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Abstract

We derive a moderate deviations principle for matrices of the form Xy = Dy + Wy where Wx
are Wigner matrices and Dy is a sequence of deterministic matrices whose spectral measures converge
in a strong sense to a limit up. Our techniques are based on a dynamical approach introduced by

Cabanal-Duvillard and Guionnet.

1 Introduction

Let My denote the set of N x N Hermitian matrices, and let W € My be a Gaussian Wigner matrix, that
is, a symmetric or Hermitian matrix with real (respectively, complex) i.i.d Gaussian entries of covariance
N1 above the diagonal. We consider

Xny=Dn+Wn

for a diagonal matrix Dy with spectral measure ﬁgN converging towards a compactly supported probability

measure up, in such a way that

(A) ¢(€) := max max sup N |try(z — Dy) "% — /(z —2)"ldup(z)| <00 Ve>0
=02 N @\R, |3 (2)]>e
(where try denotes the trace of the matrix, normalized by its size N).

Denote by fi}f  the spectral measure of Xy. Recall (see e.g. [18]) that g¥ — converges weakly to the
compactly supported probability measure ui where pf = uDat, oy denoting the Wigner semi-circular
distribution oy(dz) = (27t)~'v/4t — 22dx and denoting free convolution of measures.

Large deviations (in the scale N?) and CLT’s for 4% are obtained in [5, 6, 9, 11], by a dynamical

approach based on the observation that Wy can be constructed as a Hermitian or symmetric Brownian
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motion at time one. It is our goal in this work to extend this analysis to study moderate deviations of /l%N.
Such moderate deviations are natural in trying to understand the role of the Fisher information distance
between spectral measures, c.f. the remark following Lemma 1.4 below. Note that since exponentially good
approximations at the scale N2 are no longer such for the moderate deviation scales considered here, this
study is far from being a straight forward extension of the previous analysis mentioned above.

In order to state our results, we first introduce some notations. Let Stieljes(€) be the complex vector
field generated by the Stieljes functions {f(z) = (z — z) !,z € €\IR} and denote by Stieljes(RR) C C°(IR)
the subset of real valued functions in Stieljes(€). Note that R(z — z)~! € Stieljes(RR) for z € €\ RR.

To any f = fi € Stieljes(C), we associate the function s — f; that solves the differential equation

oufia) = - [ ELEZW ), o) = s, (L1)

In Section 4 below we show that (1.1) has a unique solution whenever f(z) = c¢(z — z)™!, 2 € O\ IR (given
by (4.1) and (4.2)). By the linearity of (1.1), the same applies for any f € Stieljes(C).
For any f, g € Stieljes(IR) and the corresponding solutions fs, gs of (1.1), define

Vilfg) = / / (80 £2)(@) (82.95) @)y (2)ds (1.2)

In what follows, we let Stieljes'(R) := {f' : f € Stieljes(R)} and LP(IR) denote the subset of L?(IR)

consisting of functions of compact support. Let

F(2) = pi((=00,2]) — 4, ((—o0,2]) ,

which is in LZ(IR) for any p > 1 whenever up (and hence u}) is of compact support. Integration by parts
shows that for all f € C}(RR),

Xn ()= [ 1@, @) - [ f@dui@) = [ 1@ Fy(e)da.

With some abuse of notation we let (g, G) denote the value of a linear functional G at g which is in a vector
subspace of Cy(IR) (to be understood from the context of the statement), using also (g,G) = [ g(z)G(z)dz
in the case G € L'(IR).

Our main result now reads

Theorem 1.1 For any ay — 0 such that Nay — 0o, the sequence of random variables {aJ_\,lFN}N in L1 (IR)
equipped with the Stieljes' (IR)-topology and the corresponding cylinder o-field, satisfies the Large Deviation
Principle (LDP) with speed (Nay)~2 and good rate function I(-) defined by

1
I(F):= sup {(h',F) - —Vl(h,h)} . (1.3)
restieljes(IR) 2

(We refer to [8] for standard terminology concerning the LDP. Because the rate function is the same for a
range of speeds, we refer to the LDP in Theorem 1.1 as a moderate deviation principle (MDP).)
Note that the topology for the MDP in Theorem 1.1 is weaker than the Cy(IR)-topology of convergence in

law. Some strengthening of the former topology can be achieved by considering the N-dependent centering

Fn(a) == Bk, (—o0,a]) — i, ((—00,3]).



Specifically, with C;(R) := {f' : f € C{(IR)} denoting the space of bounded continuous functions which

possess a bounded primitive, we have:

Theorem 1.2 For any ay — 0 such that Nay — oo, the sequence of random variables {aEIF’N}N m
LL(IR) equipped with the C}(IR)-topology and the corresponding cylinder o-field, satisfies the LDP with speed
(Nan)~2% and good rate function I(-) of (1.3).

As the rate function I(-) is not particularly transparent to work with, we provide next some useful
information about it. First, it follows from the CLT of [9, Section 6] that for any h € Stieljes(IR),

Vi(h,h) = lim N? E(Xx(h)?) = lim Var(NXn(h)) . (1.4)

N—oo N—oo

Our proof of Theorems 1.1 and 1.2 provides also that for any ay — 0 such that Nay — oo,
Vi(h,h) =2 lim (Nay) > log E(eN ovXn(h) = 9 Jim (Nay)*log E(eN onXn () (1.5)
—00 —00

Recall that p} has a density p; (see [2, Corollary 2]), and for F = fp; with f € L?(u}) set

=5 [rai+5 [ (%@f‘”)r‘)du;(w)w;(y) (16)

(which is well defined, though possibly infinite), setting J(F) = oo for all F € LL(IR) not of the above form.
Let LL*(IR) denote the subset of L!(IR) consisting of functions whose support is contained in the support

of p7. In Section 6 we prove that

Lemma 1.3 The functz’on I(-) is finite only for linear functionals on Stieljes' (IR) that are of the form
= [ F(z)h (z)dz for some F € L*(IR), in which case

3(/ |F(x)|dx>2 <3 [E e <am. @

Further, I(F) < J(F) for F = fp; with f € C}(R), and more generally, for all

FeP:={fp : feL*u), 3Q° polynomials such that Q° (si—g £ liminf J(Q°p1) < J(fp1)} -

The special case up = 0, where one can make the rate function more explicit and relate it to a certain

Fisher information distance, served as motivation for our study. Indeed, in this case u} = oy and p1(y) =
(2m)~14/4 — y2, and one obtains

Lemma 1.4 Suppose up = 0. Then, for every h € Stieljes(IR),

4 — y2
1(h, h) =53 / / i dydac. (1.8)

Moreover, assume F = fp; € L.(IR) for some f € C3(IR). Then

I(F) = J(F) = — / 2 [ P @)F'(5)log |z — yldady. (1.9)



The expression in the right hand side of (1.9) resembles Voiculescu’s non-commutative entropy. In the
classical (commutative) setting, Fisher’s information is obtained by considering the moderate deviations
functional, at the measure, for Gaussian directions. In analogy with that, one may check that substituting
F'(z) = 2(4 — 2*)~V/ ?1{|4|<2} in (1.9), which corresponds to a perturbation of a semi-circle, one recovers
Voiculescu’s Fisher information (see [18]) evaluated at the semi-circle law.

The structure of the article is as follows. In Section 2, we introduce the (matrix valued) Brownian motion
Wi (t) and recall the elements of stochastic calculus we need. Section 3 is devoted to the proof of a CLT
type approximation for the empirical Stieljes transform M}N (2) of X (t) = Dy + W (t). Section 4 controls
the influence of other centerings on the convergence properties of M}¥(z). Our moderate deviations results
are proved in Section 5. We present first in Theorem 5.1 a finite-dimensional moderate deviations principle
(for Xn(f),i=1,...,d) which among other things implies (1.5), and then the projective limits argument
leading to Theorems 1.1 and 1.2, deferring the proofs of Lemma 1.3 (via free probability theory) and Lemma
1.4 to Section 6.

2 Ito’s calculus

Let Hy(.) (respectively, Sy(.)) be a N x N Hermitian (respectively, symmetric) Brownian motion constructed

. . . = \1<k<I<N
via independent real valued Brownian motions (; ;, ﬂk,l)lgffjg N b

HY (,Bkl-l'lﬂkl) if k<l

Y-

(ﬁlk—lﬂlk) ifk>1

ﬁlllfk‘_l

5-

and

V14 0= 3
\/N kALEVI

respectively. Take Wy (t) = Hn(¢t) in the Hermitian case and Wx(¢t) = Sn(¢) in the symmetric case.

k.l _
Sy =

Then, Wy (1) is a complex (respectively, real), Wigner matrix. Let ¥ denote the spectral measure of
Xn(t) = Dy + Wx(t) (note that oY = 4% ), then 4f¥ can be studied by use of Itd’s calculus as we now
explain.

It was proved in [3, 6] that 47 satisfies an Itd’s formula (in the special case where i = &, assumption
which is in fact clearly irrelevant). Then, if we denote, for any f,g € Cf’l(ﬂ? x [0,1]), any s < t € [0,1], and
any v, € C([0,1], P(RR)),

S5t (v, f) /f.’L'tdl/t /fa:sdus

//a (@, u)dvy(z u——/ //‘” — O f(y’ W gy () dva ()du,  (2.1)




and

t
0, = / / B (&, u)Bag(x, u)dv, (x)du, (2.2)

we have

Theorem 2.1 ([6]) In the Hermitian case, for any N € IN, any f € Cf’l(ﬂ% x [0,1]) and any s € [0,1),

(Ss N, f),s <t < 1) is a bounded continuous martingale with quadratic variation

(5 (@, e = 53 U P (23)

In the symmetric case, for any NeN, any f € C2 YR x[0,1]) and any s € [0,1),
(SSt(AN,f) =88, f) — f [ " (x)dipk (v)du, s <t < 1) is a bounded continuous martingale
with quadratic variation

(& N, e = 5 U D

Note that it is not hard to see (see [6] or [10]) that the law of 4" is tight in both Hermitian and symmetric

settings. The limit points are characterized by

S, f) = 0 (2.4)

for all functions f € Cf 1(R x [0,1]). It can be shown (see [6, Corollary 1.4] or [11]) that such an equation
has a unique solution p*, given by the free convolution p; = p Dat.

In the sequel, we shall be interested in specific test functions of the Stieljes type:

Ct

fla,t) = (2.5)

Zt — X

with a complex-valued differentiable function z : [0,1] - €\R with non vanishing imaginary part and a
complex-valued differentiable function ¢ : [0,1] — €. Observe that in this case, for any v € C([0,1], P(RR)),

//6 o f(z,u) — Oy f(y; )dyu(m)dvu(y) :cu/zul_xdyu(g;)/ﬁdvu(m) (2.6)

3 Central limit approximation

Following Israelsson (see [12, Proposition 1]), we prove the following central limit type approximation.

Throughout, we set 8 =1 in the symmetric case and 8 = 2 in the Hermitian case.

Lemma 3.1 Consider Hermitian or symmetric matrices such that (A) holds. Then, for any n > 0, there
exists a finite constant C(n) such that for all N and z € O\IR, z = a +ib, |b] > 7,

< C)

vz = Xn() 7 = [0 @] | < .

max sup El (3.1)

=1,2 7 ¢l0,1]




Proof. Israelsson [12] considers only the symmetric case with Ornstein-Uhlenbeck entries. Hence, for
completeness, we next adapt his approach to the context of the lemma. The main idea, used also by [5] and
[9] is to choose (c.,z.) in such a way that the finite variation term in Theorem 2.1 is negligible. Whereas
Cabanal-Duvillard [5] and Guionnet [9] choose a non-random (c,z.) that is independent of N and then
control the remainder term of finite variation, we follow Israelsson [12] in choosing (c.,2.) randomly and
depending on N in such a way that this term completely vanishes.

We first consider the Hermitian case and ¢ = 1 in (3.1). For z € €\ R denote

MY (2) = trn (21— Xn ()™, Mie) = / (2 - )~ dyiy (=)

Applying Theorem 2.1 to f(z,t) of (2.5), and using (2.6) it is easy to check that for any continuously

differentiable functions (¢, z.) such that z; stays uniformly away from the real axis,
t
e MY (2) = coMY (20) + / [(ascs)MsN(zs) +¢5(0525)0. MY (25) — csMsN(zs)azMsN(zs)] ds +ml (z.,c.)
0

with the bounded, complex valued, martingale m” (z.,c.) having the quadratic variations
RV (e = 2 / [ R i @),
I(m = T : 2
B e = w7 [ [ S A @i (32)

Since |z — z| > |3(2)| for x € R, it follows that M} (-) and M(-) are uniformly Lipschitz continuous on
C\ R x [—|bl, |b]]. Specifically, there

|M¥ (2) = MY (2)| V [ Mi(2) = My(2)] < [b]7%|2 — 2] (3.3)

Fixing 7 € [0, 1], following Israelsson [12], we choose (c_, 2.) = (¢, 2") to be the solution of
o = FOMNEN) MG, A= (34
b = LOMNEN) T AMENS, =1, (35)

whose existence and uniqueness we next prove. Indeed, the sign of S(MP (&) + M;(€)) is opposite to that of
(€). Thus, taking u() 1=0,1,... such that Y = 2 for all l, u,g )= sforte [0, 7] and

1
Buuf ™ = S (MY () + My(u)),
2

it is easy to see by induction that |%(u§l))| > |b| for all ¢t € [0,7] and [ > 0. The uniform Lipschitz property
of MN(-) + My(-) implies by Gronwall’s lemma that the sequence u{!) converges uniformly on [0, 7] to the
unique solution of (3.4). The existence of a unique solution of (3.5) is then clear. Note that ¢ — |S(2]Y)| is

monotone non-increasing on [0, 7]. Moreover, by (2.4), it is easy to check that for ¢ € [0, 7],

cith(z,fV) = céVMg(zéV) + /t [—ciVMs(zﬁv)azMs(ziv) + (8305)M3(zév) (8 Z; Mo, M, (2, )] ds
0
N

= A Mo(=) + /0 t% (My(2N)0. MM (2N) + MN (zN)0.M(2])) ds, (3.6)



where (3.6) is a consequence of (3.4) and (3.5). Similarly, we find that
teN

e MY (2) = ¢ My (Zo)+/

o (MY (M0, M (2Y) + My (zX)0, M (2))) ds + myY (2N, cN)  (3.7)

Subtracting (3.6) from (3.7) we find that
D (MY () = My(2) = e (MY (") — Mo(23))) +mi (2, eT). (3-8)

Let b = $(2Y), noting that [b)N| > [b| for t € [0,7]. Let v = |c¥|? and al¥ = R0, MY (2N) + 8, M, (2N)),
noting that

2 2
whereas d;v¥ = afv]¥, vl¥ =1, by (3.5). Since v¥ = exp(— [, alds), it follows that
sup |cf¥| < exp([b|2). (3.10)
te[0,7]
Thus, by (3.2), for any ¢ € [0, 7],
N(,N .N N(,N .N 1o N et
I - s i < A1
(Rm™ (2, e )Ne + (S (27, ¢)e N2/0 / N =2 d N(z)ds < N[ (3.11)
implying that
N( N _Ny|2 N(,N N N( N N e2tl™
BmY (.| = BERmY N+ BEmYE <
We have by (3.10) and assumption (A) that
B2
el e
M (o) — Mol )| = 6 e (aff = D) = [ =) ()| < A

With ¢ = 1, we thus see that (3.8) yields the bound

1 el b|~*
N/ N Ny2]z € c(lp) |, e
]E[|MT (zT)_MT(zT)| :| S N +N|b|2
Since z € C\IR, N and 7 € [0, 1] are arbitrary, this completes the proof of (3.1) when i = 1, in the Hermitian
case. Still in the Hermitian case, let us now prove it for i = 2 and, without loss of generality, for z € €4\ R.

First, observe that

1

ez = Xnr) ™ 4 NOIN 4 ) = MY )] < (3.12)
| [ e =) @) + Nz + ) = M) < 5 (3.13)

Therefore, it is enough to bound

mY o= NOM (4 ) = MY (2)) = N (2 4 1) = Mo ().



We proceed as above by considering a martingale representation of 72, given, if (2]V(2),c]N(2)) are the
functions constructed in (3.4) and (3.5) with terminal data (2 (2),cN(2)) = (2, 1), by

T

i = NGt ) (MY GG+ ) = M G+ ) ) = N ) (MY (Y (2) - MGl ).

By (3.8),

i = N () e ) = N ) =+ o)

Note that since (2N (2')) > S(2) =b>0for 2 =z or 2/ = 2+ N71, (3.3) and (3.4) imply that

0l o+ 5) — AN )] < BI21e (5 + 30) = )l

whereas (3.5), (3.9) and (3.10) imply that

1 - 1 _ 1
10u(ct’ (2 + 57) = e @) < eI (2 + ) = A (@) + I (2 ) — e (2)]-

Therefore, Gronwall’s lemma gives for ¢t < 7

et ) - AN S e e ) - @< e (3.14)
Using the above control, we can bound 5{¥. To this end, let
1 1 1
W= NGt ) M+ ) = MG ) - (ol e+ ) = Ml ()}

# N (et )= ) (MY G ) - Mo )} =+ 11

The first term can be decomposed as follows

I= N+ ) (A + 1) - 2@ {n ) - D) = [0 -0 2dun(o) |

+ NGt ) (F6+ ) -2 @) { [ e+ ) -0 @6 -0 -~ wn)e) ) =0+ 1

By (3.10), (3.14) and Assumption (A) we find that

- 1 = b
L] < Nelt™ x Nemf X C(J|\7|)
and .
-2 emﬁ_ ]_
|I2| S Ne‘bl X W X W
so that we have found a finite constant Ci(b) such that
7] < C;\([b). (3.15)
Moreover, by (3.14) and Assumption (A),
1zt (b))
< DS
|II|_NxN|b|3e X =N



resulting, with (3.15), with the existence of a finite constant C5(b) such that

g < 20 (3.16)

Moreover m ™ (z) is a martingale whose martingale bracket can be computed. Following (3.11), we find
2
dpX (z)ds

8

Y (z+ N7 Nel(2)
ZNZ+N) z)? (2 (2) — o)

@Y @)+ QN = 53 [ [

(N[N (z + N1) = N (2)))?
< w [ (e ) e
1[N @EINGY N R
[ (e )
< C;”V(f) (3.17)

where C3(b) is a finite constant derived from (3.10) and (3.14). From (3.12), (3.13), (3.16) and (3.17), we

conclude that

E ||try (2 — Xn (1)) /(z_w)_Qdu*(m)P i N|2b|3 N Cj\(fb) N 03](\1;)5 _ Cj\(rb)

finishing the proof of the lemma in the Hermitian case. When we consider the symmetric case (studied
already by [12]), an extra term of the form (2N)~* [ cN02MY (22 )ds appears in (3.8). This term is in turn
bounded by CN~1log(1 + |b‘) (see [12, Page 9] for details), completing the proof of the lemma.

4 A martingale representation for M (z)

In Section 3, we used the martingale representation (3.8) of M (zV) to estimate its rate of convergence as
N — oo. Here, we shall follow more closely [9] and [5] to get a similar representation but for deterministic
functions (ct, 2;), independent of N, in order to study the moderate deviations of the sequence {M¥(z) —
M (z)}n. To this end, let (¢, z,) be the solution of

Oz = My(z), 21 =z =a+ib, (4.1)
Oer = 0, Mi(z)ee, c =c. (4.2)

By the same arguments as above, we see that |3(2;)| is non-increasing on [0, 1], with existence and uniqueness

of (¢, 2¢) as a result. Further, in analogy with (3.8) one finds that
¢ (M (21) = Mi(21)) = co (Mg (20) — Mo(20)) + Y (2., ¢.) + mi (2.,¢.) (4.3)

with m{¥ (2., c.) the martingale of (3.2) and

™V (z.,c) = —/0 et (MY (z) — M (20))0, (MP (2¢) — M (2))dt + 1521(2N)’1/0 ctO2 MY (2)dt .

We claim that



Lemma 4.1 For any z € O\IR, c € € and any — 0 such that Nay — o0,

limsup(Nan) 2 log P (|r{ (., ¢.)| > an) = —o0.

N—oo

Proof. Let by = S(2z¢). From (4.1) we see that |0:b¢| < |0r2e] < 1/|be] < 1/]b]. So, with by = b, we have

that supeo,1) |b+] < 0o. In analogy with the derivation of (3.10), we have by (4.1) and (4.2) that

Ci = Ci(b,c) := sup |et] < o0.
t€[0,1]

Notice that

1
1 (2N)"1 / es MY (2,)ds| < N=1Cy[b|~=2
0

(4.4)

so without loss of generality we may and shall ignore this term, considering hereafter 8 = 2. Recall [10],

that if f is Lipschitz of norm || f||f, := sup,,(|f(z) — f(y)|/|z — yl), then

(wij ()1<ijen = (Bii (1), Bij (O <icicn = (trn F(Xn () — Etry f(Xn(t)))

is Lipschitz for the Euclidean norm with constant 2| f||y,/N (this was shown in [10] for Dx = 0, but the proof

of [10, Lemma 1.2(b)] extends verbatim to the general case, hence all conclusions of [10] extend as well).
Considering f(z) = (z —«)™! and 0. f(x) = —(z — z)~2 for which || f||f, < |S(2)|7? and |18, f||f, < |S(z)| 3

it follows that for any £ € €\ IR x [—|b], |b|], and ¢ € [0,1],

(wij (M) 1<ij<n = (MY (€) = My(£)), and (wij(t)1<ij<n — O-(M]Y (§) — My(£))

are Lipschitz functions of norm at most 2/(|b|*>N) and 2/(|b|> N), respectively. Therefore, [10] provides the

existence of a universal constant ¢ > 0 such that for any § > 0, N and ¢t € [0,1],

\Y

P (| MY (20) — My(z:) — E{(MY (z) — My(21))]|
(2¢) — My(z))]]

)
P (|0: (MY (20) — My(z1)) — E[0:(MY )

v

By Lemma 3.1, we have that for some finite C3(]b|) and all N,

t:};pl] | E[(M (2¢) — My(2))]] < Co(|b)N ™"

and

sup  sup [0, (MY (2) — My(2))P]2 < Ca(jp)N "
te[0,1] [ (z)|>1b]

Fixing any — 0 such that Nay — oo, if we let
N : (2,wi5(t), )1<ijen = (MY (2) — My(2))0:(M{Y (2) — My(2)),
it follows from (4.5), (4.6), (4.7) and (4.8) that for K > Ko := C»(]b])/ infx(Nan),

P ([¢n (20, w(t), 1)| > 4K ay)

VA

< 2ech2b4(1/\b2)(aNN)2

10

) < efca%‘*zv?

) < e—c62b6N2

(4.7)

P (| MM () — My(2¢)| > 2Kan) + P (|0 (MY (z) — My(z:))| > 2Kan)

(4.10)



Turning to estimate the integral appearing in r{¥ (2., c.), note that | M} (2) — M,(2)| < 2/|S(2)], |0, (M} (2) —
M;(2))| < 2/IS(2)|?, whereas w(t) — (M} (2) — Ms(2)) and w(t) = 0,(M}N(2) — Ms(z)) are Lipschitz for
the Euclidean norm with constants bounded by 2/(|S(2)[2N) and 2/(|S(2)|2N), respectively. Hence,

8
[ (2, w(t), s) — ¥n(z,w(s),5)| < WHWU) —w(s)ll2 (4.11)
(where [|wl[3 := 32, <; j<n wij)- Moreover,
|Mi(2) = My(2)] = lim | Etry[(z = Xn(t)) '] = Btrn[(z — Xn(s)) 7|

N—oo

= lim | Btry[(z — Xn(8) " (Hn (1) — Hy(s)(z = Xn(s)) 7]

< 1 lim Bun[Hx) - Hys)|]
N—oo

ISP
< 1 im VEanEN D = AN )P = li =P (4.12)
S BEP N ¥ TR AT R ()P '
and similarly,
2|t — s|/?
0:(Mi(2) — Ms(2))| < SRF
implying that
2 2
— < = — - —
|¢N(zaw(t)7t) ¢N(z7w(t)as)| = |%(z)|2|Mt(z) MS(Z)| + |c\?(z)||62(Mt(z) MS(Z))|
6|t — s|'/?
—_— 4.1
SGIF 1
In view of (3.3) and the analogous bound
0. MY (2) — 0. M (2)| V 0. M,(2) — 9. M,(2)| < [b] ®|2 — 7],
for [ (2)| A |S(Z)| > |b], it follows that
[ (20, w(2), 8) — v (25, w(t), )| < 8[| ~*|2¢ — 25| < 8[b| |t — 5] (4.14)

(the last inequality comes from (4.1), as |9;2;| < 1//b]). With n = Aay?, we have by (4.4), (4.11), (4.13),
and (4.14) that for N large enough,

a?N+I?153{ sup |¢N(zi/n7w(s)ai/n)|]

=0 sc[i i+l]

n' n

1
/ caton (20, w(s), 5)ds| < Cy
0

ON 4 x| (2i/m, w(i/n),i/n)| + 8B AN fax  sup  [lw(s) — w(i/n)|l2
3 i=0 =0 se[i i]

n' n

< C

So, by (4.10) with K = Ky = (12ay)~'/2, for some Cy = Cy(b) > 0,

P

blayN
> ClaN> < 2ne=CaanN* | sup |lw(s)|]2 > [blan ¥ . (4.15)
s€fo, 1 24

'n

/1 cstOn (zs,w(s), 8)ds
0
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Combining Brownian scaling, Chebyshev’s inequality and Désire André reflection principle, we see that for
any C= 05 (b),

N
nP | sup |lw(s)]|2>CanN)?*| < nlP Z sup w;;(0)* > ACN?
s€f0,1] i,5=1 9€[0,1]
2 N2 2
< n {26—A0/3 E [ewu(l) /3]} <e N,

provided A > Ag(b) is large enough. Thus, with Nay — oo and ay — 0, it follows from (4.15) that

limsup(Nay) 2logP (|ry (z.,¢.)| > Ciray) < limsupay' [2an|logan| — C4] = —o0,

N—o0 N—o0

as needed to complete the proof.

5 Moderate deviations

For d < oo and f= (f,..., f@D) 7O ¢ Stieljes(IR), let
Xl = [ )il @) - [ @) € !
We next prove that Xy (f) satisfies the moderate deviation principle in R? per fixed f € Stieljes(IR)?.

Theorem 5.1 For any ay — 0 such that Nay — oo, any d < oo and f € (Stieljes(IR))?, the sequence of
random vectors {ax' Xn(£)}n satisfies the LDP in R?, with speed (Nan)~2 and the good rate function

ALy Ad

d d
1 L
Ig(z) = sup Z)\imi ~5 Z XV (F9, f9) 5 (5.1)
=1

i,j=1
for Vi(f,g) of (1.2).

In particular, considering d = 1, we see that the good rate function for the LDP of ay'Xn(h) in R is
x2/(2V1(h, h)). Since Nay — oo and h € Stieljes(IR) is a Lipschitz function, it follows from [10, Theorem
1.1(b)], after some algebra, that

limsup(Nay)~?log ]E(e)‘NzaNXN(h)) <00,
N—oo

for all A < co. From Lemma 3.1 we see that the same applies when Xy (h) is replaced by Xx(h), and (1.5)
then follows by applying Varadhan’s lemma (see for example, [8, Theorem 4.5.10]).
Proof. Any h € Stieljes(IR) is of the form

J4

h(z) := Zc(k) (0 — )t (5.2)

k=1

12



for some £ < o0, ¢'¥) € € and z®) = a®) + ib*®) with b*) £ 0. Combining assumption (A) with (4.4) we
have that

k k k c®
e (M (2§ = Mo(2§) | < =

for some C*) < oo and all N. Applying Lemma 4.1 and the representation (4.3) for k = 1,... 4, it thus
follows that {ay'm? (h)}x is exponentially equivalent to {ay' Xn(h)}x at speed (Nan)~2 — 0, in the sense
of [8, Definition 4.2.10], where,

Zm (), )

is the continuous martingale S%(aV, h) (or S%¢(aV, h)), of Theorem 2.1. Hence, by [8, Theorem 4.2.13], it
suffices to prove the LDP at speed (Nax) ? and good rate function Ig(x) for

ay'my (f) := ay' (my (F V), ... ,m{ (f¥)) € R".

To this end, note that the continuous martingale ay'm{ (f), with ay'm{ (f) = 0, trivially satisfies Cramér’s

condition [16, (2.6)] on the compensator, while the differentiable everywhere (in Aq, ..., Aq),

d
1 N
Gt(A) = 5 Z Az)‘JVt(f(l)af(])) y
ij=1
satisfies the strict convexity condition [16, (G)] (see the discussion in [16, Page 49]). Hence, with n = (Nan)?,
by [16, Theorem 2.2] the sequence {a'm! (f)} satisfies the LDP of speed (Nan)~2 in D[0, 1], equipped with
the Skorohod topology, provided that for any 6 > 0,

limsup N 2log IP ( sup |N*(m™ (h)); — Vi(h, h)| > 26) <0, (5.3)
N—oo te[0,1]

where h(z) := 2?21 i f(x) € Stieljes(IR) (after some algebra one sees that this is exactly condition [16,
(sup &)] in our context). Let V; denote the matrix of entries Vj;(t) := %Vt(f(i), ). For each & € R? and

positive semi-definite matrix V' = {V;;}¢,_,, let

d
L(x,V):= sup <> \izi— Z i Vi
AeAd | =1 ij=1
By [16, (2.4)], the good rate function Jg(-) for the LDP of {ay'm™ (f)} is fo t), Vi )dt, for ¢(-) absolutely

continuous with ¢(0) = 0, and infinite otherwise. Since ay'm! (f) € C[0,1] and {9 : Jg(¢) < o0} C C[0,1],
it follows from [16, Theorem C] that the same LDP applies in C[0, 1] equipped with the uniform topology.
The LDP for {ay'm} (f)} with the good rate function Ig(x) = L(z, fol Vidt) then follows by the contraction
principle for ¢(-) = ¢(1) and the convexity of (z, V) — L(z,V).

We turn to the remaining task of proving that (5.3) holds for any § > 0 and h € Stieljes(IR). Fixing ¢
and h, since the monotone function ¢ — Vy(h, h) is uniformly continuous on [0, 1],

sup {Vt(h7 h) - Vs(ha h)} < 67

0<s<t<1,t—s<l/n
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for some n = n(§) < 0o, so with N2{(m® (h)); non-decreasing in ¢, (5.3) follows as soon as we show that
lim sup N2 log P (|N*(m™ (h)); — Vi(h, h)| > 6) <0, (5.4)
N—oo

for any fixed ¢ € [0, 1]. Recall that

N%ﬂ@»—wwm=AT/@MW@@&@—/@mﬂmwmo@. (5.5)

By the linearity of h — hy via (1.1), the right side of (5.5) is a quadratic form in ¢(®) k = 1,...,¢ of the
finite decomposition (5.2) for h € Stieljes(IR). Thus, for proving (5.4), we may and shall replace (9, h;)? in
(5.5) by g(zs,%s,z) := [(2s — z)(Zs — 7)] 2, where z5 and Z, are the solutions of (4.1) for 21 = z and 21 = 2,

respectively. Doing so, we need only show that for any > 0 and 2,7 € €'\ R,

lim sup N~ 2log IP (/ |on (25, Zs,w(s), s)|ds > 577) 0, (5.6)

N—oo

where for u,v € '\ R, s € [0,1] and W € My,
on = (u,v, W, s) = tryg(u,v, W) — /g(u,v,m)d,u:(x) .
Let b= |S(2)| A |S(Z)| > 0. Consider the bounded-Lipschitz norm
Ivllze. = sup{] [ fav]: 1l + 171 < 1)

on the space of Borel measures on IR. Note that ||l — u}||gr — 0 in probability, as N — oo, for each
t € [0,1]. Since [|g(zs, Zs, *)|loo < b* and ||g(zs, Zs, -) ||, < 4b75, it follows that

| Etrng(2e, 20, Xn(t)) — /!)(ztagtaﬂf)dﬂf(wﬂ <n, (5.7)
for all N > Ny(n,t). It also follows by [10] that for some ¢ > 0 and all N, > 0, t € [0, 1],
P ([tryg(ze, %o, Xn (8) — B(tryg(ze, e, Xn(8))| > n) <e e v°N°. (5.8)

By the same argument leading to (4.12) we see that ||uf — ;|| < /|t — s|. Moreover, since ||g(2s, Zs, -) ||, <
4b=5, and |g(2s, Zs, ) — g(21, 26, )| < 26 °(|Z; — Z5| + |2 — 25|), similarly to (4.11) and (4.14) we have that
for some Cy = Cy(|b]) < o0,

| (Zt,Zt, (t)at) _¢N(z87§87w(5)73)|
S |¢N( t:zta ( )5t) - ¢N(Zt,§t,CU(t),8)| + |¢N(Zt,§t,W(t),8) - ¢N(Zt,§t,UJ(3),8)|
+ |¢N(zt7zta ( )78)_¢N(zt7gsaw(8)7s)|+|¢N(zt7§55w(s)78) —¢N(zs,Es,w(s),s)|
JobHAL o 8 4. . 4
e O R | P A A P
< G (llo® - @l +1e-sl2)
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Taking n = A/n?, we then have for all A > Aq(b),

8 n-1 )
+ —— ma S — — .
I+ e sup o) —w (Dl

n’ n

]
,—
n

~ )
i7g,w()

1
| 10w GaasZusl), 8)lds < -+ ik o ey
0 =

We now have (5.6) by combining the latter inequality, (5.7), (5.8) applied at ¢ = %,i =0,...,n—1, and the
fact that

N
an( sup [lw(s)ll5 > Cn2N2> <nP [ 37 sup wy(8)? > ACN? | <e V7,

s€f0,1] i,j=10€0,1]

which holds for all A large enough. [ |
Proof of Theorem 1.1 Equip the algebraic dual X of Stieljes’(IR) with the Stieljes’(IR)-topology and
the smallest o-field A such that F — (f',F) : X — B are measurable for each f' € Stieljes'(R). We
note that Stieljes'(IR) is a separating family for LP(IR): recall that R(z — z)~! € Stieljes(R) and hence
R(z — z)7? € Stieljes’'(IR). But, if for f € L2(R) it holds that R[[(z — )2 f(z)dz] = 0 for all z € €\ R
then R[[(z — )~ f(z)dz] = C for all z € €\ R, and C = 0 by taking |z| — co. Hence, since on compact sets
Stieljes(IR) uniformly approximates any polynomial and since the latter are dense in LZ(IR), we conclude
that f = 0. Thus, we can identify, for any p > 1, L?(IR) as a subset of X. In particular, we may and shall
identify Fx with {f' — [ f'(z)Fn(z)dz} € X.

Fix ay — 0 such that Nay — co. Combining [8, Theorem 4.6.9] and Theorem 5.1 we see that {ay' Fx}n
satisfies the LDP in (X, A), with speed (Nay)~2 and the good rate function I(-) of (1.3). By Lemma 1.3
we know that I(-) = oo outside LL*(R) C LL(IR), so with {ay'Fy} C LL(IR), Theorem 1.1 follows from [8,
Lemma 4.1.5(b)]. [ |

The following is an immediate corollary of Theorem 1.1 and Lemma 3.1:

Corollary 5.2 The conclusion of Theorem 1.1 continues to hold true when Fy is replaced by Fn(x) =
Eji ((—00,2]) — i ((—00, 2]).

The advantage of working with Fly is that it allows us to strengthen the topology for which moderate
deviations hold. For any d < oo and f= (f1),..., f(9) € (C}(R))?, define

XN(f) = /f(.’L‘)FN(SL')dIE = tI‘Nf(XN) — Eter(XN) S Rd, (59)

by integration by parts.
Let K' = [k— — 1,k + 1], where K = [k_, k4] is a compact interval containing the support of ui. We

now have the following approximation lemma whose proof is deferred:

Lemma 5.3 Assume f,£,, € (C{(R))?, d < oo, are such that

lim  sup |8, (F — £ (@) = 0 (5.10)
m—)oomeK:
fori=1,...,d. Then, for any § > 0 and any any — 0 with Nay — oo,
lim sup lim sup(Nay) "2 log P(|Xn(f) = Xn(f)| > dan) = —00. (5.11)

m—oo  N—oo
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Proof of Theorem 1.2. Fixing ay — 0 such that Nay — oo and f € (C}(IR))?, there exists a
sequence of functions f,, € (Stieljes(IR))? for which (5.10) holds. Then, by (5.11), the random sequences
{ax'Xn(fm)}n are exponentially good approximations of {ay'Xn(f)}n in R?. Recall Corollary 5.2, that
{ay'Fn}n satisfies the LDP in L1(R) equipped with the Stieljes’ (IR)-topology, with speed (Nan)~2 and
the good rate function I(-) of (1.3). By (5.9), ay' Xn(fy) is for each m the image of ay'Fy under the
map F — [ £ (z)F(z)dz : LL(R) — R" which is continuous with respect to the Stieljes’(IR)-topology. If
F € LI(R) has I(F) < a then F/py € L*(u}) with u}((F/p1)?) < 2a (see (1.7)). By the Cauchy-Schwartz
inequality in L?(u}) and (5.10) we thus have that

sup{|/f(m) z)dz —/f' z)de| : I(F) < a} < V2api(|f —£,))Y2 =0

as m — oo for each a < co. Consequently, by [8, Theorem 4.2.23] it follows that {ay'Xn(f)}n satisfies the
LDP in R? with speed (Nay)~2 and the good rate function

Ie(y) = inf {I(F): F € L\(R / £ (2)F(z)dz = y}.

With Stieljes’(IR) C Cj(IR) a separating family for L (IR), similarly to the proof of Theorem 1.1 we identify
LL(IR) as a subset of the algebraic dual X of Cj(IR), mapping Fy to {f' = [ f'(z)Fn(z)dz} € X. We equip
X with the C} (IR)-topology and the corresponding cylinder o-field. It then follows by [8, Theorem 4.6.9] and
the above LDPs for {ay'Xn(f)}~ that {ay'Fn}n satisfies the LDP in X, with speed (Nax)~2 and the

good rate function

[G) = swp  sup  Ig((f,G))
d<oo fe(c)(IR))¢

= sup sup inf{I(F):FeL.R /f' z)dz = (f,G)}. (5.12)
d<eo fe(ci(IR))¢

In particular, by (1.7),

2
FG)> sup inf {ui(h?): he i), uiah) = 0.6V = sup (L0 (5.13)
geci(IR) gec)(IR) wi (g*

Applying Lemma, 6.2 for the function I (1) and the vector space W = C;(IR), we see that (5.13) implies
that I(G) < oo only if G € X belongs also to L1*(IR) (and moreover G/p; € L*(u})). Consequently, with
{ax'Fn}n U{G : T(G) < oo} C LL(RR), by [8, Lemma 4.1.5(b)] the LDP we obtained for {ay'Fn}n holds
also within L(IR). Since (f',G) = [ f'(z)G(z)dz for any G € LL(RR), considering F' = G in (5.12) we clearly

see that f(G) < I(G). On the other hand, by [8, Lemma 4.6.5],

G)=sup  sup  inf{I(F):Fe LR / £ (2)F(2)dz = (f,G)},
d<oo fe(stieljes(lR))

for any G € X, which in comparison with (5.12) shows that I(G) > I(G) for all G € L1(R), completing the

proof of the theorem. [ |

Proof of Lemma 5.3. We bring the proof in the real (symmetric) case, the Hermitian case being similar.

By union of events bounds, it suffices to consider the case of d = 1 in (5.11). To this end, set 6 € C}(IR)
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such that 6(z) =1 for all z € K and 6(z) = 0 for all z ¢ K'. Fixing f, fn, € C}(IR) for which (5.10) holds,
let gm(z) := 0(z)(f(x) — fm(2)), so that 6, = [|g/,|lcc = 0 as m — oo. By (5.9) and [10, Theorem 1.1(b)],
it then holds that for some C' > 0 and all m, N, > 0,

P(| X (gm)| > dan) < 2exp(—Co*(Naw)?/32,).

Since Xn(f) — Xn(fm) = XN (gm) + XN (hm) for hp(z) = (1 —8(x))(f(z) — fm(x)), it suffices to show that
Xn(hm) is exponentially negligible, i.e., that for any m and § > 0,

limsup(Nan) 2 log P(|Xn (k)| > dan) = —c0. (5.14)

N—oo
To see (5.14), set Yy = NanyXn(hy) and Zy(X) = Ee*™. Denoting by X;; the ij entry of the matrix
Xy, we use a variant of Herbst’s argument, similar to the proof of [10, Theorem 1.1(b)]. To this end, for
A>0, let

Gn () = AQZN(,\)% (Allog Zv(N) = E (e*YN log ( Zi&)) . (5.15)

With h,, a Lipschitz function, recall that
D (Oxytr hen(XN))? < 2trn (R, (X))
1<i<j<N

(see [10, (2.12)]). Consequently, applying the logarithmic Sobolev inequality for the multivariate Gaussian
distribution of (X;;,1 <1 < j < N) and the differentiable function exp(AYx/2), we have by (5.9) that for

some universal constant ¢ < oo and all A > 0, N,

Gn() < cE| Y (0x,eM/?)? :c)\2(NaN)2]E(e>‘YN 3 (axijtrth(XN))z)
1<i<G<N 1<i<G<N
< 2eXa E (try (b, (Xn)?)eM™) (5.16)

With h,,, bounded, Yy < ¢, Nay for some ¢,, < 0o and all N. Hence, for any A,k > 0,
E (trn (K (Xn)?)e ™) < 2Zv(N) + NP (ten (), (X)) 2 5) -

Since hy, (z) = 0 for z € K that contains the support of u}, clearly uj((hl,)?) = 0. Note that (h!,)? € Cy(IR),
so try (b, (Xn)?) = X, ((h)?) = pi((h),)?) (see e.g. [18]). With {4} }n exponentially tight at scale N2
(see [1]), an application of [10, Theorem 1.1(b)] after truncating i¥  to a large enough compact and uniformly
approximating (h/,)? on this set by a Lipschitz function, reveals that also |a% _ ((h],)?)— ¥ ((h1,)?)] = 0,
in fact with probability decaying exponentially in scale N2, implying that

P (1 (P)?) — i (b)) > 1/8) < =N,

for some ¢ > 0 (this last conclusion can also be seen directly by mimicking the argument for the upper bound
in [6, Theorem 1.3 and Corollary 1.4], with initial condition Dy). With ay — 0 we thus deduce that for all
€,k >0,\€ (0,6 IN] and N > Ny(m, k,€),

E (try (h, (Xn)?)er) < ZZN(/\). (5.17)
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Combining (5.15), (5.16) and (5.17) we see that for every k > 0, € > 0 and such A and N,

d . _
o (A "log Zn(N)) < ckan /2.

Since Zn(0) = 1 and Z(0) = 0, it follows that Zy(\) < exp(ckai;A?/2). Therefore, by Chebycheff’s
inequality,
P(Xn(hm) > dan) =P(Yy > 6Na%) < Zy(\)e MNok < gerayA?/2-AaNay

Choosing € = ck/6 and A = € ' N it follows (applying the above once for h,, and once for —h,,) that

2
limsup(Nax) ?log P(|Xn(hm)| > dan) < —26— .

N—oo KC

Since « is arbitrary, (5.14) follows, thus completing the proof of the lemma. |

6 Free Probability: Properties of V;(-,-) and I(-)

We have following [3] and [4], that if we let A, be the differential operator on C!(IR) with values in C°(IR)

given by
Aufa) = [T g,

then (1.1) reads

asfs(m) =-Ao0 6a:fs(x) (6'1)

Let M(IR) denote the space of finite, complex, Borel measures on IR. Consider the following vector subspaces
of C¥(R), k > 1,

Gui={ [ ¢ u() + - aya? : n < 0,0, € v e MR), [ lealv](©) < oo}
p=1

We let G C G3 be the vector space of functions g : IR — € for which a solution f(z,s) = fs(z) € C>'(IRx[0,1])
of (6.1) with time marginals f; € G3 and boundary condition f; (z) = g(x) exists. Recall that when &(2) > 0,

(2 —2)t =i /JR e € Gy,
+

with analogous expression for (z — )~! when $(z) < 0. Hence, Stieljes(€) C G3, which as we have seen in
(4.1) and (4.2) implies that Stieljes(€) C G. We next define

1
Vi(h f) = /0 1219 o) ds

for any f = fi € G. By our assumption that up is compactly supported, there exists a compact set
K C {z € R,d(z,supp(up)) < 2} that contains the support of p* for all s € [0,1]. For any f € G, the
continuous function 9, f, is uniformly bounded on the compact K x [0, 1], implying that Vi (f, f) is finite.

We use free probability theory to prove the following approximation lemma.
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Lemma 6.1 Let h,g € G. Then,
Vi(h, B2 = Vi(g,9)%] < i(10:(h — g)*)*
Proof. The equation (6.1) implies that whenever f; € G,
050: fs(x) = 0005 fo(x) = =0z 0 D5(0u f5) (). (6.2)

Let (A,7) be a non-commutative probability space on which a free Brownian motion S. and a self-adjoint
variable D of law up, free with S are defined. Recall that the operator X with law p} can then be seen as

the solution of the free differential equation
dXi =dSy, Xo=D.

For f € G; consider the stochastic integral

t t 1 n p—1 t
/ Of (Xu)tdS, =i / / / eeXuds, e =X ugdy(E)da + Y ap y / X,ds,xp=!
0 o Jo JIR =1 1=070

(cf. [3]). Then, for any ¢(z,t) continuously differentiable with respect to ¢t and with time marginals
¥(-,t) € G2 we have that,

$(Xer1) = (X0, 0) ~/6¢X;,uﬁds +/"6oAmmeudu+/“@mem (6.3

The formula for ¢(z) that does not depend on time ¢ is derived in [3, Page 392] (apart from an erroneous
factor of 1/2 in the du term there). The generalization to ¢(z,t) with smooth time dependence is then
straight forward. Taking f = fi € G and applying (6.3) for 9(z,t) = 8, f:(z), we find by (6.2) that

t
mﬁma=mham+léomnamw&.

By [3, Proposition 3.2.3] it then follows that ¢ — 8, f;(X¢) : [0,1] — (A, 7) is an L?>-martingale with respect
to the filtration A; generated by D and {Sy;u < t}, i.e. 0, ft(X:¢) = 7 (02 f1(X1)|A¢) for any t € [0, 1] with
7 (-|A¢) the projection onto A; in the non-commutative L2(A, 7) space (obtained by completion of A with
respect to the norm 7(| - |?)1/2). Consequently, with f denoting the complex conjugate of £, for all ¢ € [0, 1],

wi (102 fel)

7 (00 fi(X0) 0 ft(X1)) = 7 (7 (B f1(X1) | Ae) T (82 f1(X1)[Ar))
7(0: 1(X1)80 f1(X1)) = i (102 f1%),

IN

and therefore
Vi(f, f) < 1110 1)
Fix h,g € G and apply this inequality for f = h —g € G, to get

Vi(h,h)2 <Vi(g,9)% +Vi(h— g,h— 9)* <Vi(g,9)% + 1} (18- (h — g)|*)®

which completes the proof. |

The next lemma is a key ingredient in the proof of Lemma 1.3.
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Lemma 6.2 Let W C Cy(IR) be a vector space that separates points in LL(IR) and is dense in L*(u}).
Suppose that

{9, F)?
I(F sup , 6.4
(F) 2 gew 2p5(9%) (64)
for every F € W' (the algebraic dual of W). Then, I(-) is finite only for F € L1*(RR), in which case (1.7)
holds.

Proof. Let H be the Hilbert space equipped with the scalar product (h, g) = pi(hg) constructed by taking
the quotient of W by the equivalence relation (h, h) = 0 and completed for the norm || - [|z2(,s). Then, the
inequality (6.4) shows that for any F such that I(F) < oo, the linear map g — (g, F) : W — IR has operator
norm of at most /2I(F) < oo for the || || L2(u7)-norm, hence can be extended continuously to #H. Thus, by
Riesz’s theorem there exists h € H such that

(9, F) = 1 (hg) = / 9(@)(hpr (2))de, Vg eH.

Further, if (g,g) = 0 for some g € W then we find directly from (6. 4) that (g, F') = 0 for otherwise I(F) = oo.
We conclude that there exists an h € H such that ( f g(z)(hp1 (z))dz for all g € W.

Letting F(w) = hp1(x), we deduce that ( f F z)dz and, since p; is compactly supported (see
[2]) and h € L2(u?), it follows that F belongs to Li *(R ) Slnce W separates points in L!(R) we may and
shall identify F with g [ ﬁ’gd:v € W', hence, identifying in the sequel Fand F. Further, with W being a
dense subset of L?(u}),

(9. F)? _1 ..o 1 [F(2)
02 ity =210 =3 ™

proving the right inequality in (1.7). The left inequality in (1.7) is an immediate consequence of the Cauchy-
Schwartz inequality in L?(u}). ]
Proof of Lemma 1.3. Let S = S; be a semicircular variable and self-adjoint D of law pp free with .S,
defined on the non-commutative probability space (A, 7). Let €{D, S) denote the set of polynomial functions
in D and S with complex valued coefficients, with €{S + D) (IR{S + D)), denoting the subset of polynomials
in S + D, with complex (respectively, real) valued coefficients.

Noting that the set of polynomial functions is closed with respect to the operator A, which reduces the
degree of the polynomial, it is proved in [9] that €{S + D) C G. Moreover, an explicit non-negative operator
2 :0¢(D,S) —» €(D,S) is constructed there, such that 7(PEP) > 0 for any P € ¢(D,S), while for any
P e@(S+ D),

Vi(P,P) =7(P'[(I+E)~'P), (6.5)
wp(s+ D) +9Ps+0) =i+ [ (F2ZPD) aiaiw. 6o

We assumed that up is compactly supported, hence so is pj and we can approximate, in view of Weier-

strass theorem, any function h € Stieljes(IR) by polynomial functions P” such that

13 ((Bz(h — Pp))*) <n™2. (6.7)
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By Lemma 6.1 and (6.5), then

Vi(h,h) = lim Vi (P!, P")

n?’ n
n—oo

Jim (0 P)[(I +E) (8. Py)])

IN

lim sup 7((0, P,f)2)
n—oo

lim sup p} (8, P")?) = p; ((0:h)?)

n—oo

where we have used the fact that Z: €¢(D, S) — €(D, S) is non-negative. Consequently,

1 = sw o {win- )
hestieljes(IR) 2
1, B, F)2
> Awn-gmen) - s OIS 6y
nestieljes(IR) nestieljes(R) \ “H1

The vector space W = Stieljes’'(IR) C Cp(IR) is dense in L?(u}). Fixing a linear functional F on W, we thus
deduce from (6.8) and Lemma 6.2 that I(F) < oo only for F € LL*(IR), in which case the inequalities of
(1.7) hold.

We turn to prove that I(F) < J(F) for all F € P. To this end, fix h € Stieljes(IR). Taking the
polynomial function P = P! of (6.7), we find by Lemma 6.1 that for any f € L2(u}),

IN

W, gp) - i) < (Pogp) - i) 40t ([ Pam@ds) a2 4

IN

1 1
<Plafp1> - ivl(PJ P) + niln.f”Lz(uI) + nil(nil + 2V1(h7h)§) .

Considering n — oo we see that for any h € Stieljes(IR),

W o) — v < sup (P fm) — SV (P, P)}. (6.9)
2 pPelR(s+D) 2

By the non-negativity of Z, (6.5) and (6.6), it follows that for any h, @ € R(S + D),

( / (h'Qm)(x)dw) 2

(r(h'(S + D)Q(S + D)))°
< T I +2)7)7(QUI +E)Q)

Vi(h, ) [mcf) s [ (L2229 sy <y>] (6.10)

Therefore, by (6.9) and (6.10), it follows that

IQp) < s {(PLQm) - (PP
pPelR(5+D)

- = sup (f(h'Qp1)(a:)dm)2
2 he R(s+D) Vi(h, h)

< %[mcfn = dui‘(w)dui‘(y)] ~ TQp). .11

r—y
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Equipped with (6.11), let @Q° be the polynomial functions appearing in the definition of F = fp; € P. Then,
by (6.11) and the lower semi-continuity of f — I(fp1) : L*>(u}) — R,

I(fp1) <liminf I(Q°p1) < liminf J(Q°p1) < J(fp1),
d—0 d—0

as stated. In particular, we have that for f € C}(IR),

supy =3 [ Paii+ g [ [ ([ e+ 0= apia) i)

(see (1.6)). For such f, by Weierstrass theorem there exist polynomials @Q° such that 9,(Q° — f) — 0
uniformly on the compact, convex hull of the support of u}, hence also J(Q°p1) — J(fp1), implying that
fp1 € P and completing the proof of the lemma. [ |
Proof of Lemma 1.4: For h € C2([-2,2]), let

4—y2
R / / Vi — g2 dyd:z:,

and recall that by [13, Theorem 2.4] this is half the asymptotic variance in the CLT for the spectral measure

of Wigner matrices Wy . Consequently, in view of (1.4) we see that (1.8) holds when pup = 0.

We provide instead a direct proof which is also the key to showing that I(-) = J(-). Recall that when
up = 0, then pf(dy) = o1(dy) = (27r)*1\/4——yzl|y|52dy is the well known semi-circle law. Qur starting
point is [9, Remark (6.2)], where it is shown that Vi (h, h) = o1 (K'[(I + E)~'h']) for polynomial functions h,
with = the integral operator with domain D D C?([—2, 2]), such that for |z| < 2 and f € C}([-2,2]),

(11

flz) = 2PV / %al(dw

2 1 gl
= af@-2[ [ [ af'tay+ (- na)s)dadioay), (612)
—2Jo Jo
where PV stands for Cauchy’s principal value, and the second line follows from the identity
PV/ z— o1(dy) = 0.5z V|z| <2, (6.13)

(see e.g. [15, Page 74]), and the fact that

fly) = flx) = (y—2)f ()
(z —y)? '

In particular, we see that Zf € Cp([—2,2]) when f € CZ([-2,2]). Let C}(o1) denote the subset of g €

Cy([—2,2]), such that ¢} (y) := 9,(9(y)v/4—y?) € L*((—2,2)). As already noted in [9, Remark (6.2)],
integrating by parts the first line of (6.12) and using the fact that

PV /_2(x -y o, (VA—y)dy =7 (6.14)

for z € (—2,2) (see [17, Equation (6), Page 174]), we obtain the following formula, valid for all g € C{(01),

1 1
/0 /0 af"(nay + (1 — na)z)dadn =

(T + = —PV/2 r—y = '(a:), 2< <2, (6.15)
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By [17, Page 178], for any given he C3([—2,2]), the equation (6.15) has a unique solution ¢, (-) € L' ((—2,2))
such that f by (z)dz = 0. This solution is given by

1 V4 - h’
a) = —PV/ VA9, (6.16)
™ vVi—-22y—z
We thus see that for all h € C2([-2,2]), g = (I + E)~'h' € Ci(01) is well defined and satisfies g(z) =
(4—g?)~1/? Iz, 1, (t)dt. Moreover, we have from (6.15), (6.16) and integration by parts, that for 1 as above,
o1 (R'[(I +E)"'h)) / B (z)y (x)da = —/ GTAC 2A(R). (6.17)

Using once more (6.14) resulting with PV [(z —y)~'y/4 — y2_ dy = 0 for |z| < 2, we note that for any
h e C((-2,2)),

S h(z) = h(y)) VA= y?
A(h) = 47r2// = mdyda:

- 47T2/ / Wy /h’ wr+ (1 — a))da Y2V dyde (6.18)

Since f32(4—m2)*1/2dx < 00, it is not hard to see, from (6.17) and (6.18), that oy (Q',[(I+Z)1Q",]) converges
to o1 (h'[(I + E)~'h']) for any h € CZ(IR) and polynomial functions @, such that @Q,, and Q!, approximate h
and h' uniformly on [-2,2]. By Lemma 6.1, V; (h, h) = lim,, V1(Qn, @») as soon as @/, approximate uniformly
h! on [-2,2] (being the support of u}), so in particular the equality Vi (h, h) = o1 (W'[(I + Z)"1h']) = 2A(h)
extends to all h € Stieljes(IR), resulting with (1.8).

Turning to prove (1.9), fix f € C3([—2,2]) and h € Stieljes(IR). Then, Wi=h-—(I+8)f€ Ci([-2,2])
and g := (I + E)7'h' € C}(01) exists, hence by (6.17),

24(h) = o1 (9= NIUT+E) 9= ) = o1 (FIT+E) ) +o1 (W [T +E) T W) =01 (g[(T+E) f)) —or (FIT+E)g)) -

From the definition of = in (6.12), we also have that I + = is a symmetric non-negative operator on the

functions f and g considered here, with

(i1 +3)1) = [ s@ i @or(da) + [ [EQZIDTO =TI o, (4361 (20) = o111 + g
(6.19)

So, with 0 < 01((9 — f)[({ + E)(9 — f)]) < oo, we have that
~ 1 _ 1 —_—

A(h) = 5o (FIT+E)f]) + 501 (W [T+ E)7']) —ou (fA) 2 0. (6.20)
Since Stieljes’(R) is dense in C}([—2,2]), approximating 8,((I + E)f) uniformly on [-2,2] by a sequence
hl'  with h,, € Stieljes(IR) (also approximating uniformly the function (I + E)f and its primitive), it follows
from (6.18) that then A(hn) — 0. We thus deduce from (6.20) that for F = fp; with f € C3([-2,2]),

1 1
I(F) = sup {(h',F) - §V1(h,h)} = sup {al(h'f) - ial(h'[(I—l-E)_lh'])}

hestieljes(IR) hestieljes(IR)

1 ; 7y — 10 =
= a(flT+3)f]) - heStigll_]feS(R)A(h) = 501 (fIT+E)f]

= / {pv / (f—(y)

F(z)dz,
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where the last line comes from (6.15). Integrating by parts finally gives

2 2
1) == [ [ F)F@ogis - yldsdy.
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Fisher information.
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