Control and Optimal Control Assignment 3, due December 14, 2011

1. Explain why a system

$$\frac{dx}{dt} = A(t)x + B(t)u \tag{1}$$

that is controllable on and interval $[t_0, t_1]$ is also controllable on any interval that contains $[t_0, t_1]$.

- 2. Show that a system of the type (1) may not be controllable on two intervals $[t_0, t_1]$ and $[t_1, t_2]$ yet controllable on $[t_0, t_2]$.
- 3. Show that if (1) is controllable on $[t_0, t_1]$ then it is controllable on $[t_0 + \varepsilon, t_1 \varepsilon]$ for ε small enough.
- 4. True or false: If for every fixed $t \in [t_0, t_1]$ the coefficients (A(t), B(t)) form a controllable pair (as a time invariant system) then (1) is controllable on $[t_0, t_1]$.
- 5. Is the system

controllable in an interval where if b(t) > 0 on that interval? (Hint: no need to resort to the characterization of controllaniity via the controllability matrix).