Large deviations for integer partitions
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Abstract We consider deviations from limit shape induced by uniformly distributed partitions (and strict
partitions) of an integer n on the associated Young diagrams. We prove a full large deviation principle,
of speed \/n. The proof, based on projective limits, uses the representation of the uniform measure on
partitions by means of suitably conditioned independent variables.

1 Introduction and statement of results

For any integer n, a partition A of n is a collection of integers ny > ng > --- > ny > 1 such that Ele ng =M.
A partition is called strict if all inequalities between different n;-s above are strict, i.e. if ny > ng > --- >
ng > 1. The set of all partitions of an integer n is denoted P,,, while the set of all strict partitions of n
is denoted P: C P,. The set of all partitions (strict partitions) is denoted P (P?), i.e. P = U, P, and
P =U,P;.

An alternative description of any partition A € P is obtained by defining the sequence of integers {r;}7>;
such that rp = £ if exactly £ elements of the partition A equal k. Note that if X is a strict partition then the
only possible values of 7y are 0 or 1. Note also that if A € P,, then at most n of the ry-s are non-zero, and
n = E/?; krg. It is clear that the map from P, to the sequences {ry}72, satisfying the above constraints
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is a bijection. This map also allows one to obtain a graphical description of a partition, simply by defining

(p)\(t) = Z e, t>0.
k=[t]

Note that by definition, ¢, (-) is a monotone decreasing, piecewise constant function of ¢, and that if A € P,
then n = fooo pa(t)dt. We refer to such graphical description of a partition as a Young diagram (it is also
sometimes called a Ferrers diagram).

Throughout this paper, we denote by @,, the uniform law on the (finite) set P,,, and by @ the uniform law
on P:. Our goal is to investigate certain asymptotic properties of the measures @, and Q?,, and specifically
to provide large deviation statements and limit shape theorems, suggested in [17], for these measures and
the associated (rescaled versions of the) functions ¢)(-). That is, define @, (t) = ﬁcp,\([t\/m), and with

some abuse of notations, continue to denote by @, and Q? the uniform law induced by partitions (strict
partitions) on @, (-).

Certain asymptotic properties of @, and @ have already been studied in the literature. Erdds and
Lehner [7], using generating functions techniques and detailed analysis, studied the distribution of n; under
Q@n. More recent advances on other individual random variables connected with @, including the results
of [16], are nicely reviewed in [14], and we refer to the latter and to Section 2 of [9] for a description and
references to these asymptotics.

Fristedt [9] introduced a construction of @, and QZ based on the conditioning of an appropriate se-
quence of i.i.d. random variables (similar constructions appear also in [12]). This idea, related to classical
constructions in statistical mechanics (see e.g. [11, 18]), where it is refered to as “equivalence of micro-

canonical and macro-canonical ensembles”, allowed him to discuss limit theorems, under @,, for the se-
1/4 1/4
quences {n;//n—clogn}?" ") with an appropriate constant c, as well as for the sequence {nj_;//n}" ",

i.e. for small and large components of a random partition of n. These results were complemented by the
analysis of Pittel [14], who considered the intermediate range too, and allowed him to confirm a conjecture
made by Arratia and Tavaré [2]. The goal of the study mentioned above is to obtain vanishing bounds, in
variation distance, between the law of the random vectors associated with @,, and some limiting law. We
refer to [1] for a general description of these type of results in a variety of random combinatorial structures.

Vershik [17] (see also the statement in [19, Pg. 30]), in an attempt to capture various limiting results
concerning particular functionals in a unified framework, posed the question of evaluating limit shapes for
@n(-), under both @, and @, as well as under a variety of different random combinatorial models. These
models all share the property that the measure on the combinatorial structure can be represented as being
generated by independent random variables under an appropriate conditioning. In the context of partitions,
Vershik notes that under Q,,, $,(-) > n—oo ¥(-) in the sense of uniform convergence on compacts, whereas
under @2, ¢ (-) 2 n—oo ¥5(:). Here,

du

B 1 ot B (o]
¥ = —Thog—e = [T B 1)
for a = 7/+/6, while
1 *  du
Po(t) = —log(l+e Py = [ ——— 2
(t) ﬂog( +e77%) /t B’ (2)

for 8 = w/+/12. ( An alternative description is that (z, ¥(z)) is the curve satisfying e=** + e~*¥ =1, while
(z, ¥*(z)) is the curve satisfying ef¥ — e P =1.)

Our goal in this paper is to study the Large Deviations from the limit shape predicted by Vershik. This
is a different regime from the one studied by [9] and [14]. We recall that a sequence of measures {u,} on



a completely regular Hausdorff topological space X is said to satisfy the LDP with speed b, and a rate
function I if I : X — [0, 00] is lower semicontinuous, and for any measurable set X C X,

— inf I(z) <liminfb, ! log u,(X) < limsupb,*log u,(X) < — inf I(z).
n—oo

z€EX° n—00 zeX

Here and throughout, X°, X and X¢ denote, respectively, the interior, the closure, and the complement of
a set X C X. The rate function I is called good if the sets I 1[0, b] are compact for all b < co. Our general
reference for the existence of an LDP and its consequences is [6]. We also recall from [6] that a sequence of
measures {, } is called ezponentially tight (with speed b,,) if there exist compact sets K, such that

lim limsupbd;,* log pu, (KE) = —00.
L—oo pooo

For I C [0,00) an interval, let D(I) denote the space of all functions f : I — IR that are left-continuous
and of right limits. Let DF denote the subset of D(0,00) consisting of non-increasing functions with

lim; o f(t) = 0 and f(t) < oo for all ¢ > 0, and let DF denote the collection of all f :(0,00) —
[0,00) non-increasing, such that f = g almost everywhere for some g € DF. Using the representation
f(@) = p(t,00)) < oo for some positive measure p on (0,00), one has for every f € DF the Lebesgue
decomposition f(t) = fac(t) + fs(t), where f,.(-) denotes the absolutely continuous part of f and fs(-)

denotes its singular component. The decomposition f(t) = fuc(t) + fs(t) for f € DF then corresponds
to the Lebesgue decomposition of the element of DF to which f equals almost everywhere. Let AC
denote the subset of D([0,00)) consisting of non-increasing absolutely continuous functions f(-) satisfying

lim; ;oo f(¢t) = 0 (and hence f(t) = ftoo(—f(u))du). For any L > 0, let ACLZD denote the subset of ACs
consisting of functions with derivative belonging Lebesgue-a.e. to the interval [—L, 0].

Our main result concerning strict partitions is the following large deviations principle:

Theorem 1 Under the laws QZ,, the random variables @, () satisfy the LDP in D0, 00) (equipped with the
topology of uniform convergence), with speed v/n and good rate function

(f) = { B(1 = [5°U=f(E)dt) + [;° H(=f@) = ¥*(@)dt, | € AT, [Fo(=f(e)dt <1, )

00, otherwise .

(Recall that B = m/+/12, and see (4) below for an alternative expression for I°(f)).

Here and throughout,

:clog% +(1—w)log%, z €[0,1], p€(0,1),
00, otherwise,

H(elp) = {

denotes the relative entropy of z with respect to p.
Remark 1 An alternative expression for I*(f) when f € ACCYY and [ (=tdf(t) <1, is

I%ﬁ=2ﬂ—AmhFﬁAmﬁ, (4)

where h(z) = —zlogz — (1 — z)log(1 — z) > 0 for z € [0,1] is the binary entropy of x.



Indeed,
H(xz|p) = —h(z) + zlog(p~" — 1) — log(1 — p),
while log((—®5(t))~* — 1) = Bt, —log(1 + ¥*(t)) = B¥*(t), and

[ = [ aieoa =5 [T <0 ®)

Note that Is(f) = 0 only if f e ACZY and f(t) = ¥°(t) for a.e. t € (0,00), implying that f(-) = ¥*(-).
5), Jo t ))dt = 1, hence ¥*(-) of (2) is the unique function f for which I*(f) = 0. Thus, the
concentratlon descrlbed in [17] is a consequence of Theorem 1.

Analogous results, albeit in a weaker topology, hold also in the non-strict case.

Theorem 2 Under the laws @, the random wvariables @,(-) satisfy the LDP in DF (equipped with the
topology of pointwise convergence), with speed \/n and good rate function

1(f) = { ool—fo —fae)(®)dt) + f3° H(—fac(t)] — L (=tdf) < 1, 6

otherw1se
(Recall that o = //6, and see (7) for an alternative expression for I(f)).
Here and throughout,

I4p’

~ _ ar:log——(l-l—az:)log1Jrz z>0,p>0,
H(zlp) = { o0, otherwise.

Remark 2 An alternative expression for I(f) when f € DF and S (—)df(t) <1, ds
P SO —fac(t)
1) =2 [ (1= ful) b <1 o (t)) dt . (")

Indeed,
H(z|p) = —(1 + 2)h(z/(1 + z)) + zlog(p~! + 1) +log(1 + p)

while log((—®(t)) ' + 1) = at, log(1 — ¥(t)) = a¥(t), and

oo oo . oo d
/ T(t)dt :/ (T (t))dt = ofz/ U . )
0 0 o e'—1
Note that I(f) = 0 only if f € DF is such that J S (—t)df(t) < 1 and fac(t) = W(t) for a.e. t € (0,00),
implying that f,.(-) = ¥(- 8), fo (—t)¥(t)dt = 1, hence ¥(-) of (1) is the unique function f for which

I(f) =0, providing here too an alternatlve proof of the concentration phenomenon described in [17].

Remark 3 The symmetry in the problem becomes even more apparent if one writes the rate function in
terms of parametrized curves: indeed, let f € DF with fooo(—t)df (t) < 1 be parametrized by —oo < s < 00
as (z(s),y(s)), with z(-) and —y(-) increasing. Then,

1(f) = 20 - ( [ 1=y /@~y + [ b y'))dx) .



While working on this paper, we saw an announcement of related LDP for the non-strict case due to
Blinovsky [5], with the rate function defined as in (7).

In Section 2, we recall the construction of @),, and @? based on conditioning a sequence of independent
variables, and in Propositions 1 and 2 state the LDP results for the unconditional independent variables.
Propositions 1 and 2 are proved in Sections 3 and 4 respectively. Section 5 presents the area transformation
and applies it to deduce Theorems 1 and 2 out of the corresponding Propositions.

The techniques developed in this paper apply to many of the different problems mentioned e.g. in
[17] under the name multiplicative statistics. While we do not develop all the details for all such possible
applications here, we provide in Section 6 a few representative examples and a discussion placing these result
in a more general context.

2 Independent Variables Representation

A key in obtaining our LDP’s is the following alternative description of the measures @), and @, on P,
and PZ, due to Fristedt [9], whose usefulness was already pointed out in [17], c.f. also [1],[14]. Similar
constructions for other combinatorial structures are known, see e.g. [15], [12] and [1].

Let the probability spaces (2, F,IP,) and (Q, F,IP]) be composed of independent, real valued, random
variables Ry, k =1,2,..., with k-dependent laws parametrized by a parameter z € (0, 1) as follows:
ST: Strict ensembles: Ry € {0,1}, and IP3(Ry, = 1) = 2% /(1 + z*) for k > 1.
NS: General ensembles: Ry, € Z ., with P, (Ry =) = (1 —2®)z** L€ Z, ,k > 1.

We fix throughout Ry = 0. Note that by the Borel-Cantelli lemma,

P, (R = 1 infinitely often) = 0 since z P,(Rr #0) < Z z* < oo,
k=1 k=1

implying that IP,-a.s., Kiyax := max{k : R # 0} < co. Analogous statements hold also under IP;.

We shall define the following random variables:
N=> kRi, (i)=Y Rk, i=12,....
k=1 k=i

Note that N < 0o IP;-a.s. (and also IP}-a.s), and ¢(4) is a monotone non-increasing sequence with ¢(1) < oo
a.s. and ¢(i) = 0,Vi > Knax. Thus, each sequence {R;}72; defines a (random) partition A € Py, which
further belongs to Py; in case ST.

We shall call N the area of \, Kpnax the length of A and ¢(0) = ¢(1) the height of \. We fix throughout
A, =n /2. We observe that IP; induces on any particular strict partition A, a (positive) probability

P\ =),) = ﬁ LR,C =V /7% (), (9)
ooy (L+2%)

where Z%(z) = [[5—; (1 4+ 2*) € (1,00) for any z € (0,1). Moreover, conditional upon N(),) = n, all such
Ao have the same probability. Thus, with C), denoting the number of strict partitions of n, we have that the



partition function Z°(z) = Y00 ) Crz™ and P (A = A\,|N()\) = n) = C;; 1. Therefore, IP? induces on PZ the
law @2, regardless of the values of z € (0,1) and n € Z,. This random combinatorial structure is thus a
particular case of a selection, see [10] for more on this topic.

Similar statements hold also for IP, where
P,(A=X,) = :EN('\")/Z(Q:) (10)

with the partition function Z(z) = ([T, (1 — ¥)) ™ € (1,00) for any z € (0,1) (this is a particular case of
a multiset, c.f. [10]). Thus, IP, induces on P, the law @,, by conditioning on the event {N(A,) = n}, that
is, P, (A = X\o|[N(X) = n) = C;* with C), denoting the number of partitions of n and Z(z) = 377, Crz™.

By an appropriate (n-dependent) choice of z, the event {N()\,) = n} can be made into a “typical”
event for IP, (IP:), hence information about random variables under IP, (IP]), can yield the corresponding
consequences under @, (Q2, respectively).

This idea is related to classical constructions in statistical mechanics and the mathematical literature
concerning the Bose-Einstein and Fermi-Dirac models of ideal gas (see e.g. [11]): the distributions P, and
P: are “macro-canonical ensembles”, the conditional laws @, and @Q?, are “micro-canonical ensembles”, and
assertions of equivalence of different asymptotics as n — oo and z,, — 1 are refered to as “equivalence of
micro-canonical and macro-canonical ensembles”. For more on this topic, see [18].

We proceed next to produce some easy consequences of the independent variables representation, followed
by the statement of the corresponding LDP.

Set z,, = (1 — B/y/n), n > B2 for B = n/+/12 as in (2). Then, for a, = z, V" | €,

= folan)

IE}s _1N = A
; "1+$—k

where for 7 € (1, 00), the function f2(n) is the Riemannian sum of f3 (n fo t(1 + n?)~ldt at the points
kA, k=1,2,.... By (5), 5 (e®) = 1, implying by monotonicity and contlnulty of f5 () that

lim IE; (n “IN) = ILm fi(an)=1.
n—oo

n—o0
Similarly, with Var; denoting the variance under the measure P; , as n — oo,
o0 )2k
vn Var (n7'N) = ZAn ka In / t2ePt(1 4 €247 2dt € (0, 00),
=1

implying by Chebychev’s inequality that for any ¢ > 0,

1

limsup IP? (ln 'N —1]| >4) < 5 limsup {Var} (n"'N)+ (IE (n 'N)-1)*} =0
n—0oQ0 n—roo

(cf. [9] for better bounds, which are not needed for this work). By similar arguments, as n — oo also

©(0) > zk /°° dt
E (—=)= A, —2— — = ,
zn(\/ﬁ) I; 1"’-’11'5:1_) A 11 &bt ME(OOO)

and

0 k: o0 Ot
(p dte
v/n Var —\/ﬁ E Ay +$k) — /(; A+ ey € (0, 0),

k=1



so that

. ¢(0)
1 P (|—= — 6)=0.
imsupIP;, (| n p|>0)
In conclusion, for z,, =1 — 3/4/n and any § > 0,
¢(0)

lim P? — | <8, “IN-11<6) =
A P, (175 —Hl <6 In | <6)

The statements for IP, are similar, taking in this case z, = (1 — a/y/n), n > a? for a = 7/+/6 as in (1),

so that a,, = xn‘/_ | e“. Since IE;(Ry) = ;%5 forallk > 1,z € (0, 00), we now get

_ = kA, zk
E,.(n 'N)=>_A, = fn(an)
k=1 n

where f,(n) is the Riemannian sum of fuo(n) := [~ t(n* — 1)7'dt. By (8), feo(e®) = 1, implying by
monotonicity and continuity of foo(+) that also

lim IE, (n”'N)= lim f,(a,)=1.

n—00 n— 00

Similarly, with Var,(Ry) = #, for all k > 1,z € (0,1), it follows that as n — oo

oo

\/_Varz ZAnkan — / t2 at 1)72dt € (0, OO)

=1

Consequently, by Chebychev’s inequality, we conclude that for all § > 0,

limsupP,, (jn ™' N — 1| < §) = 0.

n—oo

0) d zk © dt

k=1

However, note that

in contrast with the case of strict partitions considered earlier. In fact, it is not hard to check that

im By (29 2L ¢ (0,00,

nmoo” " y/mlogn’  2a

and one can use this computation to rederive and extend the results of [7] (c.f. [9] for details).

Turning to state the large deviations results, let ¢, (t) = —Ry, for t € (A, (k—0.5),A,(k+0.5)), k> 0.
Consider the piecewise linear approximation to the points (kA,,, ¢(k)A,,) defined via

onlt) = | " () du.

Note that ¢n(t) = @n(t) for t = A,(k —0.5), k > 1. Under IP; conditioned on N = n, the law on @, (-) is
just @7 . Thus, the next proposition is key to the proof of Theorem 1.



Proposition 1 For z, = 1 — 8/+/n, under the law 1P, , the sequence (n"'N,p,(-)) satisfies the LDP in
R x C[0,00) with the topology of uniform convergence, speed v/n, and good rate function

Plo, ) = { 00RO+ [T HCFOI- 8@ 1€ AL LTy <y

0, otherwise .

Moreover, the sequence (n 1N, $,(-)) satisfies the same LDP in IR x D[0, c0).

The occurence of the entropy H(-|-) is due to the underlying Bernoulli random variables in the representation,
common to random combinatorial structures which are selections.

Under IP,, conditioned on N = n, the law on @,(-) is just @, hence the next proposition is key to the
proof of Theorem 2.

Proposition 2 Equipp DF with the topology of pointwise convergence on (0,00). Then, for z, = 1—a//n,

under the law P, , the sequence (n"'N, $,(-)) satisfies the LDP in IR x DF with speed v/ and good rate
function

v, f) = { a( — [ t(~ fae) @)dt) + [ H(~fac(t)] — O@t))dt, [°(—t)df(t) < v, (12)

00, otherwise.

The occurence of the entropy H (-|-) is due to the underlying independent Geometric random variables in
the representation, as is the case for any multiset.

3 Proof of Proposition 1

Taking z,, = 1 — 3/+/n and n > (32 throughout this section, the first step of the proof is to show that the
sequence (@p(t1), - -, @n(tm),n ' N) satisfies the LDP of speed y/n in R™*' under the law P} (-), for any
fixedm<ooand 0<t; <ty...<t, <oo.

Lemma 1 The sequence of random vectors ($n(t1), .-, Pn(tm),n 1 N) satisfies the LDP in R™! with
speed \/n and good rate function Af(y1 — y2,---sYm—1 = Ym,Ym,v). Here,

A;(M1s- -y My Nmy1) = sup (Z/\mﬁ@nmﬂ—A;(Al,---,Am,G)) (13)
= Xi0€R \ =

with
I log[ilﬁ_(ﬂ_g)tex(t)]dt, 6<p

1t+e—At

Ay A, 0) =
t(h ) { 0, 6>8,

where A(t) := D101 Niliet; tipa)s tme1 = 00.

Proof of Lemma 1: Let to =0, A\g = 0 and a,, = x,}/ﬁ Fixing )\;, 0 € IR, define

1

A,y Am, 0) = 7 logIE; [expy/n{ i: Ni(@n(ti) — Pnltiv1)) + Am@nltm) +0n 1N (14)
=1



By the independence of R under IP; we have (recalling that A, = 1/4/n),

[ti+1/An]-1
An > logIE [exp((Ai + 0kAn)Ry)]
k=[t:/An]

m
1 4 zkefhAn i
A, Z 10g(ln+—mk)1{t,-+1 SkAR >t}

” n

An()\]_,...,)\m,g) =

M2 11z

~
Il
i

oo
A log(1 + (ane?)kAneAkAn)y Z A, log(1 + akAn)
k=1

= hp(ane®, \) — hn(an,0) . (15)

I
Mg

o~
Il

For n € [0, 00), the function h,(n, \) is the Riemannian sum of

hoo(m, A) := /0 log(1 + nte*®)dt

at the points kA, k = 1,2,..., with = hy(n, \) monotone increasing, and ho (1, \) < oo if and only if
n < 1. Assume first that § < 3, in which case ane?  e~(F~9) < 1, implying that

lim [ (an€?, A) = An(an, 0)] = hoo(e P~ X) — hoo(e7?,0) = Ay(M1, - ooy Ams 6) -

n—r00
In case # = 3 > 0, we have a,e’ 1, so by monotonicity,

liminf A, (ane’, \) > limliminf A, (, \) = li%rllhoo(n,)\) =00,
n

n—00 ntl n—oo

whereas A, (an,0) — hoo(e7?,0) < co. Consequently, by (15), A,(A1,---,Am,8) = o0 as n — co. Since

0 — Ap(A1, - .., Am, 0) is monotone increasing, we conclude that for any 6 € R,
ILm An( Ay Am, 0) = Ag(Ag, .00, A, 0) (16)

Note that A¢(-) is finite and differentiable throughout the set D = {(A1,...,Am,0) : 8 < B} which
contains an open neighborhood of the origin. Moreover, it is easy to check that A; ()\gz), ceey /\%), 0(5)) — 00
as £ — oo, whenever )\EE) <X €eR,i=1,...,mand 0¥ 1 3. In particular, due to the convexity of

A(4), \VAt()\(E) .,)\%),G(Z)N — oo for (,\gf), . .,)\%),0“)) € DY, hence A4(-) is a lower semi-continuous,
steep function. Thus, in view of (16), by the Gértner-Ellis theorem (see [6, Theorem 2.3.6]), the sequence
(@n(t1) = @n(t2), - - -, @n(tm),n " N) satisfies the LDP of speed y/n and good rate function A;(-). The stated
LDP then follows by applying the contraction principle (see [6, Theorem 4.2.1]) for the continuous bijection
(21, s 2ms¥) = (01 Ziy - ooy Zm—1 + Zmy Zm, ) on R™HL O

Observe that

| on = @n lloo:="sup [pn(t) — n(t)| < sup |Ry| < (17)
noornae te[o,oo)l " w(0) \/_ 2\/_
In particular, by Lemma 1 and the exponential equivalence (17), the vectors (¢, (t1),-- ., @n(tm),n 1 N) also

satisfy the LDP in IR™*! with speed y/n and good rate function Af(y1 —y2,- -, Ym—1 — Ym, Ym, v) (cf. [6,
Theorem 4.2.13]).



Let Y = IR x X, where X denotes the space of maps from [0,00) to IR equipped with the topology of
pointwise convergence. Then, applying the Dawson-Géartner theorem (see [6, Theorem 4.6.1]), we see that
under the laws IP; (-), the sequence (n™'N, p,(-)) satisfies the LDP of speed y/n in ) with the good rate
function

Ipxx(v,f) = sup sup ZA f(tir1)) + Anf(tm) +0v — Ag(A1 ... A, 0)
OStlfr-r.z-éct;g<oo )\10<>[\3m i—
il 1+ e~ (A-0)
= supfor— [ log(* )it + L0 (1)}, (18)
6<p 0 +

where for » > 0 (with the convention f(o0) = 0),

m tit1 'r‘t
Leo(f)=  sup > {ntsw) - ) - | log( T b
t0=0<t1...<tm<tmyi=co ;0 t;

Ao:O,Al...Am,m<OO

Aiming to identify the rate function I'ig x x (-) we next provide alternative expressions for the functions Iy ,(-).

Lemma 2 Fizr > 0 and let

—L)dt, fe A MY,
otherwise.

1
iy { I HAO
Then, Tx;(f) = I,(f) for any f € X.

Proof of Lemma 2: Since H(z|p) > Az — log(1 — p + pe*) for any A € R,z € R,p € (0,1) it follows that

for any f € ACL;I’O], A €Rand 0 <t; < i1 < 00, we have

tit1 1

. H(—f(t)|w

e’l‘t + eA,

tit1
)it = () = ftes) — [ Tog(

Since lim;_, f(t) =0 for f € ACL;I’O], the above inequality holds also for ¢;11 1 co. Hence, comparing (20)
and (19), we see that I,.(f) > Ix ,(f) for any f € X.

To prove the converse inequality, suppose first that f(-) is not absolutely continuous. Note that log( e;::iji )

< |\ for all ¢,); and log(4te:) = 0 for \; = 0. Fix p > 0, Z C {1,...,m — 1}, and set \; =
1+e

psign[f(t;) — f(tit1)] for i € T and A\; = 0 for ¢ € Z. Then, (19) implies that

Ix . (f) > sup PO 1f(t:) = ftiga)| = D (tipr —t:)} (21)

0<ty ... <tm <o : -
IC{1,...;m—1},p>0 €1 €1

Since f is not absolutely continuous, there exist § > 0, tz(”),In such that > ;.7 |f (tz(")) (tg‘r)l)| > 0 while

YicT, (tgi)l - t(n)) — 0, implying that Iy .(f) > pd. Taking p — oo shows that Iy .(f) = oo for any such f.
Next suppose that f(T3,) > 6 for some § > 0 and T, 1 co. Then, taking in (19) m =1, t; = T,, and
arbitrary A; > 0 results with
eT‘t + e/\l

> _ L re
e (f) > M6 /T log( S5 )t

10



Since [ log( CHJgf, )dt — 0 as T — oo, considering n — co we have that Iy ,(f) > A\ d. Taking A; — oo
results with Iy .(f) = oo for any such f(-). The same argument applies when f(7},) < § for some § < 0 and
T, 1 00. Thus, we see that Ix .(f) < co only when lim;_,, f(¢) = 0.

Considering in (19) m = 2, A, = 0 and arbitrary A\; < 0, 0 < t; < t < oo, results with Iy ,(f)
A1 (f(t1) — f(t2)). Taking A\ — —oo we see that Iy .(f) = oo as soon as f(t1) < f(t2) for some 0 < t;
ta < co. Considering (21) for m = 2 and p — oo we have that Iy .(f) = oo as soon as f(t1)— f(t2) > (t2—t1)
for some 0 < t; <ty < 00.

2
<

In particular, by the above we have that Iy .(f) < oo only when f € ACLZHO that is, f(¢) =[7g i

for some measurable g € [0,1]. Fix such f(-), large integers k, T and let ¥ (¢) = (1+e”) 1. Then, con51der1ng
n(19) m=kT + 1, with A\, =0and ¢t; = (i — 1)/k, i = 1,...,m, results with

o) > sw {3 ZAk / e~ [ 10g(1— p(0) + (0¥t

i= i,en?kT k
kT 1 i
=z Z P {Xik g(u)du —log(1 — p; + pie)},
=1 k A€ T
where p; = k f t)dt, and the second inequality follows by the convexity of the map p — — log(1—p+pe?).

Thus, solving for the optimal values of \; we get

kT i i T
Ler($) 2 Y 21O [ gl /_ vdn) = [ Hgu(®)16u(0)

(@i 41)
where gi(t) = k [l [tk] u)du and Py (t) == k f [,,c] u)du. By Lebesgue’s theorem, as k — oo,

both g (¢ ) g(t) and Y (t ) — 1(t) for almost every t € [0 T] Hence, by Fatou’s lemma and the lower
semicontinuity of H(z|p) with respect to (z,p) € [0,1]?,

T

Teo(f) 2 Himint [ 1(0u(0)194(0) dt>/11m1an(gk()|wk dt>/H )| (t))dt

k—o0

Taking T' 1 oo, by the non-negativity of H(-|-) we conclude that

e n(f /H B (t))dt = /H 1+ert)dt L(f)
for any f e ACShO O

By (18) and Lemma 2, we see that Iryx(v,f) = oo unless f € ACYY. Fix f e ACZYY. Since
H(z|p) — H(z|q) = wlog(lﬂq)(l_Tp) — 103(1%5)’ we have for all , s positive and almost every ¢ € [0, ),

. . —rt .
H(=fOl ) = HFOl ) ~log(i ) + (-FE)t(s — 7).
Hence, for all § < 3
ol . o0 14 e (B¢ o .
/0 (-0l —)d / H(= O )t - /0 1og(w)dt+@/0 H(—f()dt

11



implying that
1

1+eﬁt)dt'

T ) = sup oy | T fdn + / T H(f(0)

]
It thus follows that Irxx (v, f) = Ts(y,f) of (11) for any (v, f) € R x X.

In particular, (n"1 N, ¢, (-)) satisfies the LDP in IR x X with the topology of pointwise convergence and
good rate function TS(V,f) such that Dy := {y € Y : fs(y) < 00} C IR x C[0,00). Since IP; (pn(-) €
C[0,00)) = 1, we can, by [6, Lemma 4.1.5], restrict this LDP to the space R x C[0,00). Our next goal is
to strengthen the topology on IR x C[0,00) from that of pointwise convergence to that of uniform conver-
gence. Using the inverse contraction principle [6, Corollary 4.2.6], it suffices to prove that (n=!N, ¢, () is
exponentially tight in the space IR x C[0, ) equipped with the supremum norm.

The exponential tightness of n=! N follows from (16) and the fact that A;(0,...,0,8) < oo for all |§] < 8
(using the same argument as in the proof of [6, Theorem 2.4.6, part (a)]). Since ¢, (-) are Lipschitz functions
of Lipschitz constant 1, it follows that {¢,(-) : n > 1} is in an equicontinuous set of functions in C[0, ).
Moreover, ¢, () > 0 are monotonically non-increasing, hence sup,~q |¢n(t)| = ¥n(0) = $,(0) and exponential
tightness of {n()}n in C[0,00) follows by the Arzela-Ascolli theorem from the exponential tightness of
{$.(0)} in IR. The latter is a consequence of having A;(\1,6) < co for m =1, t; =0, § = 0 and any value
of \; (again adapting the proof of [6, Theorem 2.4.6, part (a)]).

4 Prooof of Proposition 2

Taking ¢, = 1 —a/+/n and n > a? throughout this section, the first step in proving Proposition 2 is to show
that the sequence (P (t1),-- ., Pn(tm),n 1 N) satisfies the LDP of speed y/n in R™+! under the law P, (-),
for any fixed m < co and 0 < t1 < ta... <ty < 00.

Lemma 3 The sequence of random vectors ($n(t1),.-.,Pn(tm),n " 1N) satisfies the LDP in R™*! with
speed /n and good rate function Ay (y1 —y2,- .-, Ym—1 — Ym,Ym, ¥) for A;(:) of (18), now with

—at

walog[]ﬁm]dt’ 9<a,)\,§(a—9)t“z=1,.,m

. (22)
0, otherwise,

Ay(Aiy ey Am,0) = {
where A(t) := D101 Niliet; tina)s tmg1 = 00.

Proof of Lemma 3: Let a, = m}b/ﬁ 1 e ® and fixing \;,0 € IR, define A, (\1,..., A\, 0) as in (14), but
now with IE,, instead of IE] . Let A°(t) = A(t) + ¢, and hereafter use the convention that logz = —oo
whenever z < 0. In parallel with the derivation of (15), the independence of R under P, leads to

AnQAty s Ams8) = = Ay log(l — aff e FA2)) + 3 A log(1 — afAr)
k=1 k=1
= (@, A?) = An(an,0) . (23)

Note that h,(an,0) is the Riemannian sum of

hoo(n, 0) = — / log(1 — 1*)dt
0
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at the points kA, k = 1,2,..., evaluated for n = a,, T e™®. Since 7 — h(7,0) is monotone increasing,
continuous and finite for n € [0, 1) it follows that

lim iy (an, 0) = hoo(e ®,0) = — / log(1 — e~ “)dt . (24)
0

n— o0
If \; > (o — 0)t; for some i = 1,...,m then X(¢;) > at; and
aiclAneA"(kAn) >1

for k = [t;/A,] and all n large enough, resulting with A, (a,, \?) = co. If § = a, then for § > 0, n large
enough such that a,e? > (1 —6) and k < t1/A,,

—log(1 — akAn N (FA)) > _og(1 — (1 - 6)"),
implying that
linnlggfhn(an, 2y > %iﬁ)l{—tl log(1 — (1 -96)")} = 0.
The monotonicity of 8 — hy,(a,, \?) implies that A, (an, A\?) — oo for any 8 > a. Let
Dp:={(A1,-- -, Am,0): 0<a, i <(a—08)t;,i=1,...,m},
concluding in view of (23) and (24) that A,(A1,...,\m,0) — oo whenever (A1,..., A\, 0) € Dp.

Suppose next that (Aj,..., A\n,8) € Dy in which case g(t) := (A\?(t) — at) is non-positive and decreasing
within each [t;,¢;41). Then, for all k, n,

akAn A (kAn) - cg(kAn) < i‘;ﬁ’ ed® <1

implying that Ay, (a., \?) < oo for all n and is the Riemannian sum of
o0 6
hoo (777/\9) = _/ log[]- - ﬂte)‘ (t)]dt
0

at the points kA, k = 1,2,..., evaluated for n = a,, 1 e *. Note that n — he(n,\) is now monotone
increasing, continuous and finite for n € [0,e?], hence

lim sup hy, (e=%, A?) > lim sup hy(an, A?) > liminf Ay, (an, A) > lim hoo(n, \) = hoo(e7%, A9).

n—00 n—o0o n—00 nte=«

Since (A1, ..., Am,0) € Da, it follows that ¢t — —log(1 — e?(!)) is monotone decreasing within each interval
[t,', tz’+1)7 so for all n,

hn(e2,\%) = —/ log[1 — e9(t/An180)14¢ < —/ log[1 — e9®]dt = hoo(e™ %, \?).
0 0

Consequently, in view of (23) and (24), A, (A1,...,Am,0) = Ag(A1, ..., A, 0) of (22).

Note that A;(-) of (22) is finite and differentiable throughout the set D which contains an open neigh-
borhood of the origin. Also, A4(:) is continuous throughout the set Da and infinite outside this set. Fix an
arbitrary sequence (,\5‘), .. .,)\%),0“)) € Dx such that 8 1 ¢ and )\Ee) — X fori=1,...,m. Then,

b1 )
—/ log(1 — e @ 90 dt — o
0

13



implying that AE(,\?), .. .,)\%),0(1)) — o0o. Consequently, A;(:) is a lower semi-continuous function. More-
over, |%A£(A¥),...,)\£ﬁ),0(£))| 1 00 whenever (,\5‘5), .. .,A%),H(Z)) € D3 is such that () 1 o and )\Ez) = A
fori =1,...,m. Consider next ()\gl), .. .,)\%),9(3)) € Dg such that 8¢ — 6 < a, )\El) —X,i=1,...,mand

Aj = (a — 0)t; for some j € {1,...,m}. In this case, it does not hold true that AE(/\y), A0 00) 5 o
However, for any value of £,

W CRENCI T A dt
oy MOV X000 = [

i

implying that for any 7 € (¢;,t;11),

lim inf iAt(Ag@ A0 60y > Jim dt =00,

t—o0 Q) 1 Jy, 'ye(a—o)(t_ti) -1

It thus follows that |VA¢(-)| — oo for any sequence of points in D} approaching a point on the boundary of
this set, that is, A;(-) is a steep function. The proof of Lemma 3 is completed by applying the Gértner-Ellis
theorem (see [6, Theorem 2.3.6]), as done in the proof of Lemma 1. O

Fix 7 > 0 and let ) = IR x X, where X denotes the space of maps from [r, 00) to IR equipped with the
topology of pointwise convergence. Then, applying the Dawson-Gértner theorem (see [6, Theorem 4.6.1]),
in analogy with (18) and (19), we see that under the laws IP,_ (-), the sequence (n™'N, @, (-) |(r,00)) satisfies
the LDP of speed /n in Y with the good rate function

oo 1—e —(a—06)t
e, (0, ) = sup{v -+ [ 1og(* 15— )dt + T oo (), (25)
<a T
where for 7 € (0,00) and v > 0
tit1 1— 67’7t
Ix, 4(f) = sup Z{)\ f(tiv1)) — /t log(m)dt} (26)

T<t1<... <tm <tm41=00 i=1 i
Ai <vti,m<oo

(with the convention f(o0) = 0).

Let DF, denote the subset of D[r,00) consisting of non-increasing functions with lim;_, f(¢) = 0 and

DF, the collection of all f:[r,00) = [0,00) non-increasing, such that f = g almost everywhere for some
g € DF;. The representation f(t) = u([t,0)) for f € DF; and some finite positive measure p on [r, c0)

provides a unique decomposition of each f € ﬁ'T to its absolutely continuous and singular components,
denoted f,.(-) and f,(-), respectively.

In analogy with Lemma 2, we next provide an explicit simple expression for Ix_,(-).
Lemma 4 Fiz 7 € (0,00), v > 0 and let

{ f H fac |e'7t 1 dt+7f dfs( )a fEﬁTﬁ (27)

0, otherwise.

Then, Ix, ,(f) = I,(f) for any f € X;.

Proof of Lemma 4: Considering in (26) m = 2, A = 0 and arbitrary \; < 0, ¢; < t2 results with
Ix, o(f) > M(f(t1) — f(t2)). Taking Ay = —oo we see that Iy ,(f) = oo as soon as f(t1) < f(t2) for some
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T < t1 < ta < oo. Similarly, considering in (26) m = 1 and arbitrary Ay < 0, t; € [r,00) results with
Ix, o(f) > M f(t1), implying that Ix, ,(f) is finite only if f is nonnegative and non-increasing on [, ).
Considering hereafter only such functions, by (26) for m = 1 and \; = 7t1, we get in the limit ¢; — oo that

Ix. ,(f) > ylimsup{tf(t)} + / log(1 — e ")du .
t—o0 0

Since fooo log(1 — e™"*)du € (—o0, 0] we conclude that Ix_.(f) = oo unless f € DF,. Any such f has left
and right limits everywhere on [7,00) with at most countably many jump discontinuity points. Suppose
o € (1,00) is a jump discontinuity point of f with f(¢~) > f(c™) denoting the left and right limits of f(-)
at o and f(o) € [f(o1), f(c7)]. Fixm < oo, j€{l,....m} A<y0o, 7=t <t1 <...<tjo1 <o <tjy1 <
tm < tmy1 =00 and A; < b, ¢ =1,...,m, ¢ # j, Ao = 0. For 6 := min{t;11 — 0,0 —tj_1} > 0 and any
z € (—6,0) let t; =0+, A\j; = X\ — v|z| and define

Vie)i= S Ou( )~ fisa)) — [ los(p S ey (28)

It is not hard to check that
max{V(07),V(07)} = V(0) = max{(A = Xj_1)(f(c™) = f(0)), A = Xj-1)(f(¢7) = f(e))} > 0.  (29)

Note that for any z # 0 the value of V(z) is independent of f(c), hence so are V(0*) and V(0~). Thus,
by (28) and (29) the supremum in (26) over all ¢; and A\; < 4¢; results with Ix_,(f) that does not depend
on the specific value of f(o) within the interval [f(c™), f(c~)]. Suppose a monotone function f on [r, o)
equals almost everywhere to f, € DF,, so in particular the left and right limits of f are the same as
the corresponding limits for f, (everywhere on [r,00)). Since the above argument applies to any jump
discontinuity point o € (7,0) of f (and f,), it follows that Ix, . (f) = Ix, 4(fo)-

Thus, without loss of generality, assume that f € DF, with the decomposition to singular and absolutely
continuous components

F(t) = fot) + fac(t) = — /

Q N[t,00)

dolw)+ [ gludu,

¢
for some nonnegative g € Ly ([, 00)) such that g = — f,. almost everywhere and f, € DF, is supported on
the set Q C [7, 00) of zero Lebesgue measure.

Fixing p € (0,00) and A < log(1 + p 1), the function £(z) := ﬁ(x|p) — Az is convex, differentiable on
(0,00) with global minimum obtained for z* = 1/((1 + p~1)e~* — 1), leading to £(z*) = log(1 + p — pe?).
Consequently, for any p,z € (0,00) and A < log(1 + p~1),

fI(:r|p) >z +log(l+p— pe) (30)

By continuity, the inequality (30) extends to £ = 0 and A = log(1l + p~!). Thus, for any \; < 7t; and
T <t; < tiy1 < oo we have

v

ert — ert —1

tiv:1 tit1 Tt _ LA
[ A6 e = [ ) ol

i i

1—e 7t

/\z'(fac(ti) - fac(ti—i-l)) _/ - log(m)dt . (31)

t;
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Since fs(-) is non-increasing, also

tit1 tit1
v [ a2 s [ a0 = 66 - L)) 2 M) - fl) . (2
Combining (31) and (32), we have that
tit1 tit1 tit1 — et
[ RGO e [ 040 2 M0 — ) - [ s St (69

Since lim;_, o f(t) = 0, the inequality (33) holds also for ¢;;; = c0. Thus, comparing (26) and (27) we see
that I,(f) > Ix, »(f)-

Turning to prove the converse inequality, fix o > 7 and let f,(t) = — [, Ait,o) W' () + [;° 9o (w)du, where
9o (u) = gly<y + (67 — 1) 1145, Since ﬁ@|p) =0, it follows that

b = [ B =+ [ -0d), (54)
and it is not hard to verify that
Lfo) + [ loglt — et = hix) (35)
for
1) =7 +1og (295 ) ten € [-o0,71],
and

ag

h()) 1= / (A dE() + / log(1 — e~ 1At .

-
Setting t,, = o, A\;, = 0 in (26), it follows that

oo

T (f) + / log(1 — e="")dt > sup V) . (36)

T A(t)E(—o0,7t], t€[T,0] piecewise
constant of finitely many pieces

Comparing (27) and (34) we see that I,(f,) T I,(f) for o 1 co. Hence, in view of (35) and (36), suffices to
construct for any fixed o < oo, a sequence {\,} of piecewise constant functions each having finitely many
pieces, such that lim inf,,_,o A(\,) > A()\*). To this end, fix § > 0 and define \°(t) = A\*(¢)V(—1/8) A(yt—6).
Since

/ -0 - OO 2 5 - £(6)
and
o _ e rteX ()
[ (ﬁ) dt > (o —7)log(1—e""),

it follows that liminfs_,o A(A\%) > h(A\*). By Egorov’s theorem, for each ¢ > 0 there exists a continuous
function \%¢(t) with values in [—1/6, vt — §] such that

/ Lxs(t)#as(t) (df (t) + dt) <e.
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It is easy to check that then,
ROVPE) — h(X?) > ~2¢(5~" V70 + |log(1 — e *)]) ,

so that liminf,_,o R(A>€) > h(A\°). Now, with \>¢ € Cy[r, o], there exist piecewise constant functions of
finitely many pieces A\, (-) with A\, (t) € [-67!, vt — §] such that

sup [N<(0) = Au(B)] < Y.
te[T,0]

Noting that
h(An) = h(X>€) > —n Yo — 7)1+ (¢ = 1)),
we complete the proof by taking n — oo followed by € | 0 and then § | 0. ]

By (25) and Lemma 4, we see that Irxx, (v, f) = oo unless f € DF,. Moreover, if fe DF, equals
almost everywhere to f, € DF,, then Irxx, (v, f) = Irxx, (v, fo). Hence, without loss of generality, fix

f € DF,, with g(t) = —fac(t). Since fI(x|p) - fI(:):|q) = wlog(ﬁ)(“}:p) log(1+q), we have for any 7, s
positive and almost every ¢ > 7,

Hence, for all 8 < «

JC

implying that

1 ® . 1 © 1 —e (o) o

I, 5) = swpbly — [ (<00 + [ Afue®l e+ [ (0500

0<a

Consequently,

i, (v, f) = {f A (= fao(t)| h)dt + alv — [P(= fac())tdt], f € DF,,v> [Z(=t)df () (37)

otherwise

In particular, (n"1N, ©@n(+)|[r,00)) satisfies the LDP in R x & with the topology of pointwise convergence
and good rate function Igxx. (-) such that Dy := {y € R x X; : Irxx,(y) < oo} C R x DF,. Since
P, (¢n(-) € ﬁ'r) = 1, we can, by [6, Lemma 4.1.5], restrict this LDP to the space IR x DF, equipped
with the topology of pointwise convergence. Since the projective limit of the spaces {(IR x I/JFT) ;7> 0}

is precisely the set IR x DF equipped with the topology of pointwise convergence, by the Dawson-Gértner
theorem (see [6, Theorem 4.6.1]), the sequence (n™'N, @pr(-)|(0,00)) Satisfies the LDP with speed /n in the
latter space and the good rate function,

sup Irxx, t, fliroo)) = 10, f)

(compare (12) with (37)).
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5 Proof of Theorems 1 and 2

In order to analyze the effect of the conditioning {N(A) = n} on the LDP, we introduce the area transfor-
mation F,(-), which for any Young diagram X of finite, nonnegative, area N()\) < n yields a Young diagram
F,()\) of area n, such that F},()) is a strict diagram whenever ) is. This transformation is defined as follows:

1. If N(\) = n then F,()\) = A.
2. If 0 < N(A) < n then extend the last row of A (of index Kpax(A)) by [n — N(X)].

Note the following properties of the transformation A — F,(A) (in addition to the fact that N(F,()\)) = n):

L. 0 < 9p, (0 (1) —@a(i) <1 for all 4.
2. For any A with N(\) = n, the cardinality of the set F;1()\) is bounded by n.

3. Recall (9) implying that IP5 (A = \) = VN —NQ)P2 (X = \,). Hence, for z, = 1 — B/+/n and any A,
such that N(\,) = n,

P, AEF (A),n "N > (1=0) = > 2P (A=X) <ne®VPP; (A=)\). (38)
k>(1-6)n

Similarly, for P, (-) and z, =1 — a/+/n,
P,, (A€ F1(\o),n IN(X) > (1 —8)) < ne?®V2IP, (A= \,). (39)

Proof of Theorem 1: Since I*(v, f) of (11) is a good rate function on R x D[0, c0), where D[0,00) is

equipped with the supremum-norm topology, it follows that I*(f) = T (1, f), given by (3), is a good rate
function on D[0, c0) with the same topology.

Turning to prove the LDP lower bound, it suffices to show that for any ¢ € D[0, 0o) such that I°(¢) < oo,

lim liminf%longb(Btﬁ,za) > —I'(¢) = —-I"(1,9) (40)

d—0 n—oo n

where Bys = {f € D[0,00) : ||f — ¢ll.o < 6}. To prove (40), fix § € (0,1) and ¢ € ACL* with
fooo t(—¢(t))dt < 1. Let §¢,’5 ={(v,f): If = dllec < 9,1 -6 < v < 1}, an open subset of IR x D0, c0).
Identifying A € P*® with the corresponding @,, € D[0, 00), for all n > 62,

{(n""N(A),\) € By s} = {Fn()) € Byas}-

Thus, for such n, by (38),

5 ((n"'N,$n) € Bys) = 3 S (Fu(\) = Xo, (n"'N(X),)) € By)
Xo€Bg 25,N(Xo)=n
< > P: (A€ F,'(X), n IN()) > (1-19))
Xo€Byg 25,N(Xo)=n
< ne?VR P (nTIN =1, @, € Bgas) - (41)
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Applying the lower bound of the LDP of Proposition 1 for the random variables (n~'N, $,) and the open
subset §¢,6 of R x DI0, 00), results with

lim inf —— loglP? (n"'N =1, , € Byas) > — inf_ I°(v,9) — 288 (42)
oo y/n (v)€By 5
Let ¢5(t) = (¢(t) — 6/2)4. Then, fooo t(—¢s(t))dt < 1, implying that fs(l —€,¢s) — I*(ps) as € | 0.
Moreover, (1 — ¢, ¢5) € §¢,6 for all € € (0,9), so by (42)

1
lim 11rn1nleogIPs (n"'N =1, ¢, € Bg2s) > —llmsupIs(qsg) =—-I°(9) . (43)

d—0 n—oo n

This proves (40) since
P (n"IN=1, ¢, € By 25)
S(B — Zn ’ >
Qn(By.2s) P: (n~I1N =1)

Considering (43) for ¢ = ¥?® of (2), we see that

11m1nf710gIP8 (nIN=1)>-I*(¥°) =0. (44)

n—oo
(In fact, better bounds are available, c.f. [9], but we will not need them here).

Turning to prove the LDP upper bound, fix a closed set F' C D[0, o). Clearly, {1} x F is a closed subset
of R x D[0,0), so the LDP of Proposition 1 for (n"'N, $,,(-)) results with

1 1
limsup —1log Q; (F) < limsup—logIP;n (n"'N =1,, € F) — liminf —logIP} (n"'N =1)

n—oo n n—00 n—o0o \/_
_ : Ts _ = Kl -1 —
< u:lll,lfe P, f) llnnlg.}f \/_ loglP; (n”"N =1)

The upper bound of the LDP of Theorem 1 thus follows from the lower bound (44), completing the proof of
the theorem. O

Proof of Theorem 2: The proof parallels that of Theorem 1, with few modifications due to the fact that
the topology of pointwise convergence is not a metric topology on DF'. Obviously, I(f) = I(1, f), given by

(6), is a good rate function on DF. To prove the LDP lower bound, suffices to show that for any ¢ € DF
such that I(¢) < co,m < oo and 0 < 1 < -+ < &y < 00,

lim lim inf T log Qrn(Uy,4,25) > —1(9) , (45)

§—0 n—oo

where the sets Uy 45 = {f : maxj™, |f(¢ ) @(t;)| < 6} form a base of the topology of pointwise convergence
on DF. To this end, fix § > 0, ¢ € DF such that [ (—t)dp(t) < 1, and an open set Uy 425 as above.
Let U£,¢,6 ={(v,f): f € Uggs,1 -0 <v < 1} an open subset of IR x DF. Identifying A € P with the
corresponding @, € DF, for all n > §—2,

{n N, ) € Tigst = {Fa() € Usgas} -
For such n and z, = 1 — @/+/n, in analogy with the derivation of (41), it follows from (39) that

P, (0" N, @) € Upps) <ne®*V"P, (n"'N =1, @, € Uy p25) -
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Consequently, applying the lower bound of the LDP of Proposition 2 for the random variables (n~!N, @,,)
and the open set Uy 4,5 we see that

hmmf—log]P (nTIN=1,8, €Uy pas) >— inf  I(v,) —2ad (46)
n—00 \/_ ’ " - (V,’l/))eﬁbqs,g

Since [;°(— d¢5( ) <1 (for ¢5(t) := (&(t) — 6/2)4), it follows that f(l —¢,05) = I(ds) as € J 0. Moreover,
(1—¢,¢5) € U§,¢,6 for all € € (0,6) and hence

N -1 — -
lim lim inf \/— loglP,, (n" "N =1, ¢, € Ugp,25) > lim sup I (¢s) = —1(9) . (47)
This proves (45) since
P, (n"'N =1, ¢, € Uy 4,25)

P, (n"'N=1)

Qn(Ut,g,26) =

Considering (47) with ¢ = ¥ of (1) for which I(¥) = 0 (see Remark 2), we see that in analogy with (44),

—1 _ _
llnIggf \/_ loglP, (n""N=1)=0. (48)

The lower bound (48) and the LDP of Proposition 2 yield the upper bound of the LDP of Theorem 2 by the
same argument we used when deducing the upper bound for Theorem 1 out of (44) and Proposition 1. [

6 Extensions and discussion

We present briefly in this section a (non-exhaustive) list of possible extensions and related results. As is
aparent from our proof, our techniques are suitable in situations where a measure p,, on P,, can be obtained
by restricting a measure on P involving independent components (with law parametrized by a finite number
of parameters) to P,, in such a way that the restriction does not depend on the parameters. Such measures
are called multiplicative statistics in [17]. We note that examples involving an i.i.d representation by means
of Bernoulli random variables are related to the combinatorial structures called selections, representations
by means of Geometric random variables are related to multisets, and representations by means of Poisson
random variables are related to assemblies, ¢.f. [10] and [8]. While the techniques of proof are similar, the
details and the scalings may vary. Our choice of examples was motivated by our desire to exhibit an example
of an assembly, c.f. Section 6.1, and an example of some current physical interest, c.f. Section 6.2. We
distinguish between theorems where we have checked the details, and other situations where we have not.

6.1 Trees and partitions

Consider a set partition of {1,2,...,n} to non-empty disjoint sets Sy, Sa,..., Sk, of cardinality ny > ny >

- > ng. To each §S; associate a vertebrate (that is, a bipointed tree, with “head” and “tail” marked,
see [4, 10]) such that each element in S; corresponds to a specific vertex of the vertebrate (there are n}"
possibilities for such trees). We have thus associated to each set partition a forest of vertebrates, and we
denote by F,, the collection of all such forests. To each element of F, we associate an integer partition A

represented by n1,...,n; and the corresponding rescaled shape @, (t) = n=1/3¢p,([tn?/3]). Let @, denote
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the measure induced on P,, by the uniform measure on F,, and note that for some constant K,, and all
(nla"'anj) € Pna

ng
n;

J
Qn(na,-..,nj) = Ko [
i=1

See [3] for a discussion of some other possible measures on random forests of trees.

Define next v = 1/2 and

~ oo e_’yu
U(t) = du.
®) /t V21 v

Theorem 3 Under the laws Q,,, the random variables @n(-) satisfy the LDP in D0, 00) (equipped with the

topology of uniform convergence), with speed n'/3 and good rate function
Ty = 0= [ U=f@)dn) + [ (O] - ¥O)dt, | € ACuoy [PH—FE)dE<T, (g
0, otherwise.

Here, H(z|p) = zlog(z/p) — = + p. In particular, G, concentrates around the curve .

Sketch of proof of Theorem 3 For any z € (0,1), let If’;c denote the law of a sequence of independent
Poisson random variables R; with parameters \;(z) = k¥z*e~* /k!. By the Borel-Cantelli lemma, N < oo,
IP, a.s. for any z € (0,1). Setting A, = n=2/3 and z,, = (1 — vA,,), one checks that
~ R oo
E,,(n7'N) =Y AY?kX(2n) = noo (2m) 712 / Vie tdt =1.
k=1 0

Similarly,
oo oo
n'/*Var,, (n"'N) = ZAi/zkz)\k(mn) oo (2#)*1/2/ 32 Mdt < o0,
k=1 0
implying the concentration of n"'N under P, . Concentration of @, (-) to the limit shape ¥(-) follows by

the same technique. In proving the large deviations principle, one now proceeds as in the proof of Theorem
1 and Proposition 1: first (compare with (14)), letting

m—1

An(nla <oy Nhmy 0) = n71/3 lOg IE-'En [exp n1/3{ Z Ni (@n(tﬂ) - ¢n(ti+l)) + anan (tm) + enilN}] ’

i=1

one checks that

lim Ap(no... o 0) = 4 Jo (€O —1)(=T(@®)dt, 6<7,
n—oo 00 0 Z ’Y,

where n(t) = Z:’;l nilte[ti,ti+1)7 tm+1 = 0.

One may now repeat the computations in Lemma 1 in order to deduce a finite-dimensional LDP for
({@n(ti) ¥}, n~'N). Further, note that IP,, (Kmax > n?) < exp(—Cn*/3) for some C' > 0 whereas A\ (z,,) <
C1 for some finite C; and all k,n. The exponential equivalence of ¢,, and the corresponding piecewise linear
approximation ¢,, is obtained by replacing (17) with the bound, valid for any n > 0,

o, (I on = @n lo>8) < n* sup Pa, (Re > dn'/?) + Po, (Kmax > )
k<n
< n2e—n6n1/3 sup eAk(zn)(e”—l) + e—Cn4/3 < n2e—7]6n1/3601(e"71) + 670"4/3
a k<n2 -

b
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and taking first n — oo, then n — oco. Similarly, the exponential tightness of (n™'N, ¢, (-)) follows by using
the compact sets K1, = ACL.%% N {¢: ¢(0) < L} and the bound

]ﬁzn (pn ¢ ACE;L’O]) < n? sup I’[:.mn (Rk > Ln1/3) + ]f’zn (Kmax > n?)
k<n2

By the same proof as in Lemma 2, one deduces that (n =1 N, @, (-)) satisfy the LDP in IR x D|0, 00), equipped

with the topology of uniform convergence, speed n!/3 and rate function
Iwv,f) = { v— [ t(=f)dt) + [T H(— ()| — ¥(t))dt, f € ACoo, [y~ t(—f(t))dt <v,
00, otherwise.

Finally, Theorem 3 follows from the above in the same manner that Theorem 1 followed from Proposition
1, by noting that any n > no(d), A\, = F.(A\) with N(\,) =n and N()\) > n(1 — ) satisfy the inequality

P, (A=X)>P, (A=)

1/3
eSvén

(compare with (38)). O

6.2 Partitions with multiplicities and constrained partitions

We next describe a class of measures over partitions obtained from having parts of the partition corresponding
to possibly different “types”. Let {c;}72, denote a deterministic sequence of non-negative integers. We say
that {ci} is of type (¢,b) € (0,00) x (0, 00) if

(14€)L
lim li “lr-¢ =b.
fim Jim e T2 D =t
Let R;, ..., R}’ denote independent copies of the random variable R;, of Section 2 (under either IP, or IP}),

k=00,l=cj,

and denote by P, . and IP; . the induced law on {R.}, that is, for any sequence of integers {r%} h=1.0=1
with only finitely many non-zero elements,

oo Cg oo Cp
P, .({R; =r;}) = H H P, (R =1}), zc({By = =ri}) = H H IP; (R, =
k=1¢=1 k=1 =1

Define next the shape

-S> R,
k=i {=1

and area N(\) = Y 72, Y5, kRE, with
Qne(A=20) =Pz (A=X|N(A) =n), Q) .(A=2)=TP; (A= X|N(}) =n).

Note that Theorems 1 and 2 correspond to the sequence ¢, = 1 for all k¥ (and b = ¢ = 1). Another interesting
example is the sequence ¢, = 1;1/¢cp, i.e. ¢ = 1if k is a perfect £ square of an integer and ¢, = 0 otherwise.
The latter sequence is of type (1/¢£,1/¢), leading to @, being the uniform measure over all partitions of
n to perfect £ roots, £ = 2,3,.... Related sequences are c; = ¢ 4 corresponding to the number of different

ways of expressing k as a sum of d perfect squares, which is of type (d/2,d2~ (4D Vol({z € R : |z|, < 1})),

22



or ¢, = [k97], ¢ > 1, which is of type (g, 1), see [17] for the last two examples. Note that in these examples,
one may write explicitely (c.f. [17]) the generating function associated with IP, ., all of the form

e
_ mk\er
k:l(l zk)ew

Let m,,;, denote the positive, o-finite measure on [0, 00) with density dmg;/dt = bt?~!, and let

Bap = (/ u(l+ eu)_lqu,b(“))l/(ﬁl) ) Ogb = (/ u(e" — 1)_1qu7b(u))1/(q+1) .
0 0
It is easy to check that then, with A, = n~/(@*1) and 2, = 1 — a4 A,, it holds that n !N — 1 under
P, ., with similar conclusion under IP;,.,C if 2, =1 — B;,5An. Define @, (t) = n~9/(1+q9) ox([t/An]). With

° dmyg p(u) * dmgp(u)
q} — q, \I’S — 274,00 %)
a(t) /t _ a.0(0) /t 1 + eBabu’

8
Tn,C?

one now has concentration of ¢,, around the curves ¥, ;(t) and U7 ,(t) under P, . and IP respectively,

see e.g. [17] for the particular case ¢, = [k97].

The techniques of this paper lead us to believe that the LDP holds under the measure @, . (respectively,
s .) in the space D[0,00) equipped with the topology of pointwise convergence (respectively, topology of

n,c

uniform convergence), speed n?/(¢*1) and good rate functions

j b(f) — aq,b(l - fooo t(_fac(t))dt) + fooo ﬁ(_d(f}flﬁ| - %—zﬁ)quyh fE€DF,1> fooo(_t)df(t) )
“ 0 otherwise,

and, respectively in the strict case,

o) = { Bap(L = [y t(=F()dt) + [5° H(— 2| - S2)dmgp, f € ACos,1 2> [ (—t)df (1),

00 otherwise.
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