Asymptotic filtering for finite state Markov chains
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Abstract Asymptotic formulae for the optimal filtering error for finite state space Markov chains
observed in independent noise are presented. Asymptotically optimal simple filters, which do not
depend on the transition rates of the chain, are also presented.
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1 Introduction and statement of results

Let X¢ (the “state process”) denote a discrete time Markov chain, with state space S = {1,...,d},

initial distribution p§, and transition probability matrix

€ € : € ; €Aij , 1F]

where )\ii = Z )\ij-
J#i
We assume throughout that the Markov chain generated by II is irreducible (and aperiodic)

and denote its stationary distribution (which is independent of €!) by ps = {ps(i)}& ;. Let {y5}>,

(the “observation”) denote a sequence of random variables, such that, given the sequence {X£}5° ;,
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the random variables y; are independent, with
P(yn € dz [{X{}21) = P(yy € dz| Xy,)
and P(y§ € dx | X§ = i) = p(de).

Let now Fyn = o{yi, 1 < i < n}. The filtering problem consists of finding the best (in an
appropriate sense, see below) estimator for Xy, given the information ¥, . In the setting considered

here, it is natural to consider “best” in the sense of minimum probability of error. That is, for any

S-valued estimator f(n which is F, ,, measurable let
Pee’n = E(]'Xf.ﬁé)zn) .

(Here and throughout, E denotes expectation with respect to the Markov measure generated by

(p§,TI) and with respect to the filter X,,).

Let PS™ denote the infinum of PS™ over the class of all possible Fyn-measurable estimators.

In this note, we consider the asymptotics of P&". Throughout, Ejg = [ g(z)pi(dz), and a function
g(€,n) is denoted o(k(e)) if lim_,o limy, 00 g(€, 1) /k(€) = 0.

To state our results, we make the following assumption.
(A) Forany i, j, the measures p;, u; are mutually absolutely continuous. Furthermore, the relative

aij = [ (o) log (;%())

d .
log dZ;-

entropies

(6%
< oo for some o > 2.

exist, with 1’I1¢11’1 ai; > 0. Finally, E;
i#]
Our main result is the
Theorem 1. Assume (A). Then, for any initial distribution pf,

nll)ngo pon = (Zps(z) Z ﬂ) elog (%) (1+0(1)), e—0.

i j#i ji



A similar result holds also for (the simpler) continuous time model. That is, let X{ denote a
continuous time Markov chain with state space S = {1,...,d}, initial law p§, and jump rates e\;;,

and let dy; = h(X7)dt + dvy, where v4 is a Brownian motion independent of the process {X;}. Let
Fyi = 0{y5,0 < s < t}, and define PS¢ as in the discrete time case. Finally, modify (A) to (A’):

(A?) let h(i) # h(j) for i # j, and define

(h(i) — (7))

a,’j = 2

Theorem 1°. Assume (A’). Then, for any initial law p§,

Jim et = (Zps(i) ) %) clog (%) (1+0(1), €—0.

i j#i I

Theorem 1’ was derived by Wonham (1965) in the case d = 2 with symmetric transition rates
by considering the exact optimal filter. While the optimal filters are known, both in discrete and
continuous time, for arbitrary d < oo, their structure is rather complicated, and it is not clear how
to use this structure to derive theorems 1 and 1’. In Khasminskii and Lazareva (1992), the general
case d = 2 in continuous time is handled, by analyzing a sub-optimal filter to derive an upper
bound on the filtering error. Our approach here is somewhat different, using information-theoretic

arguments for a lower bound and (different) sub-optimal filters for the upper bound.

Since the proof of Theorem 1’ is similar to that of Theorem 1, we concentrate in the sequel on
the latter. Theorem 1’ then follows by replacing throughout sums with integrals, and using the

explicit form of the likelihood in the continuous time setup.

2 Proofs

Proof of Theorem 1

As mentioned above, the proof of the lower bound uses information theoretic arguments, whereas
the upper bound consists of exhibiting a suboptimal (asymptotically optimal) filter. In both the

upper and lower bounds, the case d = 2 offers simplifications, and it is useful at first reading to



consider it. Thus, we have structured our proofs in such a way that the basic idea is first illustrated

in this simple case.

We begin by deriving the lower bound. The key to the proof consists of the analysis of an
auxiliary hypothesis testing problem. Let the null hypothesis, Hy, consist of {y1,...,yr} being
i.i.d. random variables of law pg, and let H; consist of {y1,...,y,—1} being i.i.d. random variables
of law wo, {yr,...,yr} i.i.d. random variables of law i, independent of {yi,...,yr—1}, where
7 is a random variable, independent of {y1,...,yr—1} and {yr,...,yr}, uniformly distributed in
{1,...,T}. We assume that the prior probabilities of Hy, H1, denoted P,p, satisfy P,,(Hp) =
(1 — XeT' + o(€)), Pap(Hi) = AeT + o(€). Denote by HT (e, T, po, ft1,A) the optimal probability of

error in this auxiliary hypothesis testing problem.

Lemma 1. Let a9 = [dp; log %, and assume E,,

log (%) ‘a < oo for some a > 2. Then for

any § >0 and T = T'(e) ejO oo such that —10% >4 + a1,

HT(G, T, po, p1, )\) > 6)‘T(1 + 0(1)) :

Proof of Lemma 1. The optimal test is the likelihood test (c.f. Lehmann (1986)), that is the

optimal test forms the functional

p(y1,--.,yr | Hi)
p(y1,---,yr | Ho)

A=
and decides H; if eATA(1 + o(1)) > 1, Hy otherwise.

Note that, by definition,

1 & ST log f(yi)
Tj; ! ’

where f(X) = %(X). Hence,

Poror > Pap(H1)P(AeTA(1+0(1)) < 1| Hy)

T
= AeT(1+o(1)) (% S P(ATA < (1+0(1)) | Hi, 7 = k)) . 2)
k=1



But,

=1

T
PATA < (1+0(1) |Hy,7r=k) = P (Z e jtog ) _ 1+ 0(1)

T
> 1- ZP (ezf_jlogf(yi) S Lo(l)

i=1

Note that for k£ < j,

T ] 1
P(ezi:j log f(y:) > o7s | Hi, 7= k)

. T
— p &I (Z log f(y;) > —loge — log(/\T3))
i

AeT

|H1,T:k) @®)

) T
= p2r=IH (Z(log (i) — a10) > —loge —log(A\T®) — (T — j + 1>am>
i=j
CcT*/?

<
~ (—loge —log(AT3) — Tay)™

< CyT~(/2)

(4)

for some C,Cs > 0, where we have used Chebycheff’s inequality (for the function X¢), in the

last step, that is, we used the fact that if X; = log f(y;) — a19 are i.i.d. of zero mean and finite

a-s moment then, by a successive application of Chebycheff’s inequality and the inequalities of
y y

Marchinkiewicz and Zygmund and Minkowski (see, e.g., Shiryayev (1984), pp. 469, 192), one

concludes that for deterministic M,

T T
E|ST x|
P(§ :X,- > My) < | i Xil

_ QT E(X|%)

a >
=1 MT

where ¢, does not depend on T, M.

In particular, one deduces from (4) that, for k¥ < j,

T T
P (ezmjl"gf(%) > 1o g o k)
j=k

- AT

On the other hand, for k£ > j,

T
P (eZi:j log f(ys) > 1 —I):e(;sl) |H1,7' _ k‘)

Mz

—
T — 00

)

0.



o k—1 . _ T 1
< ,U,?(k 7) <62i=j log f(v:) > T2|H1,T — k)) +M£@(T k+1) <€Zi=k log f(y:) > oS |H1,7' — k)

<T7 24 CsT /), (6)

where we have used the fact that B, (€'°8f(#)) = 1 and Chebycheff’s inequality, coupled with (4),
to derive the last inequality. Combining (3), (5) and (6), we arrive at

Perror > AeT(1+ 0(1)).

O

We return to the proof of the lower bound. Our technique consists roughly of extending the

conditioning o-field Fy , with the value of the state before the last jump, and then applying Lemma

1. Let 6 > 0 small enough be given, let T;; = (L —5) log (%) > 0, define T; = I?;ECTW and

a”
T = maxT;. Note next that Xt may be constructed using independent Bernoulli random variables
7
Ny (%) of parameter e\;;, independent random variables I, ; with P(I,; = j) = Xi;j /i, and setting
Xr+1 = 1N, (xg)=0Xy + 1N, (x¢)=11n,xg. For any ¢ > 0, we denote by I; the value of I, x at the
first jump of X§ aftert. Let I = I _z. Let o(i) denote a bijection of {1,...,d—1} = {1,...,d}\I

such that
TO’(Z),T ZTO'(Z-i—l),T’ i = ].,...,d_ ].
and let 7 = o(min{i : X5_, 07" (o(i) or I)}), with 7 = 0 if none of the equalities hold.
o(i),I
Note that

P(7 = 0) < P(two jumps or more occurred in [n — T,n]) = O(e? log?¢),

while for i # I, 7% # 0, the pair (7, I) denotes the two states between which the first jump after n—T

occurs. Finally, let Y,, = n _ if i # T and Y, = X¢ otherwise, and let X¢ denote the optimal

filter given the information {Y,,7,I, Fy,}. Clearly, with

OJ = {at most one jump occurred in [n — T, n]},



> Y P(Va=iI=j,00E (1 5|Vn=iT=j,0J)
i,j=1,i#j
d — p—
> Y 1+ 0PV =i, Iy = HE (1y 5|V =4,1 = j, 0F) — O(¢*log?c).
1,j=1,i#j

Let X5 denote the optimal filter given by {Y, = i,I = j,7, OJ,F,,}. Then, by the Markov
structure of the pair (X5, v5),
E(lyg 5| Va=0,1=4,0]) > E(1

Xz#)’&g,i,j |?n = ’I,,T = j, OJ)

= HT(@E]HP‘Z'MU]" )"LZ) .
(notations as in Lemma 1). Hence,

d
A Aij
Bt > (L40(1) Y pe()5E - HT(e, Ty, iy 1y Mig) — O(log?¢)

1j
= Aii
1,j=1,i#£] w

a/jz

d ..
= (1+0(1)) _ Z Ps(i))\—”_ “ Aig (i —5) elog%.

Since § is arbitrary, the required lower bound follows.

We next turn to the proof of the upper bound. We do this by proposing a sub-optimal filter,
denoted X’fr Since the case d = 2 with a12 = a21 = a is particularly transparent, we begin by
giving a quick proof of the theorem in that case, which illustrates our basic approach. For n € IR,
define A(n) = log B, ((dua/du1)"), and 0 < A* = sup,cg —A(n) < oo (see Dembo and Zeitouni
(1993), Chapter 2.2, for useful facts concerning A*.) In particular, let § > 0 be given, define
T = (™' + 6)log(1/e) and for T = max((1 + 6)log(1/€)/A*,T), let Z, = X7, 7.1log %l’j—;(y;)
Then from Dembo and Zeitouni (1993), Theorem 3.4.3, one knows that for e small enough it holds

that
N?T(Zn < 0) < efTA*(1+o(1)) < €1+36/4_ (7)

Next, let Z, = 3 log #4.(y¢). Let I, = 1if Z, > 0 and I, = 2 otherwise. I, is the

n —

j=n—T+1 08 4y,
first, “coarse”, stage of our suboptimal filter. Indeed, (7) ensures that if no jump has occured in
(n—T+ 1,n), I, is a good estimate of X5. However, the probability of a jump in this interval

is too large, and thus a good filter must refine the information given by I,. To this end, the



proposed suboptimal filter is taken as X¢ = 1 if I, = 1,Z, > (1 4+ ad/2)log(e) or I,, = 2, Z, >
—(1 + ad/2)log(e), and XS = 2 otherwise. To evaluate the performance, note that, for some

constants C > 0 independent of ¢,

P(error | X =1) < P(two jumps or more occurred in [n —T + 1,n] |X; =1)

+P(one jump occurred in [n — T + 1,n] | XE = 1)

+P(XE=2/Xf=1,ic€[n—T+1,n))
+P(XE =2|Xf =1,i € [n—T + 1,n], one jump occurred in [n — T + 1,n — T])
-P(one jump occurred in [n — T + 1,n — T]| X¢ =1

IA

Ce>T? + P(one jump occurred in [n — T + 1,n] | XS = 1) 4+ u¥T(Z, <0)

T (70 < 1+ %) log(e)) + Celog(1/uT (Za < —(1+ %) log(e),

where the last three terms in (8) are due to the fact that XS = 2 implies always that Z, <
—(1+ 2)log(e), while, if no jump occured in [n — T + 1,n], X¢ = 2 implies that either Z, < 0 or
Zn < (1+ %) log(e).

Using Chebycheft’s inequality and the fact that E,, exp(logdua/dpy)) = 1, one obtains the

bounds

u8T(Zn < (1+ (12—5) log(e)) < exp((1 + ad/2)log(e)) = 't/

and, letting & = log(du1/dpu2)(y5_;) — a,

— T —Q
T (Zn < ~(1+ ) ToB(e) < (7 Yo < grors) = ol )

(Actually, using the argument in (4), the right hand side in the last inequality can be bounded by
(log(1/€))~®/?). Combining the last two bounds with (7) and (8), one gets that for some &' > 0,

P(error | X¢ = 1) < P(one jump occurred in [n — T + 1,n] | XS = 1) + e119) 4 clog(1/€)o(1),
and similarly

P(error | Xt = 2) < P(one jump occurred in [n — T + 1,n] | X5 = 2) + 119) 4 clog(1/€)o(1) .

(8)



Hence, using the fact that the first term is of order elog(1/e),
P(error) < P(one jump occurred in [n — T + 1,7n] )(1 + o(1))

= ps(1)eA12T(1 +0(1)) + ps(2)eda1 T(1 + o(1)),
which completes the proof of the upper bound in this case.

Turning to the general case, we assume throughout that all the a;; differ, the general case
following by continuity. Unfortunately, the situation here is more complex because there are more
than two simple hypotheses to test. In particular, it is not clear a-priori what number should
play the role of T in the previous situation. This results with a considerably more cumbersome

suboptimal filter. Thus, let § > 0 be given, let

Aij = log By, (dpj/dps)"
0 < A}; = sup,ecg —Aij(n) < co. Next, define Tj; = (1/aj; + 6)log(1/e), T = max;z;(Tij, (1 +
6)log(1/€)/A};). Define next

n—(k—1)T

dp;
Zyg= Y, log dﬂ’, (yi) k=1,2,3,
t=n—kT+1 J

DF={i:Z},;>0 Vj#i},

with D¥ = 1 if there is no i satisfying the above constraints. Note that DF is uniquely de-
termined. Next, if D' = D? = j then I = i. If D! # D? then I = D3. Let o(-) = o(")
denote the bijection {1,...,d — 1} — {1,...d} \ {i} such that T; ,(;y < Tj4(j4+1)- Define p;(n) =

Ytn-1y,; 108 d‘;;(;') (v§), and let &' = dmin;,; a;;/2. Then, Xg = o(j) if, for all j' < j < d — 1,

pjr(n)/log(1/e) < (1 + &) but p;j(n)/log(l/e) > (1 + &) (with X5 = D' if none of the above
conditions hold). Heuristically, error in the decision D* occurs with meaningful probability only
if a jump occurred in the interval Ny = [n — kT + 1,n — (k — 1)T]. Since the probability of two
such jumps is negligible, the decision after the first stage of the algorithm is, up to a negligible
probability, either on a correct estimate, or a jump occurred from state ¢ to some state j and one
needs only try to detect where has the jump occurred. The latter is achieved by a likelihood test

adapted to the appropriate divergence.

Turning to the proof, let

Jo = {there was a jump in more than one of the intervals Ny},



Jr, = {there was a jump in the interval Ni, and none in Ny, k # k'}  k =1,2,3,
Js = {there was no jump in any of the intervals Ny} .
Then,
4 4

P(X; # X;;) < P(Jo) + Y P(X;, # X35 Jy) < O(€’log?(1/e)) + ) P(Xy; # X35 Jx) . (10)
k=1 k=1

We make use of the following lemma, whose proof is identical to the proof of (4), and is therefore

omitted.

Lemma 2. Assume (A). Then,

n

du:
P(] Z log at (y5) — mlap; — ags)| > 0m|Xf =kt =n—m+1,...,n) < ¢(8, {ai; })ym /%
t=n—m+1 d“'j

Note next that if J3 occured, an error may occur only if either D! # X¢, D? # X¢

5> O an error

occured in the likelihood tests involving p;(n). Hence,

P(X¢ # XE:J3) < 2P(J3)max P(D* #i|Xf =it € Ny) +
7

n

d .
EP(J3)max P( S log T (y) > (1 + &) log(1/€)|X§ = i, J3)

< C(elog(1/e))(log(1/e)) /2, (11)

where we have used Lemma 2 in the last inequality.

ap i
log dmm (yg)’

Next, denoting by ¢*(-) the bijection o(-) corresponding to I = i, and pj- (n)=%n_r

i,0%(j)

P(X; # X35 12) < d*P()max P(X5, # o' (k)| X] = o' (k),t =n—T,...,n, I =1)
)%

< d®P(J;) max P(p} > (1+6")log(1/€)| X; = o*(k),t =n —T;

TETI &
PR

2

+d2P(Js) max P(pf < (1+ ") 1og(1/€)|Xf = o' (k),t = n =T} 4i(jy,-- -, T)-
)t

But, since

T; igi d,ua-i ; 1 Agi(k),i
Lal) Eai(k) (log J) = (aai(k)i — aai(k)gi(j))( + (5) <1-— Zotlk)i +Cod<1+ &'

log(1/e¢) dp; Ui ()i B Agi(j),i

10



for all j < k and 4 small enough, whereas

Tigi(j) dftgi () )
ils = i . >
Tog(1/¢) E,i(j) | log i 1+ 0agi(g); > 1+26°,

an application of Lemma 2 yields that, for § small enough,
P(X;, # X5 Ja) = 0(elog(1/e)'~*/%). (12)
Turning to J;, note that

P(I # X;_r|) < 2P(D* # X;,_¢|J1) < Clog(1/e)™*/2,

and also

P(X;, # X5; 1) < P(L)P(I # X5 p|J1) (13)
+P(J1)P(X}, # X5, I = X5 p) + P(J12) P(X5 # X5l T2, I = X5 1),

where

Ji1 = {there was a jump in the interval [n — T, n — max;.; T;|}, Jiz = J1 \ Ji1 -
Hence, by the same proof as for Js,
P(X5, # X35 J1) < Celog(1/e)'=*% + P(J12) P(X;, # X5 | Jia, T = X5 _q).
Concerning the last term, let
JT=Jon{Xf=jt=n—r1,....n,Xf=It=n—T,...,n—7—1}.
Note that P(UZQ%J{’;) = eAr;T7,;(1 + o(1)), while by the same argument as for J, for 7 > T7 ;,
P(X5, # X5 5 |1 = X5, r) < Celog(1/e) 2.

We conclude that

P(X§ # X5 J1i; X5_p = i) < Celog(1/e)' ™% + 3 eAyjT35(1 + 0(1))

i
and hence
P(XE # X5 J1) < Celog(1/e)' ™2 + 3 ps(i) Y eXijTij (1 + o(1)). (14)
i i

11



Finally, using the relation F;(el°84i/di(2)) = 1 and Chebycheff’s inequality, together with the

argument leading to (9),

n
P(X; # X5 Ja) < & max P( > logdu;/dpi(ys) > (1 +0")log(1/€)|X{ =i,t =n — Tij,...,n)
73 N*Tij

+P(D' #i|Xf = i,t € Ny UN»)

< d2em(H)108(1/€) | clog(1/€)o(1) = elog(1/€)o(1). (15)

Combining (10), (11), (12), (14) and (15) yields the upper bound, and hence the theorem. L
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