Control and Optimal Control

Assignment 5, due January 4, 2012

1. Consider 3 compartments arranged in a circle, with volumes V_{1}, V_{2}, V_{3}, each containing a well mixed solution, with sides well insulated except the ones between any two of them. The diffusion between any two is subject to a diffusion coefficient $k_{i, j}$ with $i \neq j$ each between 1 and 3 . The content of compartment no. 1 can be measured. Under what conditions on the V_{i} and the $k_{i, j}$ is the system observable?
2. For a set E in R^{n} and a vector p in R^{n} we write $p(E)=\max \{p x: x \in E\}$. Prove that the Hausdorff distance between two sets C and D is equal to the maximum among $p \in R^{n},|p|=1$ of $|p(C)-p(D)|$.
3. Let $R(t)$ be a compact set that depends continuously (with respect to the Hausdorff distance) on the time t, where $t \in\left[t_{0}, t_{1}\right]$. Suppose that a point $x \in R^{n}$ belongs to $R(t)$ for some t. Prove that the set of t for which $x \in R(t)$ is closed. In particular a minimal time, say τ, with this property exists.
4. Show that in the previous exercise, if $R(t)$ is convex for every t, for the minimal time τ the point x is a boundary point of $R(\tau)$.
5. Show that the convexity cannot be dropped in the previous exercise.
