
Dispatching in Perfectly-Periodic Schedules

Zvika Brakerski, Vladimir Dreizin, Boaz Patt-Shamir

Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

In a perfectly-periodic schedule, time is divided into time-slots, and each client gets
a time slot precisely every predefined number of time slots, called the period of that
client. Periodic schedules are useful in mobile communication where they can help
save power in the mobile device, and they also enjoy the best possible smoothness.
In this paper we study the question of dispatching in a perfectly periodic schedule,
namely how to find the next item to schedule, assuming that the schedule is already
given somehow. Simple dispatching algorithms suffer from either linear time com-
plexity per slot or from exponential space requirement. We show that if the schedule
is given in a natural tree representation, then there exists a way to get the best pos-
sible running time per slot for a given space parameter, or the best possible space
(up to a polynomial) for a given time parameter. We show that in many practical
cases, the running time is constant and the space complexity is polynomial.

1 Introduction

Consider a system with n clients and a single resource they share by means
of time multiplexing. A schedule for such a system is called perfectly periodic
(or just perfect for short), if each client i gets one time slot exactly every βi

time slots, for some βi called the period of i. Perfect schedules are attractive
for various reasons (see below). However, perfect schedules are, in general,
non-trivial mathematical objects. It is known, for example, that even decid-
ing whether a given set of periods admits a perfect schedule is NP-Hard [1].
The best known methods for finding perfect schedules produce schedules that
are essentially hierarchical composition of round-robin schedules, called tree
schedules [2]. A tree schedule is represented by a tree, where leaves correspond
to clients, and the period of each client is the product of the degrees of the
nodes on the path from the root to its leaf (see example in Figure 1 for some
intuition; formal details are given in Section 2).

There are some algorithms to generate good schedule trees, according to cer-
tain target functions. In this paper, we study a different problem, called dis-

Preprint submitted to Elsevier Science 6 June 2003

B�

A�

C� D�

<ABACAD>�

Fig. 1. An example of a tree and its corresponding schedule. The clients are
{A, B, C, D}, and the corresponding schedule has a cycle of length 6.

patching, defined as follows. We assume that a perfect schedule is already given
somehow. The task of the dispatching algorithm is to output, at each time slot,
the identity of a client to be scheduled at that slot. To appreciate the problem,
consider the following two näıve dispatching algorithms. One is to maintain,
for each client, a variable that records when that client’s next time slot is , and
in each invocation of the dispatching algorithm, scan the clients one by one
until we find the one whose turn has come up. The other extreme solution is
to create a table that lists a complete cycle of the schedule, and use a pointer
to run through it cyclically. The former solution maintains only O(n) numbers
each one having up to n bits (where n is the number of clients), but it may
take Ω(n) time steps per each invocation. The latter solution, on the other
hand, may require, in some cases, 2Ω(n) space, while taking only O(1) time.
Using a heap, it is not difficult to improve the space-efficient (first) solution to
work in O(log n) time. However, in this paper we show that for tree schedules,
one can enjoy the best of both worlds: roughly speaking, we present a scheme
that can be given a time parameter and it finds the representation with the
smallest space (up to a polynomial factor) that allows for a dispatching algo-
rithm with the given time complexity; conversely, given a space parameter we
can find the representation of the given size with the smallest time complexity
of dispatching (up to a constant factor). Optimality here is with respect to our
scheme, but in fact, we can show that in many cases that arise in practice, the
time complexity is constant while the space complexity is polynomial. All that
needs to be done is a pre-processing phase, that prepares the data structures
for the dispatching algorithm. Before we elaborate on our results, let us give
a brief overview of the background.

1.0.0.1 Why perfect schedules. Perfect schedules are attractive from a
few viewpoints, all due to the fact that mathematically, they are very simple
to describe: the schedule of a client is completely specified by two numbers
(period and offset). This inherent simplicity gives rise to several pleasing con-
sequences; for example:

• In some sense, perfect schedules are the smoothest schedules, or in other
words, they give the best discrete-time approximation possible to a continuous-
time allocation of the resources. For a more thorough discussion on the
fairness issue, see, for example, the “chairperson assignment problem” [3].

2

• In the context of “push systems” such as broadcast disks [4], the server
schedules items, and a client that wishes to access a certain item must wait
until that item is scheduled. If the schedule is perfectly periodic, it is ex-
tremely easy for the client to compute when will be the next occurrence
of its desired item, assuming the existence of a global clock. This allows
the client to switch its receiver off temporarily. Such a power saving mode
of operation is particularly important when the clients are tiny mobile de-
vices with limited power supply (see, for example, the “Sniff mode” in the
Bluetooth protocol [5]).

• Even without a global clock, periodic schedules are amenable to efficient in-
dexing schemes [6]. The idea of these schemes is to interleave “index items”
among the regular items in the schedule, so that even if a client does not
know its schedule, it can learn it with very little effort (where effort is mea-
sured by power consumption, modeled by the duration of actively listening
to the items scheduled).

1.0.0.2 Related work. Ammar and Wong [7,8], motivated by Teletext
systems, show that the optimal schedule is cyclic, and give an approximation
algorithm for periodic scheduling. They do not treat the dispatching problem.
Hameed and Vaidya [9,10] propose using Weighted Fair Queuing to sched-
ule broadcasts (which results in non-perfect schedules). They consider the
dispatching problem; their algorithm takes Θ(log n) steps per time slot on av-
erage. Khanna and Zhou [6] show how to use indexing with periodic scheduling
to minimize busy waiting, and they also give an approximation algorithm for
designing periodic schedules. In the work of Bar-Noy et al. [2], the general
notion of perfect periodicity is introduced, as well as the tree methodology.
The main results in [2] are algorithms for tree schedule design whose resulting
schedules have guaranteed performance.

There is a large body of research about schedules that must satisfy a given
set of average periods of clients, while compromising the perfect periodicity
property. For example, Liu and Layland [11] call a schedule “periodic” if ev-
ery client with period β is scheduled exactly once in each time window of the
form [(k − 1)β, kβi − 1] where k is an integer. Baruah et al. [12] introduced
smoother schedules called “Pfair schedules,” where it is required that in a
prefix of t time units of the schedule, a client with resource share b is guar-
anteed to have either �t · b� or �t · b� occurrences. The results are typically
for clients that may require more than one time slot per period, and systems
with multiple resources. The best dispatching time known for Pfair schedules
(called “per-slot time complexity” in [12]) is Θ(log n) for a single resource.
Additional papers with algorithms for non-perfect scheduling, motivated by
Broadcast Disks and related problems, are [4,1,13–15]. The machine mainte-
nance problem [16,17] and the chairperson assignment problem [3] are also
closely related to periodic scheduling.

3

1.0.0.3 Our results. We study dispatching in the case of schedules for
a single resource, where each client gets a single time slot in a period. To
motivate the problem of dispatching, we first prove that in the worst case,
the length of the cycle of a periodic schedule is exponential in the number
of clients; it may also be exponential in the length of the longest period.
Our main result is a dispatching algorithm based on transforming the tree
representation of a perfect schedule into a dag representation by finding a cut
in the tree and “flattening” the part above the cut. There are two alternative
dag constructions. One is based on a time parameter t. The space requirement
of the dispatching algorithm is at most the square of the space required by
the best dag to dispatch using time t, and the running time of the dispatching
algorithm is at most 2t. The other alternative gets a space parameter S, and
it finds a schedule dag whose dispatch time at most twice the optimal for dags
with space S; the size of the dag in this case is at most S2. We also show that
in some practical cases, the dispatching time is constant and the storage space
is polynomial in the number of clients.

1.0.0.4 Paper organization. The remainder of the paper is organized as
follows. In Section 2 we define the notions of perfectly periodic schedules and
tree schedules. In Section 3 we bound the length of cycles of perfect schedules.
In Section 4 we describe and analyze our dispatching algorithm, based on
the concept of schedule dags. In Section 5 we explain how to create optimal
schedule dags for a given time or space parameter. We conclude in Section 6.

2 Definitions and preliminaries

2.1 Schedules

A schedule is an infinite sequence S = s0, s1, . . ., where sj ∈ {1, 2, . . . , n} for
all j. If sj = i we say that client i is scheduled at slot j, or equivalently,
slot j is allocated to client i. A schedule is called cyclic if it is an infinite
concatenation of a finite sequence C =

〈
s0, s1, . . . , s|C|−1

〉
. C is called a cycle

of S. In this paper we are concerned exclusively with cyclic schedules, and
we refer interchangeably to a schedule and to its cycle. A schedule is called
perfectly periodic, or perfect for short, if slots allocated to each client are
equally spaced, i.e., for each client i there exist integers βi ≥ 1 and 0 ≤ oi < βi,
such that i is scheduled in slot j if and only if j ≡ oi (mod βi). In this case
βi is called the period of i, and oi is called the offset of i. The frequency bi of
a client i in a perfect schedule is the reciprocal of its period, i.e., bi = 1/βi.
We refer to bi as the share of client i.

4

For a set of numbers n1, . . . , nk, we denote by lcm(n1, . . . , nk) their least com-
mon multiple. For later reference, we state the following immediate property
of perfect schedules.

Lemma 1 Let S be a perfect schedule with periods β1, . . . , βn. Then the min-
imal cycle length of S is lcm(β1, . . . , βn).

PROOF. We first show minimality. Let C be a cycle of S. Since S is perfect,
|C| is divisible by each period βi, for i = 1, . . . , n. It follows from the definition
of least common multiple that |C| ≥ lcm(β1, . . . , βn). Next, let C ′ be a the
first lcm(β1, . . . , βn) time slots in S. We claim that C ′ is a cycle of S, i.e.,
S = S ′ for the schedule S ′ = C ′C ′C ′ We show that this is true by showing
that the schedule of each client is the same in S and in S ′. Let i be any
client. By definition, there exists a number oi such that slot t is allocated to
client i in S if and only if t ≡ oi (mod βi). By construction, in the schedule
S ′, slot t is allocated to client i if and only if t = oi + k1βi + k2|C ′|, where

0 ≤ k1 < |C′|
βi

and k2 ≥ 0 are integers. Since k2|C ′| is divisible by βi because

|C ′| = lcm(β1 . . . , βn), we have that k1βi+k2|C ′| ≡ 0 (mod βi), and therefore
t is allocated to i in S ′ if and only if t ≡ oi (mod βi), which completes the
proof. �

2.2 Trees

A tree is a connected acyclic graph. A rooted tree is a tree with one node
designated as the root. We assume that all edges in a rooted tree are directed
away from the root. If (u, v) is a directed edge, then v is the child of u, and u
is the parent of v, denoted u = par(v). The degree of a node v in a rooted tree,
denoted deg(v), is the number of its children. A leaf is a node with degree 0.
An ordered tree is a rooted tree where the edges emanating from each non-leaf
node are numbered 0, 1, . . . , deg(v) − 1. The edge numbers induce a number
for each non-root node among its siblings. The number assigned to a non-
root node u among its siblings is denoted rank(u). Note that 0 ≤ rank(u) <
deg(par(u)).

A set of nodes V in a rooted tree T is a called a cut of T if there is exactly
one node of V on every root-leaf path in T . The level of a node in a rooted
tree is the length of the path from the root to that node. A level-uniform tree
is a tree with a number dj associated with each level j, such that each node
in level j is either a leaf or has degree dj.

5

2.3 Tree schedules

An ordered tree, along with a bijection between the leaves and clients, corre-
sponds to a perfect schedule as follows (see example in Figure 1). The period
of the root r, denoted β(r), is 1. The period of a non-root node v, denoted
β(v), is given by β(v) = β(par(v)) ·deg(par(v)). The offset of the root, denoted
o(r), is 0. To define the offset of a non-root node v we use its edge order:
o(v) = o(par(v))+ rank(v)β(par(v)). (See [2] for a justification of this transfor-
mation; an example is given below.) Having defined a period and an offset for
each node in the tree, the schedule of the tree is given by the correspondence
between leaves in the tree and clients in the schedule.

In the example of Figure 1, the period of A is 2 because the root degree is 2,
and the periods of B, C and D are 6, because the root degree is 2 and the
degree of their parent is 3. Edges are ordered left-to-right, and hence the offset
of A is 0, the offset of B is 1, the offset of C is 3 and the offset of D is 5.

We refer to a tree that represents a schedule as a schedule tree, and to a
schedule that can be represented by a tree as a tree schedule. If T is a schedule
tree, then C(T) denotes the cycle of its corresponding schedule.

Note that without loss of generality, we may assume that no node in a schedule
tree has degree 1.

3 Bounds on the cycles of tree schedules

We now turn to study the size of the cycles of tree schedules. We prove lower
and upper bounds on the worst-case cycle length.

1�
2�

3�

n-1� n�

...�

Fig. 2. A tree whose cycle length is 2n−1.

We start by observing that there exist schedules with n clients whose cycle
length is 2n−1. Consider, for example, the schedule where the periods are
defined as follows:

β(i) =

⎧⎪⎨
⎪⎩

2i, for 1 ≤ i < n

2n−1, for i = n

6

A tree corresponding to this schedule is depicted in Figure 2. The minimal
cycle length for this schedule, by Lemma 1, is 2n−1.

The next theorem shows that in some sense, the example of Figure 2 is the
worst possible, including all “crazy” trees.

Theorem 2 Let T be a tree with n leaves, and let C be its corresponding
schedule cycle. Then |C| ≤ 2n−1.

w�3�

w�d�

...�

w�

...�
T�1�

T�2� T�d�

w�2�

T�d�

T�2�

T�1�

...
�

T�'''�T�

w�

T�'�
T�''

�T�*�

w�2� w�d�

Fig. 3. Construction for Theorem 2.

PROOF. We prove that for any tree T with n leaves there exists a binary
tree with n leaves whose cycle length is at least |C(T)|. This is sufficient, since
the maximal cycle length for a binary tree with n leaves is 2n−1 (Figure 2
shows a worst case). So suppose that T has at least one non-binary node. We
transform T into a tree T ∗ with n leaves, such that T ∗ has less non-binary
nodes and |C(T)| ≤ |C(T ∗)|. Let w ∈ T be a node with degree d > 2. Let
T1, . . . , Td be the subtrees rooted at the children of w. Construct the new tree
T ∗ as follows (see Figure 3).

(1) Let wi be an arbitrary leaf of Ti, for 2 ≤ i ≤ d.
(2) Construct a tree T ′ from T1, . . . , Td by replacing wi+1 in Ti+1 with Ti, for

all 1 ≤ i < d. This creates a “chain of trees” Td, Td−1, . . . , T1.
(3) Construct a binary tree T ′′ with d nodes and height d − 1 (as in Figure

2). One of the two leaves in level d− 1 is designated as “special”, and all
other leaves are w2, . . . , wd.

(4) Construct a tree T ′′′ from T by replacing w ∈ T with T ′.
(5) Construct T ∗ by replacing the special leaf in T ′′ with the root of T ′′′.

It is obvious from the construction that T ∗ has n leaves, and its number of non-
binary nodes in T ∗ is strictly less than the number of non-binary nodes in T .
We now analyze |C(T ∗)|, the length of the cycle of the schedule corresponding

7

to T ∗. For any tree G, L(G) denotes the leaves of G, and βG(v) is the period
in G of a leaf v ∈ L(G). With these notations, we have:

|C(T ∗)|= lcm {βT ∗(v) | v ∈ L(T ∗)}
= 2d−1lcm {βT ′′′(v) | v ∈ L(T ′′′)}
≥ 2d−1 1

d
lcm {βT (v) | v ∈ L(T)}

= 2d−1 1

d
|C(T)|

> |C(T)|
for d > 2. Therefore, T ∗ is a tree with n leaves and less non-binary nodes, but
with greater corresponding schedule size. We can repeat this reduction step
until all nodes have degree 2 or less. �

The next theorem shows that the schedule length can be exponential also in
the maximal period length, not only in the number of clients.

Theorem 3 There exists a tree T with largest period β, such that its corre-

sponding schedule size is 2Ω(
√

β ln β).

PROOF. Let m be such that 2m2 ln m = β. This means that m =
√

β/2 ln β ·
(1 + o(1)). We construct a two-level tree as follows. The root has m children,
and each child i of the root has qi children, where the qi’s are chosen to

be the m smallest primes larger m ln m. Let q
def
= max {qi}. By the Prime

Number Theorem, we have that q ≈ 2m ln m, and hence the maximal period
is β = mq ≈ 2m2 ln m, as required. Now, since q1, . . . , qm are primes, their
lcm is their product, and therefore, by Lemma 1, we have that the length of
the schedule is at least

∏m
i=1 qi > (m ln m)m > 2Ω(m ln m) = 2Ω(β/m). The result

follows. �

4 Efficient dispatching of tree schedules

It is tempting to deny the difficulty inherent in dispatching: one natural algo-
rithm is just to list a complete cycle of the schedule and go through it cyclically.
However, the results of Section 3 show that this alternative is sometimes in-
feasible: exponential space is probably too much, even when the numbers of
clients and the maximal period seem reasonable. 1 In this section we present a

1 Consider the following schedule tree: the root has 12 children, whose degrees are
the first twelve primes. While the corresponding schedule has less than 200 clients

8

space efficient dispatching algorithm and analyze its average running time; we
then introduce the notion of schedule dags that allows us to save further on
the average running time. Finally we show how to get the worst case running
time to be as low as the average running time by some modest pre-processing.

4.1 The basic algorithm

Procedure dispatch
Input: A schedule tree T
Output: A client identifier
Code:

v ← root(T)
while v is not a leaf do

v ← moveToken(v)
od
return client corresponding to v

Procedure moveToken
Input: A non-leaf node v ∈ T
Persistent state: Token placement on edges of T
Output: A node in T
Side effect: Token placement altered
Invariant: For each non-leaf node, exactly one token on one of the outgoing edges
Code:

Let e0, . . . , ed−1 be the d outgoing edges of v
Let ei = (v, u) be the outgoing edge of v with token
Move token to edge e(i+1) mod d

return u

Fig. 4. Procedures dispatch and moveToken

We now describe a space-efficient algorithm for dispatching tree schedules.
Pseudo code is given in Figure 4 (Procedure moveToken is separated because
it is re-used in the final algorithm). The idea is to find the client to schedule
by traversing the tree guided by tokens placed on tree edges. Specifically, each
non-leaf node has exactly one token placed on one of the edges leading to its
children. The algorithm descends the tree starting from the root, by following
the edges with tokens. In addition, each time an edge e = (v, u) is crossed,
the token is moved to the next outgoing edge of v, where “next” is interpreted
cyclically using the the edge ordering. When a leaf is reached, it is output as
the client to schedule.

We remark that the initial token placement and the way the cyclical order-
ings are defined on the edges outgoing from each node are immaterial to the

and the maximal period less than 500, its cycle length is approximately 8 · 1013.

9

correctness of the algorithm: the initial placement just determines the point
in which the cycle starts, and the edge orderings “transpose” sub-schedules of
equal weight.

We summarize the correctness of dispatch in the following theorem.

Theorem 4 Let T be a schedule tree and let c be the minimal cycle length
of its corresponding schedule. Then starting with any valid initial token place-
ment, c applications of procedure dispatch produce a cycle of S.

PROOF. We show, by induction on the height of the tree, that the resulting
schedule is perfectly periodic with respect to each client. For height 0, the
claim is trivial. For the induction step, assume that the root has d children,
and let T1, . . . , Td be subtrees rooted at the children of the root of T . Let i
be any client, and suppose w.l.o.g. that i is a leaf in Tk. Consider first only
the time slots in which dispatch visits Tk. In these time slots, by induction,
the schedule of i is perfectly periodic with some period βk(i). By the code,
dispatch visits Tk in a perfectly periodic fashion: the token associated with the
root of T visits Tk exactly once every d time slots. It follows that the schedule
of i in the full sequence of time slots is perfectly periodic with period d ·βk(i),
and we are done. �

Clearly, the worst-case running time of dispatch is the height of T , and its
space requirement is proportional to the size of the tree. For reasons that will
become apparent in Section 4.3, we are interested in the amortized (average)
time complexity of dispatch. For this, we need the following natural definition.
Recall that bi is the share of client i, defined by bi = 1/βi.

Definition 5 Let T be a schedule tree with clients 1, . . . , n whose shares are
b1, . . . , bn, respectively. Let �(i) be the level of leaf i in T . The tree entropy of
T , denoted H(T), is

H(T) =
n∑

i=1

bi · �(i) .

For this notion of tree entropy, we have the following straightforward result.

Theorem 6 Let T be a schedule tree. The total running time of |C(T)| con-
secutive applications of dispatch is O(|C(T)| · H(T)).

PROOF. The running time of dispatch when it outputs a leaf i is proportional
to the level of i. Since leaf i is visited exactly bi · |C(T)| times in |C(T)|
consecutive applications of dispatch, the result follows. �

10

<ABACAD>� C� D�B�

A�B�

A�

C� D�

Fig. 5. The schedule of Fig. 1 and its round-robin dag representation. Edges are
oriented downwards, and their ranks are ordered left-to-right.

The notion of tree entropy is a generalization of the information-theoretic
concept of entropy: the (information-theoretic) entropy of a stochastic source
of n symbols whose probabilities are {b1, . . . , bn} is defined by

H2(T) =
n∑

i=1

bi log
1

bi

.

(All logarithms in this paper are taken to base 2.) Obviously, if T is a binary
tree, then H(T) = H2(T). In general, for any tree T whose non-leaf nodes
have degree at least 2, we have that H(T) ≤ H2(T), because �(i) ≤ log 1

bi

always. We can therefore conclude the following direct corollary.

Corollary 7 The amortized running time of procedure dispatch on any sched-
ule tree with n leaves is O(log (n)).

PROOF. Follows from the fact the the maximal entropy of a source with n
symbols is at most log n (see e.g., [18]). �

4.1.0.5 An alternative algorithm for dispatching. Another imple-
mentation of dispatching for perfect schedules uses a heap containing all
clients. Each client is inserted with its next slot number as its key: The initial
“next slot” number is the offset of the client; when scheduled, the next slot
number is simply the current time plus the period. To keep space complexity
bounded, the numbers are reduced modulo the cycle length |C| when their
minimum is larger than |C|. This approach is inferior to algorithm dispatch
from the bit-complexity point of view, since the numbers that the heap-based
algorithm manipulates have Ω(log |C|) bits, which in turn may be as high as
Ω(n) (by Theorems 2 and 3). More importantly, the heap-based algorithm is
not suited for the extensions we present next.

4.2 Schedule dags

We now extend the notion of schedule trees to schedule dags, by allowing more
than one incoming edge per node, which means that there can be more than

11

one path from the root to a leaf (see Fig. 5 for an example). Formally, a rooted
dag is a directed acyclic graph with exactly one node without any incoming
edge called root. An ordered dag is a rooted dag where the edges outgoing
from each non-leaf node v are numbered 0, . . . , deg(v) − 1 (recall that deg(v)
is the number of edges outgoing from v). We note that there may be parallel
edges in an ordered dag. A schedule dag is an ordered dag with a distinct
client associated with each leaf. It is straightforward to verify that algorithm
dispatch can be applied without any change to a schedule dag. One important
difference is that unlike schedule trees, not every schedule dag corresponds to
a perfectly periodic schedule.

Our constructions, however, do guarantee that the schedule dags we generate
correspond to perfect schedules. Intuitively, the idea is as follows. We take the
schedule tree and cut it in a way that will be specified later. The tree above
the cut is flattened by creating a full cycle list of its corresponding schedule.
Then the cycle listing (in which each client may represent a subtree) is re-cast
into a dag (see Figure 6). Finally, the dag is expanded back by “hanging” the
subtrees previously cut back on their roots.

E� F� G�

B� C� D�

A�

C� D�B�

E� F� G�

I�

A�

I�

H�

H�

Fig. 6. Example of prepTree, with the nodes in the cut shaded. All edges ore oriented
downwards. Dashed circles denote compound leaves. Left: Tree schedule. Right: the
resulting schedule dag.

We call a set V of nodes of a tree T a cut if every root-leaf path contains
exactly one node from V . In Algorithm prepTree, we use a function findCut
that gets a tree T (and a time parameter t, which is not relevant at this stage),
and returns a cut of T . In this section we do not specify the way findCut is
implemented: this will be done in Section 5.

The main tools we use in the algorithm below are the functions contract,
expand, and rrDag, defined as follows.

• The function T ′ = contract(T, V) receives a tree T and a cut V of T , and
returns a new tree T ′ in which each subtree of T rooted at a node v ∈ V is
represented by a single compound leaf.

• The function T = expand(T ′, V) is the inverse of contract: it receives a tree
T ′ and a set of compound leaves V in T ′, and returns the tree T which results

12

from expanding each compound leaf in V back to its original subtree.
• The function T ′′ = rrDag(T ′) converts a schedule tree T ′ into a round robin

dag T ′′ as follows. The nodes of T ′′ comprise a single root r, and its leaves
are exactly the leaves of T ′. There are no other nodes in T ′′. The important
things about T ′′ are its edges and their order: to define that, we compute the
full cycle C(T ′) of T ′ (this can be done, for example, by |C(T ′)| applications
of dispatch). We add |C(T ′)| edges outgoing from r to the leaves. The order
of the edges is defined by C(T ′): the first edge is connected to the node
corresponding to the first entry in C(T ′) etc. (see Figure 5 for an example).
The number of edges incoming into a a leaf in T ′′ is exactly the number of
times its corresponding client appears in C(T ′).

For formal details, see pseudo code in Figure 7.

Algorithm prepTree
Input: A schedule tree T , and time parameter t
Output: A schedule dag
Code:

V ← findCut(T, t)
T ′ ← contract(T, V)
T ′′ ← rrDag(T ′)
return expand(T ′′, V)

Fig. 7. Preprocessing procedure converting a schedule tree to a schedule dag. Algo-
rithm findCut is defined in Section 5.

It is straightforward to verify the correctness of algorithm prepTree.

The time and space complexity of the dags generated by prepTree are stated
in the following lemma.

Lemma 8 Let T be a schedule tree and suppose that for some t, we have that
findCut(T, t) = {v1, . . . , vk}. Let T1, . . . , Tk be the subtrees rooted at v1, . . . , vk,
respectively. Then the amortized running time of dispatch on prepTree(T, t) is
Θ(

∑k
i=1

1
β(vi)

H(Ti)). The space complexity of prepTree(T, t) is Θ(n+lcm {β(vi) | vi ∈ V }).

PROOF. The running time of dispatch is proportional to the depth of the
leaf it outputs. With probability 1/β(vi), this leaf is in Ti. The result follows
by noting that the average depth of Ti is H(Ti) by Theorem 6. The space
complexity is proportional to the size of the dag generated by prepTree, which
in turn is O(|T ′′| + n), since expansion doesn’t add any part of the tree more
than once. The size of T ′′ is the cycle length of T ′, which is lcm {β(vi) | vi ∈ V }
by Lemma 1. �

13

4.3 From amortized time to worst case time

In Section 4.1 we bounded the average running time of dispatch. Having a
low average time seems to be useful only if the worst-case running time is
still feasible. In this section we show that with O(n) additional preprocessing,
dispatch can be modified to run with worst-case time equal to the average
time, which is the best possible.

The algorithm is as follows. Without loss of generality, let us define a unit
time to be the worst-case time of an invocation of moveToken, i.e., the amount
of time it takes for dispatch to visit a node in a schedule dag. Let t̄ be the
average running time of dispatch on the input schedule dag. The modified
algorithm maintains a work-ahead FIFO buffer. In a pre-processing stage, the
algorithm runs a sequence of invocations of dispatch for a pre-defined number
of total time units: all client names that are output during these invocations
are enqueued in the buffer, and the last state in which the algorithm paused is
recorded. Then, in each scheduling time slot, Algorithm dispatch resumes its
operation from the last recorded state, and runs for t̄ time units. Again, this
may comprise more than one invocation, and the last state reached is recorded.
All outputs produced by dispatch during this operation are enqueued in the
buffer. In addition, in each scheduling time slot, the algorithm dequeues a
client identity from the head of the buffer and outputs it.

The only possible problem with the correctness of this approach is whether we
get “underflows,” i.e., situations in which the buffer is empty when it needs
to make an output. Clearly, underflows can be avoided if the initial buffer
is filled with the complete cycle—but this solution may be too expensive in
terms of space, defeating our original goal. Note, in addition, that even if
there are no underflows, it may be the case that during the operation of the
algorithm, the work-ahead buffer gets very large. Thus, the other difficulty is
space complexity : what is the size required by the work-ahead buffer to avoid
overflows.

The following lemma shows that both these difficulties can be easily solved.

Lemma 9 Let T be a schedule dag with n leaves. Let t̄ be the average number
of time units per time slot required by dispatch on T . Then for any l ∈ N, l
consecutive applications of dispatch on T required at most l · t̄ + 2n − 2 time
units and at least l · t̄ − (2n − 2) time units.

PROOF. Let V be a set of all non-root nodes of T . Consider l consecutive
applications of dispatch on T . For node v ∈ V let β(v) be a period that
is associated with node v, and let nv be a number of times that algorithm
visits v during l invocations. To prove the lemma, we use the following two

14

observations: First, note that the time that elapses during l invocations of
dispatch on T is

∑
v∈V nv. And second, we note that for all v ∈ V , in any l

consecutive invocations of dispatch, we have that⌊
l

β(v)

⌋
≤ nv ≤

⌈
l

β(v)

⌉
.

Hence, the time that elapses in l invocations of dispatch on T is at most

∑
v∈V

nv ≤
∑
v∈V

⌈
l

β(v)

⌉

<
∑
v∈V

(
l

β(v)
+ 1

)

= l · ∑
v∈V

1

β(v)
+ |V |

= l · t̄ + |V | .

Similarly,
∑

v∈V nv > l · t̄ − |V |. The lemma follows from the fact that |V |,
the number of non-root nodes in a schedule trees is at most twice the number
of leaves. For schedule dags, we compare it to the original schedule tree: the
number of leaves is the same in both, and the number of non-leaf nodes in
a schedule dag is no more than the number of non-leaf nodes in the original
tree. �

The consequence of Lemma 9 is twofold. First, the upper bound means that it
suffices to run the dispatch algorithm for 2n−2 steps in the pre-processing stage
to fill the work ahead buffer to avoid underflows, so long as we let dispatch run
t steps in each time slot. And secondly, the lower bound means that whatever
is the current state of the work-ahead buffer, the number of items it contains
will never increase by more than 2n − 2. Pseudo code for the full algorithm
is given in Figure 8, using the standard queue operations insertToTail that
inserts a new element at the tail of the queue, and removeFromHead that
removes the head element from the queue and returns it. To allow resumption
of an invocation, the algorithm maintains its current state using the variable
v. The only new detail in the implementation is the protection from overflows:
since we run the algorithm for �t̄� steps per time slot, we may be working too
much. To avoid that, we impose the restriction to stop inserting new items
when the buffer already contains 2n client identifiers.

We summarize with the following statement.

Lemma 10 Let T be an n-clients schedule dag produced by Algorithm prepTree,
and suppose that its size is S and its average running time is t̄. Then there

15

Input: A schedule dag T with n leaves, whose amortized running time is t̄
Output: A client at each time slot
Persistent state:

A FIFO buffer Q that can hold up to 2n client identifiers
a node pointer v

Code for Preprocessing:
c ← 0
v ← root(T)
while c < 2n do

v ← moveToken(v)
c ← c + 1
if v is a leaf then

insertToTail(Q, v)
v ← root(T)

fi
od

Code for Per-Slot Invocation:
c ← 0
while c < t̄ and |Q| < 2n do

v ← moveToken(v)
c ← c + 1
if v is a leaf then

insertToTail(Q, v)
v ← root(T)

fi
od
return removeFromHead(Q)

Fig. 8. The full dispatching scheme. Code for moveToken is given in Figure 4.

exists a dispatching algorithm for T with space O(S), worst-case time O(t̄),
and preprocessing time O(n).

In light of Lemma 10, let us refer to the size a schedule dag T as the space
complexity of T , and to the amortized running time of dispatch on T as the
time complexity of T .

5 Finding Good Cuts

In this section we show how to find cuts that will ensure dags with simulta-
neously low time and space complexities. We first describe a general solution
which is guaranteed to be close to optimal, and then we point out a few im-
portant special cases where we can bound simultaneously the time complexity
by a constant and the space complexity by a polynomial.

5.1 The bi-criteria optimization

The challenge in finding a good cut is to simultaneously reduce the average
time and space complexities. To do that, we represent the problem of finding
a good cut as a bi-criteria integer linear program. It turns out that a simple
rounding of the relaxed linear program suffices.

The integer program is based on representing numbers by their prime factor-

16

ization: Let pk denote the kth prime number. Then for a given number m, let
e1(m), e2(m), . . . be the unique integers such that m =

∏
k p

ek(m)
k . To represent

a node i in the tree whose period is β(i), we will use the numbers ek(β(i)).
Note that since the β values are already given as a product of node degrees,
all we essentially have to do to get this representation is to factor the degrees,
which can be done in time polynomial in n (since degrees in a tree are at most
n − 1).

We first present an integer program based on a given schedule tree T and a
parameter t. Let n be the number of leaves in T , and let m be the number of
nodes in T .

Variables: a variable xi for each node i in the tree, and a variable yk for each
prime smaller than n. (In the solution, xi = 1 if i is above or in the cut,
and xi = 0 otherwise; yk is the exponent of pk in the prime factorization of
the lcm of the nodes in the cut.)

Goal: Minimize the following quantity (pk denotes the kth prime).

∑
pk<n

yk log pk (1)

t≥
m∑

i=1

1

β(i)
· (1 − xi) (2)

yk ≥xi · ek(β(i)) for all 1 ≤ i ≤ m and all k s.t. pk < n (3)

xi ∈ {0, 1} for all 1 ≤ i ≤ m (4)

We using the following concept in the analysis of our cut-producing algorithms.

Constraints: Definition 11 Let T be a rooted tree and let {xi | i is a node in T}
be an assignment of real numbers to nodes in T . The assignment is called nor-
mal if for all nodes i we have xi ≤ xpar(i) and xi = xj for all siblings j of
i.

The connection between normal assignments and cuts is the following. Suppose
we are given a tree T with a normal assignment {xi} on its nodes, and we
are also given a real number θ. Then the set of nodes i with xi > θ such that
xj ≤ θ for all children j of i defines a cut of T . We first apply this idea to the
integer program above.

Lemma 12 Let T be a schedule tree, and let t be a parameter. Then a solution
to Eqs. (1–4) above finds a cut which defines a dag (by prepTree) with time
complexity t + 1 and space complexity that is minimal among all cuts with
running time t or less. Moreover, the expression in Eq. (1) is the logarithm of
that space complexity.

17

PROOF. Consider any solution to the program. We first claim that if β(j)
divides β(i) and xi = 1, then without loss of generality we may assume that
xj = 1. This follows from the fact that if β(j)|β(i), then ek(β(j)) ≤ ek(β(i))
for all k and therefore the constraints over xj (Eq. (3)) are satisfied even if
xj = 1. As a result of this claim, we may assume, without loss of generality,
that if xi = 1, then xpar(i) = 1 and xj = 1 for all siblings j of i. This means
that there exists an optimal solution in which the xi values are normal in the
sense of Def. 11 above. We can therefore define the cut to consist of all nodes
i with xi = 1 and such that all their children j (if exist) have xj = 0.

Next, note that from Constraint (3) we have that the target function (1) is
exactly the logarithm of the lcm of the periods of the nodes in the cut. Finally,
we claim that Constraint (2) means that the running time of dispatch on the
cut generated by this program is at most t + 1: this follows from the fact
the for any subtree T�, H(T�) =

∑
i∈T�

1
β(i)

. The extra time unit is due to the
fact that the root of each T� is one edge away from the root of T . The result
follows. �

Procedure findCut
Input: A schedule tree T and a time parameter t
Output: A cut of T
Code:

// Part 1: find fractional solution
For each node i, compute its period β(i) and the exponents of its prime factorization ek(β(i))
Solve the linear program of Eqs. (1–3, 5) (abort if infeasible)
// Part 2: normalize solution
for all nodes i do

xi ← max {xj | j is a node in a subtree rooted by either i or any of its siblings}
od
// Part 3: extract cut
L ← ∅
for all nodes i do

if xi > 1
2 and xj ≤ 1

2 for all children j of i (if exist)
then L ← L ∪ {i}

fi
od
return L

Fig. 9. Finding a cut using linear programming

To get a polynomial-time algorithm, we replace the integrality constraint
(Eq. (4)) with the following linear constraint:

0 ≤ xi ≤ 1 for all 1 ≤ i ≤ m (5)

We solve the resulting linear program. We then transform the solution into
a normal form. Finally, to get a cut, the real numbers obtained for xi are

18

rounded to the nearest integer (0 or 1). See Figure 9 for pseudo code. For this
procedure, we have the following result.

Theorem 13 The cut returned by findCut(T, t), when used by prepTree, de-
fines a schedule dag whose time complexity is at most 2t and space complexity
at most S2, where S is the minimal size for dags based on T with time com-
plexity at most t.

PROOF. The first part of the algorithm is just a relaxation of the integer
program. The next step is normalizing the solution. Clearly, after Part 2 of the
algorithm, the solution is indeed normal. Moreover, applying the same argu-
ments used in Lemma 12, we see that the solution remains feasible, and that
the value of the target function has not increased. Since the solution is nor-
mal, Part 3 of the algorithm produces a cut. The theorem follows from Lemma
12 and the following two additional observations regarding the rounding rule.
First, note that since each xi is at most doubled, the yk’s need only be at most
doubled to keep the solution feasible, and thus the space complexity (of which
Eq. (1) is the logarithm) is at most squared. And secondly, all the (1 − xi)
values are also at most doubled, and hence the running time (in Eq. (2)) is at
most doubled too. The relation to the optimal solution follows from Lemma
12 and the fact that the optimal fractional solution is at least as good as the
optimal integer solution. �

It is straightforward to reverse the order of optimization by fixing the space,
and minimizing the time: the linear program is as follows. Let S be a param-
eter.

Minimize
m∑

i=1

1

β(i)
· (1 − xi)

subject to:

log S ≥ ∑
pk<n

yk log pk

yk ≥xi · ek(β(i)) for all 1 ≤ i ≤ m and all k s.t. pk < n

Similarly to Theorem 13, it can be shown that using the above linear program
in procedure findCut results in a schedule dag with space complexity S2 and
time complexity which is at most twice the best possible for dags with space
complexity S.

19

5.2 Cuts with polynomial space and constant amortized time

While the algorithm is Section 5.1 finds the best cuts under the given condi-
tions, it is not readily clear what are the time and space parameters of these
cuts. In this section we prove, by explicit construction of cuts, that in many
cases the average time is constant and the space complexity is polynomial.

Consider the simple alternative algorithm for finding cuts, given in Figure 10:
Essentially, the idea is to add a node to the cut if its period is larger than
n and its parent period is smaller than n. Note that the parameter t used in
findCut is not used here.

Procedure findCut alt
Input: A schedule tree T with n leaves
Output: A cut of T
Code:

L ← ∅
for all non-root nodes i do

if (β(i) ≥ n and β(par(i)) < n) or (i is a leaf and β(i) < n) (β(i) is the period of i)
then L ← L ∪ {i}

fi
od
return L

Fig. 10. An alternative implementation of findCut

Let prepTree alt denote the algorithm prepTree where the call to findCut is
replaced by a call to findCut alt. It is easy to analyze the average running time
this algorithm yields for dispatch.

Lemma 14 Let T be any schedule tree with n leaves. Then the average time
complexity of dispatch when applied to the dag prepTree alt(T) is constant.

PROOF. By Lemma 8, the average running time is proportional to
∑k

i=1
1

β(vi)
H(Ti),

where {vi | 1 ≤ i ≤ k} is the set of nodes in the cut and Ti is the subtree rooted
at vi, for each i. Let ni denote the number of leaves in Ti. Note that

∑
i ni ≤ n.

Note further that by the code of findCut alt, for all nodes vi in the cut we have
that either β(vi) ≥ n, or else H(Ti) = 0 (the latter happens when vi is a leaf).
Hence the time complexity of dispatch when applied to the dag generated by
prepTree alt is proportional to

k∑
i=1

1

β(vi)
H(Ti)≤

k∑
i=1

1

n
H(Ti)

20

≤
k∑

i=1

1

n
· log ni

≤ 1

n

k∑
i=1

ni

≤ 1 .

�

The space complexity of the dags generated by cuts computed by prepTree alt
is more complicated to analyze. We offer here a proof of polynomial space for
few simple cases, which we believe to cover most practical applications.

The first case is trees with bounded degree.

Lemma 15 Let T be a schedule tree with n leaves and maximal degree ∆ for

some constant ∆. Then the size of the dag created by prepTree alt is nO(∆
ln ∆).

PROOF. Let V be a cut returned by findCut alt(T) and let β1, . . . , βk be
the periods of the nodes v ∈ V . Denote by P∆ the set of prime numbers not
larger than ∆. By Lemma 8 the size of the dag created by prepTree alt is
O (n + lcm(β1, . . . , βk)). Since degrees are bounded by ∆, we get that

lcm(β1, . . . , βk) =
∏

q∈P∆

qγq ,

for some integers γq ≥ 0. Let β = max {β1, . . . , βk}. Since qγq ≤ β for all
q ∈ P∆, it follows that

lcm(β1, . . . , βn) =
∏

q∈P∆

qγq ≤ β|P∆| ,

and hence, the size of the dag is O
(
n + β|P∆|

)
. Since β ≤ n∆ by the choice of

Algorithm findCut alt, and since by the Prime Number Theorem |P∆| ≈ ∆
ln ∆

,

we get that the size of the dag is O
(
n + (n∆)O(∆

ln ∆)
)

= nO(∆
ln ∆). �

We remark that the bound in Lemma 15 is the best possible in the following
sense: there exist trees with maximal degree ∆ such that the lcm of their leaves
is roughly Ω(n|P∆|).

21

T� T�2�

T�1�

V�V�

V�

{T�1�,T�2�}=decompose(T,v)�

T� T�1�

T�3�

T�2�

v�
w� w�

w�

v�

v�

{T�1�,T�2�,T�3�}=decompose(T,{v,w})�

Fig. 11. Example of decompose operation.

The next case we consider is level-uniform trees. Recall that in a level-uniform
tree, each level j is associated with a number dj such that each non-leaf node
in level j has exactly dj children.

Lemma 16 Let T be a level-uniform schedule tree. Then the size of maximal
period in the dag created by prepTree alt is O(n2).

PROOF. First, note that the least common multiple of all periods of nodes
in the cut returned by findCut alt is exactly the largest of these periods: this
follows immediately from the fact that the period of any node in level i divides
the period of any node in level i + 1. The lemma now follows from the fact
that the maximal period of nodes in the cut is bounded by n (by the choice of
findCut alt) times the maximal degree in the tree, which is at most n− 1. �

Finally, we consider various compositions of good cases. We use the following
definition (see example in Figure 11).

Definition 17 Let T be a schedule tree and let v ∈ T be a node. Then
decompose(T, v) is a pair T1, T2 of schedule trees where T1 is the subtree of
T rooted at v, and T2 = T − (T1 − {v}).

We use a natural extension of decompose, which receives a set V = {v1, . . . , vk}
of tree nodes, and applies decompose iteratively to get |V |+1 trees: first com-
pute (T1, T2) = decompose(T, v1). Then, if v2 ∈ T1, we define decompose(T, {v1, v2}) =
(T2, decompose(T1, v1)).

With this definition, we can now give a sufficient condition on schedule trees
for getting simultaneously constant running time and polynomial space. The
proof entails a generalized version of prepTree.

Lemma 18 Let T be a schedule tree with n leaves. Suppose that there exist a
number k and a set of nodes V such that each root-leaf path in T contains at
most k nodes from V . Let

{
T1, . . . , T|V |+1

}
= decompose(T, V), and suppose

that each Ti has a dag with constant running time and space polynomial in n.

22

Then there exists a schedule dag for T with size polynomial in n and running
time O(k).

PROOF. Consider the following preprocessing algorithm for T .

(1)
{
T1, . . . , T|V |+1

}
← decompose(T, V).

(2) For each i, let T ′
i denote the schedule dag with polynomial space and

constant running time, whose existence is guaranteed by the condition of
the lemma.

(3) Return the dag that results from T after replacing each Ti with T ′
i .

Obviously, the total space complexity
∑k

i=1 |T ′
i | is polynomial in n, since the

size of each T ′
i is polynomial by assumption, and since k ≤ n. For the running

time, consider an invocation of dispatch. At each time slot, dispatch descends
the dag from the root towards leaves, passing at most k different schedule
dags T ′

i . Descending each T ′
i takes constant time by assumption. The result

follows. �

Corollary 19 Let T be a schedule tree with n leaves. Suppose that there exist
a number k and a set of nodes V such that each root-leaf path in T contains at
most k nodes from V . Let

{
T1, . . . , T|V |+1

}
= decompose(T, V), and suppose

each Ti satisfies at least one of the following conditions.

(1) Ti has a bounded degree, or
(2) Ti is level-uniform, or
(3) Ti has O(log n) leaves.

Then there exists a schedule dag for T with size polynomial in n and running
time O(k).

PROOF. By Lemma 18, it suffices to show that each Ti has a schedule dag
with polynomial size and constant running time. Lemma 15 guarantees this if
condition 1 holds, Lemma 16 guarantees this if condition 2 holds, and Theorem
2 guarantees this if condition 3 holds. �

We remark that most tree construction algorithms (e.g., [19,2]), produce trees
that can be converted into linear-size, constant-time schedule dags, such as
binary trees, trees with maximal degree 3, and trees that consist of a root
whose children are roots of binary trees.

23

6 Conclusion

In this paper we considered the dispatching problem for perfectly periodic
schedules. By studying properties of the cycles length we showed that a simple
listing strategy may require exponential space. We gave a polynomial-space,
entropy-time algorithm for dispatching tree schedules. To make dispatching
even more efficient, we introduced the notion of schedule dags and showed
how to derive them from schedule trees while optimizing either the space
complexity for a given time complexity, or optimizing the time complexity
for a given space complexity. We showed that in many practical cases, the
time time complexity is constant and the space complexity is polynomial. We
do not know whether this is always the case, or whether there exist some
pathological examples where no constant-time, polynomial space dispatching
is possible. In any case, we believe that this work helps validating the thesis
that periodic scheduling in general, and tree scheduling in particular, can be
implemented effectively and efficiently.

Acknowledgments

We thank Simon Litsyn for useful discussions and Jim Anderson for pointing
to us the work on Pfair schedules.

References

[1] A. Bar-Noy, R. Bhatia, J. S. Naor, B. Schieber, Minimizing service and
operation cost of periodic scheduling, in: Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1998, pp. 11–20.

[2] A. Bar-Noy, A. Nisgav, B. Patt-Shamir, Nearly optimal perfectly periodic
schedules, Distributed Computing 15 (4) (2002) 207–220.

[3] R. Tijdeman, The chairman assignment problem, Discrete Mathematics 32
(1980) 323–330.

[4] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast disks: Data
management for asymmetric communications environments, in: Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data,
1995, 1995, pp. 199–210.

[5] Bluetooth technical
specifications, version 1.1., Available from http://www.bluetooth.com/ (Feb.
2001).

24

[6] S. Khanna, S. Zhou, On indexed data broadcast, in: Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC-98), New York,
1998, pp. 463–472.

[7] M. H. Ammar, J. W. Wong, The design of teletext broadcast cycles,
Performance Evaluation 5 (4) (1985) 235–242.

[8] M. H. Ammar, J. W. Wong, On the optimality of cyclic transmission in teletext
systems, IEEE Transaction on Communication COM-35 (1) (1987) 68–73.

[9] N. Vaidya, S. Hameed, Data broadcast: On-line and off-line algorithms.,
Technical Report 96-017, Department of Computer Science, Texas A&M
University (1996).

[10] N. Vaidya, S. Hameed, Log time algorithms for scheduling single and
multiple channel data broadcast, in: Proceedings of the 3rd Annual
ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM’97), 1997, pp. 90–99.

[11] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a
hard-real-time environment, Journal of the ACM 20 (1) (1973) 46–61.

[12] S. K. Baruah, N. K. Cohen, C. G. Plaxton, D. A. Varvel, Proportionate progress:
A notion of fairness in resourse allocation, Algorithmica 15 (1996) 600–625.

[13] A. Bar-Noy, B. Patt-Shamir, I. Ziper, Broadcast disks with polynomial cost
functions, in: Proceedings of the 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’00), Vol. 2, 2000, pp.
575–584.

[14] C. Kenyon, N. Schabanel, N. Young, Polynomial-time approximation scheme
for data broadcast, in: Proceeding of the 32th Annual ACM Symposium on
Theory of Computing (STOC-00), 2000, pp. 659–666.

[15] C. J. Su, L. Tassiulas, Broadcast scheduling for information distribution, in:
Proceedings of the 16th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’97), Vol. 1, 1997, pp. 109–117.

[16] W. Wei, C. Liu, On a periodic maintenance problem, Operations Research
Letters 2 (1983) 90–93.

[17] S. Anily, C. A. Glass, R. Hassin, The scheduling of maintenance service, Discrete
Apllied Mathematics 80 (1998) 27–42.

[18] T. M. Cover, J. A. Thomas, Elements of Information Theory., Wiley-
Interscience, New-York, 1991.

[19] V. Dreizin, Efficient periodic scheduling by trees, Master’s thesis,
Department of Electrical Engineering, Tel Aviv University, available from
http://www.eng.tau.ac.il/∼vld/Th.html (2001).

25

