
Jitter-Approximation Tradeoff for Periodic

Scheduling

Zvika Brakerski Boaz Patt-Shamir∗

zvika@eng.tau.ac.il boaz@eng.tau.ac.il

Dept. of Electrical Engineering

Tel Aviv University

Tel Aviv 69978

Israel

February 21, 2005

Abstract

We consider an asymmetric wireless communication setting, where a server periodically
broadcasts data items to different mobile clients. The goal is to serve items in to a
prescribed rate, while minimizing the energy consumption of the mobile users. Abstractly,
we are presented with a set of jobs, each with a known execution time and a requested
period, and the task is to design a schedule for these jobs over a single shared resource
without preemption. Given any solution schedule, its period approximation is the maximal
factor by which the average period of a job in the schedule is blown up w.r.t. its requested
period, and the jitter is roughly the maximal variability of times between two consecutive
occurrences of the same job. Schedules with low jitter allow the mobile devices to save
power by having their receivers switched off longer. In this paper we consider a scenario
where clients may be willing to settle for non-optimal period approximation so that the
jitter is improved. We present a parametric jitter-approximation tradeoff algorithm that
allows us to choose various combinations between jitter optimality and period optimality
for any given set of jobs.

∗Research done while visiting HP Cambridge Research Lab, Cambridge, MA 02142, USA.

1

1 Introduction

In broadcast disks [1], a powerful server broadcasts data items to mobile clients awaiting their

desired items (e.g., public data like stock quotes, or user data like an address book). In an

arbitrary broadcasting schedule, a client may have to “busy-wait” for its item, i.e., actively

listen to the server until its item is broadcast, thus wasting much battery power. If the broadcast

schedule is perfectly periodic, i.e., each item i is broadcast precisely every pi time units for some

pi, then the client can switch on its radio exactly when needed. However, an egalitarian round-

robin schedule (which is perfectly periodic) is not satisfactory: a general solution must also

accommodate for a different periodicity requirement for each item, since different items may

have different popularity levels with clients, different expiration times, different QoS levels etc.

Broadcast disks are just one example among many where it is desirable to have low jitter,

namely the spacing between consecutive occurrences of the same item should be as equal as

possible. Another example from the wireless world is the Sniff Mode in Bluetooth [3]. In this

case, slave devices can shut off their transceivers except for a certain time every once in a while,

when they listen to find out whether the master device is trying to contact them. If the master

uses a schedule with low jitter, it would help improving battery lifetime in the slave devices.

In this paper, we present an algorithmic study of such scenarios. To allow us to ignore

idiosyncrasies of any particular technology, we consider the following abstract model (formal

definition is provided in Section 2). An instance of the problem consists of a set of jobs,

where each job has known length and requested period. The task is to design a single-server

non-preemptive periodic schedule of the jobs, i.e., each job is assigned an infinite sequence of

occurrence times such that no two distinct occurrences of any two jobs overlap. The granted

period of a job in a schedule is the average time between two consecutive occurrences of that

job. Jitter is defined as follows. Consider the set of all interval lengths between two consecutive

occurrences of a job. (The average of these lengths is the granted period of the job.) The

jitter of that job is the maximal difference between such an interval length and the granted

period. In this work, we evaluate a schedule by its worst case period approximation, and its

worst-case jitter over all jobs. We would like the schedule to have the smallest possible period

approximation (1 means that each granted period is no larger than the corresponding requested

period), and the smallest possible jitter (0 is a trivial lower bound that holds iff the schedule is

perfectly periodic).

Constructing schedules with period approximation 1 is a well-studied problem, starting

with the seminal work of Liu and Layland [6]. Unfortunately, there are cases where insisting on

period approximation 1 implies that the jitter can be as high as the granted period itself, i.e.,

the job can occur at anytime, which means in the wireless context that the receivers might need

to stay powered all the time. On the other extreme, there are a few algorithms that construct

perfectly-periodic schedules (with jitter 0), but they cannot have period approximation 1. As

a quick example to that effect, consider an instance that contains two jobs (among others),

1

each of unit length, such that one job requests period 2 and the other requests period 3. By

the Chinese Remainder Theorem, any schedule with these periods will have these two jobs

collide every 6 time slots, and hence it cannot be the case that the jitter is 0 and the period

approximation is 1 simultaneously.

In this paper, we try to win (most of) the good of both worlds by developing an algorithm

that allows one to trade jitter for period approximation. One way to use this algorithm is to

feed it with an instance and a parameter that specifies the maximal allowed jitter; the algorithm

then outputs a periodic schedule for this instance that (1) satisfies the jitter parameter, and

(2) has period approximation guarantee better than the best previously known bounds.

What’s known. Motivated by operating systems and other centralized scheduling scenarios,

most previous work about periodic scheduling took the viewpoint that period approximation

must not be larger than 1, and jitter is only of secondary importance. For example, Liu and

Layland [6] define periodic scheduling to be one where a job with period τ is scheduled exactly

once in each time interval of the form [(k − 1)τ, kτ − 1] for any integer k. Näıvly interpreted,

this definition allows jitter as high as the granted period, which is not useful. Baruah et al.

[2] still insist on keeping the period approximation 1, but try to minimize jitter. They define a

generalized concept of jitter, prove bounds on the jitter in terms of the specific instance at hand,

and propose algorithms that search for schedules with minimal jitter under this restriction. In

this paper, we use a special case of their definition (they allow arbitrarily weighted jitter). Cast

into our language, their jitter bound is as follows. Let βi denote the bandwidth request of job

i, defined to be the job length of i divided by its period, and let β =
∑

i βi over all jobs i in the

instance. Then the jitter of a job i is at most τi(1− β + βi).

General perfectly periodic schedules are defined and analyzed in [4], where the concept of

the extent of an instance is defined. Formally, the extent of an instance, denoted R, is the ratio

between the maximal job length and the shortest job period. It is proved that any perfectly

periodic schedule has period approximation at least 1+R, and an algorithm with approximation

ratio 1 + O(R1/3) is presented (note that R < 1, so R1/3 > R). Naaman and Rom [7] study

the case where the ratio between periods of jobs is always an integer. They give an algorithm

to generate schedules with period approximation 1 and jitter (k − 1)B, where k is the number

of distinct requested periods and B is the length of the largest job in the instance. They show

that this bound is tight for period approximation 1.

Our results and paper organization. In this paper we present an algorithm that, given

any instance of periodic scheduling, and an integer parameter g, produces a schedule with

period approximation less than 1 +
√

2
2

+ R/2g−1 ≈ 1.707 + R/2g−1 and jitter at most Bg. The

parameter g must be non-negative and cannot be larger than log2
T
t
, where T and t are the

largest and smallest requested periods, respectively. Incidentally, this algorithm, when applied

with g = 0, improves on the best known results for perfectly periodic schedules for R > 0.006

2

Instances and jobs:

• J : an instance of the problem

• n: number of jobs (clients) in an instance

• ji: the ith job in an instance

• bi: length (execution time) of ji

• τi: requested period of ji

• BJ
def
= max {bi | i ∈ J }

• TJ
def
= max {τi | i ∈ J }

• tJ
def
= min {τi | i ∈ J }

• RJ
def
= BJ

tJ
: extent of instance J

• βi
def
= bi

τi
: requested bandwidth of ji

• βJ
def
=
∑

ji∈J βi: total bandwidth of in-

stance J

Schedules and quality measures:

• S: a schedule

• τS
i : granted period of ji in schedule S

• ρi
def
=

τS
i

τi
: period approximation of ji in

schedule S

• ρ(J , S)
def
= max {ρi | ji ∈ J }: period ap-

proximation of S w.r.t. J

• σi: jitter of job i

• σ(S)
def
= max {σi | ji ∈ J }: jitter of S

Figure 1: Glossary of notation.

[4]. Our algorithm is presented in two steps. First, in Section 3, we present Algorithm cont bal

that guarantees approximation ratio of 1 + R/2g and jitter of Bg, but this algorithm applies

only to instances in which the ratio of any two periods is a power of 2. Using Algorithm cont bal

as a subroutine, we specify in Section 4 our final algorithm, which applies to any instance.

The formal model is presented next, in Section 2. Some concluding remarks are given in

Section 5.

2 Problem Statement and Notation

Most of the notation used in this work is summarized in the Glossary in Figure 1.

Instances. An instance of the perfectly-periodic scheduling problem is a set of n jobs

J = {ji}n
i=1, where each job ji = (bi : τi) has length (or execution time) bi, and requested period

τi. We sometimes refer to jobs also as clients. The maximal length of a job in an instance J
is denoted by BJ

def
= max {bi | i ∈ J }. Without loss of generality, we assume that the minimal

job length is one unit. The maximal and minimal values of the requested periods in instance

J are denoted by TJ
def
= max {τi | ji ∈ J }, and tJ

def
= min {τi | ji ∈ J }. The ratio between BJ

and tJ is called the extent of J , formally defined by RJ
def
= BJ

tJ
. The requested bandwidth of job

3

ji is defined by βi
def
= bi

τi
. The total bandwidth of an instance J is defined by βJ

def
=
∑

ji∈J βi.

We assume that βJ ≤ 1 for all input instances. The free bandwidth of an instance J is defined

by ∆J
def
= 1− βJ . We omit the subscript J when the instance is clear from the context.

Schedules. A schedule S for an instance J is an infinite sequence of start times s0, s1, s2, . . .,

where each start time sk is mapped to a job jk ∈ J . We say that job jk is scheduled at the time

slots sk, sk + 1, . . . , sk + bjk
− 1. A schedule is feasible only if no two jobs are ever scheduled at

the same time step, i.e., for all k ≥ 0, sk+1 ≥ sk + bjk
. A schedule is cyclic if it is an infinite

concatenation of a finite schedule C, and C is called a cycle of S. In this paper we consider

only cyclic schedules.

Fix a feasible schedule S for an instance J , and let C be the cycle of S. Assume without

loss of generality that each job of J is scheduled at least once in C. The granted period of a

job ji in S, denoted τS
i , is the number time slots in C divided by the number of start times of

ji in C. Note that the granted periods may be different from the requested periods, but the

job lengths cannot be truncated by the schedule.

Given an instance J with schedule S, the period approximation of a job ji in S is ρi
def
=

τS
i

τi
.

The period approximation of S with respect to J is ρ(J , S)
def
= max {ρi | i ∈ J }. To define

jitter, let s1, s2, . . . be the start times of a job ji in S, and let τS
i be its average period. The jitter

of ji in S is σi
def
= maxk

{∣∣∣(sk+1 − sk)− τS
i

∣∣∣}, and the jitter of S is σ(S)
def
= maxi {σi | ji ∈ J }.

All logarithms in this paper are to base 2.

3 The Controlled Balance Algorithm

In this section we present our basic algorithm for periodic scheduling with controllable jitter,

which works only when the ratio between any two periods is a power of two (this restriction

is lifted in the next section). The idea in the algorithm is to spread the jobs evenly over the

schedule in a recursive fashion. The algorithm also adds idle time slots, at a level specified by

the user, so as to reduce the jitter caused by possibly imperfect balancing. The algorithm is

based on a known algorithm used for perfectly periodic schedules [4], augmented here with a

way to control jitter by adding idle time slots. It has recently been brought to our attention

that an algorithm similar to the one of [4] appears in [5] for general periodic scheduling; it is

described as a heuristic without analysis, and without the controlled jitter idea.

The algorithm is given an integer parameter g such that 0 ≤ g ≤ log T
t

(recall that T is the

longest requested period, t is the shortest requested period, and that their ratio is a power of 2).

This parameter controls the tradeoff between jitter and approximation. It proves convenient to

also define the complementary parameter h
def
= log T

t
− g.

Pseudo code for the algorithm is presented in Figure 2, and an example execution is depicted

in Figure 4. The idea is to construct a cycle of the schedule by allocating start times in a

4

balanced way. This is done using a binary tree of 1 + log T
t

levels, whose leaves represent sub-

intervals of the schedule cycle. Each node in the tree contains “job replicas” derived from the

original instance, where each job replica has its own associated period. The tree is constructed

in a top-down fashion as follows. Initially, the root contains all job replicas that are exactly

the jobs in the instance (Step 1). Each node has two children, whose replicas are defined by

subroutine split (Step 2). Pseudo-code for subroutine appears in Fig. 3. To ensure low jitter,

split uses a total order on jobs, denoted by “≺”, defined below. This order ensures that at any

given level, for any given job j, all nodes in which a job replica associated with j occurs have

the same set of job replicas preceding it. As a consequence, a job has the same offset within a

node for all its replicas at a level. Then, nodes at level h (where the root is said to be at level

0) are padded with “dummy” job replicas so that all nodes at level h have exactly the same

length (Step 3). The splitting procedure then continues at level h and down till the leaves are

reached. Finally, the leaves are scanned and their associated replicas are output (Step 5). The

dummy replicas correspond to idle time slots. The consequence of the padding at level h is that

the leaf lengths are roughly the same (the smaller g is, the larger h, and the padding is done

closer to the leaves).

The ≺ order is defined as follows. For jobs ji, jk with requested periods τi and τk, respec-

tively, we say that ji ≺ jk if either τi < τk, or if τi = τk and i < k. Put differently, ≺ is

lexicographical ordering, where job i has the key (τi, i). applying lexicographical ordering. We

stress that the “≺” relation is defined on jobs, not job replicas. To extend the order to replicas,

each job-replica uses the rank it inherits from its original job (even though a replica has a

possibly different period).

The main properties of Algorithm cont bal are summarized in the following theorem.

Theorem 3.1 Let J = {ji = (bi : τi)}n
i=1 be an instance with extent R. Suppose that there

exists a real constant c > 0 such that for all i, τi = c · 2ei, where e1, . . . , en are non-negative

integers. Then Algorithm cont bal with parameter g outputs a schedule S with ρ(J , S) ≤
1 + R/2g and σ(S) ≤ Bg.

The theorem follows directly from Lemma 3.3 and Lemma 3.6 proved below. But first, note

that the tradeoff between jitter and approximation is controlled by the value of g: a small value

of g means better jitter and worse approximation. The extreme points are g = 0 (jitter 0 and

period approximation 1 + R), and g = log T
t

(period approximation 1 and jitter B log T
t
).

We start the analysis with the following basic property.

Lemma 3.2 The bandwidth associated with each node at level i ≤ h by Algorithm cont bal

before Step 3, is at most 2−i(1−∆) + (1− 2−i)B/T .

Proof: We prove the claim by induction on i. For i = 0 the claim is trivial: the bandwidth

associated with the root is 1−∆ by Step 1 of Algorithm cont bal. Consider a node at level i+1,

and let β1 denote its bandwidth. Let β0 denote the bandwidth of its parent at level i, and let β2

denote the bandwidth of its sibling. By induction hypothesis, β0 ≤ 2−i(1−∆) + (1− 2−i)B/T .

5

Algorithm cont bal

Input: Instance J , parameter 0 ≤ g ≤ log T
t
. Define h

def
= log T

t
− g.

Output: A cycle of a schedule S for J .

Code:

(1) Construct a complete binary tree of 1 + log T
t

levels 0, 1 . . . , log T
t
. Create a job replica

for each job in the instance, and associate these replicas with the root (level 0).

(2) Traverse levels 0, 1 . . . , log T
t
− g − 1 = h − 1 of the tree, in breadth-first order, starting

from the root. In each visited node v, do split(v).

(3) Let Wh be the maximal bandwidth associated with a node at level h. Add to each node

at level h “dummy” job replicas to make all nodes have bandwidth Wh. Each dummy job

replica has unit length and period T .

(4) Traverse levels h, . . . , log T
t
− 1 of the tree, in breadth-first order. In each visited node v,

do split(v).

(5) Scan the leaves left-to-right. For each leaf `, output the job replicas associated with ` in

increasing ≺ order, where dummy job replicas are output at the end of each leaf; they

correspond to idle time slots.

Figure 2: Algorithm cont bal.

Subroutine split

Input: A node v with its set of associated job replicas.

Output: Two sets of job replicas, associated with the children of v.

Code:

(1) Scan the job replicas associated with v in increasing “≺” order. Let j be the currently

scanned replica, with period τj and size bj:

(1a) If τj < T , add identical job replicas to both children of v, each with size bj and

period 2 · τj.

(1b) If τj = T , add a job replica with period τj and size bj to the child of v whose

current total associated bandwidth (i.e., sum of the job replica lengths divided by

their periods) is smaller. In case of a tie, add the replica to the left child.

Figure 3: Subroutine split.

6

Figure 4: An example run of Algorithm cont bal with g = 1. The jobs of the original instance

can be seen in the root node; “ ” indicates a dummy replica. A name in quotes “x” represents

a job part of original job x: actual jobs appear only in the root of the tree. In the final cycle, a

job x of length 2 is represented by xx. Some splits are indicated by straight arrows. Note that

for the input instance ∆ = 2
7
.

By the code of Algorithm split, the difference between the bandwidth associated with any two

siblings is at most the bandwidth of one job replica whose period is T . Since the size of any job

replica is at most B, we get |β1 − β2| ≤ B/T . Assume without loss of generality that β1 ≥ β2.

Then we have that

β1 ≤ β0 + B/T

2
≤ 1

2

(
2−i(1−∆) +

(1− 2−i)B

T
+

B

T

)

= 2−i−1(1−∆) + (1− 2−i−1)
B

T
.

Using Lemma 3.2, we bound below the period approximation. The result is in fact slightly

sharper than the bound stated in Theorem 3.1.

Lemma 3.3 The period approximation of a schedule produced by cont bal with parameter g is

at most 1−∆ + R/2g −B/T .

Proof: Consider a job ji with requested period τi = T/2ei for some integer ei ≥ 0. First,

note that the number of start times of ji in the output cycle is 2ei : this is because in the final

schedule, the number of start times is the number of job replicas corresponding to to ji in the

leaves, and because all job replicas in the leaves have period T . Next, we bound the number

of time slots in the output cycle. This is precisely the sum of the lengths of job replicas in

the leaves, which, in turn, is T times the total bandwidth associated with the leaves. Now,

the total bandwidth of leaves is the same as the total bandwidth of level h, because no new

bandwidth is added after Step 3. Therefore the total bandwidth of leaves is Wh · 2h where Wh

is the maximal bandwidth associated with a node at level h. Multiplying by T we get the total

number of time slots in the output schedule and the average period of ji is T ·Wh·2h

2ei
= τi ·Wh ·2h.

Therefore the approximation factor for all jobs is precisely Wh · 2h.

By Lemma 3.2, the bandwidth associated with each node at level h after Step 3 is at most

2−h(1−∆) + (1− 2−h)B/T and thus the approximation factor is

Wh · 2h ≤
(

2−h(1−∆) +
(1− 2−h)B

T

)
· 2h

= 1−∆ +
(2h − 1)B

T
= 1−∆ +

(
T

t2g
− 1

)
B

T

= 1−∆ + R/2g − B

T
.

7

Remark: We note that Lemma 3.3 holds for all values of ∆, including negative values. This

allows applying the algorithm even in “illegal” cases, where the total requested bandwidth

exceeds one unit.

To analyze the jitter of the schedules produced by cont bal, we need the following observa-

tion.

Lemma 3.4 Consider the set of job replicas associated with each node as a list sorted in in-

creasing ≺ order. Suppose that two job replicas j′, j′′ of the same job j are associated with two

nodes v′, v′′ in the same level. Then the same job replicas precede j′ in the ordered list of v′ and

precede of j′′ in v′′.

Proof: Focus on a single split operation. There are two cases to consider. First, if a job replica

j at the parent appears at both children as j′ and j′′, then the period of j (at the parent) is

smaller than T , and therefore, by definition of ≺, any job preceding j at the parent also have

periods smaller than T . Hence the sets of jobs preceding j′ and j′′ are identical, and we are done

for this case. In the second case, j appears in only one child. This occurs when j has period

T at the parent. In this case, the identity of the child and j’s rank in that child’s sorted list

depend only on the job replicas preceding j in the parent’s list. Applying induction completes

the proof.

Applying the same reasoning as in Lemma 3.2, now using level h for the basis of the induc-

tion, we obtain the following result.

Lemma 3.5 Let Wh be the maximal bandwidth associated with a node at level h. Then for any

0 ≤ i ≤ g, the bandwidth associated with any node at level h+ i is at least 2−iWh−(1−2−i)B/T

and at most 2−iWh + (1− 2−i)B/T .

It remains to analyze the jitter in the resulting schedule.

Lemma 3.6 The jitter in the schedule produced by cont bal with parameter g is at most Bg.

Proof: Let S denote the schedule obtained by applying the algorithm on an instance. Consider

a job ji with period τi = T/2ei for some integer ei ≥ 0. By the algorithm, there will be a job

replica in each node of level ei, with associated period T . By Lemma 3.4, the list of job replicas

preceding the job replicas of ji is the same in all these nodes. Consider now the subtrees rooted

at the nodes at level ei. Clearly, exactly one job replica will appear in the leaves of a each

sub-tree. Number the leaves of the subtrees by 0, 1, . . . , 2log T
t
−ei − 1 from left to right. Since

the allocation of a job replica to a child depends, by Algorithm split, only on the jobs preceding

it in the ≺ order, we conclude that a job replica of ji will be placed in leaf number k in any

subtree if and only if it is placed in leaf number k in all subtrees. Moreover, by Lemma 3.4,

the set of job replicas preceding ji in each leaf will be the same. It follows that the variability

in the time between consecutive occurrences of j can be caused by leaves of different sizes. So

consider the start time of a leaf. We claim that for all k = 0, 1, . . . , 2log T
t
−ei − 1, the start

time of leaf number k is at least kT2−gWh − gB and at most kT2−gWh + gB time units after

8

Algorithm B

Input: Instance J , parameter g.

Output: Cycle for schedule S.

Code:

(1) Let τ ′i = 2dlog τie, t′ = min {τ ′i}. Execute Algorithm cont bal on {(bi : τ ′i)} with parameter

g and denote the result by S1.

(2) Let τ ′′i = 2dlog(τi)− 1
2e, t′′ = min {τ ′′i }. Execute Algorithm cont bal on {(bi : τ ′′i)} with

parameter g and denote the result by S2.

(3) If ρ(J , S1) ≤ ρ(J , S2), return S1. Otherwise, return S2.

Figure 5: Algorithm B.

the start of a subtree rooted at a node at level ei, where Wh is the bandwidth of nodes at

level h. To see why this is true, note that the start time of leaf k is exactly the sum of the

bandwidths of leaves 0, . . . , k − 1 times T . Consider the path from the root to leaf k: this

path contains nodes which are left and right children. The key observation is that the total

bandwidth of leaves preceding k is exactly the sum of bandwidths of nodes which are the left

siblings of right-children nodes in the path leading to k. By construction, the total bandwidth

of a tree rooted at level i ≤ h is 2h−iWh. By Lemma 3.5, the total bandwidth of a tree rooted

at level i > h is at least 2h−iWh −B/T and at most 2h−iWh + B/T . Since there are at most g

nodes which are right children on the path leading to k, we get that the maximal time between

two consecutive occurrences of ji is τS
i + Bg, and the minimal time between two consecutive

occurrences of ji is τS
i −Bg. The result immediately follows.

4 Algorithm for General Instances

Algorithm cont bal requires that the ratio between any two periods to be a power of 2. In this

section we lift this restriction, and consider general instances.

One straightforward way to do that (suggested, e.g., in [5]) is to round all requested periods

up to the next power of 2. This immediately gives us, for instances whose requested bandwidth

is at most 1, guaranteed period approximation of at most 2 + R/2g−1 and jitter of at most Bg.

However, a more judicious rounding allows us to obtain substantially better period approxima-

tion, and even to break the barrier of 2 for instances with small extent. Specifically, in this

section we present an algorithm that guarantees, for any instance, period approximation less

than 1.71+R/2g−1 and jitter at most Bg. Moreover, this approximation is obtained using only

powers of 2 times a common multiple as periods in the final schedule.

The algorithm, called Algorithm B, is presented in Figure 5. The idea is as follows. The

algorithm tries two forms of rounding. The first (Step 1) is to round up each period τi to

9

the next power of 2, and the second (Step 2) is to round each period τi to the closest power

of 2: periods between 2k−1/2 and 2k+1/2 are rounded to 2k. Algorithm cont bal is applied to

both rounded instances, and the schedule with the better period approximation of the two

alternatives is the final output (Step 3). Below, we prove that at least one of the two schedules

has period approximation not larger than 1 +
√

2
2

+ R/2g−1 ≈ 1.707 + R/2g−1.

Theorem 4.1 Let J = {ji = (bi : τi)}n
i=1 be an instance of the scheduling problem with re-

quested bandwidth at most 1, and let S be the schedule produced for J by Algorithm B with

parameter g. Then ρ(J , S) ≤ 1 +
√

2
2

+ R/2g−1 and σ(S) ≤ Bg.

Proof: We analyze the algorithm using a parameter δ that is determined later. Consider Step

1. Denote the bandwidth of the rounded instance {ji = (bi : τ ′i)}
n
i=1 by β′, its extent by R′, and

its free bandwidth by ∆′ = 1 − β′. We proceed by case analysis, depending on the relation

between ∆′ and δ.

Intuitively, the idea is as follows. If ∆′ ≥ δ, we have “a lot” of free bandwidth, and hence

S1 will have a good period approximation. If ∆′ < δ, i.e., there is “little” free bandwidth, then

it must be the case that only a small fraction of the bandwidth is associated with jobs whose

periods were rounded up by more than
√

2. Therefore, we can afford to round the periods of

these jobs down, thus getting an instance where no period was rounded up by much, and S2

will have a good period approximation.

Formally, we argue as follows.

Case 1: ∆′ ≥ δ. Consider the application of Algorithm cont bal to the rounded instance

{(bi : τ ′i)}. By Lemma 3.3, the algorithm gives an period approximation of at most 1 − ∆′ +

2−gR′ ≤ 1− δ + 2−gR. Since the rounding changes the periods in S1 by a factor of less than 2,

we can conclude that in this case,

ρ(J , S1) ≤ 2− 2δ + 21−gR . (1)

Since the job lengths do not change, then by Lemma 3.6 the jitter in this case is at most Bg.

Case 2: ∆′ < δ. In this case we concentrate on S2. Denote the bandwidth and the extent

of the instance produced by the rounding of Step 2 by β′′ and R′′, respectively. Consider the

rounding first. By the code, we have that for all i,

1√
2
≤ τ ′′i

τi

≤
√

2 . (2)

It follows from Eq. (2) that the rounding of Step 2 contributes a factor of at most
√

2 to the

period approximation of S2. By Theorem 3.1, the application of Algorithm cont bal in Step 2

increases the period approximation of S2 by at most another factor of β′′ +R′′. It is immediate

from Eq. (2) that R′′ ≤
√

2R. We now bound β′′.

Partition the set of jobs into two subsets, G1 and G2, such that

G1 = {i | log τi − blog τic ≤ 1/2}

10

G2 = {i | log τi − blog τic > 1/2} .

I.e., G1 consists of all jobs whose periods were rounded down in Step 2, and G2 consists of all

jobs whose periods were rounded up in Step 2. Denote the total requested bandwidths of G1

and G2 by β1, β2 respectively. We start by bounding β′′ in terms of β1: this is based on the

observation that in the rounding step, the bandwidth of jobs in β1 may increase by a factor of at

most
√

2, and the bandwidth of jobs in G2 does not increase. Adding the fact that β2 ≤ 1−β1,

we get

β′′ ≤
√

2β1 + β2 ≤
√

2β1 + (1− β1) = 1 + (
√

2− 1)β1 . (3)

Next, we bound β1 in terms of β′. Recall that β1 is defined by the rounding of Step 1. In that

rounding, the periods of jobs in G1 are increased by a factor of at least
√

2, and the periods of

jobs in G2 are not decreased. Hence β′ ≤ β1/
√

2+β2. Since in our case, ∆′ < δ, i.e., 1−β′ < δ,

we can conclude that

δ > 1− β′ ≥ 1−
(

β1√
2

+ β2

)
≥ 1−

(
β1√
2

+ (1− β1)

)
=

(
1− 1√

2

)
β1 .

Rearranging, we get

β1 <

√
2δ√

2− 1
(4)

Combining Eqs. (3,4), with the observations above and the result of Lemma 3.3 that Algo-

rithm cont bal can be applied for instances with any bandwidth, we obtain a bound on the

approximation ratio of S2 in this case:

ρ(J , S2) ≤
√

2(β′′ + 2−gR′′) ≤
√

2
(
1 + (

√
2− 1)β1 + 2

1
2
−gR

)
<

√
2

(
1 + (

√
2− 1) ·

√
2δ√

2− 1
+ 2

1
2
−gR

)
=

√
2 + 2δ + 21−gR . (5)

We can now conclude the proof, using the bounds of Eq. (1) and Eq. (5).

ρ(J , S) ≤ max(ρ(J , S1) , ρ(J , S2))

≤ max(2− 2δ + 21−gR ,
√

2 + 2δ + 21−gR) . (6)

Trivial algebra shows that equality in the two expressions of Eq. (6) is obtained for δ = 1
2
− 1

2
√

2
,

and then we get ρ(J , S) ≤ 1+
√

2
2

+21−gR. The jitter in this case, obviously, is Bg as well.

5 Conclusion

In this paper we explored the idea of reducing the rate allocated to periodic tasks for the benefit

of having smaller jitter. This tradeoff may be useful for mobile devices, where reduced jitter can

11

be translated to reduced power consumption. We believe that this appraoch deserves further

study.

The model used in this paper is the slotted time model, where all jobs have integer lengths

and integer start times. In the unslotted model, job lengths, requested periods, start times

(and hence granted periods as well) may be any positive real number. We remark that the

algorithms presented in this paper can be extended to the unslotted version.

Acknowledgment

We wish to thank Nir Naaman and Raphael Rom for useful discussions and for providing us

with a preprint of [7].

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: data management of

asymmetric communication environments. In Proc. ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, 1995.

[2] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling periodic task systems to

minimize output jitter. In Int. Conference on Real-Time Computing Systems and Applica-

tions, pages 62–69, Hong Kong, Dec. 1999. IEEE Computer Society Press.

[3] Bluetooth technical specifications, version 1.1. Available from http://www.bluetooth.com/,

Feb. 2001.

[4] Z. Brakerski, A. Nisgav, and B. Patt-Shamir. General perfectly periodic scheduling. In Proc.

21st Ann. ACM Symp. on Principles of Distributed Computing, pages 163–172, Monterey,

CA, July 2002.

[5] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations and time constraints: Efficient,

predictable scheduling of independent activities. In 6th ACM Symposium on Operating

Systems Principles (SOSP), pages 198–211, Saint-Malo, France, Oct. 1997.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-

time environment. J. ACM, 20(1):46–61, Jan. 1973.

[7] N. Naaman and R. Rom. Scheduling real-time constant bit rate flows over a TDMA channel.

Technical Report CCIT 410, Dept. of Electrical Engineering, Technion, Dec. 2002.

12

