COVER TIMES FOR BROWNIAN MOTION AND
RANDOM WALKS IN TWO DIMENSIONS

AMIR DEMBO* YUVAL PERES' JAY ROSEN! OFER ZEITOUNI®

ABSTRACT. Let T (z,¢) denote the first hitting time of the disc of radius
¢ centered at z for Brownian motion on the two dimensional torus T2
We prove that sup,cr27 (z,¢)/|loge|> — 2/m as ¢ — 0. The same
applies to Brownian motion on any smooth, compact connected, two-
dimensional, Riemannian manifold with unit area and no boundary. As
a consequence, we prove a conjecture, due to Aldous (1989), that the
number of steps it takes a simple random walk to cover all points of
the lattice torus Z2 is asymptotic to 4n?(logn)? /7. Determining these
asymptotics is an essential step toward analyzing the fractal structure
of the set of uncovered sites before coverage is complete; so far, this
structure was only studied non-rigorously in the physics literature. We
also establish a conjecture, due to Kesten and Révész, that describes
the asymptotics for the number of steps needed by simple random walk
in Z? to cover the disc of radius n.

1. INTRODUCTION

In this paper, we introduce a unified method for analyzing cover times for
random walks and Brownian motion in two dimensions, and resolve several
open problems in this area.

1.1. Covering the discrete torus. The time it takes a random walk to
cover a finite graph is a parameter that has been studied intensively by
probabilists, combinatorialists and computer scientists, due to its intrinsic
appeal and its applications to designing universal traversal sequences [5, 11,
10], testing graph connectivity [5, 19], and protocol testing [24]; see [2] for an
introduction to cover times. Aldous and Fill [4, Chapter 7] consider the cover
time for random walk on the discrete d-dimensional torus Z¢ = Z4/nZ% and
write:

“Perhaps surprisingly, the case d = 2 turns out to be the hardest
of all explicit graphs for the purpose of estimating cover times”.

The problem of determining the expected cover time 7, for Z% was posed
informally by Wilf [29] who called it “the white screen problem” and wrote
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“Any mathematician will want to know how long, on the average,
it takes until each pizel is visited.”
(see also [4, Page 1]).

In 1989, Aldous [1] conjectured that 7,/(nlogn)? — 4/7. Aldous noted
that the upper bound 7,/(nlogn)? < 4/7 + o(1) was easy, and pointed
out the difficulty of obtaining a corresponding lower bound. A lower bound
of the correct order of magnitude was obtained by Zuckerman [30], and in
1991, Aldous [3] showed that 7,/E(7,) — 1 in probability. The best lower
bound prior to the present work is due to Lawler [20], who showed that
liminf E(7;,)/(nlogn)? > 2/x.

Our main result in the discrete setting, is the proof of Aldous’s conjecture:

Theorem 1.1. If 7, denotes the time it takes for the simple random walk

in Z2 to completely cover 72, then

(1.1) lim T _4 in probability.
n—oo (nlogn)? w

The main interest in this result is not the value of the constant, but
rather that establishing a limit theorem, with matching upper and lower
bounds, forces one to develop insight into the delicate process of coverage,
and to understand the fractal structure, and spatial correlations, of the
configuration of uncovered sites in Z2 before coverage is complete.

The fractal structure of the uncovered set in Z2 has attracted the interest
of physicists, (see [25], [12] and the references therein), who used simulations
and non-rigorous heuristic arguments to study it. One cannot begin the
rigorous study of this fractal structure without knowing precise asymptotics
for the cover time; an estimate of cover time up to a bounded factor will
not do. See [14] for quantitative results on the uncovered set, based on the
ideas of the present paper.

Our proof of Theorem 1.1 is based on strong approximation of random
walks by Brownian paths, which reduces that theorem to a question about
Brownian motion on the 2-torus.

1.2. Brownian motion on surfaces. For z in the two-dimensional torus
T2, denote by Dr2(z,€) the disk of radius e centered at x, and consider the
hitting time
T (z,e) =inf{t > 0| X; € Dr2(z,¢€)}.
Then
C. = sup T (z,¢)
zeT?

is the e-covering time of the torus T2, i.e. the amount of time needed for the
Brownian motion X; to come within € of each point in T?. Equivalently, C, is
the amount of time needed for the Wiener sausage of radius € to completely

cover T?. We can now state the continuous analog of Theorem 1.1, which is
the key to its proof.
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Theorem 1.2. For Brownian motion in T?,

) Ce 2
lim —— = — a.s.
e—0 (log g) ™

Matthews [23] studied the e-cover time for Brownian motion on a d dimen-
sional sphere (embedded in R**!) and on a d-dimensional projective space
(that can be viewed as the quotient of the sphere by reflection). He calls
these questions the “one-cap problem” and “two-cap problem”, respectively.
Part of the motivation for this study is a technique for viewing multidimen-
sional data developed by Asimov [7]. Matthews obtained sharp asymptotics
for all dimensions d > 3, but for the more delicate two dimensional case, his
upper and lower bounds had a ratio of 4 between them; he conjectured the
upper bound was sharp. We can now resolve this conjecture; rather than
handling each surface separately, we establish the following extension of The-
orem 1.2. See Section 8 for definitions and references concerning Brownian
motion on manifolds.

(1.2)

Theorem 1.3. Let M be a smooth, compact, connected two-dimensional,
Riemannian manifold without boundary. Denote by C. the e-covering time
of M, i.e., the amount of time needed for the Brownian motion to come
within (Riemannian) distance € of each point in M Then

2
(1.3) lim ——= =—-4 a.s,
e—0 (log 5) ™

where A denotes the Riemannian area of M.

(When M is a sphere, this indeed corresponds to the upper bound in
[23], once a computational error in [23] is corrected; the hitting time in (4.3)
there is twice what it should be. This error led to doubling the upper and
the lower bounds for cover time in [23, Theorem 5.7]).

1.3. Covering a large disk by random walk in Z2. Over ten years
ago, Kesten (as quoted by Aldous [1] and Lawler [20]) and Révész [26]
independently considered a problem about simple random walks in Z?: How
long does it take for the walk to completely cover the disc of radius n? Denote
this time by 7;,. Kesten and Révész proved that

(1.4)
et < liminf P(log T, < t(logn)?) < limsup P (log T;, < t(logn)?) < e/t

n—00 n—00

for certain 0 < a < b < co. Révész [26] conjectured that the limit exists and
has the form e™*/* for some (unspecified) A. Lawler [20] obtained (1.4) with
the constants ¢ = 2, b = 4 and quoted a conjecture of Kesten that the limit
equals e=%/t. We can now prove this:

Theorem 1.4. If T,, denotes the time it takes for the simple random walk
in Z.2 to completely cover the disc of radius n, then

(1.5) lim P(log T, < t(logn)?) = e~ */*.
n—,oo
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1.4. A birds-eye view. The basic approach of this paper, as in [13], is
to control e-hitting times using excursions between concentric circles. The
number of excursions between two fixed concentric circles before e-coverage
is so large, that the e-hitting times will necessarily be concentrated near
their conditional means given the excursion counts (see Lemma 3.2).

The key idea in the proof of the lower bound in Theorem 1.2, is to control
excursions on many scales simultaneously, leading to a ‘multi-scale refine-
ment’ of the classical second moment method. This is inspired by techniques
from probability on trees, in particular the analysis of first-passage percola-
tion by Lyons and Pemantle [22]. The approximate tree structure that we
(implicitly) use arises by considering circles of varying radii around different
centers; for fixed centers z,y, and “most” radii r (on a logarithmic scale)
the discs Dy2(x,7) and Dry2(y,r) are either well-separated (if r < d(z,vy))
or almost coincide (if 7 > d(z,y)). This tree structure was also the key to
our work in [13], but the dependence problems encountered in the present
work are more severe. While in [13] the number of macroscopic excursions
was bounded, here it is large; In the language of trees, one can say that
while in [13] we studied the maximal number of visits to a leaf until visiting
the root, here we study the number of visits to the root until every leaf has
been visited. For the analogies between trees and Brownian excursions to
be valid, the effect of the initial and terminal points of individual excursions
must be controlled. To prevent conditioning on the endpoints of the numer-
ous macroscopic excursions to affect the estimates, the ratios between radii
of even the largest pair of concentric circles where excursions are counted,
must grow to infinity as e decreases to zero.

Section 2 provides simple lemmas which will be useful in exploiting the
link between excursions and e-hitting times. These lemmas are then used
to obtain the upper bound in Theorem 1.2. In Section 3 we explain how to
obtain the analogous lower bound, leaving some technical details to lemmas
which are proven in Sections 6-7. In Section 4 we prove the lattice torus
covering time conjecture, Theorem 1.1, and in Section 5 we prove the Kesten-
Révész conjecture, Theorem 1.4. In Section 8 we consider Brownian motion
on manifolds and prove Theorem 1.3. Complements and open problems are
collected in the final section.

2. HITTING TIME ESTIMATES AND UPPER BOUNDS

We start with some definitions. Let {W;};>o denote planar Brownian
motion started at the origin. We use T? to denote the two dimensional torus,
which we identify with the set (—1/2,1/2]2. The distance between z,y € T?,
in the natural metric, is denoted d(z,y). Let X; = W;mod Z? denote
the Brownian motion on T?, where a mod Z? = [a + (1/2,1/2)] mod Z2 —
(1/2,1/2). Throughout, D(z,r) and Dry2(z,r) denote the open discs of
radius 7 centered at z, in R? and in T?, respectively.

Fixing z € T? let 7¢ = inf{t > 0 : X; € 0Dr2(z,£)} for £ > 0. Also
let 7, = inf{t > 0 : B; € 0D(0,£)}, for a standard Brownian motion B; on
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R?. For any z € T?, the natural bijection i = i, : Dp2(z,1/2) — D(0,1/2)
with iz(z) = 0 is an isometry, and for any z € Dr2(z,1/2) and Brownian
motion X; on T? with Xy = z, we can find a Brownian motion B; starting at
zw(z) such that 7'1/2 = ?1/2 and {Zw(Xt),t < 7'1/2} = {Bt,t < ?1/2}. We shall
hereafter use 7 to denote i, whenever the precise value of x is understood
from the context, or does not matter.

We start with some uniform estimates on the hitting times EY (7,).

Lemma 2.1. For some ¢ < o0 and all 7 > 0 small enough,

(2.1) ||| == supEY (7.) < c|logT|.
y

Further, there ezists n(R) — 0 as R — 0, such that for all 0 < 2r < R,
z € T?,

@ log (E) < inf  F(7)

T yEaDTQ(]:,R)
(2:2) < s W< I, <E> '
y€AD p2(x,R) u r

Proof of Lemma 2.1: Let A denote the Laplacian, which on T? is just
the Euclidean Laplacian with periodic boundary conditions. It is well known
that for any € T? there exists a Green’s function G(y), defined for y € T?\
{z}, such that AG, = 1 and F(z,y) = G4(y) + 5= logd(z,y) is continuous
on T2 x T? (c.f. [8, p. 106] or [16] where this is shown in the more general
context of smooth, compact two-dimensional Riemannian manifold without
boundary). For completeness, we explicitly construct such G,(-) at the end
of the proof.

Let e(y) = EY(r,). We have Poisson’s equation £Ae = —1 on T?\
Dra(z,7) and e = 0 on @Dr2(z, 7). Hence, with z fixed,

(2.3) A (G$ + %e) =0 on T2\ Dp(z,r).

Applying the maximum principle for the harmonic function G, + %e on
T2 \ Dr2(z,7), we see that for all y € T? \ Dpa(z,7),

(2.4) inf Ga(2) < Galy) + 2e(w) < sup  Gal2).
ZeaDTQ(mar) 2 ZEaDTQ(J),’r‘)

Our lemma follows then, with
27

n(R) = sup sup F(z,z) — F(z,y
(R) log2 5P, y,zeDTz(z’R)l (z,2) — F(z,y)|

¢ = (1/7)+[(1/x)logdiam(T?) + 4 sup |F(z,y)|]/log4 < oo,
z,ycT?2

except that we have proved (2.1) so far only for y ¢ Dry2(z,7). To complete
the proof, fix z' € T? with d(z,z') = 3p > 0. For r < p, starting at
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Xo =y € Dp2(=,7), the process X; hits 0Drp2(z, ) before it hits D2 (z', 7).
Consequently, EY(7,) < c|logr| also for such y and r, establishing (2.1).
Turning to construct G (y), we use the representation T? = (—1/2,1/2).
Let ¢ € C*°(R) be such that ¢ = 1 in a small neighborhood of 0, and ¢ =0
outside a slightly larger neighborhood of 0. With r = |z| for z = (21, 22), let

h(z) = —5-4(r) ogr

and note that by Green’s theorem
(2.5) Ah(z)dz = 1.
'[[‘2

Recall that for any function f which depends only on r = |z|
Af=f"+2f,
T
and therefore, for 7 > 0

2+ logr
T

Ah(z) = 5 (¢" () logT + #(r).

Because of the support properties of ¢(r) we see that H(z) = Ah(z) — 1 is
a O function on T?, and consequently has an expansion in Fourier series

o
H(z) = Z a;j i cos(2mjz1) cos(2mkz)
J,k=0

with a;j rapidly decreasing. Note that as a consequence of (2.5) we have
ap,0 = 0. Set

o
a’jyk y
F(z) = J;O 202 1 kD) cos(2mjz1) cos(2mkze).
(3,k)#(0,0)

The function F(z) is then a C* function on T? and it satisfies AF = —H.
Hence, if we set g(z) = h(z) + F(z) we have Ag(z) = 1 for |z| > 0 and
9(#)+ 5= log |z| has a continuous extension to all of T?. The Green’s function
for T2 is then G, (y) = g((z — y)12)- U

Fixing z € T? and constants 0 < 2r < R < 1/2 let
(2.6) 7O = inf{t > 0| X; € dDr2(z, R)}

(2.7) oM = inf{t > 0| X, € dDp(z,7)}
and define inductively for j =1,2,...
(2.8) @ =inf{t > o) | Xy 15, , € 0Dr2(z, R)},

(2.9) oUt) = inf{t > 0| X445, € ODr2(z,7)},
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where T; =7, 7@ for j =0,1,2,.... Thus, 79 is the length of the j-th
excursion & from 0Dr2(z, R) to itself via 0Dr2(z, ), and o9 is the amount
of time it takes to hit 0Dr2(z,r) during the j-th excursion &;.

The next lemma, which shows that excursion times are concentrated
around their mean, will be used to relate excursions to hitting times.

Lemma 2.2. With the above notation, for any N > Ny, do > 0 small
enough, 0 < § < &y, 0 < 2r < R < R1(6), and z,zq € T?,

N
(2.10) P | )" rl) < (1—5)Nllog(R/r) < e 0PN
=0 i
and
al 1 2
: p2o @) > (1+6)N=1 <e CUN
(2.11) jZ%T > (1+8)N—log(R/r) | <e

Moreover, C = C(R,r) > 0 depends only upon & as soon as R > rl=do,

Proof of Lemma 2.2: Applying Kac’s moment formula for the first hitting
time 7, of the strong Markov process X; (see [17, Equation (6)]), we see that
for any 6 < 1/||7 ||,

1
(2.12) sup Y (/") < ———— .
y 1— 0|7l

Consequently, by (2.1) we have that for some A > 0,

(2.13) sup supEY (A /1o87]) < o0,
0<r<ro z,y

By the strong Markov property of X; at 7(9 and at 7O + o(1) we then
deduce that

(2.14) sup  supRY (*1/119871) < o0,
0<2r<R<ro T,y

Fixing z € T2 and 0 < 2r < R < 1/2let 7 = 7 and v = %log(R/r).
Recall that {X; : t < 7} starting at X¢ = z for some z € dDr2(z,7), has the
same law as {B; : t < Tgr} starting at By =i(z) € dD(0,r). Consequently,

R2
(2.15) I7rllr :=sup  sup E*(rg) <E'(7r) = — <r-00,
T 2€Dqpa(z,R)

by the radial symmetry of the Brownian motion Bjy.
By the strong Markov property of X; at 7(®) 4+ o(1) we thus have that

B (1) <E'(7) <E'(7) + I7rllr Yy € ODr2(z, R)
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Consequently, with = 6/6, let R1(6) < ¢ be small enough so that (2.2)
and (2.15) imply
inf  inf (1)

1—nv
(1—n) B

(2.16) < sup sup EY(7) < (1+27n)v,
Z y€dDy2(x,R)

whenever R < R;. It follows from (2.14) and (2.16) that there exists a
universal constant c¢; < co such that for p = ¢4|logr|? and all > 0,

AN

sup  sup EY(e %)
z yE(')DTz(w,R)
. . 6? 2
< 1—0inf inf F(7)+ —sup sup EY(r7)
T y€dDrpa(z,R) 2 2 y€dD o (x,R)
(2.17) < 1-0(1 —n)v+ ph? < exp(pf? — 0(1 — n)v)

Since 7(9 > 0, using Chebycheff’s inequality we bound the left hand side of

(2.10) by
N o
P*o (Z ¥ <1- 677)’UN) < f1-3muN 2o (6_9 E].:lT(J))
j=1
N
(2.18) < e 0vN/3 [69(1_77)1, sup Ey(e—"T)] ,

y€ODyp2(x,R)
where the last inequality follows by the strong Markov property of X; at
{%;}. Combining (2.17) and (2.18) for 6§ = év/(6p), results in (2.10), where
C = v?/36p > 0 is bounded below by 62/(36¢c,7?) if r'=% < R.
To prove (2.11) we first note that for 6 = A/|logr| > 0 and A > 0 as in
(2.14), it follows that

P%o (T(O) > ng) < 6—011((5/3)NEz0 (e)\r(o)/\logﬂ) < CSe—ceéN’

where ¢; < oo is a universal constant and ¢g = cg(r, R) > 0 does not
depend upon N, ¢ or zy and is bounded below by some c7(dy) > 0 when
r1=% < R. Thus, the proof of (2.11), in analogy to that of (2.10), comes
down to bounding

(2.19)

N
. N
pP*o (Z ) > (1+ 477)'0N) < ¢ POUN/3 (679(1_}—27])10 sup Y (697))
j=1 yE@DTz(LL‘,R)

Noting that, by (2.14) and (2.16), there exists a universal constant cg < 0o
such that for p = cg|logr|? and all 0 < 6 < A\/(2|logr|),

o0 9n
sup  sup (') < 1460(1+2n)v+sup sup Z —EY (")

T yedDyo(z,R) T yedDyo(z,R) iy ™

< 1+6(1+2n)v + pb? < exp((1 + 2n)v + pd?),
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the proof of (2.11) now follows as in the proof of (2.10). U

Lemma 2.3. For any § > 0 we can find ¢ < co and €9 > 0 so that for all
e<eg andy>0

(2.20) P™ (T (z,e) > y(log 6)2) < ce(1=0)my

for all z,zy € T2.

Proof of Lemma 2.3: We use the notation of the last lemma and its proof,
with R < R;(d) and r = R/e chosen for convenience so that log(R/r) = 1.
Let n. := (1 — §)my(loge)?. Then,

(2.21) P (T (z,e) > y(loge)?)
<P (71092 3570 ) 20 (50 2 yloger
4=0 j=0

It follows from Lemma 2.2 that
Ne

(2.22) Pp2o ZT(j) > y(loge)? | < e=C'vlloge)’
7=0

for some C' = C'(§) > 0. On the other hand, the first probability in the
second line of (2.21) is bounded above by the probability of B; not hitting
i(Dr2(z,€)) = D(0,¢€) during n, excursions, each starting at i(0Dyz2(z,r)) =
0D(0,r) and ending at i(0Dyp2(z, R)) = 0D(0, R), so that

(2.23) po T(x,g) > Z T(j) < (1 _ ) < 67(175)7ry|10g5|
j=0

log %

and (2.20) follows. U
We next show that

T(z,€) < 2

(2.24) lim sup sup 5 < —, a.s.
e—0 zet2 (loge) ™

from which the upper bound for (1.2) follows.

Set h(e) = |loge|?. Fix § > 0, and set €, = e ™ so that

- 1 -

(2.25) h(Ent1) = (1 + E)Qh(en).
Since, for €,41 < € < €, we have
T(z,én41) _ h(én) T(z,ént1) 1+ l)_QT(m, €)
h(énv1) — h(éns1)  h(én) n" h(e)
Fix o € T? and let {z; : j = 1,...,K,}, denote a maximal collection of
points in T2, such that infy.; d(z¢, z;) > 6¢,. Let a = (246)/(1—106) and
A, be the set of 1 < j < K,,, such that

T (w5, (1= 6)é) > (1 — 20)ah(é) /.

Y

(2.26)
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It follows by Lemma 2.3 that
P? (T (z, (1 — 6)é&,) > (1 — 20)ah(é,)/7) < c& 17109

for some ¢ = ¢(§) < oo, all sufficiently large n and any = € T2. Thus, for all
sufficiently large n, any j and a > 0,

(2.27) P™(j € Ay) < ce{17100a

implying that
o0 o o0
D P A > 1) <D EPA <D E) < 0.
n=1 n=1 n=1

By Borel-Cantelli, it follows that A, is empty a.s. for all n > ny(w) and
some ng(w) < oo. By (2.26) we then have for some n;(d,w) < oo and all
n > ni(w)
T(z,¢€)
sup sup 5
e<én, zeT? (loge)
and (2.24) follows by taking 6 | 0. L

a
S_a
s

3. LOWER BOUND FOR COVERING TIMES

Fixing § > 0 and a < 2, we prove in this section that

. Ce a
(3.1) llleri)lglf (log o) > (1 (5)7T a.s.
In view of (2.24), we then obtain Theorem 1.2.

We start by constructing an almost sure lower bound on C, for a specific
deterministic sequence €, 1. To this end, fix ¢; < R;(d) as in Lemma 2.2
and the square S = [e1,2¢1]%. Let ¢ = e1(k!))™2 and ny = 3ak®logk.
Per fixed n > 3, let €,5 = ppen(k!)? for p, = n™2 and k = 1,... ,n.
Observe that €,1 = pnén, €nn = pne1, and €1 < pPrény1k < €np1-k for
all 1 < k < n. Recall the natural bijection i : Dp2(0,1/2) +— D(0,1/2).
For any z € S, let RE denote the time until X; completes n, excursions
from i~ (0D(x, enn—1)) to i 1 (OD(z,€nn)). (In the notations of Section
2, if we set R = eny and 1 = €01, then R = Y707 7). Note that
i~1(0D(z, €nk)) is just ODp2(i"(z), €nk), but the former notation will allow
easy generalization to the case of general manifolds treated in section 8.

Forz e S,2<k <mnlet fo,k denote the number of excursions of X; from
i~ (0D (z, enk—1)) to i (OD(z, €nx)) until time R, Thus, N¥ = n, =
3an?logn. A point z € S is called n-successful if

(32)  NZ,=0, mp—k<NZ, <ng+k Vk=3,... ,n—1.
In particular, if z is n-successful, then 7 (i~ (), €5,1) > RE.

For n > 3 we partition S into M, = €7/(2¢,)? = (1/4)[]]-;!® non-
overlapping squares of edge length 2¢, = 2¢1/(n!)3, withz,, j, j =1,... , M,
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denoting the centers of these squares. Let Y(n,j), 7 = 1,... , M, be the
sequence of random variables defined by

Y(n,j) =1 if z, ; is n-successful

and Y (n,j) = 0 otherwise. Set g, = P(Y(n,j) = 1) = E(Y (n,j)), noting
that this probability is independent of j (and of the value of p,,).

The next lemma, which is a direct consequence of Lemmas 6.2 and 7.1,
provides bounds on the first and second moments of Y (n, j), that are used
in order to show the existence of at least one n-successful point z,, ; for large
enough n.

Lemma 3.1. There exists 6, — 0 such that for alln > 1,
(3.3) Gn = P(z is n-successful) > 2o
For some Cy < 0o and all n, if |Tn; — Tnj| > 2€np, then
(3.4) E(Y (n,1)Y (n,5)) < (1 4+ Con™tlogn)g? .

Further, for any v > 0 we can find C = C(y) < oo so that for all n and
I=1(i,7) =max{k <n : |Tp; — Tnj| > 26} V1,

a+y
(3.5) E(Y (n,i)Y (n, ) < @2C" ' ( Enm ) '
€n,l+1
Fix v > 0 such that 2 —a — v > 0. By (3.3) for all n large enough,
M,
(36) E ZY(n,]) = M, G, > 6;(2_0‘_7)_
j=1

In the sequel, we let C),, denote generic finite constants that are independent
of n, [, 7 and j. Recall that there are at most Clei,Hle;Q points y j, j # 1,
in D(zp i, 2€,,41)- Further, our choice of p, guarantees that (en/€en)? <
CoM,n~*2. Hence, it follows from (3.5) that for n —1>1> 1,

n

Vi = (Mag))? Y E(Y(n,0)Y (n,))
i#j=1
1(4,5)=l

Cary
_ P €ni+1
< OiMy'e 6, °C" ' <&>

€n,n
2—a—y
< O30 (—6"”“)
> €nm )
and since (e 141/€nn) < (€n—i/€1) for all 1 <1 <n —1, we deduce that

n—1 00
(3.7) Vi< i < OynE.

1=1 j=1
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We have, by Chebycheft’s inequality (see [6, Theorem 4.3.1]) and (3.4), that
P(} Y(n,j)=0) < (ann)—QE{ (> vn) }— 1
j=1 i=1

n—1
(3.8) < (Mp@n)™t + Con~tlogn + Z Vi.
=1

Combining (3.6), (3.7) and (3.8) we see that

Mp,
(3.9) P> Y(n,j) =0) < Csn 'logn.
j=1
The next lemma relates the notion of n-successful to the €, 1-hitting time.

Lemma 3.2. For each n let V, be a finite subset of S with cardinality
bounded by ™). There exists m(w) < 0o a.s. such that for all m > m
and all x € V,,, if x is n-successful then

(3.10) T (), ena) > (ogen)? (2 - \/SE)

Proof of Lemma 3.2: Recall that if z is n-successful then 7(: 1 (), €,,1) >
it 7). Hence, using (2.10) with N = n,, = 3an?logn, 6, = 7/(a+/Togn),
R = ¢y, and 7 = €1 so that log(R/r) = 3logn and R > 798 we see
that for some C' > 0 that is independent of n,

2
P, := P% (’T(il(:v),en,l) < (% - \/m)(log ), zis n-successful)
1

)(3nlogn)?

IN

Viogn

3o

N
Ppzo ZT(j) < (
J=0

N
< P %ZTU) <(1-— 5n)log(f/r) < eanZ.
7=0
Consequently, the sum of P, over all z € V, and then over all n is finite,
and the Borel-Cantelli lemma then completes the proof of Lemma 3.2. [
Taking V, = {zpk : k = 1,...,M,}, and the subsequence n(j) =
j(log7)3, it follows from (3.9), (3.10) and the Borel-Cantelli lemma that

a.s.

2
3.11 Ce ... > (loge -2(2—7)
( ) Cn(y),l —( g TL(])) T logn(]) bl
for all 5 large enough. Since € — C, is monotone non-decreasing, it follows
that for any €,(;11),1 < € < €y(5),1

Ce - Z Cfn(j+1),1 -
(loge)® ~ (log en(jy,1)
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Observing that (loge,(j11))/(l0g€yj),1) — 1 as j — oo, we thus see that
(3.1) is an immediate consequence of (3.11). O

4. PROOF OF THE LATTICE TORUS COVERING TIME CONJECTURE

To establish Theorem 1.1 it suffices to prove that for any § > 0
4
(4.1) lim P LZ——& =1
n=00 (nlogn)?2 = =«

since the complementary upper bound on 7, is already contained in [4,
Corollary 25, Chapter 7] (see also the references therein). Our approach is
to use Theorem 1.2 together with the strong approximation results of [15]
and [21].

Fix v > 0 and let ¢, = n?~!. Then by Theorem 1.2 for all n > N, with
some Ny = Ny(v,d) < 0o

(4.2) P (an > @(log n)2> >1-4.

By Einmahl’s [15, Theorem 1] multidimensional extension of the Komlés-
Major-Tusnddy [21] strong approximation theorem, we may, for each n,
construct {Si} and {W;} on the same probability space so that a.s. for
some ngy = ng(w) < 00,

max |Wk—\/§Sk| <n7/2, V¥n>mng
k<4n2(logn)?

Hence, dividing by v/2n we have
W, S,
max |—k——k|§€n/2, Vn > ng
k<dn2(logn)? \/2n N
or, using Brownian scaling, we have
Sk
4.3 P a W, ——=|>e,/2) <4
(43) (s Wime = 22 c02) <

for all n > N} with some N} = Nj(v,d) < oco.
Now, by (4.2) we see that with probability at least 1 — § some disc
Dya(z,e,) C T? is completely missed by

(-8

{Wk/an mod Z?; k < n?(log n)2} ,

hence by (4.3) with probability at least 1 — 26 we have that
S 4—
{& mod Z?%; k < ﬂnQ(logn)Q}
n ™
avoids some disc of radius ¢, /2 = %rﬂ_l. Thus, the probability that
48
{Sk mod nZ?; k < %nz(log n)2}

avoids some disc of radius $n” is at least 1 — 26, which implies (4.1).
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5. PrROOF OF THE KESTEN-REVESZ CONJECTURE

Let D, = D(0,7) N Z2? denote the disc of radius r in Z? and define its
boundary

0D, ={z ¢ D, ||z —y| = 1for some y € D, }.

Let ¢, = (logn)?/loglogn and let N, denote the number of excursions
in Z2 from 0Dy, to 0Dy, (10g n)3 after first hitting 0D, 14g )3, that is needed
to cover Dy,. By [20, Theorem 1.1], it suffices to show that

lim sup P (log T, < t(logn)?) < e */*,
n—oo

and by [20, Equation (7), page 196], this is a direct consequence of the next
lemma.

Lemma 5.1.

N 2 -

(5.1) hnniloréf% > 3 in probability.
Remark: Though not needed for our proof of Theorem 1.4, it is not hard to
modify the proof of Lemma 5.1 so as to show that N, /¢, — % in probability.

Let K(z,u) denote the Poisson kernel for the annular region A, := {z :
r < |z| < 1/2}, such that for any continuous function g > 0 on 0A,, we
have

B (W) = [ o) K(z i,

where 0 := inf{t > 0 : W; € 0A,}, and W, is a planar Brownian motion,
starting at Wy = z € A,. A preliminary step in proving Lemma 5.1 is the
following estimate about K (z,u) when |z| > r = |ul.

Lemma 5.2. There ezists finite ¢ > 2 such that if cr < |z| < 1/(2¢), then

40r log(2r) .
(5.2) sup K(z,u) < (14 —>—=) inf K(z,u)
{u:|u|=r} ( |Z‘ log(2|z\)) {wi|ul=r}
Proof of Lemma 5.2: The series expansion
ad U
Py(z,u) = co(z) + Z cm (%) Zm (w, m)
m=1

is provided in [9, 10.11-10.13, Page 191] for the Poisson kernel P4(-,-) in
the region A = {z : ro < |z| < 1}, at its inner boundary |u| = ro, where

m 2m
—m [ T0 1—|z|
Cm(-'E) = |‘T| " {m} 1_ (7"0)2m’ m > 17

and the “zonal harmonic” functions

Zin(, €)= 2|z|™ cos(m(Arg(z) — ¢))
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are given in [9, 5.9 and 5.18]. Note that for any z € A

|Pa(z,u) — o) < zkmeWn&n

ad ro m 2’/‘0
(53) <2y (1) - .
7§ ] =] = 1o

The function cy(z) = log(1/|z|)/log(1/ro) is the harmonic function in A
corresponding to the boundary condition 1,—,,. By Brownian scaling
K(z,u) = Pa(2z,2u) for ro = 2r. Hence, it follows from (5.3) and the
value of ¢y(-), that for all 2r < |z| < 1/2,

B0
JﬁﬂK“”SG+mm—um L,y K&

where f(t) := tlog(1/(2t)). The proof is complete by noting that f(¢) >
5f(r) for all er <t < 1/(2c) provided c is large enough (¢ = 10 suffices). [

With T? = (—1/2,1/2]?, our application of Lemma, 5.2 is via the following
estimate.

Lemma 5.3. Assume Wy = Xo = 8 with || = R € (r,1/2), and let 1, :=
inf{t > 0: |Wy| =r}. There ezxists finite ¢ > 2, such that if cr < R < 1/(2c),
then the law of W, is absolutely continuous with respect to the law of X, ,
with Radon-Nikodym derivative h,(0,+) such that

40r log(2r)
(5.4) sup  h(B,a) <14+ —=" 2
B|=R,|a|=r " Rlog(2R)

Proof of Lemma 5.3: Recall that the exit time 6 from the annular region
A, is such that 8 < 7., with equality iff the path exits A, via its inner
boundary dD(0,r). Moreover, with Xy = Wy = z € A,, the path {X; :
0 <t < 6} is identical in law to {W; : 0 < t < #}. Let L denote the
number of excursions of w; between 0D(0, R) and 9D(0,1/2) completed by
time 7,. For each k > 0, let ux(53,-) denote the hitting (probability) measure
of 0D(0, R) induced by W; upon completing k such excursions, conditional
upon L > k. Let vx(3,-) denote the corresponding hitting measure induced
by the process X;. Note that L has a Geometric(p) law, where p < 1 is
the same for both processes X; and W; and is independent upon the initial
condition z € 3D(0, R). Consequently, for any Borel set B C 0D(0,r),

o
P} (W, € B)=) PA(W, €B, L=k)
k=0

>0 1
= k d K dy < —— K d
gpémﬂW%@ABWWUSLw/HW (s w)]du.

B |z|=R
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where K (z,u) is the Poisson kernel for W; and the region A,. Similarly,

P’(X, € B) = Zp/ ﬂ,dz/Kzu
OD(0,R)
> /[mezu )]du .
B lz|=R

Hence, for any B C dD(0,r),

SUP|z|=R,|u|=r K(za u)

PA(W,, € B) < P’(X,, € B)- ,
5 5 inf|, g ju = K(z,u)

implying that W, is absolutely continuous with respect to X, , and by (5.2)
the Radon-Nikodym derivative h,(3,-) clearly satisfies (5.7). L

Proof of Lemma 5.1: For any K C T? let
C(K) = sup T(z,¢)

€K
be the e-covering time of K. Fix v >0, a >0 and b € (0,1). Set ¢, =n?"!
and r, = a/(log €,). Taking the isometry i : Dr2(0,1/2) — D(0,1/2) to be
the identity, omitting i~! throughout the proof, we claim that almost surely,
Ce,(D(0,bry)) 2

5.9 lim ——————~ = —
( ) n—o0 (log ETL)2 i

Indeed, note that we may replace S in Section 3 by n~/25 C D(0,bry,),
affecting only the value of M,, there, now multiplied by an extra factor of
n~l. Whereas the upper bound in (3.7) is now of order n~2, this does not
matter for (3.6) and (3.9), hence (5.5) follows by the same argument leading
o (3.11).

Using the notations of Section 2, for z =0, r = r, and any R € (0,1/2),
let

N} (a,R,b) = max{j : T; < C, (D(0,bry,))}

denote the number of excursions of the Brownian motion X; in the torus
T? from ODg2(0,7,) = 0D(0,7,) to 0Dp2(0,R) = 0D(0,R) up to time
Ce, (D(0,bry,)). Fixing § > 0, let N,, = (2/3)(1 — v)%(1 — 26)¢n,, noting that

2 N,
~(1—4)(logen)* > (1 +8)—log(R/r),
s s

for all n > ng(a, R, d,7), implying that,

PWia ) < N,) < P (Co(DO0.0r)) < 20— 0)(0g)?)
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Hence, by (2.11) and (5.5) it follows that for any R < R;(d), a > 0 and
be(0,1),

(5.6) Tlim P (N (a, R,b) < Np) = 0.

Our next task is to show that (5.6) applies for the excursion counts N, (a, R, b)
that correspond to NV (a, R,b), when X, is replaced by the planar Brownian
motion W;. To this end, consider the random vectors Wy, := (ng_l o)y ] =
1,...,k) and Xj, := (ij_ﬁg(j),j =1,...,k). Recall that the j-th excur-
sion of X; from 0Dr2(0,7) to 0D12(0, R), starting at o = Xr,cj_1+o_(j) is
precisely the isomorphic image of a planar Brownian motion started at o,
and run till first hitting dD(0, R) (and same applies in case of ap = Xy = 0).
Thus, by the strong Markov property of both X; and W; at the stop-
ping times To, %o + o), T, %1 + 0@, ... we see that for every Borel set
B C (8D(0,r))*

k—1
P*(Wy € B) = E(] | hr(Xs,, X5, 1 00+0); Xk € B)
7=0

Recall that [Xg;| = R and |X$j+o.(j+1)| = r for all § > 0. Consequently,
the law of Wy, is absolutely continuous with respect to the law of Xy, with
Radon-Nikodym derivative hy , such that

k
||hk,r||ooS( sup hAﬂ,a)) .

Bl=R,|a|=r

With r = 7, — 0, we thus have by (5.4) that for small enough R > 0 and
all n large enough,

407, log(2r,) \ ™™
Rlog(2R)

Since Npry|log(2r,)| = 0, we see that ||hn, .|l — 1 as n — oco. Since

b < 1, and with the j-th excursion of X; from 0Dgy2(0,7) to dDp2(0, R),

starting at some o; = X(Ij y being the isomorphic image of a planar

(5.7) vl < (14

_1400
Brownian motion started at «;, and run till first hitting 0D(0, R), we get
by the strong Markov property of both X; and W; that for any £,

E (1n7, (a,m0)<k | (Wi)) = E(Lnt (o,r00<k | 0(Xk))
implying that
(5.8) P (Ny(a, R,b) < k) = E (hk, (Xx), Np(a, R, b) < k)
It thus follows from (5.6), (5.7) and (5.8) that
P (Na(a,R,0) S Nu) = E(hn,r,(Xn,), Ny(a,R,b) < Np)
(5.9) < Nhng i llooP (M (a, R b) < Np) — 0

Setting R < Ry(8) small enough for (5.9) to apply, with a := 2R(1 — v)°
and b := 1/(2(1 — +)), we next use strong approximation, as in Section 4,
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to show how (5.1) follows from this. Indeed, with ¢, := exp((logn)?), we
may and shall, for each n, construct {Sx} and {W;} on the same probability
space so that for some ng = ng(w) < co

1kn<atux\Wk — \/§Sk| < n7/2, Vn>ng a.s.
=N

Hence, multiplying by py := brn/(v/2n) we have
max 10aWi — pnV28k| < €,/3, V¥n>mng a.s.

or, using Brownian scaling, we have
(5.10) P <1kn<a.tx |Wkp% — pn\/ﬁsk| < €n/3) >1-96

for all n > N/ with some N} = N/(v,d) < oc.
Recall that P(T;, > t,) — 0, see [20, Theorem 1.1}, hence by (5.9), we see
that for all n sufficiently large,

(5.11) P (N,(a,R,b) > N, T, < tp,) >1-14.

Now, by (5.11) we have that with probability at least 1 — ¢ some disc
D(z,e,) C D(0,bry,) is completely missed by {W},2} during the first N,
excursions from D(0,7,) to dD(0, R). Moreover, by (5.11), also {v/2p,, S}, :
k < t,} covers v/2p, Dy, hence with probability at least 1 — 24, we also have
by (5.10), that the sequence {W},2 : k < ¢,} provides a (2¢,/3)-cover of
the set D(0,v/2p,n). Our choice of p, guarantees that the latter set is ex-
actly D(0, br,). Consequently, in this case we know that the N,, excursions
mentioned above are completed by time p, ?#,. Observe that b > 1/2 and
brn(logn)® = R(1 — 7), hence (r, + €,/3) < v2pn(2n) and (R — €,/3) >
V2pnn(logn)?3, for all n large. Appealing again to (5.10) we thus further have
that {v/2p,S;} avoids some disc of radius €,/3 = %Tﬂ*l in D(0,v2p,n)
during its first N, excursions from v/2p,0Ds, to \/ipnaDn(log ny3- Thus,
the probability that {Si} avoids some lattice point in D,, during its first
N, = %(1 —7)2(1 — 26)¢,, excursions from 9Dy, to 0Dy (10gnys is at least
1 —26. Considering § — 0, followed by v — 0, we get (5.1). ]

6. FIRST MOMENT ESTIMATES

We start with analyzing the birth-death Markov chain {Y;} on the state
space {—n,—(n —1),...,—1}, starting at Yy = —n, having both —n and
—1 as reflecting boundaries (so that P(Y; = —(n — 1)|Y;—; = —n) = 1,
P(Y; = —2|Y;_; = —1) = 1) and the transition probabilities

Ppi=P(Vi=—(k—1)Yii = k) = 1-P(¥=—(k+1)[Y = k)

log(k + 1)

logk +log(k +1)

(6.1)
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for k=2,... ,n—1. Let ( =3a > 0 and

S :=inf{m : Z 1_ny(Yj) = ¢n%logn},

j=1
denote the number of steps it takes this birth-death Markov chain to com-
plete (n?logn excursions from —(n — 1) to —n. For each —n < k < —2,

S
L= 3 10 =k¥iks)
=1

denote the number of transitions of {Y;} from state & to state k£ + 1 up to
time S. (Thus, L_,, = ¢(n?logn). As we show below, fixing z € S, the law of
{ N}, .} =2 Televant for the n-successful property, is exactly that of {L_x}_,.

To get a hold on the latter, note that conditional on f,(kﬂ) =Vlk11 >0 we
have the representation

Lrq1

=1

where the Z; are independent identically distributed (geometric) random
variables with

(6.3) P(Zi=j)=(1-p)p, 3=012,...

Consequently, {Zk};jfn is a Markov chain on Z with initial condition
L_, = (n%logn, and transition probabilities P(L_j = O|f_(k+1) =0) =1,
- - . m—14+£0\_ P
64) P (Tg=t|T gy =) = ( — )pku P,
form>1,£>0andk=n—1,...,2.
Let ny = Ck?logk for k =3,... ,n — 1 and define for 2 < i < j <n,

j—1
(6.5) hig@;) == > JIP Tk =tk | T_hs1) = lrs1) ,

Liseeeslj—1 k=1t
e~ <k

where £, = (n?logn and /5 = 0. The next lemma is key to estimating the
growth of h; ,,(¢,) in n.

Lemma 6.1. For some C =C({) < oo and all 3 <k <n-—1, | —ny| <k,
|m —nga| <k+1, m>1,

66 o p (T = t|T gy =) <OF
' Viegk — U F T I T S logk

Proof of Lemma 6.1: With py =1 -7, and m =m — 1 > 0, we see that

1—pry + + ~ m+E\ ., 4+1
. P(L_ . =/|1 1 )
(6.7) I ( k | —(k+1) m) ( m )pk ( D)
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The right hand side of (6.7) is merely [13, (7.6)] for which the bounds of (6.6)
are derived in [13, Lemma 7.2]. To complete the proof, note that py = 1—7p,
is bounded away from 0 and 1 (see (6.1)). U

Note that
_inf P(Ly=0[|L_3=m)>(1—-py)"">0.
Hence, setting hy n(¢,) = 1, it follows from (6.5) and (6.6) that for some
Ci < 00,
—C —¢
1 k < hk,n(gn) < Cl k
Viogk = hit1n(4n) Viogk

Applying (6.8) we conclude also that for any v > 0 there exists Co = Ca(y) >
0 such that for all 2 <[ <n — 1.

68)  Cf

V2<k<n-1.

n—1 - —(—
(6.9) h(u>H0iii>m4@
' b= LT Vg <2 L0
Recall that ¢, = ¢ (k)™ and €njk = pnen(k)3 for p, = n72! and
k=1,...,n. Pern>3and z € S = [e1,2¢1]%, RE denotes the time until X,
completes (n?logn excursions from i~'(0D(z,€nn—1)) to i~ (OD(z, €nn))
and N, k = 2,... ,n, denote the number of excursions from i1 (0D(z, €n k1))

to i 1 (0D(z,€n)) until RE. A point z € S is n-successful if
N$,2:07 nk_kSNﬁ’kS’l’Lk—Fk Vk:3,...,n—1.

The next lemma applies (6.8) to estimate the first moment of the n-
successful property.

Lemma 6.2. For alln > 3,2z € S and some §, — 0, independent of pn,
(6.10) Gn =P (z is n-successful) = (nl) ¢
Proof of Lemma 6.2: Observe that
_ log(enpt1/€nk)

log(€nk+1/€nk—1)
is exactly the probability that the planar Brownian motion B; starting at
any z € 0D(z,€en) will hit 0D(z, €, ,—1) prior to hitting 0D(z, € ky1),
with (Y;_1,Y}) recording the order of excursions the Brownian path makes
between the sets {0D(z, €, 1),n > k > 1}. Note that 0 ¢ D(z,€;) forz € S,
the above mentioned probabilities are independent of the starting points of
the excursions, and 0D(z, €, ) C D(z,e1) C D(0,1/2), forallk=1,... ,n.
Hence, by the strong Markov property of the Brownian motion X; on T? with
respect to the starting times of its first n,, excursions from i~ (8D (z, €5,5,—1))
to i 1(0D(z, €n,n)), it follows that in computing g, of (6.10) we may and
shall replace X; by the planar Brownian motion B; = i(X;). It follows from
radial symmetry and the strong Markov property of Brownian motion that
Gn 1s independent of x € S. By Brownian scaling, ¢, is also independent of

P
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the value of p, < 1. Moreover, as already mentioned, fixing z € S, the law
of {Ny; , }i_o is exactly that of {L_x}}_,. We thus deduce that

(6.11)  Gu=P([Lx—m| <k;3<k<n—1;L 9=0)=hy,(¢)

Since n~!logn! — oo and for some 7, — 0
n
[ tog(k) = (nt)™
k=2

we see that the estimate (6.10) on g, is a direct consequence of the bound

(6.8). O

In Section 7 we control the second moment of the n-successful property.
To do this, we need to consider excursions between disks centered at z € S as
well as those between disks centered at y € S, y # . The radial symmetry
we used in proving Lemma 6.2 is hence lost. The next Lemma shows that,
in terms of the number of excursions, not much is lost when we condition
on a certain o-algebra G} which contains more information than just the
number of excursions in the previous level. To define gg’, let 7o = 0 and for
i=1,2,... let

Toi—1 = inf{t > m_0: Xz € i_l(aD(y, fn,l—l))}
Toi = inf{t > 71 Xy €4 H(OD(y, €ny))}-

Thus, Ng,z = max{i : 79; < Rj}. For each j =1,2,... ,Ng,l let
el) = { Xy a4t : 0 <t <191 — Toj-2}

be the j-th excursion from i~1(0D(y, €,,)) to i~} (8D(y,€n,-1)) (but note
that for j = 1 we do begin at ¢ = 0). Finally, let

Va1 (X, o t>0}.

We let J; := {I—1,...,2} and take G} to be the o-algebra generated by the
excursions eV . .. ,e(NgJ), eWNnat1),
Lemma 6.3. For some Cy < o0, any3 <l <n, |m;—ny| <l andally € S,

P(Ng,k =mg; k € J; |Ng,l =my, gf’)
-1
(6.12) < (14 Col™ 1ogl) H P (L_p = my|L_(h41) = mpt1)

k=2

The key to the proof of Lemma 6.3 is to demonstrate that the number of
Brownian excursions involving concentric disks of radii €, x, k € J; prior to
first exiting the disk of radius €, is almost independent of the initial and
final points of the overall excursion between the €,; 1 and €, disks. The
next lemma provides uniform estimates sufficient for this task.
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Lemma 6.4. Consider a Brownian path B. starting at z € 0D(y,€ni—1),
for some3 <1 <n. Let 7T =inf{t >0 : By ¢ D(y,€e,,)} and Zy, k € J;, de-
note the number of excursions of the path from 0D(y, €, ,—1) to 0D(y, €n k),
prior to 7. Then, there exists a universal constant ¢ < oo, such that for all
{my : k € Ji}, uniformly in v € 0D(y,€,;) and y,

(6.13)
P#(Zy = my, k € J; ‘BT =0) < (14 3P (Z, =my, k € J)).

Proof of Lemma 6.4: This is essentially [13, Lemma 7.4]. The only
difference is that here we use the sequence of radii €, , for k = 1,1 — 1,1 —
2,...,2, whereas [13] uses the radii e, for k =1 —1,[,l +1,... ,n. The
proof of [13, Lemma 7.4] involves only the ratio ¢;/¢_; = [~ between the
two exterior disks and the fact that the probability p; of reaching the next
disk (of radius €41 there), is uniformly bounded away from 1. The ratio of
the two exterior disks here is €,;_1/€,; = {72 which is the same as in [13],
whereas p; is replaced here by p;_;, which is also uniformly bounded away
from 1. ]

Proof of Lemma 6.3: Fixing3 <! <mnandy€ S, let Z,gj), k € J; denote
the number of excursions from i~} (0D(y, €, x1)) to i "1 (OD(y, €nx)) during
the j-th excursion of the path X; from i 1 (0D(y, €,,-1)) to i (0D (y, €n,1))-
If m; = 0 then the probabilities in both sides of (6.12) are zero unless my = 0
for all k£ € J;, in which case they are both one, so the lemma, trivially applies
when m; = 0. Considering hereafter m; > 0, since 0 ¢ i~'(D(y, ¢1)) we have
that conditioned upon {Ng’l =my},

my .
(6.14) N =527 ked.
j=1

Conditioned upon G/, the random vectors {Z](cj ),k € J;} are independent
for 5 = 1,2,... ,my;. Moreover, with X; being the isomorphic image of a
planar Brownian motion B; within D(y,¢€,;), we see that {Z,g]),k € Ji}
then has the conditional law of {Zj, k € J;} of Lemma 6.4 for some random
zj € 0D(y, €n—1) and v; € OD(y, €,,1), both measurable on G} (as z; corre-
sponds to the final point of el), the j-th excursion from i~(8D(y, €n)) to
i (0D(y,€ny-1)) and v; corresponds to the initial point of the (j + 1)-
st such excursion etV). Let P, denote the finite set of all partitions

(mP ke Juj=1,..,m:m = Z;'n:llmg)’k € Ji}. Then, by the
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uniform upper bound of (6.13) and radial symmetry,

P(Ny =my, k € Jl|Ng,l =my, G})

- ZHPZJ mk)’kEJl|Bf_"’J)

731]1

< ZH +d™PH(Z, =m{), ke )
P j=1

= (1+d~ 3)m’P(Nyk_mk,k€Jl‘ l—ml>.

Since m; < ¢11?logl we thus get the bound (6.12) by the representation used
in the proof of Lemma 6.2. ]

7. SECOND MOMENT ESTIMATES
Recall that N* ok for z € S, 2 < k < n, denotes the number of excursions
from i 71 (0D(x, en,k_l)) to i1 (0D(z, € x)) prior to RE. With ng = (k*logk

we shallwriteNfl\an;c if IN—ng| <kfor3<k<n-—1and N =0 when
k = 2. Relying upon the first moment estimates of Lemmas 6.2 and 6.3, we
next bound the second moment of the n-successful property.

Lemma 7.1. For any v > 0 we can find C = C(y) < oo such that for all
r,y €S,

1\ ¢+
(7.1) P (z and y are n-successful ) < g2 n3+t5C™! (7' ) ,

where | = max{k <n:|z—y| > 2} V1 and g, := P(z is n-successful ).
Furthermore, if |x —y| > 2€,,4, then for some Cy < oo,

(7.2) P (z and y are n-successful ) < (1 + Con™"logn)g-

Proof of Lemma 7.1: Fixing z,y € S, suppose 2,411 > |z — y| > 26,
for some n — 1 > 1 > 3. Since €, 42 — €, > 2€541, it is easy to see that
i 1 (D(y, €ny)) Ni 1 (OD(z,€nx)) = 0 for all k # [ + 1. Replacing hereafter
I by I A(n—3), it is easy to see that for k # 1+ 1, k # [ + 2, the events

{Nak kd ni} are measurable on the o-algebra G/ defined above Lemma 6.3.
With J;:={l—1,...,2} and I; :={2,... ,l,I+3,... ,n— 1}, we note that

{z,y are n-successful} C {Ny Ko, k€ I} m{Ng,k 5oy, ke Jiy1}-

Let M(I}) := {mao,... ,mpu_1 : my X ng,k € I;} (note that the range of

. . k
myy1, Myt is unrestricted), and M(J;) := {ma,... ,m_1 : my ~ ng, k €
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Ji}. Applying (6.12), we have that for some universal constant C3 < oo,
P (z and y are n-successful)
< ¥ ]E[P(Ngk_mk, kedi|NY, =m,G!);NEy Ay, ke Ty
M(Ji41)
< CsP ( ok Ao, ke Iz) z hag(my)

|my—ny|<I
(7.3)
Since,
1+2

Z HP (L_g = my, |f—(k+1) = Mk1)

mi41, M2 k=l

=P (L =my|L_ (43 =mp3) <1,

taking m,, = (n?logn, we have by the representation (6.11) of Lemma 6.2,
that

P(N;f,kflink,kEIo = ZHPLk_mk|L (k+1) mk+1)
M(I}) k=2

hiran(ma) Y hog(my)

Imy—ny| <1

(7.4)

IA

(as mentioned, the sum over M(I}) involves the unrestricted m;; and m; o).
Combining (7.3) and (7.4), we have

(7.5) P (z and y are n-successful) < C3hji3,(my) [ E hai(my) ]

|y —mny|<i
By (6.11) and the bounds of Lemma 6.1 we have the inequalities,
Gn = hon(my) > hyp(my) | inf|<l ha i (my)

mp—ny|s
> hyn(mn)C2  sup  hgy(my)

N |mlfnl|<l

hin(ma)C2QRI+ 17" Y hgy(my)

Imy—ny|<l

(7.6)

Y

Combining (7.5) and (7.6), we see that for some universal constant Cy < 0o,

—2 hl+3 n(mn)
n hl,n (mn)2

By (6.8), 1431 (mn)/hin(my) < Csn3F! for some C5 < oo and alll < n—3.
Thus, we get (7.1) via the bound (6.9) on ky,(my,), with the extra n? factor
coming from the use of [ A (n — 3) throughout the above proof. It also
follows from (6.9) and (6.11) that when 2e,3 > |z — y|, the trivial bound
P (z and y are n-successful) < g, already implies (7.1).

P (z and y are n-successful) < Cyn
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Suppose next that |z —y| > 2¢, ,, in which case (7.1) is contained in the
sharper bound (7.2). To prove the latter, note that if [z — y| > 2€, 5, then
the event {z is n-successful } is G, measurable, hence

P (z and y are n-successful )

=E({P(y is n-successful |G¥)} , = is n-successful )
= IE‘.({P(N;L’,,c E vk, ke J, | NY = my, gg)} , T 18 n—successful) ,

and (7.2) follows from Lemma 6.3. U

8. THE e-COVERING TIME OF A COMPACT RIEMANNIAN MANIFOLD

Let M be a smooth, compact, connected two-dimensional, Riemannian
manifold without boundary. Let {X;};>o denote Brownian motion on M
starting at some non-random zy € M. The process {X¢}+>0 is a symmetric,
strong Markov process with reference measure given by the Riemannian
measure dA and infinitesimal generator 1/2 the Laplace-Beltrami operator
Aps. We use d(z,y) to denote the Riemannian distance between z,y € M.
With this notion of distance we can take over the definitions used for the
plane and the flat torus: Dps(z,7) denotes the open disc in M of radius r
centered at . For z in M we have the e-hitting time

T (z,e) =inf{t > 0| X; € Dp(z,€)}.
Then

Ce = sup T (z,¢)
reEM

is the e-covering time of M.

Proof of Theorem 1.3: If g denotes the Riemannian metric for M, let
M' denote the Riemannian manifold obtained by changing the Riemannian
metric for M to ¢’ = g/A, so that the area of M’ is 1. Since Ay = %AM,
it follows that X} = X4 is the Brownian motion on M'. With C/, denoting
the €’-covering time of M', we see that C. has the same law as ACé/\/Z.
Consequently, it suffices to prove the theorem only for manifolds of area
A =1, which we assume hereafter. Then, the statement and proof of Lemma,
2.1 applies for any fixed z € M, upon replacing Dr2(z,-) by Dy (z, ).

Our assumptions about M imply the existence for some £ > 0 of a smooth
isothermal coordinate system in each disc Dy (u, €), u € M (c.f. for example
[28, Page 386 and Addendum 1]). This implies that with respect to such
coordinates, the Laplace-Beltrami operator A,; is given on Djs(u, &) by
a(z)(0? + 02) for some smooth, scalar function a : M — (0,00), with a(z) =
ay(z) possibly depending on u. Moreover, for each v € M and § > 0, upon
choosing ¢ = £(u, d) > 0 small enough, we may after translation and dilation,
assume that for the above mentioned coordinate system 7 : Dy (u, &) — R,
we have i(u) = 0, D(0,p) C i(Dp(u,&/2)) for some p = p(u,d) with 0 <
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p <& and if z,z" € Dys(u,€), then
(8.1) (1= d)li(z) —i(a)| < d(=,2") < (1 +9)]i(z) —i(z')].

For any open G C Dj/(u,€), let 7¢ = inf{t > 0 : X; ¢ G}. It follows
that for any z € Dps(u,€) we can find a Brownian motion B; starting at
i(z) such that {i(X;), t < 76} = {Br,, t < 7¢} where T} = [} a(X,) ds, see
[27, Section V.1]. Thus, T, = Tyq), where for any set D C R? we write
7p = inf{t > 0: B; ¢ D}. Consequently

(8.2) (inf a(’u)) o < /0 " a(X,)ds = g

veEG

The upper bound in (1.3) is obtained by adapting the proof provided in
Section 2. To this end, fixing 1/2 > § > 0, extract a finite open sub-cover
U; Dy (uj,&5/4) of the compact manifold M out of UyenDar(u,€(u,)/4).
Since @ = min; inf, ¢, (u;.¢;) @u;(2) > 0, we have by (8.1), (8.2) and (2.15)
that for any R < min;¢;/4

R2
|ellr == sup  sup E*(7p,(sr) < 577 g R0 0
€M z€Dp(z,R) w(@R) 2@(1 - 5)2 -
With its proof otherwise unchanged, Lemma 2.2 applies for M. Moreover,
fixing j, we have that for any € Dys(uj,&;/4) and 0 < e < R < §;/4,

i '(D(i(z),(1 - 6)e)) S Du(z,e),
i (D(i(z), (1 - 6)R)) Du(z, R),
i~Y(D(i(z),(1 — 6)"'R/e)) D Dur(z,R/e).

Consequently, the left hand side of (2.23) is bounded above by the prob-
ability that W; does not hit D(i(x), (1 — 6)e) during ne excursions, each
starting at dD(i(z), (1 — §)"'R/e) and ending at dD(i(z), (1 — §)R). This
results with (2.23) and hence Lemma 2.3 holding, albeit with 1 — §' =
(1 —=6)(1+ 2log(1l —¢)) instead of (1 —4). Since M is a smooth, compact,
two-dimensional manifold, there are at most O(e~2) points z; € M such
that inf,2; d(z¢,z;) > €. The upper bound in (1.3) thus follows by the same
argument that concludes Section 2.

The complementary lower bound is next obtained by adapting the proof
provided in Section 3. To this end, fixing 1/2 > § > 0, let £ = £(§) > 0
and p = p(6) > 0 be such that D(0,p) C i(Dasr(z0,£/2)) and (8.1) holds for
the isothermal coordinate system i on Dps(xg,&), with i(zg) = 0. It follows
that

-
2

U D(.’E,Gl) - D(O,p) - Z(DM('TO,f/2))a

€S
provided ¢; < p/5. Choosing 0 < €1 < p/5 small enough so that e; <
R;1(d) of Lemma 2.2, we say that z € S is m-successful if (3.2) applies.
The probability p, that a planar Brownian path B; starting at any z €
0D(z, €, ) hits OD(z, €, 1) prior to 0D(z, € k+1), is independent of z
and this is true even after an arbitrary random, path dependent, time
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change. With zy ¢ i '(D(z,€1)), and i 1 (0D(z,€nx)) C i H(D(0,p)) for
all k = 1,... ,n, we see that the identity (6.11) holds, resulting with the
conclusion of Lemma 6.2. For y € S, let G/ be the o-algebra generated
by the excursions e(}), ... ,e(NgJ) ¢NiitD) as defined in Section 6. Note
that Lemma 6.4 applies to the law of a planar Brownian excursion B. start-
ing at z € 0D(y, €n,1—1), conditioned to first exit D(y,€,,) at v, even after
an arbitrary random, path dependent, time change (indeed, both sides of
(6.13) are clearly independent of such time change). Moreover, the upper
bound in (6.13) is independent of the initial point z € 0D(y, €,,—1). In case

Ng,l = my > 0, since 79 ¢ i~1(D(y,¢1)) we have the representation (6.14),

where conditioned upon gf’, the random vectors {Z,Sj ), k € J;} are indepen-
dent for j = 1,2,... ,m;. Recall the above mentioned identity between the
‘isomorphic image’ of the path of X till first exiting i~ (D(y, €,,)) and the
law of a time-changed planar Brownian path till its first exit of D(y, €,,).

This identity, implies that each random vector {Z, (9 ,k € J;} has the condi-
tional law of {Zy,k € J;} of Lemma 6.4 for some random z; € 0D(y, €,,—1)
and vj € OD(y, €5,1), both measurable on GY. With (6.13) in force, we thus
establish that the conclusion (6.12) of Lemma 6.3 applies here
i"{OD(w,enn1)) C Dagli™ (@), (1 + 8)ennoi),
1 (0D(z,enn)) N Dar(i™ (), (1 = Oenn) =0,
Du(i™'(2),(1 = 8)en1) C i H(D(z6n1))-

Consequently, if z is n-successful, it follows that

N
T (2),(1 = 8)eny) = > 7Y
j=0
where N = n, = 3an?logn and 7U) correspond now to excursions be-

tween the sets 0Dy (i7(z), (1 — 6)enn) and ODp(i71(x), (1 + 8)enn—1)-
The statement and proof of Lemma 3.2 then applies, except that we now
use 7 (i71(z), (1 — &)en,1) in (3.10). The lower bound in (1.3) follows by the
same argument as in Section 3, now with C(1_s), , , In (3.11). L

9. COMPLEMENTS AND UNSOLVED PROBLEMS

1. Given a planar lattice £, let £, = LN D(0, p), a finite connected graph
of N, vertices. Denote by 7, the covering time for a simple random
walk on £,. The approach of Section 4 can be adapted so as to show

that
T A . .
phﬁrgo W CL = W 1 probablhty y
where

2
A= lim (T2
p—00 Np
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is the area of a fundamental cell of £ and
.1 ,
r= nll)rgo EE(SnSn) ,

is the two dimensional stationary covariance matrix associated with
the simple random walk on £ (note that C, is invariant under affine
transformations of R? and as such is an intrinsic property of £). Of
particular interest are the triangular (degree d = 3) and the honey-
comb (degree d = 6) lattices for which it is easy to check that I' = 171

and A = %tan(%).

. Jonasson and Schramm show in [18] the existence of universal constants

Cy > 0 such that for any planar graphs G of N vertices and maximal
degree dmax(Gn) < d, one has

. . . T(Gn)

| feo————r>

it e neE = G
where 7 (G ) is the covering time for the simple random walk on Gy .
We believe that Cy = & tan(%) for d = 3,4 and d = 6, corresponding
to Gy taken from the triangular, square and honey-comb lattices, of
degree d = 3,4 and 6, respectively.

. Recall that 7, denotes the (random) cover time for simple random walk

in Z2. A natural question, suggested to us by David Aldous, is to find a
limit law for an appropriately normalized version of 7. The analogies
with branching random walk lead us to supect that perhaps the random

variable 7;11/ 2 /n, minus its median, will have a nondegenerate limit law.
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