Control and Optimal Control

Assignment 7, due January 25, 2012

1. Let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be n atom-less probability measures on a measure space M. Show that there is a partition A_{1}, \ldots, A_{n} of M such that $\mu_{i}\left(A_{j}\right)=\frac{1}{n}$ for every i and j (interpretation: a cake with no raisins can be divided so that each piece is worth the same for every participant).
2. Let K_{1}, K_{2}, \ldots be a sequence of compact sets all contained in the, say, unit ball of R^{n}. Show that that distance between $\frac{1}{j}\left(K_{1}+\cdots+K_{j}\right)$ and $\frac{1}{j}\left(c o K_{1}+\cdots+c o K_{j}\right)$ tends to zero as $j \rightarrow \infty$ (here co K is the convex hull of K, and the distance is taken in the Hausdorff sense). Can you estimate this distance?
3. Show that the reachable set of a control system $\frac{d x}{d t}=A x+B u$ with $u \in U(x)$ may not be convex even if the set-valued map $U(x)$ has compact sets and is continuous as a function of x.
4. What would happen if the set valued map $U(x)$ in the previous exercise has a convex graph?
