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Abstract Let (X,,) be a recurrent Markov chain on Z? with X, = (0,0) such that for some constant C,
P[X), = (0,0)] < £, and whose truncated Green function is slowly varying at infinity. Let L% denote the
local time at zero of such a Markov chain. We prove various moderate and large deviation statements and
limit laws for rescaled versions of L%, including functional versions of these. A version of Strassen’s functional
law of the iterated logarithm, recently discovered by E. Csaki, P. Révész and J. Rosen, can be derived as a
corollary.

Résumé Soit (X,,) une chaine de Markov récurrente sur Z2, avec X = (0,0), telle que pour une constante C,
P[X =(0,0)] < %, et telle que la fonction de Green est de variation lente & I’infini. Avec L9 le temps local
de (X,,) & zero, nous démontrons des résultats de grandes déviations et de déviations modérées pour certains
changements d’échelle de LY, ainsi qu'une version fonctionelle. Comme corollaire, on note un théoréme du
logarithme itéré fonctionnel de type Strassen, demontré récemment par E. Csdki, P. Révész, et J. Rosen.
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1 Introduction and statement of results

Let (X,) be a recurrent Markov chain on Z? with X, = (0,0), and let g(n) := >.7_, P[X; = (0,0)] be the
truncated Green function. We can extend g to a continuous, increasing function g(t),¢ > 0. Since (X,,) is
recurrent, g(t) — oo for t — oo.

We will assume throughout that, for some positive constant C,

P[X; =(0,0)] < % (1)
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hence g(n) < Clogn. We will also assume throughout that
g is slowly varying at oo, (2)

that is g(tx)/g(t) ~z 1 for any z > 0. Note that (1) is satisfied for symmetric random walks on Z2, i.e. if
P[X; = (y, 2)] = P[X1 = —(y, 2)], see [6, Proposition 2.14]. Since our results depend only on (1) and (2),
they might also apply to symmetric recurrent random walks on Z in the domain of attraction of a Cauchy
random variable.

We denote by L2 the local time of X at (0,0), i.e. L% := |[{0 < k < n: X; = (0,0)}|, and L = 0. Let
po =0, pp =min{j : j > pp_1,X; = (0,0)}, k =1,2,3,---. It is known, see [6], (and will follow from the
proof of Theorem 1), that L /g(n) converges in distribution to an exponential distribution, i.e.

o ]
P n_o> — e Yfory>0. 3
PRl TaletE ?)

Our goal is to investigate the fluctuations of L%, and associated functional laws.

Theorem 1 (Moderate Deviations) Let 1(n) be a positive, non-decreasing function such that

n
VYp 1= ————— —3 0.

P(n)g(n) "7
Then LY /g(n)¢(n) satisfies a large deviation principle with speed ¢ (n)g(n)/g(vn) and rate function y.

We refer to [2] for the definition of a large deviation principle. Here, it will be enough to show that

0

9(1m) Ly _
Bn)g(m) 7 [g<n>¢<n> 2 y] =t V- @

Theorem 1 is a moderate deviation principle since the speed can vary without changing the rate function.
Further, the rate function does not depend on the distribution of p;.

The next theorem gives a large deviation principle for the distributions of L% /n, with rate function which
does depend on the distribution of p;.

Theorem 2 (Large Deviations) Let A*(y) = supy<,(\y — log E[e*]) and
ya* (1), 0<y<1
J(y) = 0, y=0
+00, otherwise
Then the distributions of L% /n satisfy a LDP with speed n and rate function J.

Remarks

1. Comparing with Theorem 1, the large deviation principle holds for ¥(n) = ﬁ. In this case, v, = 1 and

Theorem 1 does not apply. Considering the proof of Theorem 2, it is easy to show that we have a LDP
whenever v, —3 o,0<a<1.



2. Let po := P[X; = (0,0)]. Then we have J(1) = —logpo if po > 0 and J(1) = oo otherwise.

3. Let L°(-) be the linear interpolation of L? between integer points. We believe (but have not checked the
details) that the standard argument (see e.g. [2, Section 5.1]) allows one to conclude that the distributions

0
Of (L (nt)

n

Jo<t¢<1 satisfy a large deviation principle (in C[0,1]) with rate function

1
J J(f'(s))ds, f absolutely continuous with derivativef’
0

J(f) =

400, otherwise.

As usual, we can derive an Erdds-Renyi law from the large deviation principle:

Corollary 1 Let ¢ > 0 and 9, : = m(l’?ﬂclogg(nn — Lg), j=0,1,2,---,n— |[clogg(n)]|. Then

limy, 00 SUPj—0,1,....n— [clog g(n) | Tnj = de; a-S-, where d. = inf {y: J(y) > 1}.

For a random walk on Z, this complements results of [5].

We next turn to the appropriate functional statements. Let ¥(n) and v, be as in the statement of Theorem
1, and let t(n, z) be a sequence of positive, increasing (in n, z) functions satisfying, for any z €]0, 1],

9 (t5itn)

=z>0. 5
For example, if g(n) ~ Clogn, and % =% 0, we can take t(n,z) = n®. If g(n) ~ Clogn and

Y(n) = nP, (0 < B < 1), we can take t(n,z) = n®(1=A+B. If g(n) ~ Clog,n and &L =2 0, we

logn
can take t(n,z) = e(°8™)" (here and throughout, log, n denotes the k—th iterated logarithm function). If
g(n) ~ Clogy,n and ¥(n) = nP, (0 < B < 1), we can take t(n,z) = nfellos™)”,

Tt is straightforward to check, using (5), that for 0 < 27 < 23 < 1, we have

Let .
_n( ) = Lt(n,m)
g9(n)y(n)
Note that L,(z) € M, the space of non-negative Borel measures on [0, 1]. Equip M with the topology of
weak convergence. Our main functional statement is the following:

z €[0,1].

Theorem 3 (Functional Moderate Deviations) L, (z) satisfies in My a large deviation principle with
speed g(n)y(n)/g9(yn) and rate function

f%m(da:) , LeLi(m)
0

00 , otherwise.



As in the one-dimensional case, we can deduce convergence in distribution from our large deviation
bounds, taking ¥(n) = 1.

Theorem 4 (Functional Limit Law) Let ¢t(n,z) be such that g(t(n,z)) ~ zg(n), z € [0,1]. The distri-

LO
butions of (;#;”) converge weakly to p € M1(My), the distribution of the process (Z;)o<z<1 with
0<z<1

increasing paths and independent increments given by

1 1
P[Zy, — Z,, € B] = %JO(B) + (1 - §—1> x—efmzudu, (7
2 2 2
B

for any 0 < z1 < z2 <1, B Borel subset of [0, c0].

J. Bertoin kindly pointed out to us that in fact the process (Z;)o<z<1 in Theorem 4 is a pure jump
process which can be constructed from an inhomogeneous Poisson point process. Indeed, one may construct a
Poisson point process N (z, z) on [0, 1] xR with intensity n(z, z)dzdz = £72 exp(—2/z)dzdz and define Y, =
fooo 2d,N(x,z). Obviously, (Y;)o<s<1 possesses increasing paths and independent increments. Moreover, it
is not hard to check, using the identity valid for any o, 3 > 0,

GDefaz &>efﬁz
lim (/ dz—/ dz) =logfB —loga,
€e—0 € z € z

_ 14+ Az
14+ Mz +y)

that for any A > 0,

B(exp (~\(Yesy — Y2))) = B(exp (~MZaovy - 2)))

proving that the processes (Z;)o<z<1 and (Y3)o<ez<1 have the same law.

We close this section by mentioning that the functional moderate deviations of Theorem 3 are strong
enough to derive by standard arguments the following Strassen law of the iterated logarithm presented in
[1, Theorem 5]. Obtaining such a derivation was actually the original motivation for this work. Since the
arguments are standard, see [3, Theorem 1.4.1], we do not provide a proof.

Theorem 5 (E. Csdki, P. Révész and J. Rosen) Let t(n,z) be such that g(t(n,z)) ~ 2g(n), z € [0,1].

LO
The set (m) , n large enough, is relatively compact in M, with limit points K, where
0<z<1

K={m:I(m) <1}.

2 Proofs

We begin by stating some simple bounds on g(n).

Lemma 1 We have

and



Proof of Lemma 1
We have

[ng(n)]

> PIX; =(0,0)

IA

g(ng(n)) — g(n)

[ng(n)] 1
c > 5 S C'ogg(n),

Jj=n

IA

where C' is some (fixed, depending on C) constant. The limit (8) follows by dividing by g(ng(n)) and using
the monotonicity of g(-). The proof of (9) is analogous. U

Lemma 1 is needed for the following crucial estimate for the tail of the distribution of the excursion p;.
For a more precise statement, which we do not need here, see [6].

Proposition 1

1
Plp1 >n] < —
g(n)
and
Plp1 > n] -
' g(n)
i.e. g(n)Plpr >n] —z 1.
Proof of Proposition 1:
1. A last exit decomposition gives
" PIX = (0,0)] P[LS_, =0 = 1.

~
Il

0

Since P[LY _, = 0] > P[L% = 0],k = 0,1,...,n, this implies g(n)P[L% = 0] < 1, hence

P[p1>n]:P[L2:O]§$.

2. In the same way,
n

P[X; = (0,0)]P[L)_, =0+ >  P[X;=(0,0)]
j=k+1

~
Il
<

._.
IA

hence 1 < g(k)P[L%_, = 0] + g(n) — g(k), so
g(k)P[LY_ = 0] > 1= (g(n) — g(k))- (10)

Choose k = k(n) = [n (n)J and note that, for some C',C" > 0,

ZP (0,0)] <CZ < C'(logn —logk) < C’"log(l—ﬁ) =2 0.
j= k
This, together with (9) of Lemma 1, yields the proposition. [l



Proof of Theorem 1

We begin with a quick proof of the lower bound in (4). Let Y7,Y>,... be i.i.d. with the same distribution as

p1. Then

[9(n)¥(n)y]

Y Yi<n
i=1

P[L), > ¢(n)g(n)y] > P

n
Y'Z. <—
L<z<r‘£ﬂ>’ip<n)y1 < rg(nw(n)yw]

P
< [”1> T )m])mnwnm

Now apply Proposition 1 and the fact that g(-) is slowly varying to get

Y

9 (¢ oF )
llybnj)g}fm log P[L), > ¢(n)g(n)y] > —y.

We next turn to the proof of the upper bound. We follow the standard strategy to apply Chebycheft’s

inequality and to optimize over the parameter. Due to Chebycheff’s inequality,

Lg(n)¥(n)y]

PIL), > g(n)y(n)y] < P [ Y Yi<n

i=1

<E [e—AnYl] Lg(n)¥(n)y] eAnm

for each )\, > 0. Recall v, = Taking logarithms and dividing by £ ("()1/’()") (11) yields

9(7n) Lg(n)¥(n)y] 9(Yn)Ann
g(n)i(n) g(n)(n)y Y(n)g(n

Next we show that for each 6 > 0, and C,, > 0 large enough, we have

Fja”
log P[LY > g(n)y(n)y] < g(vn)y log E[e *»"1] +

1-6
log E[e—*"1] < e ACn 7).
BBl <~ )

~—

Indeed, observe that
log E[e Y] = logE[e ™| < E[e *] -1
e M Plp; > Cpl+ Plpr < Cp]l —1

1-6
Plp; > C,J(e % —1) < e MCn 1
[o1 > Cr]( ) < g(cn)( )

IA

where we used Proposition 1 in the last inequality.

Substituting this estimate in (12), we get

9(yn) 9(yn) , - nChn 9(¥n)Tn
B(n)g(n) log P[Ly, > g(n)y(n)y] < y(1— 6)g(Cn) (e —1)+ Tn)‘ncn-

Choose C,, = Ky,9(7n), An = g—"’ with K, K’ > 0. Then the r.h.s. of (14) is

B 9(7n) s 9(vm)
y(d J)Q(K%g("rn))(e 1)+K9(7n)K

(13)



Due to Lemma 1 and the fact that g(-) is slowly varying, % — 1. Hence (14) and (15) yield

n—oo

- 9(n) 0 -K' K'
lim sup ——~——log P[L;, > g(n)y¥(n)y] <y(l —J)(e 1)+ —
mSup g () 08 T1En = 9 (n)y] < y(1 = 9)( )+ %
and the upper bound follows by letting § — 0, K’ — oo, &~ — 0. d

Remark In particular, taking in the proof of the upper and the lower bound ¥ (n) = 1, we have

950 I
gm)))l"gp R

Together with (9) in Lemma 1, this implies that for y > 0,

LO
P[g(n) Zy] ik € 1

as noted in (3).

Proof of Theorem 2
Note first that P[L% > ny] = 0 if y > 1. As in the proof of Theorem 1, we have

[ny] [ny]
P|Y Yi<n| <P[L3>ny]<P|) Yi<n
i=1 =1
But
[ny] [ny]

1 1
P Yi<n|l<P|— S v, <-
i;’_ = Lnsz.zzl'—y

so we ask about large deviations of the arithmetic mean of a sequence of i.i.d. random variables. Cramér’s
theorem (see [2, Theorem 2.2.3]) implies that the distributions of |_n1—yj Sy, (or Tnl—ﬂ Sy satisty a
LDP with speed |ny| (or [ny]) and rate function A*. Note that Y3 > 0, E[Y1] = oo hence A*(y) — 0 for
y — 0o. Since we have

[ny]

1
;8P | Vi<

1 1 [ny]
] &

1
ZM—logP wrzlyzs

1 1
Y n [ny] Yy

and % — g, the claim follows. O

n—oo

In order to prove Corollary 1, we need the following preliminary proposition.
Proposition 2 Let ¥(n) = 0, ¥(n)g(n) — oo. Then, for each z > 0, ﬁP [% < x} = T

Proof of Proposition 2



[9(n)¥(n)z]
P[I° < g(n)w(n)z] < P Y; >n <P[ max V;> — 1
[En < gmyln)a] < 2 Hzn| <Pl Y e

=1- (1 _p [Yl > m}) [9(n)9(n)a]

Tg(n)y(n)z]
g(MMWMH)

where we used Proposition 1 in the last inequality. Since 1 — z < —log 2, the last term is

< ~Tg(n)(n)z] log (1 - ;) .
g (W)
Hence -
1 1o Cfgmemel . (1
5" s <7 < St o8 (1 Q(WQ | (16)
Provided that (n)
__9\n — 1, (17)
9 (557 )
(16) implies that
. 1 0
oy 513 P | Jay <+ <= (18)

But (17) holds true since

o 29 (i) 22 (56)

and % ;=2 1 dueto Lemma 1.

Lo(n)¥(n)z]
P <gmppma] > P| 3 ¥>n
j=1
> [ max Y; > n] =1-(1—P[Y; >n))lsvmal
1<j< g(n)¥(n)z]

Now we use the inequality 1 — 2z > —zlogz (0 < z < 1) with z = (1 — P[Y; > n])ls(W¥ (2] 6 get

PIL, < glnyp(mia) > ~ 2O g1 - ppy; > wpae (1 = Ppy; > mlave )

Proposition 1 implies that
(1—P[Y; >n])s™Wz — 7@

n—oe



and therefore
(1-P[Y; > n])Lg(nW(n)acJ — 1.

n—oo

We conclude from (19) that

10
it 5 e 27 2
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Proof of Corollary 1
1. Let d € R, J(d) > %, choose § > 0 such that J(d) — 6 > 1, and fix any d’ > d. We show that
P[ sup Tn,; > d' for infinitely many n] =0. (20)

§=0,1,---,n—|clog g(n)]

Let ¢(n) = (log g(n))” where v > 1. Since we can take the sup in sup;_q 1 ... n—|clog ()| In,j OVer those
J with X; = (0,0) only, without changing the value, and since 7, ; has the same distribution as 7, for
those 7, we have

P sup may>d] < P[L5 > gm)g(n)] + $m)g(n)P a0 > d] - (21)
j=0,1,---,n—|clog g(n)]

Now we have to estimate the terms on the r.h.s. of (21):

P[L5 > gln)p(n)] < e ¥ (22)
for n big enough, due to Theorem 1 and

p[nn,o > d] < eclogg(n)(J(d)—0) (23)

for n big enough, due to Theorem 2.

Let A > 1, ng = 0 and ny = [g7'(A\¥)], k = 1,2,---. Then we see from (22) and (23), applying the
Borel-Cantelli lemma, that

P[ sup Mny,; > d for infinitely many k| = 0.
§=0,1,---,ni— [clog g(ne)]

In other words, we have proved (20) along the subsequence (ny) with d replacing d'. Let ny < n < ngq1
and observe that, for j = 0,1,---,n — |clogg(n)],

log g(nk+1) log g(n:+1)
< = i oz a(ne)
i =Tt Togg(n) = T TTog gmi)
k+1
< Mnigay Tk

For k big enough, n,,,, ; < d implies 7, ; < d’. This completes the proof of (20).

. Letd € R, J(d) < L. Choose § > 0 and A > 1 such that A(J(d) +6) < . We will construct a subsequence
ny, such that
P[ sup Tny,j < d for infinitely many k] = 0. (24)
0<j<ni—|clog g(nr)]



Fixing n, let j§ := 0, j7 :=inf{j: j > j% _, + [clogg(n)|, X; = (0,0)}, M" := M"(w) = max{m : j <
n} and J" := {j§,...,jiyn_1}- Then (1, ;)jcs~ areiid. with the same distribution as 1, . Let 9(n),
to be determined below, satisfy the assumptions of Proposition 2. We have

Lg(n)y(n)] Lg(n)¥(n)]
P sup Mny <d <P M" < + P[0 < d]Letos sl 25
[OSanvalogg(n)J s<d<Hl lclog g(n )J] 7m0 <d] (25)

But, for each § > 0, and all n large enough,
ppan < Lo
lclog g(n)]

for n large enough, where we used Proposition 2 in the last inequality. Turning now to the second term
n (25), we first note that, by Theorem 2, for all n large enough,

< P[Ly < Lg(n)p(n)]] < (1+8)y(n) (26)

Plino > d] > e 10E9mM(I(@)+) 5 o~Blogo(n)

for n large enough, where 3 := ¢(J(d) + §) < 1. Hence

Lg(n)¥(n)l 1-83
Lg(n)¥(n)]| - Lclog g(n)] _(1=8)¥(n)g(n)
Pl1n,0 < d]tetesatl < (1 —e ﬁ“’gg(")) SO < T emmatn (27)

for n large enough. Considering (26) and (27), it remains to specify a subsequence (n)) and a positive

function 9(-) such that ¥(n) ,— 0, ¥(n)g(n) ,=z oo and
D (k) < o0 (28)
k

(A=8)¢(ny)g(ny)1 P

Z e”  cbgstne) < 00 (29)
k

Then, (24) follows from (25), (26) and (27) together with the Borel-Cantelli lemma. We finish the proof by
observing that (28) and (29) are satisfied for ny, = g~ 1(2¥) and ¥)(n) = logg(n)/g(n)” where 0 < y < 1—-2.
O

Proof of Theorem 3
We begin by proving a finite distribution result, from which the required LDP will follow by standard
projective limits arguments. Note first that for 0 = 2o < z1 < z2 < --- <z <1l,and 0 = a9 < a3 < a2 <

-- < ap < 00, and with Y; as in the proof of Theorem 1,
P[Ln(x1) > a1, Lp(x2) > a2,- -+, Ln(zr) > ax]

Lg(n)9p(n)a1] Lg(n)¥(n)ar]
SP Z Y'ist(naxl)a"'v Z Y;St(naxk)
=1 i=1
Lg(n)9(n)a1] Lg(n)¥(n)az]
SP Z ngt(naxl), Z Y}St(’n,l@),"',
i=1 i=[g(n)¢(n)as]+1
Lg(n)¥(n)a]
Y; < t(n,zy)
i=[g(n)¥(n)ar—1]+1
k Lg(n)¥(n)a;]

=HP Z Y; <t(n,z;)

=1 |i=lg(n)¢(n)aj-1]+1

10



Write g(n)y(n) = g( n,z; ) ( n xj)), then for any § > 0 and n large enough,

P[Tu@1) > a1, Tnlon) > o]

—

Lg(t(nz;))9; (t(n,z;))ag |
P Z Y; < t(n,z;)

| i=L9(t(n,2))%; (t(n,z;))aj—1|+1

<~
I
-

IN

[L9(t(n,z;))¥; (t(n,2;)) (aj—aj—1)]—1

IN
kS
N

i=1

.
I
-

¥, (t(n, z5))g(t(n, z;))

—(aj —aj-1)
g _ t("7zj)
¥ (t(n,z;))g(t(n,z;))

exp | —(a; — ajl)%(l - 5))

(1-9)

IN
=
[¢]
><
S

<
I
A

<~
I
—

Il

¥(n)g(n)

where the last inequality holds for n large enough and follows from the proof of the upper bound in Theorem

1. Therefore, using the assumption (5),

. 9(7n) 5 T (
11Tr&sipmlogp[lfn($l) > ay, -, Ln(zr) > ap] < _;(aj —a; 1)

Taking now § — 0 yields

k
, 9(vn) — T a] 1)
limsup ———log P z1) > ay,---,L ) > ak) E
n—>oop g(n)'(/}(n) 8 [ n( 1) =™ n( k =1

proving a finite dimensional upper bound.
We next turn to a complementary lower bound. We first show that
9(7n) " g —a;
11m1nf710gPL 1) > a,-- -,f ) > ag] > J bt M bt
it () o8 T (@) (e P

Indeed, assume w.l.o.g. a;_1 < aj,j =1,2,---, k. We have, setting ¢, ; := [g(n)¢(n)a,],

Le
P MZ%,J’:LQ,...,]C
g(

n)y(n)

Pn,1 Pn,2

> ZY<tnm1 Z Y; < t(n,z2) — t(n,z1), ---
i=@n,1+1
Pn .,k
Z Y; <t(n,zr) — t(n, zx1)
1=@n,k—1+1
k Pn,j
> HP Z Y; <t(n,z;) —t(n,z;-1)| .
j=1 ‘pn,j—1+1

11

(31)



Observe that for j =1,2,---,n

[ Pn,j
P Z Y, < t(naxj) - t(nawj—l)]

| i=¢n,j—1+1

> | max v <lm@_tn xj_l)]

| 0n,j—14+1<i<en,; P~ Pnj-1~ 1
> Pl omax oy lmml—tn wj_l)]

[ on i1 +H1<i<0n,j P

Pn,j—Pn,j-1—1
N . 1 (33)
= g (w)
Pn,j

where the last inequality is due to Proposition 1. Note that due to (5) and (6),

n 1

9(1m) 1 ”
(M) n=do g

9" Tomp(ma;]

(31) now follows from (32), (33) and (34).

In the second step, we prove that, for 0 < § < min{a; —a;_1,j =1,2,---k} we have

k
.o g(ym) — B - B NG a5
lhnlgf S(n)o(n) log P[Ly(z1) € (a1 — 6,01 +9),...,Lo(zi) € (ar — b,ar +6)] > ]Ezl Py . (35)

To prove (35), observe that

P | ¢ (a; — 5,0 +6),5 = 1,2, -,k
Plnglny € (@075 O]
> PM>a-—6j=l2---k—iP M>a-—6j;ﬁZM>a4+6
- gn)p(n) =7 7 T — |gn)p(n) =77 "g(n)y(n) ~
Since

due to the first step, it is enough to show that for £ =1,2,---,k we have

o o k
. g(’yn) t("amj) . t(n,zg) aj - aj_]-
limsup ——~—“—log P | ——— > a; — 4, by———>a;+ 6| < — -
nee. gm)p(n) ° | gm)ydn) =Y 7 4 g(n)g(n) = le zj
But, using the upper bound (30), we have

.o 9(rm) t(n,z;) . Li(n,a0)

liminf ———logP |———~>a; —6,j Z{,————>a;+ 6

B gy BT [gmem = T Gy =

12



-1

«_ aj—ajl_ag+26—agl G,g+1—ag—26_ Z a; —aj_1
=1 Zj Iy To+1 =112 Zj
< — J j—1
Z Z;
Jj=1
where we used 2% — > 0 in the last inequality. This completes the proof of the lower bound.
x $£+

It now follows from (30) and (35) that for 0 < z1 < --- < 2 < 1, the random vector {fn(xj)};?zl satisfies
in IR¥ the LDP with good rate function

yjl

M?r

I yla 7yk
Jj=1

where yo := 0. By [2, Thm 4.6.1] (see Section 5.1 in [2] for a similar argument), we have that the ran-
dom monotone function {Ln(z)};c(0,1] satisfies the LDP in MY ([0,1]) (with M ([0,1]) denoting M, ([0,1])
equipped with the topology of pointwise convergence) with good rate function

k

Ii(m) = Z m{@i1) .

0= Zo<$1< <Zk<1 —

It then follows by monotone convergence that

m) = 1m) = [ ™42
0

Finally, note that the topology in MY([0,1]) is stronger than the topology in M, ([0, 1]), which concludes
the proof of the theorem by an application of [2, Corollary 4.2.6]. O

Proof of Theorem 4 Let 0 = ap < a; < --- < a < 1 as before. Recall that with (n) = 1, (30) and (31)
imply that

e LI .
t(n,z;) . a; —aj—1
P(WZ%"J—LQ,“"k> n:go €xp _27

PR

But sets of the form A = {f: f(z;) > aj,j =1,2,---,k} generate the Borel o-field on M, hence in order

LO
to prove convergence of the finite-dimensional marginals of ;EZ)) to those of Z,, we only have to check that
*aj—a
. _ j — Q-1
P[ijZaj,]_]-aQ’""k]_eXp _E;T ’
]:

n

LO
which follows from an explicit computation using (7). Tightness of the distributions of ;En’).) is immediate

from Prohorov’s theorem. |
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