Exponential estimates for convex norms and some applications

L.A. Shepp! and O. Zeitouni?

Abstract The role of correlation inequalities and martingale arguments in establishing
conditional exponential bounds is reviewed. Applications to the computation of the Onsager

Machlup functional for diffusions under non supremum norms follow.

1 Introduction

Many questions of interest related to diffusion processes boil down to the asymptotic evaluation
of conditional exponential expectations. A problem in which such computations make their
appearance is the evaluation of the Onsager-Machlup functional. Roughly, let x(¢) be the
diffusion process which is the solution of the Stochastic Differential Equation (SDE)

dz(t) = f(x(t))dt + dw(t), z(0)=0, z;€ R . (1)

The Onsager-Machlup functional is the limit

: . P(lz— ¢lleo <) / )2 /
L = log lim = dt — \ 2
(¢,9) og lim P([w]w <) —3 t))| f(¢ (2)
where || - ||oo is the supremum norm on [0, 7"]. This functional was evaluated, in various degrees

of generality, in [6],[7],[11],[13],[15].

The standard method of proof makes use of the fact that one deals with the supremum norm,
and uses a radial decomposition to achieve the crucial exponential estimates. This approach,

although quite successful, does not lend itself to simple generalization to other norms.

Recently, a partial study of this theorem for Holder norms was initiated by [1], based on
the old results of [4]. In this paper, we propose a different method for the evaluation of the
required exponential estimates. Our main tools in the computation are correlation inequalities
of the FKG type, and in particular a result of [5]. This technique was already applied, in
the context of Onsager-Machlup computations and support evaluation, in the short paper [12]
and in [2],[3],[9],[10]. Here, we will take care to make explicit the requirements on the norms
involved for the method to be applicable. We will thus obtain the Onsager-Machlup functional

for a variety of norms.

The organization of this paper is as follows. In section 2, we present a basic conditional

expectation result, under general conditions on the norms involved. We also check that the
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Holder norms Lip, with a < 1/3, LP norms with p > 4, and the supremum norm all satisfy

these conditions. Section 3 deals with the Onsager-Machlup problem.

This paper was motivated by the talk of Prof. Baldi at the stochastic analysis meeting
in Sant Feliu de Guixol, where related results, using different methods, were presented. We
would like to take this opportunity to thank the organizers, M. Sanz and D. Nualart, for this

stimulating conference.

Notations: throughout, v* denotes the transpose of a vector (matrix) v.

2 Conditional Expectation Theorems

Throughout this paper, d is a given positive integer, and Cj 4[0,7'] denotes the space of R¢
valued, continuous functions ¢(t) on [0, 7], with ¢(0) = 0. The components of ¢(¢) are denoted
by ¢i(t) € Co,1[0,T].

A completely convex norm || - || is a measurable norm on Cy4[0,7"] which satisfies the

following condition: For every i = 1,2,...,d, every € > 0, and every fixed component

(&1('), e Gic1 (), i (), -, qu()) € Cy,4-110,T1, the set
A = {¢(') : H(QEI(')a---aéi—l(‘), (), <;~5,-+1(-),...,q§d(-)>H < 6}

is convex and symmetric in Cp 1[0, 7.

Tt is easy to check that all L? norms (i.e. ||¢|l, = (X%, fOT ¢F (t)dt)'/P), the supremum
norm and all Holder norms are completely convex norms on Cy 4]0, T, as are weighted versions
of these norms, while rotations do not preserve the complete convexity property. The reason

for our interest in completely convex norms lies in the following.

Theorem 1 Let || - | be a completely conver norm. Let F; denote the sub-sigma algebra
generated by {w1(t), ..., wi—1(t), wir1(t),...,wq(t), 0<t <T}. Let Y(-) be an F; adapted

function such that, for any c,

T
Bep & [ v dt |l <o) ) 1 (3)
Then, for any ¢,
T —
Blepe [ wit)dw®)| wl <o) ) 1 (4)

Proof: The proof is similar to the proof of Theorem 1 in [12]. Indeed, note that, by the

convexity assumption of the norm, for each path {wi(-),...,wi—1(-), wit+1(-),-..,wq(-)}, the
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A . . .
set A; = {w; : ||lw|]| < €} is convex and symmetric and, moreover, the random variable

T
/ P (t)dw;(t) is conditionally (in F;) Gaussian of zero mean. Thus, by theorem 1 of [5],
0

T T
Blexpe [ w(®)dui(t) |l <= 7) < Blexple [ v®dui(t)]| vl <e, 7)
= Bleple [ $O)dwi0)] | F, v e )
T T
< E(exp e /0 Y() dwi(t)] | Fi) < 2exp /0 W2 (t) dt

Hence, for any c, it follows from (3) that

T s [T N
Blespe [ () duwi(t) | Jull <) <2B(exp ¢ [ 20 at | lwl <o) ;g2 )

Since (5) holds for any ¢, one has by substituting ¢/p for ¢ and applying Jensen’s inequality
that

T
limsup E(exp c/ P(t) dwi(t) | |w]| < ) < 21/P

0

e—0

Taking p — 0o, one concludes that
T
limsup E(exp c/ D(t) dw(t) | Jw| <€) < 1
e—0 0
Since c is arbitrary, the theorem is a consequence of the following elementary lemma, which

will also serve us in the sequel. For a proof, see [7], ch. 6.9. O

Lemma 1 Let I1,Is,...,1I, be random variables defined on the Wiener space. If, for all c,

limsup E(exp cl; | ||lw]| <e) <1
e—0

Then

n
tig Blexp 3 1 ol <) =1

Remark: In a recent paper [14], H. Sugita shows that for many nonzero constants a (actually,

for a in some dense set of constants A C R), one may find a norm || - ||(¢) such that

1 1
limP(|/0 wy (¢)dws(t) —/0 wa(t)dwy (t) — a| > a/2|[Jw]|@ < €) =0,

e—0

and thus concludes that no intrinsic skeleton of Lévy’s stochastic area exists. A consequence
of Theorem 1 is that if attention is restricted to the family of completely convex norms, a

skeleton does exist.

Another useful classical estimate is based on martingales arguments. We bring below a

version suitable for our needs here.



T
Theorem 2 Let g(-) be an adapted process and ¢ a given constant. Define T 2 / g>(t)dt.
0

Assume that, for each § > 0, there exists a function §(y,e,d) such that

féoo J(y, €, 5)—I/Zecye_y2/25(y,s,5)dy

Pl <) 0" ©
and
= Ygy —
| P> 6e,8) | ul <) evdy g 0 (7)
Then,

T
limsup E(exp c/ g(t)dw;(t) | |lw|| <) <1
0

e—0

Proof: Let § > 0 be given. Then,

® olely (1 1 d
. I € WEQ)i<el 17 4y 055
li E / #)dw; (¢ <e) < el 4 o ST (8
imsup Blexp ¢ [ g(0)dwi(t) | o] <) < e e ®
Note that
EQ <l 7 s yauy>y) =

B < (7 w59 [T g2t 0,06
A+ Ay (9)

BQli<el 17 gauisy L7 pa<owes)) T
A

Recall that fOT g(t)dw;(t) is distributed like @,, where @, is a Brownian motion. Thus,

AL<P( sup @y >y) = 2P(Bse5) > ) < by, e, 8) eV /2o
0<t<d(y,€,0)

Thus, using (6),

S5 B ) <1

[7 sdu >y [T poasswen) W [ el ady

P(|lw]| <€) P(|lw]| <€)
faoo e|c|yP(lT)5(y7e,5) > y)dy . 0 (10)

- P(|lw]| <€) €e—~0
Similarly, using (7),
00 o]
I~ € yE(l“w”“lfng(t)dwi (t)>y1f0T 9%(t)dt>d(y,e,9) Jdy _ 52 el Aydy
P(|lw]] <e) P(llw]] <e)
o

< [P swed) | llull <ody Ty o (1)

Combining (8),(9),(10) and (11), and taking first € — 0 and then § — 0, the theorem follows.
O



Remarks

(1) If the assumptions of Theorem 2 hold for some g¢(-), we say that || - || is g(-) integrable.
(2) In a typical application, g(t) is such that supp<;<r ‘%‘ < C for some C. We check that
in this situation, many norms satisfy the assumptions of the theorem. Consider first the case

of L? norms, p > 4. Take §(y, €,8) = y*/2e2t® some appropriate a(p). Then,

P([ g0yt >y 260 | fully < 9 < Plljwlls > CA 200 | ull, <) 7 0

(12)
(actually, for p > 4, the right hand side of (12) is 0 for all € small enough, however (12) may
be true also for values of p < 4. The computation of (12) in the latter case remains open). In

addition to (12), also

o0
cy 1/4,1/8 1/24+a(p)/4 —
e Plulls > ¢yt wlly < dy 7 0 (13)

which implies that (7) holds true. To see (6), use the fact that P(||w||, < €) > P(||lw|/cc <
€) ~ e */¢ and thus

flSOO ecye_y2/2y1/262+a(p)dy féoo ecye_y3/2/252+a(p)dy
P(Hpr < E) - (_3flc/e2 e—0

0

We next consider the case of Holder norms, i.e. the norm ||¢||Lip, 2 SUPg<y s<T % By

applying a result of [4] (see [1] for details), it follows that for all @ < 1/2,

—/72) Jog P(||w|| ips, < €) eok

for some constant k. To satisfy (6), one then takes d(y, €, 8) = y!/2¢2/ (120943 any §' > 0. (7)

is then satisfied as soon as a < 1/4, for
P(r > 8(y,€,6) | I[wllzip, <€) = P(|fwlls > 6"/2e!2O2H /4 |||, <€) =0

for all e small enough, as soon as 2(1 — 2a) > 1.

< C reveals that the assumptions of the

(3) A similar analysis in the case supg<;<r ‘%
theorem hold true for Holder norms || - ||zip, as soon as o < 1/3. Similarly, for every o < 1/2

there exists a 8 € (1, 00) such that || - ||Lip is g(-) integrable as soon as supg<;<r ‘ﬁ‘ <C.

3  Omnsager-Machlup functionals

Let x4, 0 <t < T denote the solution of the SDE

dzy = f(zy)dt + dwy, ©g =0, x4 € R? (14)
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(we discuss extensions to the case of nonconstant diffusion coefficients at the end of this section).
Here and throughout, f(-) is a smooth function, i.e. bounded with bounded derivatives of

arbitrary order. We compute here the Onsager-Machlup limit

. Plz—9)| <e)
J(¢p) =1 . 15
= P(ul < o 1o
Theorem 3 Let || - || be a completely conver norm such that P(||w|| < €) > 0. Assume that
either
T
lim / |T|2dt = 0 (16)
ll@l|—0Jo
Ve, limsup E(exp clw(T)| | ||w|] <€) <1 (17)
€—0
|| -||is |w|? integrable (18)
or
T
lim / 10dt = 0 (19)
ll@]|—0Jo
Ve, lim sup E(exp c|w(T)|® | ||w]| <€) <1 (20)
€—0
|| - ||is |w|® integrable (21)

(for the definition of |w|P integrable, see the last remark of section 2).

Let ¢ € Hy 4[0,T], i.e. ¢ € Log[0,T] and ¢g = 0. Then,

J(¢) = exp ( [ 160~ sonra [ Vf(cb(t))dt> . (22)

Proof: The proof follows closely the change of measure argument of [7], except that here the

exponential estimates of section 2 are used. Let z(¢t) = z(t) — ¢(¢), then

dz(t) = (F(2(8) + 6(t)) — §(2)) dt + duwy, 2(0) =0 (23)

An application of Girsanov’s theorem yields that
P(lz—¢ll <o _ Pl <¢) _
P(llwl| <€) P(|[w]| <¢)
T . *
E <exp /0 () +6(2) — $(1)) " duw(?)
1 T
=1

|F (w(t) + (1) — $()|?dt | [Jw]| < 6) : (24)

Since f(-) is smooth, a Taylor expansion of it and either (16) or (19) reveal that, uniformly in

[ 1w + o) doPa 2, o [ 15w) - b (29
0 full >0 J '
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Next, using either (17) or (20), one may apply theorem 1 of [12] to conclude that, for any c,

Blewe [ 30 du(s) |l <9 = 1 (26)

(note that theorem 1 of [12] is based on the same correlation argument which yields theorem

1 in this paper). Finally, by a Taylor expansion of f(-), one obtains that

[ 5w + syt =
* Taf’t _
/0 COTON Z [} Sty + [ gt -
T * Tafz T 62fz ) )
| £ @@du) + Z: | o, GO (i zk; A R G QIO
T
+ [ g®dul (27)
where g;(t), i = 1,2 are IR? valued adapted processes such that, for some deterministic o,
al) | 00
o<t<T | [w(t)]2] = 7 o<e<r ||w(t)]3] ~

Using integration by parts,

JRC zw, 0= 3 [ w2 w0

1,j=1

Thus, by either (16) and (17) or (19) and (20), one concludes that for any c,

expc/ F@E)dw(t) | |[wll <o) 7, 1L (28)

Next, using either (18) (for 7 = 1) or (21) (for ¢ = 2) and applying theorem 2, one concludes
that, for every c,

T
Blexpe [ gu(du(®) | lu]l <o) g 1 (29)

On the other hand, again integrating by parts,

2 (owe (3 [ Setotinmttanty 5 [ vsoona) hil<c) = o)
(expcz /Taf’ pa?(0) ol <

d
E(exp(gi:zlwgmg_z _—z / (Bf’<¢<t>>)dt>|||wu<e) T b

where either (16) and (17) or (19) and (20) were used in the last computation. By theorem 1

and the same assumptions,

(expc Z /Tgi‘; .(t)dw,-(t)|||w|\<e) o b (31)

i,j=1,i#j




Combining (27),(28),(29),(30),(31), one obtains (23) under assumptions (16-18). To get the

result under (19-21), it remains to check that for any 1, j, k,

T 32 )
lim sup E(exp ¢ Ji

e—0 0 Ox;j0my ((8))w; (t)w (t)dwi(?) | |lw]] <€) <1 (32)

Ifi # j and ¢ # k, (32) follows from theorem 1 and (19). Thus, it is enough to consider the
case k =14. If j # ¢, then

o, )
Ox;0z; (&(t))w; (t)wi(t)dwi(t) =
T 924 T oa2g
% A 6ij£;i(¢(t))wj(t)dw?(t)—% | 8ij£;i(¢(t))wj(t)dt —
2f; T 92¢.
%ai,.éc;,. () (D)D) - 5 i aijg;i<¢<t>>w3<t>dwj<t> -

170 [ &fi 2 1 (T 8%
3 ) a(axjax,“ﬁ“”) O R PG ONIOL,
Thus, for this case,

T 32f'
limsup E(expc¢ !
5—>0p (exp 0o Ozj0x;

(6(t))w;(H)wi(t)dwi(t) | |lw]| <€) <1.

Finally, in the case ¢ = j = k, it follows form Ito’s lemma that

12
3Jo 8.1:12

[ Ghemmi @it = 3 [ Fhema

2
Oz;

1 (T o (8 1 (T

- &( s (cb(t))) wi(t)dt — & ($(t))wit)dt
19%f; 3
9 D)

Thus, (32) follows in the case i = j = k from (19) and (20). U

Corollary 1 The Onsager Machlup limit (22) holds true for all LP norms, p > 4, and all

Hélder norms || - ||Lipy, @ < 1/3.

Proof: Note first that in view of the remarks following theorem 2 and the fact that all Holder
norms dominate the supremum norm, there is nothing to prove in the case || - ||Lip,, o < 1/3.
Considering the LP norm case, p > 4, in view of the same remarks the only thing to check is
(17). The latter is obvious for the supremum norm, follows in the case p = 2 from corollary 1 in
[8], and follows in the general case by writing w(T') = foT dw; = fOT ¢5(t)dwt+fg(1—¢‘5(t))dwt,
with ¢? € Cy 4[0,T),¢°(T) = 0, and ||1 — ¢°(t)||2 —5-0 0. Integrating by parts, one has

T T . T
jw(T)]| = | /0 (1— ¢ (t))dw, — /0 & (t)wedt] < col[wl]> + | /0 (1= ¢ (1)) dw],
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with ¢s =40 0. Applying now again Theorem 1 of [5] in exactly the same way as in the proof

of Theorem 1, (17) follows. O

Remarks

(1) In the one dimensional (d = 1) case, the results of theorem 3 extend to all Holder norms
|| - ||Lipe With o < 1/2. This is proved as follows: from the remark following theorem 2, one
knows that || ||Lip,, @ < 1/2 is |w|? integrable for large enough 3. Using a Taylor series up to
order 8 in (27) and repeating the proof of theorem 3, the conclusion follows if it can be shown
that, for a one dimensional Brownian motion w(¢) and any deterministic ¥ € H1[0,T],

T
limsup B(expe /0 D) (£)dw(t) | [[w]]zip, < €) < L.

By Ito’s lemma,

T WP DY(T) (T ypwP T ()de T WPt
/0 P(t)wP (t)dw(t) = T_/O T_/O Wﬂ’(t)dt

uniformly in w, where the last limit follows from the fact that the Holder norm dominates the

H 0
l|w]|Lips — 0

supremum norm. The difficulty in extending this argument to the multidimensional case is
that the integration by parts yields again stochastic integrals, which can not be handled by
either the correlation based bounds or the martingale argument exploited in theorem 2.

(2) The corollary actually holds also for the L? norm. However, in that case, the computations
following the proof of theorem 2 do not hold, and one has to use different correlation inequal-
ities. An example of such a computation may be found in [8].

(3) In the case of nonconstant diffusion coefficients, the form of the Onsager Machlup limit
depends on the norm used, and is known in the case where the norm is related to the Rieman-
nian metric defined by o(-)o*(-) (c.f. [15],[6]). Since dealing with this problem requires the

introduction of differential geometric considerations, we do not pursue it here.
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