
General Perfectly Periodic Scheduling∗

Zvika Brakerski Aviv Nisgav Boaz Patt-Shamir
zvika@eng.tau.ac.il aviv@eng.tau.ac.il boaz@eng.tau.ac.il

Dept. of Electrical Engineering
Tel Aviv University

Tel Aviv 69978
Israel

May 31, 2005

Abstract

In a perfectly periodic schedule, each job must be scheduled precisely every some fixed number
of time units after its previous occurrence. Traditionally, motivated by centralized systems, the
perfect periodicity requirement is relaxed, the main goal being to attain the requested average rate.
Recently, motivated by mobile clients with limited power supply, perfect periodicity seems to be
an attractive alternative that allows clients to save energy by reducing their “busy waiting” time. In
this case, clients may be willing to compromise their requested service rate in order to get perfect
periodicity. In this paper, we study a general model of perfectly periodic schedules, where each
job has a requested period and a length; we assume that m jobs can be served in parallel for some
given m. Job lengths may not be truncated, but granted periods may be different than the requested
periods. We present an algorithm which computes schedules such that the worst-case proportion
between the requested period and the granted period is guaranteed to be close to the lower bound.
This algorithm improves on previous algorithms for perfect schedules in providing a worst-case
guarantee rather than an average-case guarantee, in generalizing unit length jobs to arbitrary length
jobs, and in generalizing the single-server model to multiple servers.

1 Introduction

Consider a system that comprises a resource and several clients sharing it by means of time multiplex-
ing. In many application domains (e.g., real-time tasks, multimedia applications, communication with
guaranteed quality-of-service), clients need to be scheduled periodically at some prescribed rate with-
out preemption. Practically, this means that the time axis is divided into “slices” which are allocated
to clients. The allocation of slices to clients is governed by a scheduling algorithm: given a set of jobs
(corresponding to clients), each with its own length and requested period, the scheduling algorithm

∗An extended abstract of this work appeared in Proc. 21st Ann. ACM Symposium on Principles of Distributed Computing,
pages 163–172, Monterey, California, July 2002.

1

produces an assignment of time to clients, while trying to optimize two different measures:

• Approximation: a schedule is said to have good approximation if the average time between two
consecutive occurrences of the same job is close to the requested period of that job, according to
some given metric.

• Smoothness: a schedule is said to have good smoothness if the occurrences of each job are as
evenly spaced as possible (under some other given metric).

The metrics may vary according to the application at hand; in any case, it is clear that the best possible
approximation is achieved when the granted periods are exactly the requested periods, and the best
possible smoothness is achieved by perfectly periodic schedules, where each job is scheduled exactly
every p time units, for some p called the period of that job. Note that it is easy to optimize one
objective while neglecting the other: Approximation can be trivially achieved to any desired degree
by taking long intervals of time and partitioning them to contiguous blocks the lengths of which are
proportional to the requested bandwidth (the bandwidth of a job is its length divided by its period),
with some rounding. The longer the sequence is, the better the approximation that can be guaranteed;
but clearly, the longer the sequence is, the worse the smoothness becomes. At the other end of the
spectrum, we have the round-robin schedule, which disregards the requested periods. Round-robin
features the best possible smoothness, but obviously suffers from poor approximation. Most prior
work on periodic scheduling has concentrated on obtaining good approximation, while smoothness
was relaxed in various ways. In this paper, we explore the other extreme: we insist on maintaining
strict smoothness and try to achieve the best approximation under this restriction. That is, we consider
the case where the schedule must be perfectly periodic, but the granted periods may be different from
the requested periods. Our goal is to optimize the approximation measure under the perfect periodicity
constraint.

Perfect schedules are not always feasible if the requested periods may not be changed. Consider,
for example, a slotted time model, and suppose that one client requests period 2 and another requests
period 3. There is no way to satisfy both requests: the first client must occupy either all the even-
numbered slots or all the odd-numbered slots, but the second client must occupy some even-numbered
and some odd-numbered slots. It therefore follows that if perfect periodicity is sought, there are cases
where the periods granted will not match the requests. Moreover, it is NP-hard even to decide whether
a given set of requests allows a perfectly periodic schedule [6].

Despite their limitations, perfect schedules are attractive from several aspects, all arising from the
fact that they are very simple to describe mathematically: the schedule of a client is completely spec-
ified by only two numbers (period and offset). This inherent simplicity gives rise to several desirable
consequences; let us list a few.

Wireless communication with portable devices. One of the major power consumers in portable
networked devices is the transceiver, used for wireless communication. Power is a critical issue, since
a portable device may weigh only few grams, leaving very little room for batteries. Perfect periodic
schedules can significantly reduce the power requirement of a mobile client while it is waiting for its
turn: instead of “busy waiting” (i.e., constantly listening to the radio channel), the device can turn on

2

its radio exactly when its turn arrives. This feature exists in modern wireless technologies [13]. For
example, the Bluetooth standard [9] defines sniff mode, in which a device listens to the network only
at intervals defined in a strictly periodic fashion, allowing it to shut off its transceiver at other times.
Another example is broadcast disks [1], where a server continuously broadcasts a “database.” A client
that wishes to “read” an item in the database waits until that item is scheduled. If the schedule is
perfectly periodic, the client can trivially compute the next occurrence of the desired item. Moreover, if
the schedule is perfectly periodic, then “index pages” can be interleaved between the data items so that
a randomly arriving client does not need to continuously listen until its desired data page is broadcasted
[14, 18]. Index pages significantly reduce the active listening time of the client. No such scheme exists
for non-perfect schedules.

Fairness. Another, perhaps more abstract, motivation for perfect periodicity is that in time-sharing
systems, one of the main objectives of schedules is fairness: intuitively, fairness means that the number
of time slots client i waits should always be proportional to its average period. A social example of
the fairness requirement is the classical chairperson assignment problem [20], which can be illustrated
with the following example. A union of several states changes its chairperson every year. The schedule
should be fair: each state gets its share of chairing the union according to its size, say. However, the
schedule should also attain this fairness quickly: no state would agree to wait hundreds of years to get
its first term of chairing the union.

What constitutes a good solution? Several fairness criteria have been suggested. For example, in
some network models, each client i has two parameters (wi, ri), and the requirement is that in any time
window of length T ≥ wi, client i gets at least briT c time slots [10]. A stricter requirement is the prefix
criterion, where the requirement is that in any prefix of T slots, each client i gets either bαiT c or dαiT e
slots, where αi is the share allocated to client i [19]. Since the number of slots is integral, this seems to
be the best possible solution. Indeed, there exists a schedule that meets the prefix fairness requirement
[20]. Still, the gap between two occurrences of the same client could be as large as twice its average
gap. While this may be acceptable for some periodic tasks, such variability in the periodicity doesn’t
reduce the busy waiting time, thus defeating the goal of power saving in the wireless communication
scenario described above.

Our results. In a sense, the goal of this work is to determine the limits of perfect periodicity. Specifi-
cally, we study perfectly periodic scheduling under the worst-case approximation measure. We assume
that each job i has a requested period τi and a length bi, and the requirement is that the schedule must
allocate bi time units for each occurrence of that job in a perfectly periodic fashion. The quality of the
schedule is the maximum, over all jobs, of the period of the job in the schedule divided by its requested
period. We start by showing that the multiple-length case is inherently different from the unit-length
case (where bi = 1 for all i). We prove that, in contrast to the unit-length model, even if all lengths and
periods are powers of 2, there may be no perfect schedule that satisfies the requests without changing
the periods. It turns out that the ratio between the largest job length and the shortest job period is a key
quantity. Formally, we define the extent of a given set of requests J to be RJ

def= max{bi|i∈J}
min{τi|i∈J} . Our lower

bound shows that in some cases the best possible average ratio—and hence, the maximum ratio—of the

3

granted period to the requested periods cannot be better than essentially 1 + RJ . We then proceed to
develop algorithms with bounded approximation ratios, also expressed in terms of RJ . Specifically, we
first describe an algorithm called s&b that guarantees approximation factor of 1 + RJ , assuming that
the ratio between any two periods is a power of 2. Algorithm s&b is a technique that carefully “smears”
the jobs as evenly as possible on the time axis; analysis yields the stated approximation ratio. We then
describe an additional technique that can be applied to sets of schedules produced by Algorithm s&b:
intuitively, this is a technique that combines schedules by interleaving, but still allows us to bound the
approximation ratio in the combined schedule. Finally, in Section 6, we specify and analyze our general
algorithm, which uses techniques developed in previous sections to guarantee an approximation factor
of 1 + O(R1/3

J) for any instance (note that RJ ≤ 1, so R
1/3
J ≥ RJ). The latter algorithm extends to

the multiple server model, where m jobs can be served in parallel for some given parameter m. Our
algorithms also guarantee that no period is reduced too greatly. We prove that the approximation factor
of any job is never smaller than 1−O(R1/3

J).

Related work. Most previous work has concentrated on the weaker approximation measure of the
average ratio between the granted periods and the requested periods. In the average ratio, the weight
of each job is its bandwidth request, defined to be its length divided by its requested period. The work
most relevant to the current results is [5], where it is proved that if all jobs have a unit length, then there
exist schedules that guarantee that the average approximation ratio is 1 + O(R1/3

J). These schedules
use a hierarchical round-robin method called tree scheduling [4, 12]. The upper bounds in the current
paper improve on the algorithm in [5] by bounding the worst-case ratio (rather than the average ratio),
by allowing multiple lengths, and by considering multiple servers. The techniques we use here are not
dependent upon [5] (the constant factors hiding in the asymptotic notation are actually smaller here).

Early work on perfectly periodic schedules was motivated by teletext systems. In [2], Ammar and
Wong show that the optimal schedule for this problem is cyclic and give nearly-optimal algorithms
for the problem. The schedules they produce have an approximation factor of 2. Jones et al. [15]
propose a scheduling algorithm for operating systems that can be shown to be perfectly periodic, and
their approximation factor is 2 for general instances. Another variant of periodic scheduling is the
maintenance problem [3, 21]. In [3], Anily et al. give an optimal solution for the case where there are
only two jobs and give an approximation factor of 2 for the general case.

Minimizing the expected waiting time for broadcast disks has received much attention. This prob-
lem is equivalent to minimizing the average approximation ratio without the perfect periodicity require-
ment. For this setting, [6], Bar-Noy et al. give an approximation ratio of 9

8 . In their algorithm, the gaps
between consecutive occurrences of the same client can assume any of three distinct values (perfect
periodicity means that exactly one value is allowed). In [18], Khanna and Zhou distinguish between
waiting time, defined to be the total time until the client gets its requested item, and tuning time, defined
to be the time the client is active while waiting (busy waiting). Using perfect schedules and an indexing
scheme, they give a 1.5 + ε approximation to the average waiting time with a tuning time of O(log n).
In [17], Kenyon et al. give a polynomial-time approximation scheme to the broadcast disk problem.
The schedules they produce may not be periodic. All the broadcast disk results above assume all jobs

4

Instances:

• J : an instance of the problem.

• n: number of jobs (clients) in an instance.

• m: number of servers.

• ji: the ith job in an instance.

• bi: length (size) of ji.

• τi: requested period of ji.

• BJ
def= max {bi | ji ∈ J}: maximal length

(size) in instance J .

• TJ
def= max {τi | ji ∈ J}: maximal requested

period in instance J .

• tJ
def= min {τi | ji ∈ J}: minimal requested pe-

riod in instance J .

• RJ
def= BJ

tJ
: extent of instance J .

• βi
def= bi

τi
: requested bandwidth of ji.

• βJ
def=

∑

ji∈J

βi: total requested bandwidth in in-

stance J .

• ∆J
def= m − βJ : free (unrequested) bandwidth

of instance J .

Schedules:

• S: a schedule.

• τS
i : granted period of ji in schedule S.

• ρi
def= τS

i

τi
: individual ratio of ji in schedule S.

• CMAX(J, S) def= max {ρi | ji ∈ J}: MAX mea-
sure of instance J and schedule S.

Figure 1: Glossary of notation.

have unit length; Kenyon and Schabanel [16] study multiple lengths and prove an approximation ratio
of 3 for the average waiting time.

Non-perfect periodic scheduling with approximation ratio 1 is a classical issue in scheduling theory
[19, 21, 8]. For example, Liu and Layland [19] define periodic scheduling to be one where a job with
period τ is scheduled exactly once in each time interval of the form [(k−1)τ, kτ −1] for any integer k.
Baruah et al. [7] adopt Liu and Layland’s definition for periodic scheduling, but they try to minimize
jitter, which is a measure that quantifies the deviation from perfect scheduling.

Paper organization. The remainder of this paper is organized as follows. In Section 2 we formalize
the model and introduce notation. In Section 3 we prove a lower bound on the approximation ratio.
In Section 4 we present Algorithm s&b, which works if the ratio between any two periods is a power
of 2. In Section 5 we present Algorithms split and splice, which can be applied to schedules produced
by Algorithm s&b. Our main algorithm, called perfPeriodic, uses Algorithms s&b, split, and splice

as subroutines. It is presented in Section 6, along with its extension to the multiple server case, called
perfPeriodicM. Conclusions are presented in Section 7.

2 Problem Statement and Notation

We use many quantities in our study. To aid the reader, we have summarized most of the notation used
in this work in Figure 1.

5

Instances. An instance is a set of n jobs J = {ji = (bi : τi)}n
i=1, where bi is the size or length

of ji, and τi is the requested period of ji. We sometimes also refer to jobs as clients. The maximal
length of a job in an instance J is denoted by BJ

def= max {bi | ji ∈ J}. The maximal and minimal
values of the requested periods in an instance J are denoted by TJ

def= max {τi | ji ∈ J}, and tJ
def=

min {τi | ji ∈ J}. The ratio between BJ and tJ is called the extent of J , formally defined by RJ
def=

BJ
tJ

. For the single-server model, we assume that RJ ≤ 1 (otherwise, no schedule can satisfy the
requests of J). We usually omit the J subscript when it is clear from the context.

The requested bandwidth of a job ji is defined by βi
def= bi

τi
. We denote the total bandwidth of an

instance (set of jobs) J by βJ
def=

∑n
i=1 βi.

Schedules. A schedule S for an instance J is a set of start time sequences S = {I1, . . . , In}, where
each start time sequence is an infinite monotonic sequence Ii = 〈Ai1 , Ai2 , Ai3 , . . .〉. We say that job
ji is scheduled at time t if for some k, Aik ≤ t < Aik + bi. We assume that Aik+1

≥ Aik + bi for
all i and k. A schedule is called m-feasible if for all t, at most m jobs are scheduled at time t. The
parameter m is called the number of servers. Note that if βJ > m, where m is the number of servers,
there is no m-feasible schedule for the instance. The free bandwidth of an instance J is defined by
∆J

def= m− βJ . For most of this paper, we consider the single server case, i.e., m = 1. A schedule S

is said to be perfectly periodic (or just perfect for short) if for each job ji there exists a granted period
τS
i such that for all k ≥ 1, Aik+1

= Aik + τS
i . Note that the granted periods may be different from the

requested periods, but the job lengths cannot be truncated by the schedule.

Performance measure. Given an instance J with schedule S, we define the individual ratio of a job
ji in S to be ρi

def= τS
i
τi

. In this paper we evaluate the quality of S with respect to J using the worst-case

individual ratio. Formally, CMAX(J, S) def= max {ρi | ji ∈ J} .

Slotted and unslotted models. The model presented above is for unslotted schedules, where the job
lengths, period, and start times may be any positive real numbers. In slotted schedules, all jobs have
positive integer lengths, and all jobs start at integer times (and thus have integer periods). All algorithms
presented in this paper have both slotted and unslotted versions.

3 A Lower Bound on the Approximation Factor

We start with a simple result that shows that in some cases it is impossible to find a schedule where the
ratio between the requested periods and the granted ones is less than 1 + R − O(1

t), where R is the
extent of the instance. This result holds for any given values of B (the maximal job length) and t (the
shortest requested period), provided they are larger than 1. In particular, it holds even in the special
case where all job lengths and requested periods are powers of 2. This should be contrasted with a
unit-length model (where the length of all jobs is one unit), in which it is trivial to (optimally) schedule
a set of jobs if all requested periods are powers of 2. The schedule used in the proof is meaningless
in a uniform-length model. In other words, the bad example below exposes an inherent discrepancy
between the uniform-length and the multiple-length models.

6

jtji ji

time

ti,1 ti,2 ti,3

S
iτ

t

Figure 2: Illustration of the quantities in the construction used for the lower bound proof.

To strengthen the negative result, rather than considering the worst-case ratio, we first prove the
lower bound on the weaker measure of average ratio, defined by

CAVE(J, S) def=
1
βJ

n∑

i=1

βiρi =
1
βJ

n∑

i=1

bi · τS
i

τ2
i

.

Obviously, for any instance J and schedule S, we have CAVE(J, S) ≤ CMAX(J, S).

Theorem 3.1 For any given numbers B, t ≥ 1, there exists an instance J with maximal job size B and
minimal requested period t such that for all schedules S for J , we have CAVE(J, S) > 1+RJ− 2+RJ

t .

Proof: Define an instance J with t− 1 “short” jobs and one “long” job as follows: the short jobs have
bi = 1 and τi = t for i = 1, . . . , t − 1; and the long job jt has bt = B, τt = Bt. (We note that t

and B need not be integers.) Clearly, the minimal period is t and the largest size is B. Consider any
schedule S for J , and let τS

i denote the granted period of job ji under S. Then, by definition and the
construction above, and since βJ = 1, we have

CAVE(J, S) =
t∑

i=1

bi

τ2
i

· τS
i =

t−1∑

i=1

1
t2
· τS

i +
τS
t

Bt2
>

1
t2

t−1∑

i=1

τS
i . (1)

We now bound the latter sum. Consider a time t in which the long job jt starts, and consider, for any
other job ji, the time interval between two consecutive occurrences of ji which contains t. This interval
has length τS

i by definition. Partition it into three parts (see Figure 2): the start of ji until t; t until the
start of the job following jt; and the start of the job following jt until the start of ji. Denote the lengths
of these sub-intervals by ti,1, ti,2 and ti,3, respectively. By definition, we have τS

i = ti,1 + ti,2 + ti,3,
and ti,2 = B. Hence

t−1∑

i=1

τS
i =

t−1∑

i=1

(ti,1 + ti,2 + ti,3) =
t−1∑

i=1

ti,1 + (t− 1)B +
t−1∑

i=1

ti,3 . (2)

The key observation is that
∑t−1

i=1 ti,1 ≥ t(t−1)
2 . This is true since the short jobs j1, . . . , jt−1 must

occupy at least t− 1 time units prior to t. Similarly,
∑t−1

i=1 ti,3 ≥ (t−1)(t−2)
2 . Thus we get from Eq. (1)

and Eq. (2) that

CAVE(J, S) >
1
t2

(
t−1∑

i=1

ti,1 + (t− 1)B +
t−1∑

i=1

ti,3

)

≥ 1
t2

(
t(t− 1)

2
+ (t− 1)B +

(t− 1)(t− 2)
2

)

=
(

1− 1
t

)(
1 +

B

t
− 1

t

)
.

7

A slightly stronger bound can be proved for the worst-case ratio.

Theorem 3.2 For any given numbers B, t ≥ 1, there exists an instance J with maximal job size B and
minimal requested period t such that for all schedules S for J , we have CMAX(J, S) ≥ 1 + RJ − 1

t .

Proof Sketch: Use the same construction as above; observe that for the last distinct short job ji0

scheduled after t, we have ti0,3 ≥ t− 2. Since ti0,1 ≥ 1 by definition, the result follows.

We note that the lower bounds of this section hold only for the single-server case (m = 1). We
also note that it is straightforward to extend the latter bound to the case of any given total bandwidth
β > 1/t, showing a lower bound of essentially β + R instead of 1 + R. We omit the (straightforward)
details.

4 The Scale & Balance Algorithm

In this section we present a basic technique for periodic scheduling with multiple lengths, which works
when the ratio between any two requested periods is a power of two. The algorithm works by spreading
the jobs as evenly as possible; since perfect balancing is not always possible, some extra bandwidth is
needed—either in the original instance or by scaling up the periods. The algorithms are presented in
the unslotted model and then extended to the slotted model.

It has been recently brought to our attention that Algorithm bal (presented in Section 4.1 below) is
similar to the algorithm proposed by Jones et al. in [15]. We note, however, that no mention of perfect
periodicity is made in [15], and no analysis (or formal statement) is offered there.

4.1 Algorithm bal

We start with Algorithm bal, which works if there is sufficient free bandwidth and if the ratio between
any two requested periods is a power of 2. Recall that T and t denote the longest and shortest periods in
the instance, respectively. The algorithm is given a parameter t∗ ≤ t, such that t/t∗ is a power of 2. The
algorithm constructs T/t∗ “bins,” and distributes job start times in these bins in a balanced way. The
balancing is done recursively, using a complete binary tree with T/t∗ leaves. (The parameter t∗, which
controls the “resolution” of the algorithm, helps to coordinate different invocations of the algorithm;
the reader may find it convenient to assume t∗ = t for now.)

More precisely, the algorithm works as follows (see pseudo-code in Figure 3 and an example of
an execution in Figure 4): We associate with each node in the tree a set of “job parts,” where each job
part is derived from a job in the original instance, but has its own period (which may be larger than the
original period). In Step 1, we associate with the root a job part for each job in the instance, where the
period of the job part is exactly the requested period. The algorithm then proceeds recursively. In Step
2, the set of job parts of a node is used to create a set of job parts for each of its children; a job part
with a less than maximal period is added to both children with its period doubled, and a job part with a
maximal period is added to the least loaded child.

8

Algorithm bal

Input: Instance J , parameter t∗.
Output: Schedule S.
Code:

(1) Create a complete binary tree of 1 + log T
t∗ levels. For each job ji ∈ J with requested period τi,

add a job part with associated period τi to the root.

(2) Traverse the tree, starting from the root (either depth-first or breadth-first). In each visited non-
leaf node v, scan all job parts of v in increasing “l” order. For each scanned job part p, let j(p)
denote the original job of p, and let τp denote the period associated with p:

(2a) If τp < T , add a job part of j(p) with associated period 2 · τp to each child of v.

(2b) If τp = T , add a job part of j(p) with associated period T to the child of v whose current
set of job parts has less total bandwidth (the bandwidth of a node is the sum, over all its job
parts, of the job length divided by the period of the job part). In case of a tie, add the job
part to the left child.

(3) Scan the leaves left-to-right. For each leaf `:

(3a) Output the job parts associated with ` in increasing l order.

(3b) Let w` be the sum of lengths of job parts in `. Output (t∗ − w`) additional idle time units.

Figure 3: Algorithm bal.

The order in which nodes are visited does not matter, but it is crucial that within a node job parts are
scanned in a particular order which we denote “l”. Specifically,l orders job parts by their original re-
quested period, with ties broken by index. Formally, given job parts ji and jk whose original requested
periods are τi and τk respectively, we say that ji l jk if either τi < τk, or if τi = τk and i < k. Note
that the order between job parts depends only on their original jobs, and not on the particular job part
at hand.

Finally, in Step 3, the algorithm “pads” each leaf with idle time so as to make all leaves have a
length of exactly t∗ time units, and outputs the resulting schedule.

The main properties of Algorithm bal are summarized in the following theorem. Recall that ∆J ,
the free bandwidth of instance J , is defined for the single-server case by ∆J = 1 − βJ and that the
extent of instance J is defined by RJ = BJ

tJ
.

Theorem 4.1 Let J = {ji = (bi : τi)}n
i=1 be an instance with free bandwidth ∆ such that ∆ ≥ R t

t∗ ,
where t∗ = t/2e for some integer e ≥ 0. Suppose further that for all jobs ji ∈ J , we have τi = 2eit for
some non-negative integer ei. Then Algorithm bal with parameter t∗ outputs a periodic schedule for J

where the granted period of each job ji is τi.

Note that ∆ ≥ R t
t∗ = B

t∗ implies that t∗ ≥ B.

Proof: Given any node x, let hx denote its height (distance from the leaves), let βx denote the total
bandwidth of the job parts associated with x, and define ∆x = t∗

T 2hx − βx.

9

)28:2(

)28:1(

)28:1(

)14:1(

)14:1(

)14:2(

)7:1(

)7:1(

=
=
=

=
=
=
=
=

h

g

f

e

d

c

b

a

)28:1(""

)28:1(""

)28:1(""

)28:2(""

)14:1(""

)14:1(""

=
=
=
=
=
=

g

e

d

c

b

a

)28:2(""

)28:1(""

)28:1(""

)28:1(""

)28:2(""

)14:1(""

)14:1(""

=
=

=
=
=
=
=

h

f

e

d

c

b

a

)28:1(""

)28:2(""

)28:1(""

)28:1(""

=
=
=
=

f

c

b

a

idle×2

)28:2(""

)28:1(""

)28:1(""

)28:1(""

)28:1(""

=
=
=
=
=

h

e

d

b

a

idle×1

)28:1(""

)28:2(""

)28:1(""

)28:1(""

=
=
=
=

g

c

b

a

idle×2

)28:1(""

)28:1(""

)28:1(""

)28:1(""

=
=
=
=

e

d

b

a

idle×3

__,,,,, fccba _,,,,, hhedba __,,,,, gccba __,_,,,,, edba

__,_,,,,,_,_,,,,,_,,,,,,_,_,,,,,: edbagccbahhedbafccbaCycle

Figure 4: Example of running Algorithm bal with parameter t∗ = t = 7. In this instance, β = 5
7 and

R = 2
7 . The alphabetical order of jobs complies with their l order. A name in quotes “x” represents a

job part of original job x. Actual jobs appear only in the root of the tree. In the final cycle, a job x of
length 2 is represented by xx.

10

We start by proving that the algorithm is well-defined. The only problem might be in Step 3b, so
we need to prove the following:

Lemma 4.2 For any leaf `, ∆` ≥ 0.

Proof: First we claim that if y1 and y2 are children of an internal node x, then

min(∆y1 , ∆y2) ≥
∆x − B

T

2
. (3)

To see that Eq. (3) is true, let us assume, without loss of generality, that ∆y1 ≥ ∆y2 . By specification
of Algorithm bal, βy2 − βy1 ≤ B

T , since the children may differ at most by the maximal bandwidth of
a single job part, whose period must be T . Hence

∆y1 −∆y2 ≤
B

T
. (4)

Also, since βx = βy1 + βy2 , we know that

∆y1 + ∆y2 = ∆x . (5)

Combining Eq. (4) and Eq. (5) yields Eq. (3).

Now let ` be any leaf. We prove that ∆` ≥ 0. Let r denote the root of the tree. For any node x, let
p(i)(x) denote the ith ancestor of x in the tree, i.e., the node at distance i from x on the path from x to
r. Applying Eq. (3) i times, we get

∆` ≥
∆p(i)(`)

2i
− B

T

i∑

k=1

1
2k

. (6)

Eq. (6) holds any for i ≤ log(T/t∗). Hence, using the assumption that ∆r ≥ R t
t∗ , and plugging

i = log(T/t∗) in Eq. (6), we conclude that

∆` >
t∗

T
·∆r − B

T
≥ t∗

T
· B

t
· t

t∗
− B

T
= 0 .

Next, we prove that Algorithm bal produces perfectly periodic schedules. For any job ji and any node
x in the tree that contains a part of ji, define Px(i) to be the set of job parts in x that precede the part of
ji by the l order. (Px(i) is uniquely defined, since a node contains at most one part of each job.) The
following lemma captures the key property we need to prove perfect periodicity.

Lemma 4.3 Let x, y be any two nodes at the same level of the tree, such that both x and y have a job
part of the same job ji. Then Px(i) = Py(i).

Proof: This property follows from the ordered and deterministic nature of Step 2 of Algorithm bal.
Formally, we argue by induction on the distance d of x and y from the root r. The base case is d = 0,
i.e., x = y = r and the result is trivial. For the inductive step, suppose d > 0 and let x′ and y′ denote
the parents of x and y, respectively. The inductive hypothesis is that Px′(i) = Py′(i). Observe that the
members of Px′(i) are distributed among the children of x′ in exactly the same way they are distributed
among the children of y′, since the assignment of a job part to a child depends only on the job parts
that precede it in the l order.

11

If x and y are both right children or are both left children, the result follows. Otherwise assume,
without loss of generality, that x is a left-child and y is a right-child and denote y’s left-sibling by
y∗. Then there is a job part of ji in y∗ (since the dispatch scheme in x′, y′ is identical when ji is
scheduled); and, furthermore, Px(i) = Py∗(i) by the same argument we used for the case when both
are left children. Since job parts of ji are scheduled in both children of y′, then τp < T for all jobs in
Py′(i) and therefore Py(i) = Py∗(i), and the result follows in this case.

Clearly, Lemma 4.3 implies that the offsets of all parts of a job are the same within each node that
contains them. Since the length of all nodes is equalized in the final schedule by Step 3b, all we need
to complete the proof of perfect periodicity is to argue about the set of nodes that contain the parts of a
job.

Lemma 4.4 Assume that the nodes in a level of the tree are numbered consecutively from left to right.
Suppose that a part of job ji is in node k at level d, and that τi = T/2ei for some integer ei ≥ 0.
Then

(1) If d ≤ ei then each node at level d contains a part of ji.

(2) If d ≥ ei, then each node k′ at level d satisfying k′ ≡ k (mod 2d−ei) contains a part of ji.

Proof: The first part of the lemma follows from the fact that the period associated with job parts of ji at
level d < ei is τi2d < T and therefore each of their children contains a part of ji. For the second part,
we use induction on d. The base case d = ei follows from the first part of the lemma. For the inductive
step, assume that the lemma holds for level d and consider level d+1. Let k0, k1 be the numbers of any
two nodes that contain job parts of ji at level d. Since d ≥ ei, the period of these job parts is T , and
exactly one of the children of k0 and k1 will have a job part of ji. Let us denote these children k′0 and
k′1, respectively. To complete the induction step, it is sufficient to prove that |k′0− k′1| = 2|k0− k1|. To
see that this is true, note that by the algorithm, the assignment of the job part of ji to a child of k0 and
of k1 depends only on Pk0(i) and Pk1(i), respectively. Therefore, according to Lemma 4.3, either both
k′0 and k′1 are left children or they are both right children, and hence |k′0 − k′1| = 2|k0 − k1|.

Lemmas 4.3 and 4.4 together imply that the schedules produced by Algorithm bal are perfectly
periodic. Moreover, since the total time allocated for each leaf is t∗ time units, Lemma 4.4 implies that
the granted period of each job ji is precisely τi.

4.2 Algorithm s&b

Algorithm bal requires sufficient free bandwidth, which can be provided by scaling all periods appro-
priately. This is the only new idea in Algorithm s&b, whose pseudocode is presented in Figure 5.
The only requirement left for s&b is that the periods be powers of 2 times a common factor. As with
Algorithm bal, Algorithm s&b takes a parameter t∗.

Theorem 4.5 Let J = {ji = (bi : τi)}n
i=1 be an instance, and assume that there exists a real number

c > 0 and some nonnegative integers e1, . . . , en such that τi = c · 2ei for all i. If t∗ = t/2e for some
integer e ≥ 0, then Algorithm s&b with parameter t∗ finds a periodic schedule for J with approximation

12

Algorithm s&b

Input: Instance J , parameter t∗.
Output: Schedule S.
Code:

(1) Let f = β + R t
t∗ , and let τ ′i = f · τi for each requested period τi.

(2) Execute Algorithm bal with requested periods τ ′i and parameter f · t∗.

Figure 5: Algorithm s&b.

ratio β + R t
t∗ .

Note that in Algorithm s&b, t∗ is not bounded from below by B as in Algorithm bal.

Proof: Denote f = β + R t
t∗ , and R∗ = R t

t∗ . Then f = β + R∗, the bandwidth of the instance passed

to bal is β′ def= β
β+R∗ , and the extent of that instance is R′ def= R

β+R∗ . Therefore, the free bandwidth of
the instance submitted to bal is

1− β′ =
R∗

β + R∗ = R′R
∗

R
= R′ t

t∗
,

and the bandwidth requirement for Algorithm bal is satisfied. Since the scaling does not change the
ratios of requested periods, the result follows from Theorem 4.1 when applying Algorithm bal with
argument f · t∗.

4.3 Slotted Versions for Algorithms bal and s&b

To derive slotted versions for Algorithms bal and s&b, all that needs to be done is to replace the padding
done in Step 3b in Algorithm bal by an integer value. Specifically, we add bt∗c − w` idle time slots
(instead of t∗ − w` idle time). Recall that we require that ∆ ≥ R t

t∗ and therefore t∗ ≥ B ≥ 1. We
refer to the modified algorithm as Algorithm bals. With this slight modification, we have the following
result:

Theorem 4.6 Let J = {ji = (bi : τi)}n
i=1 be an instance with free bandwidth ∆ such that ∆ ≥ R t

t∗ ,
where R = B

t , t = min {τi} and t∗ = t/2e for some integer e ≥ 0. Suppose further that for all jobs
ji ∈ J , we have τi = 2eit for some non-negative integer ei. Then Algorithm bals with parameter t∗

produces a periodic schedule for J where the granted period of each job ji is τi
bt∗c
t∗ ≤ τi.

The proof is identical to the proof of Theorem 4.1, with the additional observation that we can always
round the schedule lengths down, since all job lengths are integral.

Using Algorithm bals in Algorithm s&b yields a slotted version of Algorithm s&b (referred to as
Algorithm s&bs), for which we have the following result:

Theorem 4.7 Let J = {ji = (bi : τi)}n
i=1 be an instance, and assume that there exists a real number

c > 0 and some non-negative integers e1, . . . , en such that τi = c · 2ei for all i. If t∗ = t/2e for some
non-negative integer e, then Algorithm s&bs with parameter t∗ finds a periodic schedule for J with
approximation ratio bft∗c

t∗ ≤ f , where f = β + R t
t∗ .

13

The proof is identical to that of Theorem 4.5, with Theorem 4.1 being replaced by Theorem 4.6.

5 Separable Schedules

In this section we develop an additional technique we can apply to the schedules generated by Al-
gorithm s&b. Informally, the idea is to take a few such schedules, cut them into pieces called bins,
and interleave these bins in a round-robin fashion. The period of a job will be multiplied by a factor
inversely proportional to the size of the bins.

It is convenient to define an abstract concept we call Separable Schedules. In this section, we first
define separable schedules, show that the schedules generated by s&b are separable, and then specify
and analyze the operations split and splice that can be applied to separable schedules. We use these
operations in Section 6 as subroutines.

Definition 5.1 A schedule S is called separable if S can be partitioned into equally sized time intervals
called bins, such that the following conditions are satisfied.

(1) Each job appears at most once in each bin.

(2) Each occurrence of a job that starts in some bin z ends in bin z.

(3) For all jobs ji: all bins that contain ji have exactly the same schedule up to and including ji.

(4) If a job appears in bin k and in bin k + l, then it also appears in bin k + il for all integers i.

The following property is a direct consequence of Properties 3 and 4:

Lemma 5.1 A separable schedule is perfectly periodic.

It is straightforward to see that the schedules produced by Algorithm s&b are separable. The
following lemma states the exact parameters.

Lemma 5.2 Let J be an instance, and let t∗ = t/2e for some integer e ≥ 0. Then Algorithm s&b with
parameter t∗ produces a separable schedule with bin size t∗β + B.

Proof: Consider the schedule generated by s&b. Each leaf corresponds to a bin. The bin size is
therefore f · t∗ =

(
β + R t

t∗
) · t∗ = βt∗ + B. Property 1 of Definition 5.1 follows from Step 2 of

Algorithm bal. By construction, at most one job part of any job is distributed to each node of the tree
and therefore to each leaf. Property 2 follows from Lemma 4.2. Since we can add non-negative idle
time in Step 3b, then any job that starts in some leaf ends in that leaf. Property 3 follows from Lemma
4.3. Property 4 follows from the fact that the granted periods of all jobs are a multiple of the bin size.

5.1 Algorithm split

We now present Algorithm split, whose pseudo code is given in Figure 6. Algorithm split takes a
separable schedule and splits each of its bins into p bins, where p is an input parameter. The split is

14

Algorithm split

Input: Separable schedule S with bin size w, integer p > 0, parameter B∗ ≥ B.
Output: Schedule S′.
Code:

(1) Repeat for each bin z of S:

(1a) Let current← 0.

(1b) Do p times:

• Create a new bin z′ of S′. Add to S′, in order, all jobs whose start time in z is between
current and current+ w/p.

• Let current be the finish time in z of the last job added to z′.
• Add idle time units to z′ as needed to make its total length exactly w/p + B∗ time

units.

Figure 6: Algorithm split.

done bin-by-bin, as the example in Figure 7 shows. The result is another separable schedule, as stated
in the following lemma.

Lemma 5.3 Let S be a separable schedule with bin size w. Then for any given positive integer param-
eter p and for any parameter B∗ ≥ B, Algorithm split outputs a separable schedule S′ with bin size
w
p + B∗ such that τS′

i = (1 + pB∗
w)τS

i .

Proof: First we show that S′ is separable. Since S is separable, no job can appear in a bin of S′ more
than once, and Property 1 of Definition 5.1 is satisfied. By the code of Algorithm split, each job finishes
in the same bin it started in, and Property 2 is satisfied. Now, consider a job ji in a bin z of S when z

is split into bins of S′. Note that if ji is assigned to the kth bin of S′, it will be assigned to the kth bin
of S′ in all bins of S in which it appears, because the jobs preceding ji in the bins of S are the same
by Property 3 of S, and because the association of jobs with bins of S′ is performed by order of start
times. Furthermore, this also means that Property 3 holds for S′. Combined with Property 4 of S, this
claim also proves Property 4 for S′: since job ji always appears in the kth bin part of its bin in S, and
the bins of S it appears in are periodic, then the bins of S′ where ji appears are also periodic.

Next, we analyze the periods of jobs in S′. First, note that the period of each job in a separable
schedule is a multiple of the bin length. So consider a job whose period in S is τS

i = k · w for some

w

B
3=p

Split

1 2 3 4 5 6 7 8 9 10 11 12

B3
w

1 2 3 4

3
w B

5 6 7 8

B3
w

9 10 11 12

Figure 7: Example of Algorithm split with parameters p = 3, B∗ = B.

15

Algorithm splice

Input: Separable schedules S1, . . . , Sk.
Output: Merged schedule S.
Code:

(1) Output the round-robin schedule of bins: the first bin in S1, followed by the first bin in S2, and
so on, until the first bin in Sk, and then the second bin in S1, etc.

Figure 8: Algorithm splice.

positive integer k. Its period in S′ is τS′
i = k · p ·

(
w
p + B∗

)
=

(
1 + pB∗

w

)
τS
i since each bin of size

w was split into p bins of size w
p + B∗.

Slotted version. Algorithm split is described above in the unslotted model. A slotted version of
Algorithm split is obtained by truncating the bin size of the new schedule to

⌊
w
p + B∗

⌋
. The new

period in the slotted model is τS′
i = p

w

⌊
w
p + B∗

⌋
τS
i ≤ (1 + pB∗

w)τS
i , so the approximation factor may

only improve. The lemma below shows that perfect periodicity is also maintained.

Lemma 5.4 Let J = {ji = (bi : τi)}n
i=1 be an instance such that bi and τi are integers for all i, and

let S be a separable schedule with bin size w for J . Then truncating each bin of S to length bwc gives
a separable schedule S′ with τS′

i = bwc
w τS

i ≤ τS
i for all ji ∈ J .

Proof: ¿From the integrality of the input and from Property 3 in Definition 5.1, it follows that truncating
the bins produces a feasible schedule of J . This is because in each bin of S there are jobs of integral
length followed by (possibly) idle time; truncating the bin size thus to the nearest integer keeps all jobs
in the bin. The new schedule S′ complies with Definition 5.1 since the bins of S′ contain the same jobs
as the bins of S in the same order.

¿From Properties 1 and 3 of Definition 5.1 it follows that τS
i /w is integral for any ji. In S′, the

period of ji is τS′
i = τS

i
w · bwc, since the length of a bin is now bwc and the offset within the bin remains

unchanged. Therefore τS′
i

τS
i

= bwc
w .

5.2 Algorithm splice

Algorithm splice (whose trivial pseudocode is presented in Figure 8) merges k separable schedules into
a single, perfectly periodic (but not necessarily separable) schedule. Since the input is presented as a set
of separable schedules, the action of Algorithm splice is just to produce the bins of these schedules in a
round-robin fashion. For perfect periodicity to be maintained, it is important that the merged schedules
have disjoint job sets. The periods of jobs are multiplied by a factor inversely proportional to the size
of their original bins.

Lemma 5.5 Let S1, . . . , Sk be separable schedules with bin sizes w1, . . . , wk, respectively. Assume
that no job appears in more than one of the schedules. Then Algorithm splice outputs a perfectly

16

Algorithm perfPeriodic

Input: Instance J = {ji = (bi : τi)}n
i=1, parameters k, L.

Output: Schedule S.
Code:

(1) Round the requested periods up to the next powers of 2
1
k . Formally, let τ ′i ← 2

1
k
dk log(τi)e.

(2) Partition the jobs into k classes G0, . . . , Gk−1 according to their τ ′ values: Job ji is in G` if
τ ′i = 2e+ `

k for some integer e.

(3) Let t′ ← min {τ ′i | ji ∈ J}. Let `∗ be such that G`∗ 3 ji for some job ji with τ ′i = t′.
Define t0 ← t′ · 2−`∗/k.
Define t` ← t0 · 2`/k for ` = 1, . . . , k − 1.

(4) Apply Algorithm s&b to each class G` using parameter t`. Let S` denote the resulting schedule
for class G`.

(5) Apply Algorithm split to each schedule S`, using parameters p` =
⌈
L · 2`/k

⌉
, B∗ = B.

(6) Apply Algorithm splice to the k schedules produced in Step 5, and output the resulting schedule.

Figure 9: Algorithm perfPeriodic.

periodic schedule S such that for all ji ∈ S` we have τS
i = W

w`
τS`
i , where W =

∑k
`=1 w`.

Proof: Let ji be some job of S`. The period of ji in S` is τS`
i = q · w` for some integer q. This means

ji appears every qth bin of S`, with the same offset in every bin. In the merged schedule S, a bin of
ji appears every W time units and the bins appear in order. Therefore, a bin in which ji appears is
scheduled every q ·W time units in S, and hence τS

i = W
w`
· τS`

i . Since this holds for every job ji, S is
perfect.

6 An Algorithm for General Instances

In this section we present our general algorithm for the worst case ratio measure. We first present the
single server case in Section 6.1, and then explain how to generalize it to multiple servers in Section
6.2. Our bounds are expressed in terms of the requested bandwidth β and the extent R in the instance,
and in terms of several parameters which we fix later.

6.1 Algorithm for The Single Server Model

Algorithm perfPeriodic, whose pseudocode is presented in Figure 9, is stated using parameters k and
L. The exact value of these parameters is determined later. Roughly speaking, the algorithm works as
follows: First, the requested periods are rounded to the next power of 21/k, thereby partitioning the jobs
into k classes, where the periods differ in each class only by a factor which is a power of two. For each
class, we apply Algorithm s&b with a parameter which is essentially the smallest period in all classes

17

(which is why that parameter was needed in the first place). The parameter needs to be adjusted by the
appropriate multiple of 21/k. Then each of the k schedules produced by Algorithm s&b is submitted
to Algorithm split, which splits each of its bins into roughly L bins (again, adjusted by the appropriate
multiple of 21/k). Finally, all the small bins are merged back together using Algorithm splice.

Combining all the bounds and performing some algebraic manipulations, we arrive at our nearly
final result. The following result not only bounds the approximation factor but in fact also bounds all
individual ratios from above and below. Recall that the individual ratio for job ji in a schedule S is
defined by ρi

def= τS
i
τi

.

Theorem 6.1 Let J = {ji = (bi : τi)}n
i=1 be an instance of periodic scheduling with total requested

bandwidth βJ and extent RJ . Let S be the schedule produced by Algorithm perfPeriodic for J with
parameters k, L. Then for all ji ∈ J

(
1− 1

k

)
·
(

1− 1
L

)
·(βJ + k(L + 1)RJ) < ρi ≤

(
1 +

1
k

)
·
(

1 +
1
L

)
·(βJ + 2k(L + 1)RJ) .

Proof: First, we observe that the algorithm is well-defined in the sense that Algorithm s&b is applicable
in Step 4. This is true since the periods of all jobs in the same G` class are powers of 2 multiplied by a
common factor of 2

`
k . In addition, the minimal period of jobs in G` is the minimal period in G`∗ times

2e+ `−`∗
k for some integer e ≥ 0, and hence t` is a power of 1

2 times the minimal period in G`.

We now analyze the approximation factor step by step. In each step, we give both upper and lower
bounds on the individual ratios. We start with Step 1. This is an easy case, since for all jobs we clearly
have

1 ≤ τ ′i
τi

< 21/k . (7)

Analyzing the following steps requires us to introduce additional notation for the intermediate quanti-
ties. Consider a class G`.

• β` denotes the total bandwidth of jobs in class G`. Recall that G` is a set of rounded jobs and
therefore βJ/21/k <

∑k−1
`=0 β` ≤ βJ .

• r`
def= B/t`. Note that r` is an upper bound on the extent of the jobs in G`. Note also that the

same global value B is used for all `.

• f`
def= β` + r`.

By Theorem 4.7, Step 4 increases the periods of jobs in G` by a factor of f`. By Lemma 5.2, the bin
size in S` is t`β` + B. Hence, by Lemma 5.3, the periods are increased in Step 5 by a factor of

1 +
p`B

t`β` + B
= 1 +

⌈
L2`/k

⌉
B

f`t`

≤ f` + (L2`/k + 1)r`

f`

=
β` + 2r` + Lr0

f`
, (8)

18

where the last equality follows from the fact that r` = 2−`/kr0 by definition. Using the same expres-
sion, we also obtain a lower bound on the change in periods:

1 +
p`B

t`β` + B
= 1 +

⌈
L2`/k

⌉
B

f`t`

≥ f` + L2`/kr`

f`

=
β` + r` + Lr0

f`
. (9)

Consider now Step 6. Lemma 5.5 tells us how to bound the approximation factor when we are
given the proportion of a bin size to the sum of all other bin sizes. Therefore, to get an upper bound on
the approximation factor, we need both a lower bound on the individual bin size, and an upper bound
on the total size of all bins. Let w` denote the bin size in schedule S` produced by Step 5. On the one
hand, since

⌈
L2`/k

⌉ ≥ L2`/k, we get

w` ≤ f`t`
L · 2`/k

+ B =
t0
L

(β` + r` + Lr0) , (10)

and hence the sum of the bin sizes W is at most

W =
k−1∑

`=0

w` ≤
k−1∑

`=0

t0
L

(β` + r` + Lr0)

≤ t0
L

(
k−1∑

`=0

β` +
k−1∑

`=0

2−`/kr0 + kLr0

)

≤ t0(βJ + kr0(1 + L))
L

, (11)

since
∑k−1

`=0 β` ≤ βJ .

On the other hand, since
⌈
L2`/k

⌉
< L2`/k + 1, after some algebraic manipulation we get

w` >
f`t`

L · 2`/k + 1
+ B

=
t0(β` + r` + Lr0(1 + 2−`/kL−1))

L(1 + 2−`/kL−1)

=
t0(β` + 2r` + Lr0)
L(1 + 2−`/kL−1)

. (12)

19

Therefore the sum of the bin sizes W is at least

W =
k−1∑

`=0

w` >
k−1∑

`=0

t0(β` + 2r` + Lr0)
L(1 + 2−`/kL−1)

≥ t0
L(1 + L−1)

k−1∑

`=0

(β` + 2r` + Lr0)

>
t0

1 + L

(
βJ2−1/k + kr0 + kLr0

)

=
t0

1 + L

(
βJ2−1/k + k(L + 1)r0

)

≥ 2−1/kt0
(
βJ + 21/kk(L + 1)r0

)

1 + L
, (13)

where the third inequality follows from the fact that since
∑k−1

`=0 β` > βJ/21/k.

Using Eq. (11) and Eq. (12), Lemma 5.5 says that Step 6 increases the periods by at most

W

w`
≤

t0
L (βJ + kr0(1 + L))

t0(β`+2r`+Lr0)

L(1+2−`/kL−1)

=
(1 + 2−`/kL−1)(βJ + kr0(1 + L))

β` + 2r` + Lr0
. (14)

Similarly, using Eq. (13) and Eq. (10), we obtain a lower bound on the change of periods in this step:

W

w`
>

2−1/kt0
1+L

(
βJ + 21/kk(L + 1)r0

)
t0
L (β` + r` + Lr0)

= 2−1/k · L

L + 1
· βJ + 21/kk(L + 1)r0

β` + r` + Lr0
. (15)

To get an upper bound on the overall approximation factor of Algorithm perfPeriodic, we multiply the
factors in Eqs. (7,8,14) and another factor of f` due to Step 4, and conclude that for all ji ∈ G`, the
following inequality holds:

ρi ≤ 21/k · f` · β` + 2r` + Lr0

f`
· (1 + 2−`/kL−1)(βJ + kr0(1 + L))

β` + 2r` + Lr0

≤ 21/k(1 + 2−`/kL−1)(βJ + k(r0 + Lr0))

≤ k + 1
k

· L + 1
L

· (βJ + 2kRJ(1 + L)) .

The last inequality follows from the fact that 2
1
k ≤ 1 + 1

k for k ≥ 1, and from the fact that r0 < 2RJ

since t` > tJ/2 for all `.

Similarly, using Eqs. (7,9,15), we get the promised lower bound on the individual ratio:

ρi > 1 · f` · β` + r` + Lr0

f`
· 2−1/k · L

L + 1
· βJ + 21/kk(L + 1)r0

β` + r` + Lr0

≥ k

k + 1
· L

L + 1

(
βJ + 21/kk(L + 1)r0

)

≥
(

1− 1
k

)
·
(

1− 1
L

)
(βJ + k(L + 1)RJ) ,

since x
x+1 ≥ 1 − 1

x for all x > 0 (we use this fact for x := k and x := L), and since 21/kr0 ≥ RJ by
the fact that t0 ≤ 21/ktJ .

20

We note that the lower bound on the approximation factor is weaker when the total requested
bandwidth βJ is small. This is because the algorithm tries to fill the schedule as if β = 1; i.e., to leave
no time slot unused. If reducing granted periods too much is undesirable (say, because it increases
power consumption), we can augment the original instance with dummy “place-holder” jobs with a
requested period T and job length 1. After computing an approximation schedule, these dummy jobs
will be replaced by idle intervals in the actual schedule. Another alternative is to multiply all granted
start times by some constant factor and thus increase the approximation factor.

The following corollary shows the result of Theorem 6.1 in more concrete terms.

Corollary 6.2 Let J be an instance of the periodic scheduling problem with total requested bandwidth
βJ = 1 and extent R. Then there exists a schedule such that for all jobs ji ∈ J we have

1− 1.89R
1
3 + O(R

2
3) < ρi < 1 + 3.78R

1
3 + O(R

2
3) .

Proof: Apply Theorem 6.1 with parameters k = L = (2R)−
1
3 .

6.1.1 A Slotted Version of Algorithm perfPeriodic

To get a slotted version of Algorithm perfPeriodic, use the slotted version of Algorithm split in Step
5 of Algorithm perfPeriodic (note that we use the unslotted version of Algorithm s&b). In Step 6 we
therefore merge schedules with bin sizes of bw0c , . . . , bwk−1c. Feasibility follows from the feasibility
of Algorithm perfPeriodic and from Lemma 5.4, which guarantees the feasibility of the slotted version
of Algorithm split. The approximation ratio is not increased, as we state next.

Theorem 6.3 Let J = {ji = (bi : τi)}n
i=1 be an instance where bi, τi are integral for all i, and let S

be the schedule produced by the slotted Algorithm perfPeriodic for J with parameters k, L. Then S is
slotted and CMAX(J, S) ≤ (1 + 1

k) · (1 + 1
L) · (βJ + 2k(L + 1)RJ).

Proof: First we argue that we indeed get a slotted schedule: In Step 6 of the algorithm, we merge
schedules of integral bin size. Therefore all bins of S0, . . . , Sk−1 start at integral time slots. Since all
job lengths are integral and the jobs of a bin are scheduled back-to-back, all jobs start at integral time
slots. Therefore S is a slotted schedule.

Next we show periodicity and approximation. Note that up to Step 5, the slotted and unslotted
versions of Algorithm perfPeriodic are equivalent. Let S∗0 , . . . , S∗k−1 denote the schedules produced
in Step 5 of the unslotted version, and let S∗ denote the schedule produced in Step 6 of the unslotted
version. Consider a job ji ∈ G`. In Step 5, ji is scheduled with a period of τ

S∗`
i in the unslotted

version and τS`
i = τ

S∗`
i
w`

· bw`c in the slotted version. By Lemma 5.5, after Step 6, ji has a period of

τS∗
i = τ

S∗`
i
w`

· W in the unslotted case and τS
i = τ

S∗`
i
w`

· ∑k−1
`=0 bw`c in the slotted one and therefore

τS
i ≤ τS∗

i . Hence the approximation factor of the slotted version is no larger than the approximation
ratio of the unslotted version. The result now follows from Theorem 6.1.

21

Algorithm gensplit

Input: Schedule S, parameters m, p,B∗ s.t. m|p, B∗ ≥ B.
Output: Schedules S0, . . . , Sm−1.
Code:

(1) Apply Algorithm split with parameters p,B∗ on S and enumerate the resulting bins in order.

(2) For each `, the output schedule S` is a concatenation of all bins whose index is congruent to `

modulo m.

Figure 10: Algorithm gensplit.

6.2 The Multiple Servers Case

Using the tools we already have, it is almost straightforward to generalize Algorithm perfPeriodic

above to the case of m servers. Specifically, we do it as follows. In Step 5, we split each schedule S`

using parameter p` = m
⌈
L2

`
k

⌉
so that the number of bins for each class is now a multiple of m. Next,

we take each “block” of m consecutive bins and distribute it over the m servers. This is possible since
all m bins were split from the same bin and therefore share no common jobs.

We formalize the new Step 5 using a generalization of Algorithm split. The new algorithm, Algo-
rithm gensplit, takes arguments m, p, B∗ such that m divides p and B∗ ≥ B, and an input separable
schedule S and creates m separable schedules S0, . . . , Sm−1. The algorithm is presented in Figure 10.

The following lemma summarizes the properties of Algorithm gensplit.

Lemma 6.4 Let S be a separable schedule with bin size w. Then for any given m, p,B∗ such that
m|p,B∗ ≥ B, Algorithm gensplit outputs separable schedules S0, . . . , Sm−1 with bin size w

p + B∗

such that τS`
i = 1

m(1 + pB∗
w)τS

i for all ji ∈ S`.

Proof: Let S′ denote the schedule generated in Step 1 of the algorithm. By Lemma 5.3, S′ is a separable
schedule with bin size w

p +B∗ and τS′
i = (1+ pB∗

w)τS
i . Therefore the offset of each job ji within a bin

is constant. In order to prove the claim, all we need to show is that if ji appears in bins numbered y and
z in S′, then m|(z − y). This follows from Step 1b of Algorithm split. Assume bin z has originated
from bin z∗ of S and bin y originated from bin y∗ of S. Clearly, z∗ 6= y∗ since ji cannot appear in a bin
of S more than once. Since ji appears only once in any bin of S, and since Step 1b of Algorithm split

assigns a bin to ji based only on its predecessors (which are identical in z∗ and y∗), it follows that for
some u < p we have z = p · z∗ + u and y = p · y∗ + u. Therefore z − y = p(z∗ − y∗) and m|(z − y)
since m|p. For every consecutive m equal sized bins in S′, there is only one such bin in S`. Therefore,
the periods in S` are smaller than the periods in S′ by a factor of m.

The generalized algorithm, which we call Algorithm genperfPeriodic, is identical to Algorithm
perfPeriodic, except for the following modifications:

• In Step 5, apply Algorithm gensplit to each class G` with parameters m, p` = m
⌈
L2

`
k

⌉
and

B∗ = B, thus obtaining m schedules for each class. Let S`i denote the ith schedule of class G`.

• In Step 6, apply Algorithm splice m times, where the ith application merges all schedules S`i,

22

ranging over all `. This produces m schedules, one for each server.

Note that Algorithm genperfPeriodic with m = 1 reduces to Algorithm perfPeriodic.

The approximation factor analysis is very similar to the one shown in Theorem 6.1; we have high-
lighted only the differences below.

Theorem 6.5 Let J = {ji = (bi : τi)}n
i=1 be an instance with total requested bandwidth βJ and extent

RJ . Let S be the schedule for m servers produced by Algorithm genperfPeriodic for J with parameters
k and L. Then for all ji ∈ J

ρi ≤
(

1 +
1
k

)
·
(

1 +
1
L

)
·
(

βJ

m
+ 2k

(
L +

1
m

)
RJ

)
,

and

ρi >

(
1− 1

k

)
·
(

1− 1
L

)
·
(

βJ

m
+ k

(
L +

1
2

)
RJ

)
.

Proof: The feasibility argument is identical to the one of Theorem 6.1 above while using Lemma 6.4
instead of Lemma 5.3. Let us now consider the approximation factor. Step 1 contributes a factor of at
most 2

1
k , and Step 4 increases the periods of jobs in G` by a factor of f` = β` + B

t`
by Theorem 4.7.

Define r` = B/t` as above. To analyze Step 5, note that by Lemma 6.4, the periods are increased by a
factor of 1

m

(
1 + p`B

t`f`

)
= 1

m

(
1 + p`

r`
f`

)
, which can be bounded from above by

1
m

(
1 + p`

r`

f`

)
≤ 1

m

(
1 + m(L2`/k + 1)

r`

f`

)
=

β` + (m + 1)r` + mLr0

mf`
,

and from below by

1
m

(
1 + p`

r`

f`

)
≥ 1

m

(
1 + mL2`/k r`

f`

)
=

β` + r` + mLr0

mf`
.

To analyze Step 6, we compute the bin size w` for each S` produced by Step 5. Similarly to the
single server case, we have

w` ≤ f`t`
mL · 2`/k

+ B =
t0

mL
(β` + r` + mLr0) ,

and hence

W =
k−1∑

`=0

w` ≤
k−1∑

`=0

t0
mL

(β` + r` + mLr0) ≤ t0(βJ + kr0(1 + mL))
mL

.

On the other hand,

w` >
f`t`

m(L · 2`/k + 1)
+ B

=
t0(β` + r` + mLr0(1 + 2−`/kL−1))

mL(1 + 2−`/kL−1)

=
t0(β` + (m + 1)r` + mLr0)

mL(1 + 2−`/kL−1)
,

23

and hence

W =
k−1∑

`=0

w` >
k−1∑

`=0

t0(β` + (m + 1)r` + mLr0)
mL(1 + 2−`/kL−1)

>
t0

m(L + 1)

k−1∑

`=0

(β` + (m + 1)r` + mLr0)

≥ t0
m(L + 1)

(
βJ2−1/k + k

m + 1
2

r0 + kmLr0

)

≥ 2−1/k t0
m(L + 1)

(
βJ + 21/kk

(
1
2

+ m

(
L +

1
2

))
r0

)
.

By Lemma 5.5, Step 6 increases the periods by W
w`

, which is at most

W

w`
≤

t0
mL(βJ + kr0(1 + mL))

t0(β`+(m+1)r`+mLr0)

mL(1+2−`/kL−1)

= m · (1 + 2−`/kL−1)(βJ
m + kr0(1

m + L))
β` + (m + 1)r` + mLr0

,

and at least

W

w`
>

2−1/k t0
m(L+1)

(
βJ + 21/kk

(
1
2 + m(L + 1

2)
)
r0

)
t0

mL(β` + r` + mLr0)

= m · 2−1/k · L

L + 1
·

βJ
m + 21/kk

(
1

2m + L + 1
2

)
r0

β` + r` + mLr0
.

To conclude, we multiply together all factors affecting the periods, and find that for all ji ∈ G`

ρi ≤ 21/k · f` · 1
m

(
1 + p`

r`

f`

)
W

w`

≤ 21/k(1 + 2−`/kL−1)
(

βJ

m
+ kr0

(
1
m

+ L

))

≤ k + 1
k

· L + 1
L

·
(

βJ

m
+ 2kRJ

(
1
m

+ L

))
,

and that

ρi > f` · 1
m

(
1 + p`

r`

f`

)
W

w`

> 2−1/k · L

L + 1
·
(

βJ

m
+ 21/kk

(
1

2m
+ L +

1
2

)
r0

)

≥ k

k + 1
· L

L + 1
·
(

βJ

m
+ k

(
L +

1
2

+
1

2m

)
RJ

)

≥
(

1− 1
k

)
·
(

1− 1
L

)
·
(

βJ

m
+ k

(
L +

1
2

)
RJ

)
.

Corollary 6.6 Let J be an instance of the periodic scheduling problem with total requested bandwidth
βJ = m and extent R. Then there exists a schedule for m servers such that for all jobs ji ∈ J we have

1− 1.89R
1
3 + O(R

2
3) < ρi < 1 + 3.78R

1
3 + O(R

2
3) .

Proof: Apply Algorithm genperfPeriodic with parameters k = L = (2R)−
1
3 .

24

7 Conclusions and Open Problems

In this paper we have studied the quality of perfect schedules in general, where jobs may have different
lengths and the schedule is required to accommodate multiple servers. The quality of a schedule was
evaluated using the worst-case blowup in requested periods, as opposed to the average blowup tradi-
tionally used. We have made significant progress in providing provably good algorithms, but we leave
many questions open, including:

1. Improved approximation. We would like to achieve better approximation factors than shown
above. It might be possible to compare the results of an algorithm to the optimal schedule of the
given instance instead of giving an approximation ratio relative to the bandwidth.

2. Dynamic model. Our algorithms implicitly assume a static model, i.e., the set of input jobs does
not change after the schedule is constructed. It is natural to consider a dynamic model, where
jobs can be added or taken off dynamically.

3. Dispatching. Assume we have a perfectly periodic schedule for some given input instance. If
we want to use this schedule for broadcasting purposes, our broadcast server must store some
representation of the schedule and decide at each time slot which job needs to be broadcasted
next. The problem of rapidly computing the next job to dispatch while minimizing the represen-
tation of the schedule on the server is known as the dispatching problem. A dispatching scheme
for perfectly periodic schedules represented in special “tree schedules” is presented in [12]. We
would like to construct good dispatching schemes for the schedules produced by the algorithms
presented above.

We note that the s&b algorithm presented in this paper was recently extended to an algorithm that trades
period approximation with smoothness [11].

Finally, we would like to thank the anonymous reviewer whose comments prompted us to improve
the statements of some of our results.

References

[1] Swarup Acharya, Rafael Alonso, Michael Franklin, and Stanley Zdonik. Broadcast disks: data
management of asymmetric communication environments. In Proc. ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Systems, 1995.

[2] Mostafa H. Ammar and J. W. Wong. The design of teletext broadcast cycles. Performance
Evaluation, 5(4):235–242, Dec 1985.

[3] Shoshana Anily, Celia A Glass, and Rafael Hassin. Scheduling of maintenance services to three
machines. Annals of Operations Research, 86:375–391, 1999.

25

[4] Amotz Bar-Noy, Vladimir Dreizin, and Boaz Patt-Shamir. Efficient periodic scheduling by trees.
In Proceedings The 21st Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), June 2002.

[5] Amotz Bar-Noy, Aviv Nisgav, and Boaz Patt-Shamir. Nearly optimal perfectly periodic schedules.
Distributed Computing, 15(4):207–220, 2002.

[6] Amotz Bar-Noy, Bhatia Randeep, Joseph Naor, and Baruch Schieber. Minimizing service and
operation cost of periodic scheduling. In Proc. of the 9th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 11–20, 1998.

[7] Sanjoy Baruah, Giorgio Buttazzo, Sergey Gorinsky, and Giuseppe Lipari. Scheduling periodic
task systems to minimize output jitter. In Int. Conference on Real-Time Computing Systems and
Applications, pages 62–69, Hong Kong, December 1999. IEEE Computer Society Press.

[8] Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, and Donald A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6), 1996.

[9] Bluetooth technical specifications, version 1.1. Available from http://www.bluetooth.com/, Feb.
2001.

[10] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson.
Adversarial queuing theory. J. ACM, 48(1):13–38, 2001.

[11] Zvika Brakerski and Boaz Patt-Shamir. Jitter-approximation tradeoff for periodic scheduling. In
18th International Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, New
Mexico, USA, April 2004. IEEE Computer Society.

[12] Zvika Brakersky, Vladimir Dreizin, and Boaz Patt-Shamir. Dispatching in perfectly-periodic
schedules. J. of Algorithms, 49(2):219–239, 2003.

[13] Yon Dohn Chung and Myoung-Ho Kim. QEM: A scheduling method for wireless broadcast
data. In Database Systems for Advanced Applications, Proceedings of the Sixth International
Conference on Database Systems for Advanced Applications (DASFAA), April 19-21, Hsinchu,
Taiwan, pages 135–142. IEEE Computer Society, 1999.

[14] Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Energy efficient indexing on air. In
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Min-
neapolis, Minnesota, May 24-27, 1994, pages 25–36. ACM Press, 1994.

[15] Michael B. Jones, Daniela Roşu, and Marcel-Cătălin Roşu. CPU reservations and time con-
straints: Efficient, predictable scheduling of independent activities. In 6th ACM Symposium on
Operating Systems Principles (SOSP), pages 198–211, Saint-Malo, France, October 1997.

[16] Claire Kenyon and Nicolas Schabanel. The data broadcast problem with non-uniform transmis-
sion times. In Proceedings of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pages
547–556, Jan 1999.

26

[17] Claire Kenyon, Nicolas Schabanel, and Neal Young. Polynomial-time approximation scheme for
data broadcast. In Proceeding of the thirty-second annual acm symposium on Theory of comput-
ing, pages 659–666, May 2000.

[18] Sanjeev Khanna and Shiyu Zhou. On indexed data broadcast. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC-98), pages 463–472, New York, May 23–26
1998. ACM Press.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, January 1973.

[20] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32:323–330, 1980.

[21] W. Wei and C. Liu. On a periodic maintenance problem. Operations Research Letters, 2:90–93,
1983.

27

