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Abstract

Let {M;(9),t > 0}yc ga be a collection of continuous, continuous-time martingales such that
for all ¢ > 0, the associated increasing processes satisfy < M(0) >;— oo as ||6]| — co. We show
that if < M (@) >; grows with ||@|| sufficiently fast, then M;(0)/ < M(8) >:— 0 as ||| — oo
uniformly in ¢ € [tg,00),t9 > 0. An equicontinuity property for normalized, parameter depen-
dent stochastic integrals follows. These results serve in the study of the maximum likelihood

estimation problem, over unbounded sets, for diffusion processes.
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1 Introduction

This paper is motivated by a problem which arises in the study of parameter estimation in
continuous-time stochastic processes with unbounded parameter sets.

9

Consider the family of processes {:L‘t, t> 0} , Which satisfy the SDEs,

0cR

dzf = m(6,2%,t) dt + dw, , zd =0 (1.1)

where {w;, t > 0} is standard Brownian motion and the drift function m satisfies some regu-
larity conditions which ensure that the measures induced by {xo}OEJR , on C[0,T] are mutually
equivalent V7T < oo. Assume that there exists a 6* € IR? s.t. o = 2%* is the observed process.

In this case, the well known log-likelihood is of the form [1, Vol. II]
1
Ly(6) = My(6) — 5 < M(8) > (1.2)
where the martingale M (0) and its increasing process < M(6) > are,

My(8) = /Ot (m(0, xs,s) —m(0*, x5, s)|dws , < M(0) >= [Jt [m(8, zs,s) — m(6", zs, 3)]2ds-

In the analysis of the behavior of the maximum likelihood estimator (MLE), one faces the
problem of explosion. Frequently used approaches are either to restrict estimation to a bounded
domain (in which 6* is assumed to lie) see e.g. [3-4], or to show the existence of a consistent
root to the estimation equation VL(6) = 0 [5], which is essentially a local-type method. On
the other hand, in the global optimization approach the true MLE fits the data best and is in
general different from the “projected” estimator (at least on finite time horizons). In this case,
the explosion of ét(: MLE at time ¢) can be ruled out when large 8’s are highly penalized.
More precisely, if for some (deterministic) ¢y > 0,

lim sup L(f) = —oc0 a.s. (1.3)
[l =00 >t

then, it can be deduced that sup ||f;]| < oo a.s. This relies on the fact that by definition,
t>to
Ly(6y) > Ly(0) V 0 € R? and in particular, Ly(6;) > L(6*) = 0.

Remark: In fact, stability of & could be ensured if (1.3) is relaxed to lim sup L¢(6) < 0
oIl =00 >,

a.s. However, weak conditions under which this holds (and (1.3) does not) are very hard to

find.



Now, by definition (1.2) it is seen that (1.3) holds under the following two conditions:

lim < M(6) >4= a.s. to >0 (1.4)
[16]|—+o00
lim sup |M(0)|/ < M(0) >+=0 a.s. to >0 (1.5)
ll6ll—o0 >,

The proof of (1.5) (under some strengthening of (1.4)) is the main concern of this paper.

We note that contrary to the classical LLN for continuous-time martingales (i.e. M;/ <
M >;— 0ast — oo a.e. on {< M >;1 00} [2]), (1.5) (under (1.4)) is far from obvious. The main
difficulty lies in the need for a sufficiently fast growth rate of the LHS in (1.4). Consider (as a
simplified counterexample) a collection {Un(t),t > 0},,5; of mutually independent, continuous-

time martingales s.t. lim < U, >4 =00 a.s. (tp > 0). If
n—oo

lim (logn) ™! < U, >4,=0 as. |, (1.6)

n—oo

then, using random time change, i.e. representing the martingales {U,} as time changed Brow-

nian motions, it can rather easily be shown that P(sup |U,(t)|/ < U, >¢> € i.0.)=1 (Ve > 0),
t>to

which implies that (1.5) fails to hold for {U,}.

Remark: The case under study in this paper differs from the example above by the fact that
the martingales {M(6)}y. g« are mutually dependent (contrary to the independence of {Uy},,).

While this example could suggest that (1.4) with a growth rate of log||6|| will do, our
result relies on a slightly higher rate of ||6||” (any v > 0). It is important to remark that
if ¥ > 1, the main result (i.e. M/ < M >— 0 uniformly in [ty, 0] as ||| — oo) could be
proved with relative ease (under some strengthening of condition C' below, see [3, assumption
Ag-ii]). However, in light of the previous discussion which suggests that a logarithmic rate
suffices, this is a somewhat weak result. Moreover, while one may expect that with M (or more
precisely its integrand) satisfying some regularity conditions (see A,B,C below), it holds that
181l P My (6)) < M() >¢— 0 as ||8]| — oo (uniformly in [tg,00)) VB > 0 (take for example M
independent of 6), a “cheap” proof based on Kolmogorov’s continuity criterion works only for

the case 8 > 1. Our method of proof reveals that indeed 8 > 0 suffices, see corollary 3.4.

The paper is organized as follows: The basic setup is introduced in the next section. Section
3 is devoted to the main result which is based on two technical lemmas whose proofs are given
in the appendix. An equicontinuity theorem for normalized, parameter dependent stochastic

integrals is presented in the last section. This theorem, which is implied by lemma 3.3 below,



serves in the analysis of the asymptotic behavior of the MLE in diffusion processes, see e.g.

[7,8] and a related application in [3].

Notations: For any cube A € IR", IB(A) denotes the Borel o-algebra on A with B" =
B(IR"™). || - || stands always for the Euclidean norm . © denotes an arbitrary countable, dense
subset of IR%. Finally, for any a € R%, b > 0, let B (a,b) denote the open ball in IR? of center a

and radius b.

2 Problem Formulation

Let (Q,F,P) be a complete probability space, (w¢, F;) a standard Brownian motion, and let
f: R x Qx Ry — IR satisfy A,B,C below:

A {b8,w,s€]0,t]]| f(B,w,s) e A} e B'Q F;@ B[0,t] VA€ B', t<oo

B 3 n>e>0, hwt)eF B0, s.t.
(i) 1£(8,w,t) — (6, w,8)]” < h2(w, t)(|0—0'|[*T= v [6—¢'||*+7) V6,6’ € R, t € Ry, P—
a.s.

(i) f2(0,w,t) < h?(w,t) Vte€ R,,P— as.

C dinteger £ > 1 s.t.

1 t
su —_— ER?™(w,r)dr < oo Vm>1
t>5201,)7521 t2m(-1) (¢ — ) /s (@,r) -

Remarks:

1. A is a progressive measurability-type condition.

2. Condition B-iimplies that f is Hélder continuous with parameter larger than 1/2, whereas
B-ii is implied by B-i if there exists a bounded “zero term” 6, (may be random or ¢
dependent) s.t. f(6p,w,t) = 0 (e.g. in MLE application where f(8,w,t) = m(0,w,t) —
m(6p,w,t)).

3. Condition C may be interpreted as an £ — 1-degree polynomial growth (in t) of h.

The collection of continuous time martingales under study is denoted by {F(0,t) , F;, t> 0}y ppa

t
where for each (0,t), F(6,t) = / f(8,w, s) dws is an Tto stochastic integral, whose correspond-
0

t
ing increasing process is < F(6,) >;= / f2(0,w,s)ds.
0
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Conditions A-C imply that F' and < F > are (6,t) jointly continuous in mean square and
hence in probability. This leads to the existence of measurable separable versions. Throughout,

we consider only those jointly separable versions (denoted also by F and < F >).

Lemma 2.1 Assume conditions A,B,C hold. Then F and its increasing process < F > have

jointly continuous paths over R? x IR, a.s.

Proof: Fix K CC RY, T < oo thenVd, ¢ € K, |6—6'| <1, m > 1 we have, for some
C =C(m),
t
B sup [F(6,) = F@,0P™ =F sup | [ [£(6,0,5)— 1(6,0,5))duw, ™"
0<t<T 0<t<T Jo
T T
<CE([ [fBw,5) — £(0,w,5)Pds)"™ < 6~ " ICE( [ K(w,5)ds)"
0 0
T
< ||6 — ¢/|[m1+e) gm—1 / ER2™(w, s)ds
0
The last three inequalities follow, respectively, from the Burkholder-Gundy inequality, B-i
and Holder’s inequality. Choose next m = d + 1 to conclude that

E sup |F(9,t)— F(6', )24 < C|6—¢'||¢"*,C = C(d,T), some p>0
0<t<T

The separability, together with Kolmogorov’s continuity theorem for random fields on IR%

(see e.g. [2, thm. I-2.1]) imply that F' has #-continuous samples, uniformly in ¢ € [0,7] a.s.

that is,
lim  sup sup |F(6,t) —F(¢',t)| =0 a.s. (2.1)
Al0 gocK  0<t<T
ll6—6"[|<A

We next show that F' is ¢-continuous, uniformly in 8 € K. Towards this end, choose € > 0

and define

n(0,e) =sup{d > 0| sup |F(6,t)— F(8',t)| < e whenever §' € K, ||0 — 6’| < §}.
0<t<T

Due to (2.1), n(6,€) > 0 a.s. . Clearly, U B(0,n(8,¢)) is a (random) open cover of K. Since

6cK
O is dense in K, it follows that also U B(6,7(8,2¢)) is a random open cover of K. Hence,
beK©
k
there exists a k = k(w) < oo a.s. and {Gi}le eKNOst. KC U B(6;,m(6;,2¢€)) a.s. . Thus,
i=1

lim sup sup |F(6,t) — F(6,t)| <
60 t4'c[0,T] 6K
t—t'|<é



2% + i F(6;,t) — F(6;,t)] = 2 as. 2.2
<2 +lim P 1‘2%' (0i,t) — F(6;,1)] £ as (2.2)
=t/ <8

where the last equality is due to the (a.s.) sample path continuity of {F(6;,-)}.cg, which
holds because © is countable. Since (2.2) holds for all ¢ > 0, the a.s. joint continuity of F
over K x [0,T] follows by using (2.1). The extension to IR x IR" is obtained via monotone

convergence by taking K,, = [-n,n|?, T,, = n and letting n — oo.

The corresponding statement for < F' > relies on the Holder continuity B-i, the a.s. bound-
ness of the Lebesgue integrals /t h%(w, s) ds and /t f2(8,w, s) ds (by C and B respectively) and
the (a.s.) t-continuous samplesoof those integrals (3vhere the properties of the latter are satisfied
apriori outside a #-dependent null set). The details which are technical and straightforward are

omitted. [l

3 The Main Result

The following condition is needed for the statement of our main result.

D There exists a y > 0s.t. Vg >0

. < F(Q, ) >t
Iim inf —>72"" =00 a.s.
6] —o00 t2t0  (t|€]])7
Theorem 3.1 Let conditions A-D hold. Then
lim sup |F(0,t)]/ < F(0,:) >=0 as Vit >0 (3.1)

1600 >t
The proof of theorem (3.1) is based on lemmas 3.2-3.3 below, whose proofs are defered to
the appendix. We first introduce some definitions.

For a fixed 6, define the Fi-stopping times 79(s)
9(s) =inf {t > 0|< F(8,-) >;> s} (3.2)

where 79(s) = 0o if < F(8,") >0 < s.

Let t < oo be fixed, let v € (0,1/2] and define the “truncated” random field Z; : R x R, —
R
Zy(6,5) = F(8,7°(s) A1)/ (s),  Z4(6,0) =0 (3.3)



where

o(s) =sE 2 se€(0,1); ¢(s) = s s €1,00) (3.4)

Lemma 3.2 Assume A,B,C hold. Then Z possesses a modification (denoted also by Z) which
satisfies

sup sup sup t ¥|Z(0,s)| < oo a.s. YK CCRY ty>0 (3.5)
t>tg K 5>0

where £ is the integer in hypothesis C.

Lemma 3.3 Under conditions A,B,C it holds that,

- |F(6,)] d
sup sup ¢t~ % <oo as. VKCCR®* t; >0 3.6
tgf; GGII()' (< F(8,-) >1) ° (3.6)

Before we turn to the proof of the theorem, we outline the role of (3.6) in the proof of theorem
3.1 and the need of the auxiliary lemma 3.2 to by-pass some technical problems on the way to

establish (3.6).

The main step in proving (3.1) is to bound the LHS by a product of two terms. The
first, which tends to zero (as ||#|| — oo) under the growth condition D and the second, which
is bounded in the form of (3.6). To illustrate this idea, consider the case § € IR!. Let
F(8,") = r(B)F(1/8,"), 18| € (0,1] and F(0,-) = 0 where r : [-1,1] — [0,1] is such that
the corresponding integrand f satisfies conditions A,B,C. Then, for all large N’s

1F(8,1)]

¢(< F(/B’) >t) —vl
sup sup |F(0,t < F(8,") >< sup supt” = sup supt "’ S
\o|§vtzt€| ( )|/ (0:) = BI<1/N 1o #) <E(B) > etk $(<FB,-) >0

Now, under D (and with a careful choice of r(-)), by letting N — oo the first term in the
product on the RHS— 0 while the second is bounded due to lemma 3.3. The transformation

F — F is needed because || — oo while (3.6) holds on compact parameter sets.

The a.s. boundness in (3.6) could be obtained (loosely speaking) by showing the (6,t) (a.s.)
joint continuity of F/¢(< F >) via Kolmogorov’s continuity criterion. This requires to compute
the a-moments (some o > 0) of differences of F/¢(< F >) for fixed (0,t), (¢',t') values, to
obtain a bound which is of order ||(8,t) — (¢',t)||**? (some B > 0). However, due to the
random denominator such a task is very hard to perform (it may be impossible: For example,
splitting terms by Holder inequalities does not work). The idea is therefore to use time change

to transform F/¢(< F >) to Z for which Kolmogorov’s condition could be established (Z has



a deterministic denominator), and then to use (3.5) and a separability argument to bound the

LHS of (3.6).
Proof of Theorem 3.1

Let K = [—1,1]% Define ¢ : K\ G — R%and r: K \ G — (0,1] as follows
1/ﬁ1_1a ﬁzE(O,l]

1/6;+1, piel-1,0)

_ . 1147 . ti B
r(B) 11;1%1(1 |Gil (n as in assumption B)

e(B) ={aiB}L, , wilB)=

where G = {z = (21,...,24) € K | x; = 0 for some i}. With these definitions, construct the

martingales F and their associated increasing processes < F >:

= | TOTED D s 161> 0

0 , otherwise

~ t - t
F(B,t) = /O F(8,w,8)dw, , < F(B,) >1= /0 P2(8,w, 5)ds

We check below that f satisfies conditions A—C on K. Hence by applying lemma 3.3 we can

conclude that

sup sup ¢ ¢ |F:(ﬁ’ 2l =Cw)<oo as. Vv, tr>0 (3.7)

>ty BeK #(< F(B,-) >t)

Recall that by definition, for any 8 € IR%, 8 = ¢ () € K \ G and

F(0,t) = F(p(B),t) = FOY <F (8) >= %'

Substituting in (3.1) we have

limsupsup |F(0,t)| / < F(8,-) >= lim sup supr(f)—=———"—
6]l o0 t>to 0 < min|B;| =0tz < F(B,-) >
|

|F(B,1)

< sup sup t % = lim sup sup ¢*‘r(3) =
BEK t>to (< F(B,-) >t) 0 <« min |G| — 0 t2to < F(B,-) >
(]

< C(w) lim sup sup t*“r(B) o(< F(ﬂ’ ) >1) (3.8)
0 < min |3;| — 0 t>to < F(B,") >t

Thus, the theorem is proved if we show that

tve ! < F(0,-)>: /¢ <M> =00 a.s. (3.9)

lim inf
=R TS TESE

8



where |0 = lxgz_agxd |6;| and

- : 1 \M7 _ -
@ =rte 00 =min, (rg) =00l 0 = ol

(for large [|6]|c0)-
Equation (3.9) easily follows from assumption D and the definition of ¢,

1 <FE) _ 2(1+n) <
1 < F(6,-) >¢ g Y ; <F(0,7) >t/ ||9||oo <1

t)0]1L7 g(< F(B,-) > / |6]204D)

tl% ||9||§,+”)" < F(6,-) >§17V)/2 ; otherwise

1 <F)> TP 2(1+n)
077 () |jg) 20Hme /() ; < F(0,) >< ||0||oo
1-v)/2
(7#[,,/1(1_,,) ||9||i£1+")"/(17”) < F(6,") >t)( U ; otherwise

Now note that ||f||cc < ||f]] and take 0 < v < 1/2 A y/44(1 + n) (which implies that
21+n)v/(14+v) < 2lv(1+n) <+ and 20v/(1—v) < v) to conclude that (under D) (3.9) holds.

It thus remains only to check that f satisfies A-C. Since A is trivial, we concentrate on the

latter two conditions.

Fix a, 3 € K with 0 < min |8;| < min|o;| < 1, (]Ja — B]|? < 4d). Then

[fla,w,t) = F(B,w,) = [r(@)f (p(a),w, t) = r(B) f (9(B), w, t)[* <
< 32 (B)| £ (@), w,t) — f(@(B),w, O + 3(r(a) — (8))*|f (p(a),w,t) — £(0,w, 1)
+3(r(@) —r(8)*F%(0,w, 1) (3.10)

The evaluation of the three terms on the RHS of (3.10) is based on assumption B and the

definitions of ¢ and r. Note that for a;, 8; with opposite signs, say a; > 0, 8; < 0 it holds that
0<gi(e) —pi(f) = —— > —2< — — —

For the case of identical signs (for which ;(a)—;(8) = a% - i) and the fact that |p;(a)| <
|o%‘ (which implies that ||¢(a)|| < ||1/al], 1/ 2 {1/ai}‘ij:1), we have

©) B (pla),w,t) = Fp(B),w,t)]* < r*(B)llp(e) — e(B)ITh* (w, 1)
(1+4n)/2

< min, |G {Z <—“’ _5’> ] B (w,t) =

j=1 O‘Jﬂj



|4 (1+n)/2

d min |
> % (aj — Bj)° h*(w, 1)
=1

(1+n)/2
] h?(w,t) = [la — B[ 7h* (w, 1)

d
< !Z (aj — ;)
j=1

< (lla = BI**EV fla = BIH7) B2 (w,t)

) (r(e) — (B2 F (p(e),w 1) — F(0,w, ) < (r(a) — r(B) (@)l (w, 1)
2 1 1+n
< (jmin, foul 7 min, 18147) " | 2w, =

1+n

1
— h?(w,t), some u € [min|G;|, min |a/]
(2 (3

2
= (14 )P (m.in\an _ m.in|5z-|)
) 1 (03

14¢ 1-¢ 9
[ mim BN T30 w0

d -e)/2 1,4 21"
Z miina?/a?] lz <1> :| h*(w, t)

j=1 \%j

=1+ 77)2 ‘miin log| — leln|,31‘

< 2 . _ n.|1+e

<(1+n) max o — Bil L:l
< (14 0%d* 0 max i — BB (w,0) < (14+0)*d (Jla = BTV = BIIT) 1w, 1)
_Z_

In a similar way we obtain (using B-ii)
(i) (r(@) = r(8)2F(0,w,t) < (1+m)? (o= Bl VIl = BI") B2 (w,t)

In the case where lIéliléld |Bil =0, f(B,w,t) =0 and

fla,w,) = F(B,w,t)]” = F*(a,w,8) = (@) f*(¢(a),w,t) <
< 2r’(@) [llp(@)* + 1] B (w, ) < 2 min_ Jai? 7 [|[1/al|*7 + 1A% (w,1)

1<i<

(14n)/2

d

<2 min i [T [dAF/2 L 1R (w,t) < 2 [Z (aj — ﬂj)zl [d3+M/2 L 1]R2(w,t)
j=1

=2 (fla— Bl V flor— B[ [d*/2 4 1) (w,t)
Combining this with (i-iii) and defining h = ch, ¢ = 3(1 + 5)2d(1*"/2 results in
|F(erw,t) = F(B,w, )2 < (la= BV [l = B"7) B (w, 1) (3.11)

which stands for condition B. Since h = ch, it follows that condition C holds for h. L]

Corollary 3.4: Let conditions A,B,C hold. Assume that there exists some § > 0 s.t.

10



liminf inf ¢ %< F(4,-) >>0 as. t4>0 (3.12)
[|6]] =00 t>to

Then, for every v > 0 it holds that

1
lim sup ——|F(6,t)|/ < F(6,") >=0 as. (3.13)
6l —o0 >, 1617

Proof: The proof follows the lines of the proof of theorem 3.1 with the redefinition of the

function r as 7(8) = 112'21(1 |Bi|*™P, p = n+27 and the choice of 0 < v < 1/2A((y A 6)/4(1 + 7).
_Z_
O

4 An Equicontinuity Theorem

The purpose of this section is to present an equicontinuity theorem which plays a central
role in the study of asymptotic properties of the MLE in continuous, parameter dependent
semimartingales, see e.g. theorem 3.1 in Borkar & Bagchi [3]. This theorem is a consequence

of lemma 3.3 and is more general than the one presented in [3].

Theorem 4.1 Assume f satisfies hypotheses A,B,C and let {At}tzo 0 < A¢ T o0 as. bea

continuous, Fi-adapted process. Let h be as in B,C and assume that

t

lim sup At_l/ h*(w,s)ds < 0o a.s. (4.1)
t—o00 0

Moreover, assume that there exists a v > 0 s.t.

limsup A, < oo a.s. (4.2)

t—00
Then, for all compact K CC IR, and all tg > 0, the function set { A7 F(-,t 18 equicomn-
t t>t,

Zto
tinwous, uniformly on K, P— a.s.

Proof: Define the martingale Y;(0,6') = F(0,t) — F(¢',t), t > 0 and its increasing process <
t

Y(6,6) >= / [f(8,w,s)—f(#',w.5)]?ds. Fix K cC R%, tg > 0. Choose v < 1/2A~/4£(1+17)
0

and define ¢ as in (3.4). Then VA >0,

sup sup A;'|F(6,t) - F(#',t)) = sup sup A;'|¥;(6,0)] < (4.3)
0,0/cK t>ty 0,0/cK t>t
llo—o']|<A llo—o"||<A
- Y:(0,6") —(1-v)/2 ¢ —(1+v)/2 )
< sup sup t % sup A Y  su sup A <Y(6,0') >
- o,o'epK tzfj A(<Y(6,0") >) tZtIg ¢ 9,9’epK tZtI; t A< Y(0,0) >0)

ll6—6'll<A

11



It is easy to see that the integrand f(8,w,s) — f(6,w, s) (as a map from R?*¢ x Q x R, to
IR) satisfies conditions A-C (with h = 2h) hence by lemma 3.3 it holds that

Y; (0,0’
) (]

< o0 a.s. VKCCBd, v, tg >0 4.4
0,0'€K t>tg d(<Y(0,6) >y) 0 (4.4)

Moreover, due to (4.2) and the choice of v
limsup A;1¢2#/07") <limsup A7 < oo aus. (4.5)
t—o00 t—00

which by the continuity of A imply that

(1-0)/2t0

sup A; <00 a.s. (4.6)

t>to

It remains to show that the last term on the RHS of (4.3) — 0 as A — 0. To this end, note
that by the definition of ¢

(< Y(eael) >t /At)(l_H/)/za < Y(ga 91) >12> 1

A< Y (0,6) ) =
ATV(<Y(6,0) > JA)I2) <Y (6,0) >i< 1

which obviously leads to

sup sup A;(1+y)/2¢(< Y (6,6") >;) < (4.7)
0.0€K  t>to
llo—6'||<A

< (A" A1) sup  sup max{[(4; <Y (8,8) >)2 (A7 <Y (9,6) >,) 02}
00'cK >ty
ll6—6'[[<A
Because A; " < oo a.s. and since g(z) = =¥, u > 0 is increasing, it suffices to show that the

term supsup A~! <Y > on the RHS decays to zero as A — 0. This is easily obtained relying
on B-i and (4.1):

t
sup sup At_l <Y(6,0) >= sup sup At_l [£(8,w,s) — f(0,w,s)]%ds
0,6'CK  t>t 0,0CK  t>tg 0
llo—6'[|<A llo—¢'ll<A

t
< swposwp [6-¢1A [ Ry dr <
0,0'cK t>to 0

lo—o'||<A

t
< A% sup At R (w,r)dr =0 a.s. as A — 0. (4.8)
t>to 0

which follows from (4.1) together with C and the fact that A is continuous and increasing.

Substituting (4.4), (4.6) and (4.8) into (4.3) completes the proof. L
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Appendix

Proof of Lemma 3.2
QOutline:

In order to make the proof more trackable we begin by proving that under A-C, for each T,

Zr possesses a modification (denoted also by Zr) which satisfies

sup sup |Zr(8,s)| < oo as. YK CCRY T<oo (A.1)
0cK s>0

Towards this end, we first show that Zr possesses a modification with a.s. jointly continuous
paths over K x[0,1] (K CC IR). This is done via Kolmogorov’s continuity criterion. Then, by
“time reversal”, we prove that the same assertion holds for Zr, Z7(9,s) = Zr(0,1/s), Zr(6,0) =

0. These two statements easily lead to (A.1).

Building on the estimates obtained in the first part, the last step of the proof is conducted
in a very similar way with V and V where V (8, s,7) = r”eZl/,,(G, s); V(8,s,r) = r”ezl/r(O,s),
(,s,7) € Kx[0,1]2 (where V(8,5,0) = V(,0,7) = 0). The extension to K x[0,1]x[0,T], VT <

oo does not differ from the case treated here.

Remark: The proof of (A.1) is actually obtained under a weaker condition than C.

Namely, it suffices to assume that for all m > 1, /0 t ER*™(w, s)ds < co.

First step:
Let m be a positive integer to be determined later. Fix 0 < s <t <1, 8,8 € K. Then,
E|Zr(8,t) — Z7(B, 8)|*™ < ¢1 E|Z7(8,t) — Z7(6, 8)|*™ + c1 E|Z7 (0, 8) — Zr(B, s)*™ (A.2)

where ¢; = ¢;(m) = 22™~1. Next,

- om | PO, 7)) AT)  F(6,7%(s) AT)|™"
E|Zr(8,t) — Zp(8, s)[>™ = E‘ e o) <
c1d(t)2mE|F(0,7%(t) AT) — F(6,7%(s) AT)|>™ +
B) = )\ ™ v 00 oo
teor ( 050 ) E|F(6,7(s) AT)| (A.3)

Consider the first term on the RHS of (A.3). Since 7(-) is a Fj-stopping time, then there
exists, by the Burkholder moment inequality [2, cor. IV-4.2], a universal constant co = c3(m)

s.t.

0 (AT 2m
E|F(8,°() ANT) — F(8,7%(s) AT)|>™ = E / £6,0,7) dw,| < (A.4)

0 (s)AT -

13



<co(t—s)™

9 (AT m 70(¢) m
<k (/0 f2(0awa7‘) dT) < Bk l(/ f2(0awa7‘) dT) 1{<F(0,-)>oo>5}

(s)AT 0(s)

The last inequality follows from the definition of the stopping times 7¢ and the fact that
7 (u)
/ f2(0,w,r)dr =un < F(8,") >o<u VuecR, (A.5)
0
In a similar way,
E|F(6,7%(s) AT)|?™ < cps™ (A.6)

By combining (A.3,A.4,A.6) we obtain

2m
E|Z0(8,8) — Zr(6, )™ < crea(t) 2™ [(t _ ™y (%) sm] C0<s<t (A7)

1

By the definition of ¢ and the mean value theorem (for g(z) = z'~¥ and some u € [s,t]),

(‘/j)(t)(bzs;ﬁ(s))zm M = g'm (t(l—u)/2 o S(l—u)/2)2m — gvm ((1 o V)(\/’I?)_V(\/Z _ \/g))2m ,

< s (s PWE-VR) T < -9 (A38)
Substituting into (A.7) results in
_ 2m 2c1¢9 _\m C1€2 M _ \ym
E|Z7p(6,t) — Z1(0,s)|"™ < A—)m (t—s)™ < 2(t —s)im (t—s)™ =2cic2(t — ) (A.9)

For the case s =0, 0 <t <1 we have by (A.6)

™ < eap(t) I = o™, (A.10)

B|Z2(6,1)*" = g(t) >"B|F(6,7°(t) AT)|

Combining the above with (A.9) yields
E|Zr(0,t) — Z7(8, 5)]>™ < 2cic0|t — s|™ Vs,t €[0,1], 6¢€ R? (A.11)

We proceed with the evaluation of the second term on the RHS of (A.2). In order to simplify
the notations, define the Fi-stopping time o(s) = 79(s) A 72(s) A T. Then,

E|Z1(6,5) — Zr(B,5)]™ = ¢(s) ™ E|F(6,7°(s) AT) — F(8,7°(s) AT)|*™ <
< ci¢(s) *M(E|F(6,0(s)) — F(B,0(s))™ + (A.12)

+E|F(8,7%(s) AT) — F(8,0(s))|*™ + E|F(B,7°(s) AT) — F(B,0(s))"™)

14



By the definition of F' and o together with Burkholder’s inequality,

2m

<

o a(s)
E|F(0,0(s)) — F(B,0(s))"™ = E ‘/0 [£(6,w,7) = £(B,w,7)] dwr

< cFE (/00(5) [f(0,w,r) — f(,@,w,r)]2 dr) <

a(s) mp a(s) m(1l—p)
< cFE { (/0 [f(8,w,7) — f(B,w,)]? dr) (2/0 [£2(0,w,7) + f2(B,w,7)] dr) }

mp

T
< ¢p2°m(-P) gm-2) g ( / [f(8,w,7) = £(B,w,r)]? dr) , Vpe(0,1/2] (A.13)
0
The last equality follows from the definition of o and (A.5). Define the “distance”

63(9’/3) =0<S'l<lp( ) | < F(G,) >y — <F(ﬂa') >u | <s

and note that o is bounded from below as follows,
o(s) = inf{t >0|< F(B,") >> s} AT (s)AT =
= inf{t >0|< F(6,") >> s+ < F(8,) > — < F(B,) >} AT(s) AT

> inf{t>0|< F(6,)>>s— sup |<F(,)>, —<F(B,-)> |} AT

0<u<o(s)
= inf{t>0|<F(6,)>>s—es(0,0)} AT =7%s—es(6,8) AT (A.14)
In a similar way,
o(s) > 1P(s —es(6,8) AT (A.15)

The distance e4z(60, 3) satisfies,

es(6,8) =  sup

0<u<o(s)

<

/ 120, w,7) — £2(B,w, )] dr

IN

o(s) o(s) 1/2
< (/0 [f(8,w,7) = £(B,w,r)]? d"/o [f(6,w,7) + f(B,w,r))? dT)

(s)

o(s) o 1/2
< \/5(/0 [f(9,wﬂ‘)—f(ﬂ,wﬂ‘)]2d7‘/0 [f2(9,w,7‘)+f2(ﬁ,w,7“)]d7‘) <

o /a(s) L \Y?
=~ <48 o [f(e,w,r) - f(ﬁ,w,r)] dr (A'16)

The last inequality is obtained exactly as the last inequality in (A.13). Note that, by the
definition of 7, < F(8,-) > .05y — < F(0,") >16(5_¢,(0,8) < €s(6, 3). Thus,

9 (s)AT 70 (s)AT
[ feends | £2(6,0,7)dr < €,(6,9)
a(s) 70(s—es(6,8))AT
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Combining the above with (A.14-A.16) and the Burkholder inequality, it follows that

2m

79 (s)AT
E|F(8,7%(s) AT) — F(8,0(s))|>™ = E / £(6,0,7)dw,| <

(s)

IN

70 (s)AT 9 m ) a(s) ) m/2
< C2E / f (O,w,r)dr < 022’m3’m/ E /0 [f(9,w,r) - f(ﬁawar)] dr

a(s)
g\$s mp ol(s m(%_p)
<eamse2 ([ (50 - s8] (277 150,001 1 B
0 0
mp

< y22m(1-p) gm(1-5) ( [ 156,00 - 55,0 r>]2dr) e,/ (A17)

Exactly in the same way

mp

a(s)
E|F(8,7%(s) AT) = F(8,0(s)) "™ < &2 P)sm(-) ( | #6.w,r) — 18,0, dr)
0
(A.18)
Substituting (A.13, A.17-A.18) in (A.12) results in

sm(l_p)

B|Zr(8,5) — Zr(B, )™ < 3¢jca2°™ O

o(s) mp
E (/ [f(97 w, T) - f(ﬁa W, ,,,)]2 d’l‘) (Alg)
0

By choosing p = v/(1 + ¢) one has %;%) < 1 and therefore by B-i and (A.19)

T mv/(1+¢)
E|Z7(0,5) — Z7(B3, )™ < |0 — B||™ 3c2c222™E (/ h2(w,r)dr) < (A.20)
0

v

T m
<116 — BII™ 32 cp22™ [E < / hz(w,r)dr>
0

T v
< 16— BI™33c,22m lel / Eh2m(w,r)dr]
0
Combining (A.11, A.20) and (A.2) yields
B|Z0(8.1) ~ Zo(B,9)7™ < cs(lt — |V |8~ 6])"™ < ea(t - s| v max. 8 — 6™ (A21)
where
T 14
cy = dm"/203, c3 =c3(m,T,v) = 6021*0222'” lel/ Ehzm(w,r)dr] (A.22)
0

Since m is arbitrary, taking mv > d + 1 and using Kolmogorov’s criterion [2, thm. I-2.1], one
concludes that Zp possesses a modification with a.s. jointly continuous paths over K x [0, 1],

hence (for this modification) it holds that

sup sup |Zr(8,s)] <oo as. VK cc R (A.23)
9cK scl0,1]
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To complete the proof of (A.1) it remains to obtain a corresponding statement for s € [1, 00).
To this end define
Zr(8,s) = Zr(6,1/s) ,  Zr(8,))=0 (A.24)

As before, it suffices to show that Zp has a modification with a.s. jointly continuous paths over

K % [0,1]. This is done almost the same as for Zy. We therefore omit most of the details.

As in the case of Zp (eq. (A.7)) with 0 < s < ¢ <1 one has,

E|Z7(8,s) — Zr(6,t)*™ = E|Zr(6,1/s) — Zr(8,1/t)>™ < (A.25)
2m
< crea(1/s) [(1/3 —1ygm+ (2RL 20 (1/t>m]

¢(1/t)

First note that by the definition of ¢ and the fact that 1/s > 1/t > 1,

81/ m(1fs —1im = s (122" S gy =

st
s\ ™ —s m(l—v)
_ <¥> <t : ) (t—s)™ < (t—s)™  (A.26)
Furthermore
o(1/s) — ¢(1/t)\*™ mo_ (gpym) [(1)6) /2 (14+p)/2]2™ m _
( ¢(1/3>¢(1/t)) o™ = (e [/ 02— @R gm =
= [V T = P (Ve VR

my _ m(1-v)
some u € [s,t] < 22™ ki s (t—s)™ <
t t

< 22t — )™ (A.27)
For the case s =0, t € (0,1] we have

E|Zp(6,8)"™ = E|Zr(8,1/t)"™ = ¢(1/t)*™E|F(8,7°(1/t) AT)"™ <

< e (/)10 = cot™I) )i = o™ (A.28)
which together with (A.25-A.27) results in
E|Z1(8,s) — Z7(6,1))>™ < 2c1¢22%™|t — s|™ Vs, t € [0,1] (A.29)
On the other hand, exactly as in the case of Zr (eq. A.20)

E|Zr(6,t) — Zr(B,t)*™ = E|Zr(8,1/t) — Zr(8,1/t)"™ <

IA

T v
16 — B|™ 3c2cp22™ [Tm_l/0 Eh2m(w,r)dr] (A.30)
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By combining (A.29-30) and choosing m > (d+1)/v it is seen that Zr satisfies (A.21). This
implies that (A.23) is valid for a modification of Z7 and therefore completes the proof of (A.1).

Second step:
Define V : K x IR, x [0,1] — IR by

V(8,s,r) = TZ"Zl/T(G,s) , V(6,s,0)=V(0,0,7) =0 (A.31)

Our first goal is to show that V has a modification which is a.s. jointly continuous on K x [0, 1]2.
This relies on the continuity proof of Z7. Fix 0 < s <t<1,0<u<r<1,0,6€ K. Let m

be some positive integer. Then, to apply Kolmogorov’s criterion we evaluate

2m lv v 2m
E|V(8,t,7) = V(B,8,u)P™ = B|r® 2y, (6,t) —u* Z1,,(8,5)| <
2m 2m
™ E |2y (0,8) = Zip(B,5)| T +ar(r? = u?)™E |Z1,(8,8) +
2m
aluﬂmyE ‘Zl/u(/a: S) - Zl/r(ﬁa S)‘ y O1 = al(m) (A32)

Let k = £ — 1 (£ as in condition C). An estimate of the first term on the RHS is immediately

obtained from (A.21) and condition C, namely,

2m
r2£muE ‘Zl/r(ea t) - Zl/r(/B’ 5)| < (A33>
r2m  el/r

T.m—l

< 6c%cz22m [ Ehzm(w,T)dT] (lt—s|VI]B—-0|)™ <

0

1/r v
< 6c2cp22mp™ lr%m’“/ Eh2m(w,7')d7'] (It —s|VI|B-06|)™ <
0

1 t
< as(|t —s| V|8 —08|)™, as = asy(m,v) = 6c2c32°™ su 7/ ER>™(w, r)dr
= 2(| | Hﬁ ”) y 42 2( ) ) 162 t>sIZ)0 tzkm(t—s) . ( ) )

t>1

As for the second term on the RHS of (A.32) note that,

i
= % (r—u)= ( G u) T e gy < (- (a34)
Hence, using (A.10),
(r — ut)’™B(Zy (8, 5)]"™ < cas”™(r — )™ < ag(r —u)™ (A.35)

Finally,

2m

P (s)A1/u
/ f(ﬂawa T)dwT

ZZmVE z , 4 (B, 2m _ 2tmv —2m
u 1Z1/u(8,8) — Z1+ (B, 5)] wTg(s) e B(s)AL/r
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) 1/7‘ mv
sk ( Efz(ﬁ,w,f)df) <
1/u

1 1\mt oy ’
< cb™ lu%m (— - —) Eh2m(w,7')d7']
u T 1/u

u2mk ]_/'r
1_1)\ /1
(5 =7) S

The first inequality is obtained by following the basic steps of (A.13) (the case here is

= cob™ l Eh*™(w, T)dT] (r—u)™ < axd™(r —u)™ (A.36)

somewhat simpler). The second inequality relies on assumption B-ii (with b = sup ||8]|*** +1)
BEK
and the last one is based on condition C together with the definition of az in (A.33). By

combining (A.33-A.36) and choosing m > %2 we obtain
E|V(6,t,7) — V(B,s,u)*™ < a3 |01 — B1,- - 04 — Ba,t — 8,7 — u||g:2+’“/ , some g >0 (A.37)

where a3 = 3d™/2a,b™ (it can easily be seen that the case u = 0 with the definition (A.31) fits
into (A.37)). Thus, by Kolmogorov’s continuity criterion, V' possesses a modification, denoted

V, which is a.s. jointly continuous on K x [0,1]2. This leads to

A~

sup sup sup T_e"|ZT(9,s)| =sup sup |V(6,s,7) <oo as. (A.38)
9cK sec[0,1] T>1 0cK (s,r)€l0,1]2

The corresponding statement for the sup over s € [1,00) is obtained as in the case of Zp

i.e. by defining
17(9, S, T) = TZVZl/r(ea 5) = Tb/Zl/r(G: 1/5) (: V(ea 1/57 T))

Since it suffices to examine only the first term on the RHS of (A.32) then, by following the
lines from (A.24) to (A.30), we obtain (3.5) for Ty = 1.

To complete the proof (for Ty € (0,1]) note that by (A.1), a continuous modification of Z
satisfies

sup sup sup T~%|Zr(8,s)| < Ty ® sup sup |Z1(6,s)] < 0o a.s.
To<T<1 cK s>0 fcK s>0

Proof of Lemma 3.3

0

For every fixed 6, F(6,-) is a continuous martingale, hence it is a 7”-continuous process [2,

def. V-1.3]. That is, there exists a set Ny C Q with P(Np) = 0 s.t. Yw & Np, 7%(s) —
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(™) > 0 = F(8,r) = F(6,u) Vru € [t%(s7),7%(s)], for all s > 0 (where by definition
<F(0,) >0=< F(0,°) >,0(- (= s for 79(s) < 00)). This implies that ¥ ¢y, v > 0

sup +~ |F'(6,1)] <sup sup £ |F6,r)
>t A< F(0,-) >¢) ~ >t o<r<t H(< F(6,-) >)
9
—sup sup M |F'(6,7%(s))|

t>to  0<79(s)<t (< F(8,) >T0(S)) B
t*l/[ |F(9a 7_0(3) A t)'

= sup sup <
t>tg 0<s<<F(8,)> (s)

<sup sup t 7| Z(6,s) Vw &N (A.39)
t>tg >0

Since both F(0,t) and < F > are separable and ¢ is continuous, it is enough in order to prove
the lemma to take the supremum over § € © N K. Let V (6, s,u) = u”ZZl/u(O, s). Recall that for
any fixed 8, F(6,7%(:)) and F(6,-) are continuous processes (¥ w ¢ Np). It follows that, for
each 0 € ©N K, V(0,s,u) is jointly continuous in (s,u) € (0,1] x (0,7, for all finite fixed T'.
On the other hand, by the proof of Lemma 3.2 (starting with (A.31)), it follows that V' (6, s, u)
2

possesses a jointly continuous version on K x [0, 1]%, which we denote by V. This version satisfies

(A.38). With minor changes in the proof, this statement holds on K x [0,1] x [0,T], VT < oo.

A~

Next, for any 8 € O©N K, V(0,s,u) = V(,s,u), V(s,u) € (0,1] x (0,1/tp], outside an w-null

set Uy which may depend on 6 but is independent of (s, u). Let U = U Up. Then, Vw & N UU
6co

sup sup sup |V(6,s,u)|< sup sup sup [V(6,s,u)| < oo (A.40)
00 (K s€(0,1] ue(0,1/to] 60 K s€[0,1] u€[0,1 /0]

where the last inequality follows from (A.38). Defining now V (6, s,u) = u*tZ; /u(6,1/s) and
repeating the same argument, it follows that

sup sup sup |V(,s,u)| < oo (A.41)
9co ) K 5€(0,1] u€(0,1/t0]

By definition

supsupt “¢|Z;(0,s)| = sup sup max {|V(0,s,u)|, 1V (8, s,u)|} (A.42)
t>to s>0 s€(0,1] u€(0,1/to]
This, together with (A.39-A.41), completes the proof of the lemma. ]
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