Control and Optimal Control

Assignment 8, due February 25, 2012
Consider the linear quadratic optimal control system

$$
\begin{gathered}
\text { minimize } \int_{t_{0}}^{t_{1}}\left(x^{T} Q(t) x+u^{T} R(t) u\right) d t \\
\text { subject to } \frac{d x}{d t}=A(t) x+B(t) u \\
x\left(t_{0}\right)=x_{0} \\
x\left(t_{1}\right)=x_{1}
\end{gathered}
$$

with $(A(t), B(t))$ controllable on the interval, $Q(t)$ and $R(t)$ positive definite for every t, and no constraints on the control.

Define the extended attainable set of the system as the set of all pairs (x, r) such that x is the attainable set and r is bigger or equal to the infimal cost of stirring x_{0} to x.

1. Prove that the extended attainable set is convex and closed.
2. Prove that there is a unique optimal solution to the optimal control problem.
3. Show that the optimal solution is obtained in a feedback form as

$$
u(t)=\frac{1}{2} R(t)^{-1} B(t)^{T} p^{T}(t)
$$

where $p(t)$ is a solution of

$$
\frac{d p}{d t}=-p A(t)+2 x^{T}(t) Q(t)
$$

(hint: Use the Pontryagin maximum principle to formulate a necessary condition for the optimal $u(t)$. Then use a "completion to squares" technique to derive the explicit form for the optimal control. Then use the convexity of question 1 to deduce that the condition is sufficient.
4. Solve the optimal control problem of steering a point $x_{0}=\left(\zeta_{0}, \eta_{0}\right)$ to the origin, while minimizing the energy $\int_{0}^{2 \pi} u(t)^{2} d t$, where the equation is the harmonic oscillator system $\frac{d \zeta}{d t}=\eta, \frac{d \eta}{d t}=-\zeta+u$, with no restrictions on the control.

