z € vy: 6, € A}



for any open interval A C S', where 6, denotes the supporting hyperplane to v at z. Py is a
rotation of the push-forward of the Lebesgue measure on v by the Gauss map, which attaches to
each normal point of 7 its outward normal. The following is well known. For a proof, see [4, Section
8].

Lemma 1 The map v — 1, defines a homeomorphism between the compact spaces Ty and M2(SY).

In order to state our main result, we need to introduce some notation. Let ((-) denote the

Riemann zeta function, and define ¢; = % For 9 € C(S'), define the functional

00, Leb{p >0} >0or =2 ¢ L!
A@W) = (1)

. [(z) 2dz, otherwise.

Note that the constraint on ¥ to be negative a.e. corresponds to it belonging to the polar set to

M (S1), that is to the set

.= {¢ : <1/)aﬂ> <0 Vpe M+(Sl)7:u 7é O}
Let I(u) denote the Legendre transform of A(-) with respect to the usual duality of C(S!) and
M(S'), that is for p € M (SY),

I(w) = sup ((,m) —A®)). (2)

PEC(ST)

We recall (c.f. [5]) that a sequence of Borel probability measures {v,,} on a topological space X

satisfies the Large Deviations Principle (LDP) with speed a,, and rate function I : X — [0, 00] if

a) I is lower-semicontinuous.

b) For any open set G,
. .. 1
;Ielg I(z) < 11nn_1>£fan log vp(G) .
c¢) For any closed set F,
limsupa, ' log v, (F) < — inf I(z).

n—00 zeF



See [5] for basic results concerning the existence, uniqueness, and various properties of the LDP.

Our main result is the following

Theorem 1 The sequence of measures {vF4} ({#LA}) satisfy in T 4 (respectively, Tr a) the

LDP with speed n*® and rate function I(y) = c¢(J(y) — Kr,a), where

1) = Ty) == [ m2@)as,
Kra = min J(y) = —(87% min(4, L2 /4m))'/3 (3)
Y€T'L, A

and m(0) := (dus/dd)(0) denotes the density of the absolutely continuous part of p, with respect

to Lebesque’s measure on S'.

It is useful to note that for « strictly convex and smooth, the rate function J(7) possesses a

natural geometric interpretation: Lemma 2 below implies (c.f. [7, pg. 419]) that

T == § 573 (x(s)) ds (4)

where ds denotes the (Euclidean) arclength, and x is the curvature. Thus, —J(v) is the affine
arclength of the curve v, denoted also LY. This functional appeared in a variational problem and

was actually suggested as the correct rate function in [9] (see also [2]).

Next, recall that we omit A from our notations if A3) is not an active constraint. Let 7L’ denote
the measure induced by X on M2(S") through the bijection v € Tz, + p, € M?(S'). Theorem 1 is
then an easy consequence, by the contraction theorem of large deviations theory (c.f. [5, Theorem

4.2.1] and the proof in Section 3) of the following LDP:

Theorem 2 The sequence of measures {7L} satisfies in MQ(S") the LDP with speed n*/® and rate
function c(I(-) — K1). Here, K1, = —(2nL?)'/3.

An immediate corollary is the following.

Corollary 1 The sequence of measures {UL} converges weakly to the uniform measure on S?,

while, again in the sense of weak convergence, UL — dgr/2x, the Dirac measure on the circle of

radius R = L/2x.



The following corollary is a direct consequence of the large deviations principle. It extends some

results announced in [1], which correspond to the choice of I' = I'p consisting of all convex curves

contained inside a convex compact subset ' of IR? (see Remark 5 below).

Corollary 2 LetI' C I', 4 satisfy

Jr := inf J(v) = inf J(v),
vere veT

and equip I' with the topology induced from I'y, 4. Let vl denote the uniform measure on CLP, 4N

I'. Then the sequence of measures {vL} satisfies the LDP in T with speed n2/3 and rate function
Iv(y) = cc(J(v) — Jr). In particular, if the minimizer in the definition of Jr is unique, then a limit

shape exists.

Set next

Ap(y) = sup ({4, u) —I(p)), (5)

ueMg(s?)

which is the Legendre transform of the modification of I obtained by setting it to co outside M2 (St).
Note that in general, A (v)) < A(¥) = supyenr(st) ({9, ) — I(w)), where the last equality is due to

Fenchel-Legendre duality and trhe convexity and lower semi-continuity of A(-) in C(S'). It is not

hard to check by an explicit computation in (5) similar to that given in Lemma 2 below that

Ru(w) = [w@OmL©) + [ mie)*de,

where

8
Y(9) = — 1 ;
myz(0) 27 (5(8) + M cos(@) 1 dgsin(@) £ 1)° {9(6)+A1 cos(6)+ Az sin(6)+n<0} 5

and A1, A2,n are the unique constants which satisfy fm%(G)dQ =L, fcos(Q)m%(G)dQ = [sin(6)

m%(ﬁ) df = 0. Tn view of Theorem 2, the function Ay(:) in (5) can be given an interpretation of a

generalized pressure:
Corollary 3 It holds that

e L
oo n2/3

log [ exp(n?/(y, 1) — ccKp)ok(d) = cchuw)-



Remarks

1. By the affine isoperimetric inequality [3, Page 56|, the minimizing « in (3) are the ellipses. This

explains the value of K7, 4 in the statement of Theorem 1.

2. For A < L?/4, the minimizer in (3) is not unique, as all ellipses of area A possess the same affine
length which achieves the equality, and thus the set of minimizers of (3) consists of all ellipses
of area A and Euclidean length bounded above by L. Thus, any limit point of the sequences
{vEAY} or {#7E4} is a measure supported on such ellipses. We do not know whether in this case
a limiting shape exits, or even whether these sequences of measures converge on subsequences

to Dirac measures. Solving this problem seems to require refined estimates.

3. For A = L?/4x, one can apply the standard isoperimetric inequality to conclude that the maxi-
mizer of the area given L, which also maximizes the affine length, is the circle of radius R = L /2.

This is essentially the content of Corollary 1.

4. Theorem 1 is strongly related to [9, Theorem 2.4]. Indeed, the statement of the local estimates
around smooth curves already appear there. The main new ingredient needed in order to extend
it to general curves and a full LDP is the relation to Mg (S!), which provides a natural framework
for proving lower-semicontinuity and dealing with approximations. In fact, a direct consequence

of the LDP is that for any fixed 7,

) ) 1
lim lim — = log 7a(B(7,€) = —cc(J(7) — K1,4),

e—0n—00 p2/3
where B(7, €) denotes the Hausdorff tube of size € around ~.

5. Our choice of dealing with CLP,, 1, 4 is highly arbitrary. In fact, as a look at the proof of Theorem
2 demonstrates, one could take general ensembles of convex polygons in such a way that their
image under vy — p., is compact. Indeed, a particularly interesting use of Corollary 2 is the case
when I' is the subset of I';, 4 consisting of all convex polygons contained within the area enclosed
by a given convex curve . This provides in particular a proof of the statement, mentioned in
[1, pg. 283] and proved in [2], that the uniform measure over all polygons satisfying A1)-A2)
and in addition contained in some compact S C IR? concentrates on the curve contained in S

maximizing the affine length, which is unique by [2].



6. The extension to Z% seems challenging. Indeed, most of the analytical arguments go through to
higher dimension. What is missing is a link of the geometry with appropriate integer partitions,

leading to an analog of the local estimates of [1],[9].

3 Proofs
Proof of Theorem 2

The proof consists of a sequence of lemmas. We first check that I(-) possesses the required prop-
erties. Recall that we denote by u = ps + m,(6)dd the Lebesgue decomposition of p € M(S?).

Lemma 2 below provides a representation of I(7) in (2), which will be useful in the sequel.

Lemma 2 I(:) is a lower semi-continuous function on M(S). Further, for non-negative p,

T(w) =~ fmu(6) as, (6)
while T(1) = oo for u possessing a negative component. Finally, for A < L?/4nx,

inf I(u) = —(872A)'/3.
uEMg(Sl):’quI‘L,A (N) ( )

Kpa=
Proof: The proof follows the arguments in [6, Lemma 5]. Note that C(S!) is the dual space to
M(S'), and Mg(S?) is equipped with the topology induced as a closed subset of M(S!). Hence,
the representation of I(-) as a Legendre transform implies the required lower semicontinuity. To
see the rest of the claims, assume first that u(A) < 0 for some Borel A C S'. One may then find a

sequence of continuous functions 0 < v < 1 approximating 14 in L!(u). Define ¥ = —kyp — 1,

one obtains

((‘I’k,m - A(‘I’k)) — k00 00

We may thus consider only the case of non-negative p. In that case, I(u) < I(m,(6)df). Let

—c > Y > —c,?l be a sequence of C'(S!) functions satisfying

((2ks mu(6)d6) — A(r)) = so0 T(mu(0)d6) .



Let B be a Borel set such that Leb(B) = 0 and ps(B) = ps(S*). For each € > 0, let 1§ denote the
€ continuous modification of ¥ 1pc, that is —c,?l < %, <0 is continuous and v}, = 9 1pe on a set

C with p(C¢) < € and Leb(C¢) < €. Then, letting 9§ = 1§ — e/4,
((rmu(9)d8) — Aw)) = ((¥r1me, mu(6)d6) — Aylp:))

= (o ma(0)8) — o [(F) 2 do + (s — 55), ma(6)26)

4 el
—5 [ ()7 = (@) ?) da
_ 2¢1/4 _
< I(p)+ 264 u(SY) + p(Coe,t + 604 +2¢72¢ Leb(C%) —e0 T(1) -
k

It follows that I(u) = I(m,(6)d#). Thus, it remains to compute I(u) for absolutely continuous
p =my(0)df. It is easy to check that

sup () —A@)) = sup  ((%,m) —A®))

0>4€C(S1) 0>yeM(S1)

= swp [@Om0) - )b,

0>9eM(ST)

where M(S!) denotes the space of measurable functions on S'. The claim follows by optimizing

pointwise over the value of .

Finally, the identification of the constant K7, 4 follows from (4) above and the affine isoperimetric

inequality (for one version of the latter, see [3, pg. 56] or [7, pg. 419)). L]

We need next a local result borrowed from [9]. For any v € I'y 4, let B(v,d) denote the
Hausdorff tube of size § around 7. Let Z) = {#n € CLP, 4 : n € B(y,0)}.

Lemma 3 Assume that v € Ty, 4 is strictly convez and C?. Then

1 —
. . 7,5 .
}ur(l) nhm —73 log Z1° = —1I(py) .

Proof: See [9, Theorem 4] or [1], pg. 282, and use Lemma 2 and (4). U

While Lemma 3 already hints at the existence of an LDP, some additional care is needed around

non-smooth curves. The next lemma is the key to the LDP upper bound:



Lemma 4 Let v € TL,A be given. Then

lim lim —logZ”” < —I(py)-

50 n—o0 p2/3

Proof: Let § be given, and fix 4 € B(+,d) a convex closed curve. Fix A e > 0 (small enough).
Throughout this proof, C' denotes a universal constant (depending on A, L only but not on n, d, A, €)
whose value may change from line to line. Let z; := (z;,y;), ¢ = 0,...,3 denote points where the
supporting hyperplane to 7 at (x;,y;) has angle in/2. Let tg = zo, and define {t;}}_; recursively
by requiring that ;11 be the least 6 > ¢; such that 5(8) — 4(¢;) > A, or, if such 6 does not exist
and t; < x1, t;41 = 1. Since 7, being convex, is differentiable almost everywhere, we may and will
assume that 7 is differentiable at all the ¢;, ¢ =0,...,7 — 1. Let Ne ={i € (1,...,I) : t;y1 — t; >
Al/3/e}. Note that |N,| < 2Le/AY3. Fix s; := (t;,7(t;)) € R2. Define the parallelogram T} as
the parallelogram whose vertices include s;, s;11 and whose edges have slopes 7'(t;), ¥’ (ti+1). Let

Zzﬂ- denote the number of increasing, convex polygonal lines with vertices in (%Z)2 NT;. By [1,

Theorem C], there exists a universal constant C such that, for i € N,
Z); < exp(C(LA)Y*n?/3) .

On the other hand, for ¢ ¢ N, one may apply [1, Theorem B] and a linear transformation to

conclude that
~ C
7 2 1/3 . .2/3 [ 41/3
2y < nexp (Pecn®® (4°0) + o))
where A(T;) denotes the area of the parallelogram Tj.

Let Z)° denote the number of monotone convex curves connecting zp and z;, with vertices in
the lattice (17)2, possessing linear edges of slopes 7/(t;) passing through s;, i = 0,...,I. It follows
that

ZWP <[ 2], <exp (41/364712/3 3" A(T)'? + CLlogn/A + Cn'?e 12PA™ + Cen®/? ) - (0
i i=0

where the last term is due to the contribution of the terms in N, and to the bound on | N|.

Let Cg denote the space of piecewise C? curves. We need the following:

Lemma 5 There exists ¢(t) € C’g, which consists of a concatenation of parabolas, satisfying:

10



1. ¢(tai) = J(tai),
2. ¢'(tai) = 7' (t2i),

8. 43I A(T)YB < LY, where Ly denotes the affine length of the curve ¢.

Proof of Lemma 5 Use an affine transformation on [9, Lemma 3] to conclude that there exists
a parabola ¢(-) connecting ¢(t2;) and @(ta(iy1)) satisfying ¢(t2) = ¥(tai), d(t2i+1)) = Y(t23ir1))s
¢'(t2i) = ¥'(t2i) and ¢'(ta(i11)) = ¥'(ta(i+1)), and furthermore that for any value of J(t2;11) and
A (toir1), A(To)'Y3 + A(Tai41)Y® < 47131 where L¢ denotes the affine length of this parabola.

Lemma 5 follows. [l

Returning to the proof of Lemma 4, assume that A is small enough (A < §/C(L) will do, with
some fixed large C'(L)), and let p; denote the concatenation of the above parabolas. Note that p; is
convex and, for all 4 € B(v,4), it holds that p; € B(¥,d) and hence p; € B(v,2d). Let Lg denote
the affine length of p;. Then,

-1
ZM <[ Z); <exp (04712/31/31 +CLlogn/A +Cn'/?e 1A 4 Cenz/g) ' (®)
i=0

Define
Ip =sup{L} : ¢ € B(7,26) N CZ, ¢(x0) = yo, d(x1) = y1,¢' (wo) = 0, ¢'(x1) = o0} .

Then Ly < Iy, hence (8) implies that

Z10 < exp (ccnz/?’fo + CLlogn/A + Cnt/2e /2| AY3 4 Cen2/3) )

Define analogously Z)7/, j = 1,2,3 with Zj>Z(j+1) mod 4 replacing zj, z1, making the obvious

modifications for {t;},{s;}. Let Z) = H?:o Z3, and define I; analogously to Iy. Then,

7 < exp (ccnz/?’(Io + I+ I+ I3) + CLlogn/A + Cnt/2e Y2A~1 ¢ Cen2/3) :

Clearly,
L+L+1L+13< sup{Lg : ¢ € B(y,46) N C’g ﬂfL,A}.

11



Therefore,

Z] < explen®® sup L%+ CLlogn/A + Cn'/?e Y2 A~Y 4 Cen?®
¢€l'L, ANB(7,49)NC3

< exp (—ccn2/3 _inf J(#) + CLlogn/A + Cn'/2e71/2A71 ¢ Cen2/3>
¢EPL’AOB(’Y,45)OCP%

< exp (—ccn2/3 _ inf J(¢) + CLlogn/A + Cn*/2e 1 2A1 4 C’en2/3> . (9)
#€l' L, ANB(7,49)

Note next that any polygon with vertices in (12Z)? lying in B(v,§) must be counted in Z] for
some 4 € B(7,6). Further, the total number of possible values of ¢; is bounded by n¢(L4) while the
total number of possible slopes 7'(¢;), which must be of the form ¢/m with £, m integers bounded
by C(L)n, is bounded by a similar bound. (Here and in the sequel, C(L), C(L, A) denote constants
which now may depend on L or L, A, may change from line to line, but are still independent of n).

Therefore, one still has that

z10 < pfA) exp (—ccn2/3 _ inf J(¢) + CLlogn/A + Cn/2e71/2A 1 + Cen2/3>
¢€1—‘L,AOB(7746)

< exp (—04n2/3 _ inf J(¢) + C(L, A, €)logn + Cn'/2e /2 ) A3 4 Cen2/3) .
#€l' L, ANB(7,49)

The rest of the proof of Lemma 4 is standard by taking n — oo, followed by A — 0, ¢ — 0, and

then § — 0, using Lemma 2. ]

Returning to the proof of Theorem 2, Lemma 4 and the compactness of M2(S!) imply, by
taking a finite covering, that for any closed set F C M2(S!),
li 1 1 CLP : F} < —infT 10
A os108[{y € CLPnr 4 py € F}| < — inf I(p). (10)
To complete the proof of Theorem 2, we first extend the lower bound in the statement of
Lemma 3 to non-smooth curves 7. Let v € T r,4 be given, and let uu, denote its Gauss-Minkowskii
transform. Obviously, by localizing Lemma 3 to piecewise strictly convex, smooth curves, we have
that for p, = m,(0)dé + p, with (finitely supported) atomic s,

. 1 5 =
lim lim o5 log Zy° 2> —I(py),

12



On the other hand, whenever yu; is singular with respect to Lebesgues measure but not necessarily
finitely supported atomic, one may approximate it by a sequence of finitely supported atomic
measures u¥. Then, for any § > 0, one may find a k large enough such that the curve corresponding
to m,,(0)d6 + p¥ lies in B(v,), while I(p,) = I(m,(0)d8) = I(m,(0)d0 + u¥) by Lemma 2. We

conclude that, for any p.,

N 1 o
lim lim 573 log Z)0 > —T(y). (11)

d—0n—o0 n

Let now G C M2(S') be open, with v € G. Then, for some v € I'z, v = p,, and for some
6 >0,
{uy 7 € B(y,0)} CG.

Therefore,

|#n € CLP, 1 N B(y,4)|
o |#77 € CLPn,L|

Z)9 [4n? L2

il e 12
[0 € CLPy ) (12)

where the second inequality is due to the fact that there are at most 4n’2L? curves in CLP, 1

corresponding to a single curve in CLPy, 1. Since we already know from (10) that
. 1
limsup —— log |#n € CLP, 1 4| < —KL 4,
n—00 nz/ 3 ” ’

we obtain, combining (12) and (11), that

lim limsup 7 (G) > —I(uy) + K1,

=0 n—ooo

proving the lower bound since v € G was arbitrary. Finally, the LDP upper bound follows in a

similar way by combining (10) and (11). U

Proof of Theorem 1 The LDP concerning - 4 follows directly from Theorem 2 by the contraction
principle [5, Theorem 4.2.1] due to the continuity of the bijection v — . and of the map v +— A,.
On the other hand, for any Borel set C' C I'y, 4, let

C ={y€T,a: vdiffers from an element of C by a shift in R?}.

13



Since the number of possible shifts of a curve satisfying A1)-A4) is at most polynomial (more

precisely, bounded by 4n2L?2), one has that for any 6 > 0,

vbA(0) < an?L2LA(CY),

n

where C% = {7 : d(,C) < 6}. This proves the upper bound, since the rate function I is invariant
under shifts. The lower bound is proved similarly by noting that for any v € I'z, 4, denoting by ¥

the corresponding element of I'z, 4, one has that for n large enough (n~! < §/4 suffices),
|v' € CLP,, .4 :d(v,Y') < 68| > |v € CLP, 1,4 : d(7,7') < /2.

Hence,

1 L
vEA(y € CLP, .4 : d(v,7') < 8) > mﬂﬁ"“(v' € CLP,, 1,4 : d(7,7) < 6/2),

which, in conjunction with Theorem 2, is more than enough to complete the proof of the lower

bound. =

Proof of Corollary 1 While a proof can be drawn using the Euclidean and then affine isoperimetric
inequalities, a direct proof follows by observing that the minimizer of (6) under the constraint on

the total mass of y is obtained by a uniform density. ]

Proof of Corollary 2 The proof is a direct consequence of the LDP by noting that, for any
measurable set ' €T,
T F) = VTILI7A(FHF)
v (F) = 41—
vr (L)
]

Proof of Corollary 3 By Varadhan’s Lemma of large deviations theory, c.f. [5, Theorem 4.3.1],

and Theorem 2,

lim, - log [ exp(n®/® (1) — Kp))ok(dm) = sup ((n,8) — T(w) = Ra(w).

n—o0 p2/3 peM (S1)

14
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