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Abstract

In this paper we present the new notion of local restoring of properties. A restorer gets implicit access, in
the form of oracle queries, to a function (which may correspond to an object such as a graph, a code or a matrix)
that is close to having a property, such as function monotonicity or graph bipartiteness. The restorer then, using
a small number of queries to the function, can locally compute the value of a “corrected” function in any desired
point. The corrected function is required to be both close to the original function and strictly have the property.
In the case of error correcting codes, this corresponds to local self-correcting. Here we extend the definition and
study for general functions and properties.

We define the new notion and go on to give restorers for properties in the dense graph model: Bipartiteness
and ρ-Clique, and for function monotonicity. We also show some general relations between property restoring
and other notions such as property testing and tolerant property testing.

1 Introduction

Error correcting codes encode messages into codewords in a way that allows decoding, i.e. recovering the original
message even from codewords corrupted by some noise. Error correcting codes were introduced by Shannon [27]
and Hamming [20], for applications such as communication over a noisy channel or storage over a noisy device,
and have since found many applications in other areas such as complexity, algorithms, and cryptography.

While classical use of codes required recovering the entire message, it has been proved useful to use codes that
enable local operations on codewords, see a survey by Goldreich in [12]. In such cases, the codeword is given in
an implicit way via an oracle and global properties of the codeword are to be inferred by making a small number
(preferably constant) of queries to the oracle. In local self testing, the goal is to decide whether the oracle indeed
represents a valid codeword or whether it is far from one. In local self correcting, the goal is to recover bits of the
original uncorrupted codeword.1

The notion of inferring global properties of objects by making local queries to an implicit representation of the
object has been extended beyond the scope of error correcting codes in the field of property testing. Property testing
has been defined by Rubinfeld and Sudan in [26] (and implied in the earlier work of Blum, Luby and Rubinfeld [4]),
and has been extended by Goldreich, Goldwasser and Ron in [14] beyond algebraic properties to combinatorial
graph properties. A property tester for property P is provided with query access to some function f and is required
to decide, using a small number of queries, whether f has property P or whether f is far from having P . The

1Two related notions that are less relevant to this work are local decoding where extracting a single bit of the original message is required
and local list decoding where finding all possible messages whose codeword is close to the corrupted codeword is required.
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local self testing of codes is thus a special case of property testing with the property being membership in the code.
Property testers have been shown for a large class of graph properties, such as bipartiteness and ρ-clique, in the
dense graph model. Function monotonicity has also been studied. See Section 1.3.

More recent research addressed tolerant property testing and distance estimation, both defined by Parnas, Ron
and Rubinfeld in [25]. Whereas in property testing the tester must accept only when the function f has property
P , in tolerant property testing, the tester must also accept when the tested function f is close to a function having
the property. In distance estimation the goal is to approximate the distance between f and the closest function
having property P . These notions have also been studied by Fischer and Fortnow [9] who show that some testable
properties are not tolerantly testable, and by Fischer and Newman [11] who show that for all testable properties in
the dense graph model, the distance can be approximated up to any additive constant.

1.1 Our Contribution

In this paper we define the notion of restorers, that given implicit access to a function/object that is close to
having some property, locally reconstruct a function that has the property and is close to the original corrupt one.
Obviously, there may be many functions that are close to the corrupt one and have the property. Our restorer will
output one such function in a consistent local manner.

An (ε1, ε2)-restorer for property P is provided with query access to a function f that is ε1-close to having
property P , meaning that there exists a function h∗ ∈ P for which dist(f, h∗) ≤ ε1. On input x, the restorer
makes a sub-linear (possibly constant) number of queries to f and outputs h(x) where h ∈ P and dist(f, h) ≤ ε2.
We note that even when f ∈ P the restorer may not return f(x) but rather another function that is close to it.

Recall that there may be many possible “correct” functions/objects that are close to the input function, but we
would like all local answers to be consistent with one such function.2 Therefore we define the restorer as consisting
of two (sub-linear) algorithms: the initializer creates a string that succinctly defines a single correct function and
the evaluator takes this string and outputs the value of this function for each input.

Following the definition, we show some relations between restorers and other existing notions (see Section 1.2
for a detailed description of these notions).

• Restoring and Property Testing yield Tolerant Testing. We show in Theorem 3.1 that if a property has
both a restorer and a property tester, then it is straightforward to construct a tolerant tester for that property.

• Restoring does not imply Property Testing. We show in Theorem 3.2 that there exist properties that are
restorable but are not property testable. This is a straightforward consequence of a recent work by Grig-
orescu, Kaufman and Sudan [18]. They show that there exists an error correcting code that is 2-transitive, its
dual contains low-weight codewords and in spite of that, is not locally testable. Their construction involves
taking a non-testable subset of the RM code. Since the RM code is locally self correctable, this yields that
the new code is both locally self correctable and is not testable.

• Restoring (and tolerant testing) of Bipartiteness is easy for some parameters but hard for others. In
Corollary 3.3 we show that bipartiteness in the dense graph model has a (poly(ε), ε)-restorer that runs in time
poly(1/ε) but for any c it does not have an (ε, cε)-restorer with that time complexity (assuming the Unique
Game Conjecture by Khot [22]). In fact we show in Theorem 3.4 that the above statement also applies to
tolerant testers, thus showing a complexity gap between raw and fine tolerant testing and providing some
answer to a question in [11].

We use a result by Khot et al. [23] stating that under the Unique Games Conjecture, it is hard to distinguish
instances of the MAX-CUT problem that are almost satisfiable and instances that are a little further from
being satisfiable.

2Otherwise a trivial restorer for bipartiteness would be to always returns 0, since for every edge there is a bipartite graph where it is not
present.
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Most importantly, we demonstrate the viability of restoring by presenting restorers for several testable proper-
ties.

• Graph Bipartiteness. We present an (ε4, O (ε))-restorer for bipartiteness in the dense graph model. That
is, for given access to an adjacency matrix of a graph that is ε4-close to a bipartite graph, we can locally
construct a graph that is both bipartite and O (ε)-close to the original graph. This restorer makes poly(1/ε)
queries to the graph and runs in poly(1/ε) time.

• Graph ρ-Clique. We present an (ε3, O (ε))-restorer for the ρ-Clique property in the dense graph model.
This restorer makes poly(1/ε) queries to the graph and runs in exp(poly(1/ε)) time. Our construction uses
an observation made in [14] incorporated with hashing.

• 1-Dimensional Function Monotonicity. Given access to a one-dimensional function f : [n] → R, for any
(totally) ordered set R, we present an (ε, 2ε + δ)-restorer for monotonicity of the function, for all constant
δ > 0. This restorer makes polylog(n) queries to the function and runs in time polylog(n). This construction
uses a data structure defined in [25].

No attempt has been made in this extended abstract to optimize the constants or the powers in the poly(·), polylog(·)
notation in the various constructions.

1.2 Related Notions

The notion of restoring shares common characteristics with many previously defined notions. We present these
notions and their relation to restoring.

• Locally Self Correctable Codes. A restorable property can be viewed as a relaxation of a locally self
correctable code. Namely, a locally self correctable code is an error correcting code that has an (ε, ε)-
restorer for all small enough ε. In Theorem 3.2 we use this relation to show that some restorable properties
are not testable.

• Property Testing, Tolerant Testing and Distance Estimation. In these notions we are required to evaluate
(to some extent) the difference between the object at hand and the nearest object that has the required prop-
erty. While the setting of the problem is almost identical to that of restoring, the goal is very different. In
restoring we are required to locally compute an object that has the property exactly and that is close to the
given object. As we show in Theorem 3.1, restorers can assist in construction of tolerant testers from prop-
erty testers. In Theorem 3.2, however, we show that a restorer does not necessarily imply even the weakest
notion of the three (that of property testing).

• Approximate Find Algorithms. In [14] it is shown how to use property testing algorithms for certain graph
properties to create linear-time approximate find algorithms. Such algorithm can be interpreted as finding
a graph that is both ε-close (for some ε) to the original graph, and has the property P .3 However, there are
two differences: (i) Their method was only guaranteed to work on graphs that have been accepted by the
original property testers (which include all graphs that have the property and possibly some other graphs
that are ε-close to having it); (ii) Approximate find algorithms are required to go over the entire graph and
therefore are not local in the aforementioned sense. Thus, such algorithms can be considered as non-local
self correction algorithms.

3In the original formulation, approximate find algorithms were used to approximately find the structure that defines the property, such
as a k-coloring that respects all but an ε fraction of the edges, or a dense subset of the vertices that is almost a clique. Clearly, given the
output of such algorithm it is immediate to “repair” the graph so it has the property.
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• Program Testing and Correcting. In program testing and correcting, introduced in [4], there is some
function f to be computed. A query access is given to a procedure P that allegedly computes f and we
consider the hamming distance between f and P . Program testing resembles tolerant testing as it is required
to decide whether P is close (to some extent) to f or far from it (to some larger extent). This is similar to
the case of tolerant property testing with the difference being that f itself is known and can be computed
efficiently. Therefore instead of requiring sub-linear run time in the size of the object, we require that the
running time is sub-linear in the running time of any (alternatively, in other formulations, the best known)
program that computes f .

Program correcting is a notion that is very closely related to the one presented in this paper. The setting is
similar to that of program testers and the corrector is required to output the correct value of f (with high
probability) while maintaining sub-linear running time (again, relative to the best possible computation of
f ). We can see that when f ceases to be a known function, the notion of correcting naturally leads towards
the definition of restorers.

1.3 Related Work

Bipartiteness in the dense graph model has been introduced in the context of property testing in [14] where a
tester with query complexity Õ

(
1/ε3

)
and poly(1/ε) time complexity is presented. This has been improved to

Õ
(
1/ε2

)
query complexity by Alon and Krivelevich [2]. A lower bound of Ω(1/ε1.5) on the query complexity of

the problem has been introduced by Bogdanov and Trevisan [5]. The problem has also been studied in other models
suited for sparse or general graphs [15, 16, 21]. (poly(ε), ε)-Tolerant testing for this property can be derived from
its property tester using constructions in Goldreich and Trevisan [17] and in [25]. Distance approximation up to an
additive factor of all testable properties in the dense graph model, including this one, is presented in [11] and has
(1/ε)-tower query complexity.
ρ-Clique in the dense graph model has also been introduced in [14] where a tester with query complexity Õ

(
1/ε6

)

and time complexity exp
(
Õ

(
1/ε2

))
. The results in [17, 25] imply an (poly(ε), ε)-tolerant tester for this problem

as well, and [11] implies distance approximation with (1/ε)-tower query complexity.
Function Monotonicity has been extensively studied in the field of property testing [13, 6, 7, 19, 10, 3]. An
(1
2ε, ε + δ)-tolerant property tester with run time and query complexity polylog(n) (where the domain of the

function is [n]) is shown in [25] and also extended to the d-dimensional case. An improved result for the d-
dimensional case is presented by Fattal and Ron [8]. Ailon et al. [1] presented a tolerant tester with time complexity
log(n).

1.4 Paper Organization

In Section 2 we formally define the notion of restorers. Positive and negative results as to relations with other
notions are presented in Section 3. Sections 4, 5 are dedicated to providing restorers for properties in the dense
graph model: Bipartiteness and ρ-Clique, and for function 1-dimensional monotonicity.

2 Restorer — a Definition

Throughout this paper, we use hamming distance.

Definition 1 (Hamming Distance). Let F1, F2 : D → R, then distH(F1, F2) = Pr
x

R←D[F1(x) 6= F2(x)].

Since this is the only distance measure we use, we use dist(·, ·) instead of distH(·, ·). Motivated by the
discussion in the introduction, we present a formal definition of a restorer. We use w.h.p (with high probability) to
denote a probability of more than 2/3.
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Definition 2 (Restorer). Let D → R be a class of functions, P ⊆ D → R be a property and dist : (D →
R)× (D → R) → R be a metric. Let (I, E) be a pair of randomized algorithms with query access to F : D → R,
referred to as the initializer and the evaluator respectively. Then (I, E) is an (ε1, ε2)-restorer for property P if the
following hold:

1. I, E are local randomized algorithms. That is, they make o(|D|) queries to F .

2. I takes no input and its output is called the initial state of the restorer.

3. E takes an initial state σ and a value x ∈ D and outputs a value EF (σ, x) ∈ R.

4. Let σ = IF (). If minH∈P dist(F, H) ≤ ε1, then w.h.p over the coin tosses of I, there exists Hσ ∈ P such
that dist(F, Hσ) ≤ ε2 and for all x it holds w.h.p that EF (σ, x) = Hσ(x).

• A note on proximity. We stress that the restored function Hσ may not be identical to F even if F ∈ P .

• A note on randomness. It is always possible to derandomize the evaluator at a cost of a log |D| factor in the
query and time complexities. In fact, all restorers presented in this paper have deterministic evaluators. One
can amplify the success probability of the evaluator to

(
1− δ

|D|
)

using O (log |D|) repetitions, thus by the
union bound use the same random string for all inputs with success probability at least 1− δ. Creating this
common random string in the initializer derandomizes the evaluator.

Also note that the initializer can be considered as only flipping random coins and exporting them as the
initial state. This might, however, significantly increase the evaluator’s complexity as it will have to simulate
the initializer at every invocation.

3 Restorers vs. Testers

The notion of restoring is related to the notions of property testing and tolerant testing defined below.

Definition 3 (Property Testing and Tolerant Testing [25]). Let P be a property and let 0 ≤ ε1 < ε2 ≤ 1. An
(ε1, ε2)-Tolerant Testing algorithm for property P is given query access to an unknown function F . The algorithm
should accept w.h.p if F is ε1-close to having property P , and should reject w.h.p if F is ε2-far from having the
property. A Fully Tolerant Testing algorithm is given 0 ≤ ε1 < ε2 ≤ 1 as input and has the above behavior. An
ε-Property Testing algorithm for P is an (0, ε)-Tolerant Testing algorithm.

The following theorem states that if a property has a property tester and a restorer then it also has a tolerant
property tester.

Theorem 3.1. Let P be a property. Let (I, E) be an (ε1, ε2)-restorer for P and let T be an ε′-property tester for
P . Then for any β > 0 there exists an (ε1, ε2 + ε′ + β) tolerant tester for P .

Proof Sketch: For oracle function F , the tolerant tester is as follows:
1. Run σ = IF ().

2. Take a random sample of the domain, run (an amplified version of) EF (σ, ·) on that sample to estimate
dist(F, Hσ) to within β/2. If the estimate is more than ε2 + β/2 then reject.

3. Run T on Hσ using (amplified) EF to obtain the values of Hσ. Accept if and only if T accepts.
If F is ε1-close to P then dist(F, Hσ) = ε2 and T must accept. If F is (ε2 + ε′ + β)-far from P , then either
dist(Hσ, F ) > ε2 + β and the distance test fails, or dist(Hσ, F ) ≤ ε2 + β and thus Hσ is ε′-far from having P
and T rejects.

But is the condition that P has a property tester necessary? It may seem like restoring is a stronger notion then
testing and thus every restorable property is also testable. We use an example from the world of error correcting
codes to show that at least when considering constant query complexity, this is not the case.
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Theorem 3.2. There exists a property P that has an (ε, ε)-restorer with constant query complexity, but P is not
ε-testable with constant query complexity.

Proof Sketch: The proof is implicit in [18] where an error correcting code that is locally self correctable (in
constant number of queries) but not locally self testable in k queries is presented. Taking k = ω(1) and defining
P as the codewords of the code completes the proof.

We direct our attention to the relation between ε1, ε2. Can they be made as close as we want (with running
time depending on, say, their difference)? In the case of tolerant testing and distance estimation in the dense graph
model, this is answered in the affirmative in [11]. The query complexity required to achieve this, however, has
super-exponential dependence on the difference. [11, Section 7] raise the question of whether this dependence can
be improved.

The following theorem shows that for bipartiteness in the dense graph model (see Section 4 for model defini-
tion), even though tolerant property testing to within (poly(ε), ε) is achievable in time poly(1/ε), this is not the
case for (ε, cε)-tolerant testers assuming the Unique Games Conjecture [22]. We stress that we do not answer the
question of whether there exists such a tolerant tester with query complexity poly(1/ε) and super-polynomial time
complexity.

We use a corollary made by Khot et al. in [24].

Corollary 3.3 ( [24, Corollary 1] ). Assuming the Unique Games Conjecture, for all sufficiently small η > 0, it is
hard to distinguish between instances of MAX-CUT that are at least (1 − η) satisfiable and instances that are at
most (1− 2

π

√
η) satisfiable.

Theorem 3.4. Assume the Unique Games Conjecture. Let P be the bipartiteness property in the dense graph
model (defined in Section 4). Then:

1. For all ε > 0, P has a (poly(ε), ε)-tolerant tester that runs in time poly(1/ε).

2. For all c > 1, P has no (ε, cε)-tolerant tester that for all ε > 0 runs in time poly(1/ε, n).

Proof: A tolerant tester for bipartiteness in the dense graph model is implicit in [14] and can also be obtained by
Theorem 3.1 by combining the restorer presented in Section 4.1 and the property tester from [14].

For the negative part, we use Corollary 3.3. Let G = (V, E) be an instance for MAX-CUT that is 1 − δ
satisfiable. Denote |V | = n, |E| = m. Then the maximal cut in G is of size (1−δ)m. Therefore δm is the minimal
and sufficient number of edges to be removed from G to make it bipartite. Thus the result in [24] asserts that
(η m

n2 , 2
π

√
η m

n2 )-tolerant testing for bipartiteness is hard. Take ε = 2
cπ

√
η m

n2 , for some η <
(

2
cπ

)2, then an (ε, cε)-
tolerant testing is hard. Therefore, assuming the conjecture, it cannot be done in time poly(1/ε, n) = poly(n).

The corollary that follows extends this conclusion to the field of restorers.

Corollary 3.5. Bipartiteness in the dense graph model has, for all ε > 0, a (poly(ε), ε)-restorer that runs in time
poly(1/ε) but has no (ε, cε)-restorer for all sufficiently small ε > 0 that runs in time poly(1/ε, n).

4 Restorers for Graph Properties

In this section we present restorers for graph properties in the dense graph model. In this model, a graph G =
(V,E) is represented by its adjacency function (or matrix) FG : V × V → {0, 1} s.t. FG(u, v) = 1 if and only
if (u, v) ∈ E. We sometimes use FG as notation for G. Note that we only handle undirected simple graphs. In
this representation, the Hamming distance between two graphs F1 = (V, E1), F2 = (V, E2) is dist(F1, F2) =
Pr

(u,v)
R←V 2

[F1(u, v) 6= F2(u, v)] = 2 |E1∆E2|
|V |2 . The factor of 2 is due to the graph’s being undirected (and thus
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every edge (u, v) ∈ E appears twice in V × V ). Throughout this section we denote N = |V | (where V is clear
from context).

We present restorers for two properties:

• Bipartiteness. A graph G = (V, E) is bipartite if there exist V1, V2 s.t.V1 ∩ V2 = ∅, V1 ∪ V2 = V and
(V1 × V2) ∩ E = ∅.

• ρ-Clique. A graph G = (V,E) is said to have a ρ-Clique if it has a clique of size ρN . That is, there exists
C ⊆ V s.t. |C| = ρN and C × C ⊆ E.

Since we often refer to sets of vertices or subgraphs that are reduced to a sample set, the following notation is
useful (think of S a small sample set and A as some big structure, say a large clique in the graph). Let G = (V, E)
be a graph. Let S ⊆ V be a subset of the vertices and let A ⊆ V be another subset. Then A|S

def= A ∩ S and

G|S
def= (S, E|S×S).

4.1 Bipartiteness

We present an (ε4, O (ε))-restorer for bipartiteness in the dense graph model. First we only consider the case where
the graph has minimum degree cN for some c > 0 and show an (ε2, O

(
1
c ε

)
)-restorer for this case. Then we show

how to use this construction to obtain a restorer in the general setting.
An overview of the main idea is presented below. Statements of the properties of the restorers in the high

degree case and in the general case appear in Theorems 4.1, 4.2 respectively. The restorers themselves, along with
a detailed analysis and proof of the theorems appear in Appendix A.
Overview: Consider a bipartite graph of minimum degree cN . The graph is augmented with ε2N2 edges that
violate bipartiteness. Consider the partition induced by bipartiteness. All but εN vertices of the graph are adjacent
to less than εN violating edges. Consider two vertices x, y that are adjacent to less than εN violating edges and
have more than εN common neighbors. Obviously x, y belong to the same side of the partition. If we create a
large enough set of vertices, all belonging to the same side of the partition, then any good vertex z neighboring at
least εN of them belongs to the other side of the partition. We continue this process iteratively to obtain two sets
that must be separated by the partition. We can then pick a new x that is not in either set and repeat the process.
We do this until all of the graph is covered by pairs of sets.

Several difficulties of the above description come to mind: (i) The process is not local. We deal with this
later; (ii) How can we tell whether a vertex has many adjacent violating edges? Even though we cannot do that,
we can verify at the end of the process that we didn’t remove too many edges, in which case we don’t care whether
we picked the “right” vertices; (iii) Do all pairs of sets must agree? We show that “repairing” their disagreement
is not too expensive in terms of edge removals.

Locality is achieved by sampling a small subset of the vertices in the initializer and applying the procedure
above to its induced subgraph. The partition in the induced subgraph, in turn, defines a partition of the entire graph
that can be computed locally by the evaluator.

In Appendix A.1, the restorer (InitDenseBipartite, EvalDenseBipartite) is presented and analyzed.

Theorem 4.1. For all ε < a · c2 (for some a > 0). (InitDenseBipartite, EvalDenseBipartite) is an (ε2, O
(

1
c ε

)
)-

restorer for bipartiteness in the dense graph model, restricted to input graphs with minimum degree cN . Let F be
such graph, then the following hold.

1. InitDenseBipartiteF makes poly(1/ε) queries to its oracle. It runs in time poly(1/ε) and succeeds with
probability at least 1− negl(1/ε).

2. EvalDenseBipartiteF makes poly(1/ε) queries to its oracle. It runs in time poly(1/ε) and is deterministic.
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In Appendix A.2, the special case above is extended to the general case with somewhat worse parameters,
presenting and analyzing the restorer (InitBipartite, EvalBipartite).

Theorem 4.2. (InitBipartite,EvalBipartite) is an (ε4, O (ε))-restorer for bipartiteness in the dense graph model.
The following hold.

1. InitBipartite makes poly(1/ε) queries to its oracle. It runs in time poly(1/ε) and succeeds with probability
at least 1− negl(1/ε).

2. EvalDenseBipartite makes poly(1/ε) queries to its oracle. It runs in time poly(1/ε) and is deterministic.

Theorems 4.1, 4.2 are proven in Appendices A.1, A.2 respectively.

4.2 ρ-Clique

We present an (ε3, O (ε))-restorer for the ρ-Clique property. The initializer and evaluator algorithms are presented
in Figures 1, 2 respectively. An auxiliary procedure for the evaluator is presented in Figure 3. The initializer makes
poly(1/ε) queries and runs in time exp(poly(1/ε)) + polylog(N). The evaluator makes poly(1/ε) queries, runs
in time poly(1/ε) + polylog(N) and is completely deterministic.
Overview: We extend an observation made in [14]: assume there exists a set in the graph that is “almost” a ρ-
Clique (almost all vertices in it are connected to almost all other vertices), denote it by C. Let T be the set of
all vertices with “many” (almost ρN ) neighbors in C. Let W be the set of ρN vertices of T that have the largest
number of neighbors within T . Obviously almost all vertices in C are also in T . Furthermore, almost all vertices
of C neighbor almost all vertices of T (this follows by counting since we require that each vertex in T neighbors
almost all vertices of C). Therefore there exist almost ρN vertices in T that neighbor almost all vertices of T .
Taking this set and completing it to a clique should not require adding “too many” edges.

Clearly, this skeleton of an algorithm is non-local. We approximate it by a local algorithm that finds (small)
sets that represent T, W and use a pairwise independent hash family to enforce consistency of the solution on all
edges.

We note that our restorer contains a predicate which may be interesting in its own right: Procedure CheckNode
(Figure 3) locally provides explicit information on whether an input node is a member of the reconstructed clique
in Hσ (which may be a little larger than ρN ).

The restorer (InitClique,EvalClique) is presented in Figures 1, 2 respectively. Theorem 4.3 below summarizes
its properties. Its proof uses lemmas presented and proven in Appendix B.

For a vertex set A, the set of vertices that neighbor “almost all” of A is defined as follows.

Definition 4. Kγ(A) def= {v ∈ V : |Γ(v) ∩A| ≥ (1− γ) |A|} for all A ⊆ V .

Theorem 4.3. (InitClique, EvalClique) is an (ε3, O (ε))-restorer for the ρ-Clique property. The following hold.
1. InitClique makes poly(1/ε) queries to its oracle. It runs in time exp(poly(1/ε)) + log N and its success
probability is at least 1− negl(1/ε)− poly(1/ε)

N .

2. EvalClique makes poly(1/ε) queries to its oracle. It runs in time poly(1/ε) + polylog(N) and is deter-
ministic.

Proof Sketch: The query and time complexities follow immediately from the code of the restorer. We define a
proper initialization of the restorer (Definition 10 in Appendix B) and show in Lemma B.1 (Appendix B) that such
initialization happens with probability 1− negl(1/ε). Lemmas B.2, B.3 (Appendix B) prove that in case of proper
initialization, if F is indeed ε3-close to having a ρ-clique then any subset of size (ρ−6ε)N of K2ε2/ρ(U∗)∩K2ε(T ∗)
(denoted K∗ from here on), if appended with any additional 6εN vertices, only needs O(ε)N2 additional edges to
become a clique. Furthermore, w∗ is a good estimate on the relative size of K∗.
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Algorithm InitClique

Input: Query access to graph F .
Output: Initial state σ = (U∗, T ∗, w∗, h).
Code:

(1) Sample uniformly at random 3 sets of vertices S1, S2, S3
R← V of sizes m1 = Θ(1/ε3), m2 = Θ(1/ε5),

m3 = Θ(1/ε5) respectively.

(2) Query F on all pairs of vertices in S1 × S2, S1 × S3, S2 × S3.

(3) Initialize U∗ ← ∅.

(4) Recall that Kγ(A) def= {v ∈ V : |Γ(v) ∩A| ≥ (1− γ) |A|}. For all U ⊆ S1 s.t. |U | = ρ
2m1 do:

4a: Define T = K2ε2/ρ(U)|S2
. If |T |m2

< ρ
2 , go to the next U .

4b: Define W = (K2ε2/ρ(U) ∩K2ε(T ))|S3
. If w = |W |

m3
< (ρ− 5ε), go to the next U .

4c: Set U∗ ← U , T ∗ ← T , W ∗ ← W , w∗ ← w.

(5) Let H
log(1/ε2)
log N ⊆ [N ] → [1/ε2] be a family of pairwise independent hash functions. Randomly select a

function h
R← H

log(1/ε2)
log N .

(6) Return σ = (U∗, T ∗, w∗, h).

Figure 1: Algorithm InitClique.

Algorithm EvalClique

Input: Initial state σ = (U∗, T ∗, w∗, h), input pair of vertices (u, v). Query access to graph F .
Output: Value of adjacency function of graph Hσ(u, v).
Code:

(1) Query F (u, v). If F (u, v) = 1, return 1.

(2) If CheckNodeF (σ, v) = 1, CheckNodeF (σ, u) = 1 then return 1, otherwise return 0.

Figure 2: Algorithm EvalClique.

We then use the hash function to consistently define the subsets of K∗ and of V \ K∗ that form the clique.
The values of `1, `2 in Procedure CheckNode are defined so that we can use the Mixing Lemma for pairwise
independent hash families. Using the Mixing Lemma, we bound the probability that the number of vertices from
K∗ that are selected is w∗ · N + Θ(ε) and the number of vertices from V \K∗ is at most Θ(ε) so that their sum
is at least ρN and no more than (ρ + Θ(ε))N . We get that with probability at least

(
1−Θ( 1

ε4N
)
)

on the choice
of h, at least ρN vertices are selected by CheckNode and completing them to a clique requires O(ε)N2 additional
edges.

5 Restorer for 1-Dimensional Monotonicity

In this section we extend the notion of restoring beyond the scope of graph properties and show a restorer for 1-
Dimensional function monotonicity. An overview of the construction and statement of performance follows. Full
details and analysis appear in Appendix C.

Our objects are functions f : [n] → R, where R is a (totally) ordered set (by relation <). The Hamming
distance between functions is simply the number of locations on which they differ, divided by n. A function is
monotone if ∀i∈[n−1]. f(i) ≤ f(i + 1). As explained in [25], we can assume w.l.o.g that all values of f are

9



Procedure CheckNode

Input: Initial state σ = (U∗, T ∗, w∗, h), a vertex v. Query access to graph F .
Output: Returns 1 if v is a member of the ρ-clique in Hσ.
Code:

(1) Denote `1 =
⌈

ρ
ε2(w∗−ε)

⌉
and `2 =

⌈
ρ−(w∗−2ε)
ε2(1−w∗−ε)

⌉
.

(2) Query F on all pairs {v} × U∗, {v} × T ∗.

(3) If v ∈ K2ε2/ρ(U∗) ∩K2ε(T ∗) then return 1 if and only if h(v) ≤ `1.

(4) Otherwise, return 1 if and only if h(v) ≤ `2.

Figure 3: Procedure CheckNode.

distinct. Denote the class of all monotone functions by M ⊆ ([n] → R) and for all f denote f ’s distance from
monotonicity by εmon(f) = minh∈M dist(f, h).
Overview: In [25], the index-value tree data structure is presented. An index-value tree is a binary tree where an
interval I(v) ⊆ [n] is associated with each node v in the tree. At each level, the interval I(v) is split between the
children of v. Thus, with each j ∈ [n] we can associate a path in the tree containing all nodes v such that j ∈ I(v).
In each node v, some of the indices in I(v) are decided to be “bad”. Many index-value trees can be associated with
each function f , but for any of them, the set of all bad indices, denoted B, is shown to be a superset of the indices
that violate monotonicity. That is, f is monotone on [n] \B.

[25] then goes on to present a construction of an index-value tree in which both the height of the tree is O (log n)
and B is not much larger than the minimal set of violating indices. Furthermore, each path in the tree can almost
be computed locally in O (polylog(n)) time and query complexities. “Almost” is since the local construction
cannot decide whether i ∈ B but rather whether i ∈ B1 (see Definition 12 in the appendix). B1 is shown to be a
sufficiently small superset of B. In Corollary C.1 we present a slight modification to the algorithm of [25] that is
required in order to make it consistent.

Being able to decide whether i ∈ B1, however, is not sufficient in order to correct the function. For each
i ∈ B1, we would like to find the largest j < i such that j 6∈ B1, and define hσ(i) = f(j) (which restores
monotonicity). This, however, may be difficult. Therefore we define yet another sufficiently small superset B2 ⊇
B1 (see Definition 14 in the appendix). The definition is such that for every node v in the tree, we can locally
decide whether the entire subtree rooted at v is in B2. Thus enabling to locally search the tree for the required
j 6∈ B2.

The initializer InitMonotone simply selects the randomness such that the tree and the sets B1, B2 are well
defined. The evaluator EvalMonotone, when applied on input index i, searches the tree to find whether i ∈ B2.
If i 6∈ B2 then its value doesn’t change. Otherwise we search for the maximal j 6∈ B2 such that j < i and set
hσ(i) = f(j), thus restoring monotonicity. Since the set B2 is a small enough superset of the violating indices,
correctness follows.

The properties of the restorer are stated below.

Theorem 5.1. For all δ > 0, (InitMonotone, EvalMonotone) is an (ε, 2ε+4δ)-restorer for function monotonicity.
The following hold.

1. InitMonotone makes no queries to its oracle. It runs in time Θ(log4(n)/δ2) and its success probability is
at least 1− 1/poly(n).

2. EvalMonotone makes at most O(log8(n)/δ4) queries to its oracle. It runs in time O(log8(n)/δ4) and is
deterministic.

The theorem is proven in Appendix C.
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A Restorer for Graph Bipartiteness

A.1 A Restorer for Bipartiteness in High Degree Graphs

We present (InitDenseBipartite,EvalDenseBipartite) — an (ε2, O
(

1
c ε

)
)-restorer for graph bipartiteness for graphs

with minimum degree cN . The main idea is explained in Section 4.1. The restorer is described in Figures 4, 5.
The initializer selects a sample of vertices S0 of size m0. For all x ∈ S0, we recursively define two series of

sets: Ai(x), Bi(x). Intuitively, the sets Ai(x) correspond to x’s side of the partition and the sets Bi(x) correspond
to the opposite side. Note that Ai(x), Bi(x) are not limited to S0 (that is, they have vertices in V \ S0), however
computing whether a vertex belongs to Ai(x), Bi(x) requires only knowledge of S0.

Definition 5. For all x ∈ S0, we define x’s “interest sets” as follows.

A0(x) def= {x} ,

B0(x) def= Γ(x) ,

Ai(x) def= Ai−1(x) ∪ {v ∈ V : (Γ(v) ∩Bi−1(x))|S0
≥ 4εm0} ,

Bi(x) def= Bi−1(x) ∪ {v ∈ V : (Γ(v) ∩Ai(x))|S0
≥ 4εm0} .
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Algorithm InitDenseBipartite

Input: Query access to graph F.
Output: Initial state σ.
Code:

(1) Randomly select a sample S0 of m0 = Θ( 1
ε2

) vertices.

(2) Randomly select a sample S1 of m1 = Θ( 1
ε2

) edges (pairs of vertices).

(3) For all x, y ∈ S0, query F (x, y) to create the induced graph F|S0
.

(4) For all (u, v) ∈ S1 and for all x ∈ S0, query F (u, v), F (u, x), F (v, x).

(5) Set Q ← ∅, T ← S0.

(6) While |T | > 0 do:

6a: Pick some x ∈ T and compute Ai(x)|S0
, Bi(x)|S0

starting from i = 0 and stopping at the first i
where

∣∣(Ai(x)|S0
\Ai−1(x)|S0

)∣∣ ≤ εm0. Denote this value of i by tx and denote A(x) = Atx(x),
B(x) = Btx−1(x).

6b: For every ej = (uj , vj) ∈ S1, if F (uj , vj) = 1 and either {uj , vj} ⊆ A(x) or {uj , vj} ⊆ B(x) then
set aj = 1. Otherwise aj = 0.

6c: If
∑

j aj < 7
2εm1 then set Q ← Q ∪ {x}, T ← T \ (A(x) ∪B(x)). Otherwise set T ← T \ {x}.

(7) The output σ contains the pairs (Atx−1(x)|S0
, Btx−1(x)|S0

) for all x ∈ Q. Note that using these pairs it can
easily be checked whether some vertex is in A(x) or B(x).

Figure 4: Algorithm InitDenseBipartite.

Proof of Theorem 4.1: The claims about query and time complexities are immediate from the description of
(InitDenseBipartite, EvalDenseBipartite). Lemma A.2 guarantees that with probability 1− negl(1/ε) the restorer
is properly initialized (see Definition 8). From Lemma A.1 it follows that Hσ is indeed bipartite and from Lemma
A.8 is follows that proper initialization yields dist(F,Hσ) = O

(
1
c ε

)
so long as ε ≤ c2/23.

Let G = (V, EG) be a bipartite graph s.t. dist(F, G) ≤ ε2. Further let V1, V2 be the partition of V in G. We
assume w.l.o.g that EG ⊆ E and define EB = E \EG, the set of violating edges. For all v ∈ V we denote ΓB(v),
the neighbors of v resulting from edges in EB . We define the set of vertices that have many such neighbors.

Definition 6. Z
def= {v ∈ V : ΓB(v) > 4

11εN}.

The following lemma proves that regardless of how A,B are defined, the output graph is always bipartite.
Denote Hσ = (V,Eσ).

Lemma A.1. The graph Hσ is bipartite.

Proof Sketch: Assume towards contradiction that there is an odd cycle in Hσ. Namely w1, . . . , w2k+1 s.t.
(wi, wi+1) ∈ Eσ for all i = 1, . . . , 2k and (w2k+1, w1) ∈ Eσ. From step 2 of the evaluator it follows that
there exists an x ∈ Q s.t. w1 ∈ A(x) or w1 ∈ B(x). Assume w.l.o.g that w1 ∈ A(x) for some x ∈ Q. Then by
step 4 of the evaluator, it must be that w2 ∈ B(x). By induction it follows that w2k+1 ∈ A(x) and hence by step 3
it must be that (w2k+1, w1) 6∈ Eσ contradicting our assumption.

Definition 7 (well represented sets). A set U ⊆ V is well represented in S0 if the following hold.
1. If |U | > 1

2εN , then 9
10 · m0

N · |U | ≤ ∣∣U|S0

∣∣ ≤ 11
10 · m0

N · |U |.
2. If |U | ≤ 1

2εN , then
∣∣U|S0

∣∣ ≤ 11
20εm0.
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Algorithm EvalDenseBipartite

Input: Initial state σ, input pair of vertices u, v. Query access to graph F .
Output: Value of adjacency function of graph Hσ(u, v).
Code:

(1) Query F (u, v). If F (u, v) = 0 then return 0.

(2) If u 6∈ ⋃
x∈Q(A(x) ∪B(x)) or v 6∈ ⋃

x∈Q(A(x) ∪B(x)) then return 0.

(3) For all x ∈ Q, if {u, v} ⊆ A(x) or {u, v} ⊆ B(x) then return 0.

(4) For all x ∈ Q, if u ∈ A(x) and v 6∈ B(x) or v ∈ A(x) and u 6∈ B(x) then return 0.

(5) Return 1.

Figure 5: Algorithm EvalDenseBipartite.

A set Y ⊆ V × V is well represented in S1 if the following hold.
1. If |Y | > 1

2εN2 then 9
10 · m1

N2 · |Y | ≤
∣∣Y|S1

∣∣ ≤ 11
10 · m1

N2 · |Y |.
2. If |Y | ≤ 1

2εN2 then
∣∣Y|S1

∣∣ ≤ 11
20εm1.

Definition 8 (proper initialization). The restorer is properly initialized if the following hold.
1. For all x, y ∈ S0, i ≤ 1/ε and also for all but negl(1/ε)N vertices y ∈ V \ S0, it holds that Γ(y), ΓB(y),
Ai(x), Bi(x), Γ(y) ∩Ai(x), Γ(y) ∩Bi(x) are well represented in S0.

2. V \⋃
x∈Q(A(x) ∪B(x)) is well represented in S0.

3. For all x ∈ S0, the set {(u, v) ∈ V × V : F (u, v) = 1 ∧ ({u, v} ⊆ A(x) ∨ {u, v} ⊆ B(x))} is well
represented in S1.

4. Z is well represented in S0.

Lemma A.2. The restorer is properly initialized with probability at least 1− negl(1/ε).

The proof is by applying Chernoff’s bound and is omitted.

Lemma A.3. Let Q be as defined in the initializer. Let ε ≤ c2/23, then if the restorer is properly initialized then
|Q| ≤ 2

c .

Proof Sketch: We show that whenever x is appended to Q, at least Θ(cm0) vertices are removed from T .
Let Q, T denote the set just before x is appended. Then since for all y ∈ Q, A(y), B(y) are removed from T ,

it follows that x 6∈ A(y) ∪B(y) for all y ∈ Q. Thus Γ(x)|S0
contains at most:

1. 4εm0 vertices of Aty−1(y)|S0
(since x 6∈ Bty−1(y)).

2. εm0 vertices of (Aty(y) \Aty−1(y))|S0
(since this set’s size is at most εm0).

3. 4εm0 vertices of Bty−1(y)|S0
(since x 6∈ Aty(y)).

On the other hand, Γ(x)|S0
is of size at least 9

10cm0 and therefore when x is appended to Q, the number of vertices
removed from T is:

∣∣∣∣∣∣
((A(x) ∪B(x))|S0

) \
⋃

y∈Q

((A(y) ∪B(y))|S0
)

∣∣∣∣∣∣
≥

(
9
10

c− 9ε |Q|
)
·m0

For ε ≤ c2/23 we get that |Q| ≤ 2
c .

Now we show that for any x ∈ S0, the cut between A(x) ∪B(x) and the rest of the graph is bounded in size.
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Lemma A.4. If the restorer is properly initialized and ε ≤ c2/23, then the cut (A(x) ∪B(x), V \ (A(x) ∪B(x)))
contains at most 11εN2 edges.

Proof Sketch: Let v 6∈ A(x) ∪ B(x), then by the same argument as in Lemma A.3, Γ(v) contains at most 9εm0

vertices in (A(x) ∪ B(x))|S0
. Therefore from proper initialization, all but a negligible number of such vs contain

at most 10εN vertices in A(x)∪B(x). Therefore, the cut between A(x)∪B(x) and the rest of the graph contains
at most N · 10εN + negl(1/ε)N ·N ≤ 11εN2 edges.

Now we show that for x ∈ S0 \ Z, the separation of A(x) from B(x) doesn’t remove many of the original
edges. Recall that G = (V1 ∪ V2, EG) is a bipartite graph whose distance from F = (V1 ∪ V2, E) is at most ε2.

Lemma A.5. Let x ∈ S0 \Z and let Y = {(u, v) ∈ EG : (u, v 6∈ Z) ∧ ({u, v} ⊆ A(x) ∨ {u, v} ⊆ B(x))}. Then
in a proper initialization |Y | ≤ negl(1/ε)N2.

Proof Sketch: Let (u, v) ∈ V1×V2. Assume that (u, v) ∈ Y and {u, v} ⊆ A(x). Then all but a negligible fraction
of vertices u, v have at least 4εm0 neighbors in Btx−1(x)|S0

. For such u, v, good representation guarantees at
most 2

5εm0 of these neighbors result from EB (violating edges). Therefore Btx−1(x)|S0
contains at least 18

5 εm0

vertices from V1 and at least 18
5 εm0 vertices from V2. Note that |Z| ≤ 11

4 εN and therefore by well representation,∣∣Z|S0

∣∣ ≤ 16
5 εm0. Therefore there are at least 2

5εm0 vertices from V1 and at least 2
5εm0 vertices from V2 in

(Btx−1(x)|S0
) \ Z. Let w1, w2 be such vertices. Each of them has at least 4εm0 neighbors in Atx−1(x)|S0

.
Repeating the process O (1/ε) times yields that there are at least 18

5 εm0 vertices from each V1, V2 in B0(x)|S0
=

Γ(x)|S0
. Note that at least on of these sets must be from violating edges, therefore

∣∣ΓB(x)|S0

∣∣ ≥ 18
5 εm0. Therefore

|ΓB(x)| ≥ 10
11 · 18

5 εN > 4
11εN in contradiction to x 6∈ Z. A similar argument can be used to show the same for

{u, v} ⊆ B(x).
Therefore Y contains only edges for which at least one end is in a set of size negl(1/ε)N and hence |Y | ≤

negl(1/ε)N2.

We now conclude that all vertices in S0 \ Z pass the test in steps 6b, 6c of the initializer.

Lemma A.6. For all x ∈ S0\Z, denote Y ′ = {(u, v) ∈ S1 : F (u, v) = 1 ∧ ({u, v} ⊆ A(x) ∨ {u, v} ⊆ B(x))}.
Then in a proper initialization it holds that |Y ′| ≤ 7

2εm1.

Proof Sketch: We use case analysis to count the total number of edges in

{(u, v) ∈ V × V : F (u, v) = 1 ∧ ({u, v} ⊆ A(x) ∨ {u, v} ⊆ B(x))} :

1. (u, v) 6∈ EG. These are violating edges and therefore there are at most ε2N2 such edges.

2. u ∈ Z or v ∈ Z. Since |Z| ≤ 11
4 εN , there are at most 11

4 εN2 such edges.

3. The remaining case is exactly the set Y from Lemma A.5 and |Y | ≤ negl(1/ε)N2.
We conclude that there are at most 3εN2 such edges. Since this set is well represented in S1, the result follows.

We still need to show that step 2 doesn’t remove too many edges. We show that almost all vertices are in⋃
x∈Q(A(x) ∪B(x)).

Lemma A.7. In a proper initialization, its holds that
∣∣∣V \⋃

x∈Q(A(x) ∪B(x))
∣∣∣ ≤ 4εN .

Proof Sketch: Let y ∈
(
S0 \

⋃
x∈Q(A(x) ∪B(x))

)
. It must be the case that in step 6c, y did not meet the

condition. Therefore by Lemma A.6, y ∈ Z ∩ S0. Therefore
∣∣∣S0 \

⋃
x∈Q(A(x) ∪B(x))

∣∣∣ ≤
∣∣Z|S0

∣∣ ≤ 16
5 εm0.

Therefore by well representation
∣∣∣V \⋃

x∈Q(A(x) ∪B(x))
∣∣∣ ≤ 4εN .

We conclude that the restored graph Hσ is O(1
c ε)-close to F .

15



Lemma A.8. If ε ≤ c2/23 then in a proper initialization dist (F, Hσ) = O
(

1
c ε

)
.

Proof Sketch: We go over each step of the evaluator and see how many edges can be removed.
1. Step 2. From Lemma A.7, at most 4εN ·N = 4εN2 edges are removed.

2. Step 3. From well representation and by definition of steps 6b, 6c of the initializer, at most 7
2 · 10

9 εN2 edges
are removed for every x ∈ Q. Hence the total is 2

c · 7
2 · 10

9 εN2 < 8
c εN

2 edges.

3. Step 4. At this step, an edge is removed only if one of its endpoints is in A(x) ∪ B(x) for some x ∈ Q
and the other isn’t. By Lemma A.4 There are at most 11εN2 such edges for every x, thus a total of at most
22
c εN2 edges are removed.

Therefore a total of at most O
(

1
c εN

2
)

edges are removed.

A.2 Deriving a Restorer for General Graphs

Procedure EstimateNeighborhood

Input: Test set T ⊆ V , input node v. Query access to graph F .
Output: Estimation of |Γ(v)|

N .
Code:

(1) Query F on all pairs {v} × T .

(2) Return 1
|T |

∑
u∈T F (v, u).

Figure 6: Procedure EstimateNeighborhood.

Algorithm InitBipartite

Input: Query access to graph F .
Output: Initial state σ.
Code:

(1) Randomly select a set of vertices T ⊆ V of size Θ(1/ε2).

(2) Simulate InitDenseBipartiteF () with parameters c = 5ε, ε′ = 25aε2.

(3) Whenever the simulation needs to sample a random vertex v:

3a: Randomly select x
R← V and run EstimateNeighborhoodF (T, x).

3b: If EstimateNeighborhoodF (T, x) > 6ε, continue simulation with v = x.
3c: Otherwise, go to 3a.

(4) Return the initial state σ returned by the simulated InitDenseBipartite.

Figure 7: Algorithm InitBipartite.

The restorer (InitBipartite, EvalBipartite) is presented in Figures 7, 8 respectively (the constant a is as defined
in Theorem 4.1). An additional auxiliary Procedure EstimateNeighborhood is presented in Figure 6. A proof of
correctness follows.
Proof of Theorem 4.2: Consider running (InitDenseBipartite, EvalDenseBipartite) with parameters c = 5ε, ε′ =
25aε2 (where a is as defined in Theorem 4.1 on graph F ′: a graph obtained by repeatedly removing all vertices
with less than 5εN neighbors from F and maybe some vertices with less than 7εN neighbors. With probability
1− negl(1/ε), the initializer InitBipartiteF perfectly simulates InitDenseBipartiteF ′ .
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Algorithm EvalBipartite

Input: Initial state σ, input pair of vertices (u, v). Query access to graph F .
Output: Value of adjacency function of graph Hσ(u, v).
Code:

(1) Simulate EvalDenseBipartiteF (σ, (u, v)) with parameters c = 5ε, ε′ = 25aε2 and return the result.

Figure 8: Algorithm EvalBipartite.

The restored graph Hσ must be bipartite by Lemma A.1. For vertices u, v in F ′, the evaluator EvalBipartiteF (σ, (u, v))
outputs the same value as EvalDenseBipartiteF ′(σ, (u, v)) and thus removes at most O

(
1
c ε
′) N2 = O (ε) N2

edges. All vertices not in F ′ neighbor O (ε) N2 edges altogether. Therefore dist(Hσ, F ) = O (ε). By Theorem
4.1 we obtain an (ε′2, O

(
1
c ε
′)) = (ε4, O (ε))-restorer for the general case.

B Analysis of the Restorer for ρ-Clique

Statement and analysis of Lemmas B.1, B.2, B.3 follow. The following definition provides with a way to bound
sets that are random variables.

Definition 9 ((α, β)-Bounded Sets). Let X , L, U be (possibly random variable) sets of vertices. Sets (L, U) are
said to (α, β)-bound X if with probability at least 1− α it holds that |L \X| ≤ βN and |X \ U | ≤ βN .

Note that for small α, β, this means that approximately L ⊆ X ⊆ U . We omit the parameters and say that X
is bounded by (L,U) if it is (negl(1/ε), negl(1/ε))-bounded by (L,U).

Let G = (V, EG) be a graph that is ε3-close to F and has a ρ-clique. Since w.l.o.g we may assume that
EG ⊇ E, we may refer to F as resulting from a process where we start with G and remove at most ε3N2 edges.
Let C be a ρ-clique in G.

Definition 10 (Proper initialization). The restorer is properly initialized if for any U, T,W defined in the initializer
InitClique it holds that:

1. There exists U ′ ⊆ C|S1
of size ρ

2m1 such that K2ε2/ρ(U ′) is bounded by (Kε2/ρ(C), K3ε2/ρ(C)).

2.

∣∣∣∣∣
|T |
m2
−

∣∣∣K2ε2/ρ(U)
∣∣∣

N

∣∣∣∣∣ < ε
2 .

3. If |T |m2
≥ ρ

2 then K2ε(T ) is bounded by (Kε(K2ε2/ρ(U)),K3ε(K2ε2/ρ(U))).

4.

∣∣∣∣∣
|W |
m3

−
∣∣∣K2ε2/ρ(U)∩K2ε(T )

∣∣∣
N

∣∣∣∣∣ < ε
2 .

Lemma B.1. The restorer is properly initialized with probability 1− negl(1/ε).

The proof is by standard application of Chernoff’s bound and is omitted from this extended abstract.

Lemma B.2. Let (U∗, T ∗, w∗, h) = InitCliqueF (). Then if the restorer is properly initialized and U∗ 6= ∅, then
there exists at least one set C ′ ⊆ (K2ε2/ρ(U∗) ∩ K2ε(T ∗)) of size (ρ − 6ε)N . For each such set, C ′ is missing
O (ε) N2 edges to being a clique.

Proof: Since |W |
m3

≥ (ρ − 5ε) then
∣∣K2ε2/ρ(U∗) ∩K2ε(T ∗)

∣∣ ≥ (ρ − 6ε)N and thus has subsets as required. Let
C ′ be such subset and denote X = K2ε2/ρ(U∗). For all but a negligible fraction of the vertices v ∈ C ′ it holds
that v ∈ K3ε(X) and therefore there exist (ρ− 6ε− negl(1/ε))N vertices in C ′ that have more than (1− 3ε) |X|
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neighbors in X . Specifically this means that they have at least |C ′|−3ε |X| ≥ |C ′|−3εN ≥ (ρ−9ε−negl(1/ε))N
neighbors in C ′.

Therefore C ′ is missing at most

(ρ− 6ε)2N2 − (ρ− 6ε− negl(1/ε))N · (ρ− 9ε− negl(1/ε))N = O (ρε)N2 = O (ε) N2

edges to being a clique.

But does InitClique ever succeed in finding U∗?

Lemma B.3. Let F = (V,E) be ε3-close to having a ρ-clique. Then if the restorer is properly initialized, then
Algorithm InitCliqueF () returns U∗ 6= ∅.

Proof: Let G = (V, EG) be a graph that is ε3-close to F as described above, and let U ′, C be the sets for which
item 1 of Definition 10 holds. A simple counting argument shows that there exists a subset C̃ ⊆ C of size (ρ−ε)N
such that each v ∈ C̃ is adjacent, in F , to at least (ρ− ε2)N vertices of C. Otherwise, more than εN vertices lost
more than ε2N edges in contradiction to the distance guarantee. Using our notation, we have that C̃ ⊆ Kε2/ρ(C).

By definition, K2ε2/ρ(U ′) contains all but a negligible fraction of C̃. On the other hand, all but a negligible
fraction of K2ε2/ρ(U ′) is contained in K3ε2/ρ(C) and thus all but a negligible fraction of the vertices of K2ε2/ρ(U ′)
neighbor at least (1 − 3ε2/ρ) |C| = (ρ − 3ε2)N of the vertices of C. We deduce that all but a negligible fraction
of K2ε2/ρ(U ′) neighbor all but 3ε3N of the vertices of C̃.

Denote X = C̃ \Kε(K2ε2/ρ(U ′)). We use a simple counting argument on the number of edges between C̃ and
K2ε2/ρ(U ′). A lower and upper bound on this size yield:

(
∣∣K2ε2/ρ(U

′)
∣∣− negl(1/ε)) · (

∣∣∣C̃
∣∣∣− 3ε2N) ≤ |X| (1− ε)

∣∣K2ε2/ρ(U
′)
∣∣ + (

∣∣∣C̃
∣∣∣− |X|) ·

∣∣K2ε2/ρ(U
′)
∣∣ .

Using basic arithmetic we have that |X| ≤ (3ε+ negl(1/ε))N . We deduce that all but (3ε+ negl(1/ε))N of C̃ are
in Kε(K2ε2/ρ(U ′)) and therefore all but (3ε + negl(1/ε))N of C̃ are in K2ε(T ′) (for T ′ that matches U ′).

We conclude that there are at least (ρ − 4ε − negl(1/ε))N vertices in K2ε2/ρ(U ′) ∩ K2ε(T ′) and therefore
|W |
m3

≥ ρ− 5ε. Therefore for U = U ′, InitClique reaches step 4c.

C Restorer for 1-Dimensional Function Monotonicity

We present the restorer discussed in Section 5 and provide a detailed analysis thereof, concluded with the proof of
Theorem 5.1. We start with a presentation of index-value trees [25].
Index-value trees. An index-value tree is a a binary tree in which each node v is characterized by the following
properties: ind(v), lind(v), rind(v) ∈ [n], val(v), lval(v), rval(v) ∈ R (we note that lval, rval can also be ±∞
which is handled in the standard way). Additional sets associated with v are defined by its properties:

I(v) def= {lind(v), . . . , rind(v)} ,

S(v) def= {j ∈ I(v) : lval(v) < f(j) ≤ rval(v)} ,

B≤(v) def= {j ∈ S(v) : j ≤ ind(v) and f(j) > val(v)} ,

B>(v) def= {j ∈ S(v) : j > ind(v) and f(j) ≤ val(v)} .

We denote s(v) = |S(v)|, b≤(v) = |B≤(v)|, b>(v) = |B>(v)|.
The tree is defined recursively as follows.

1. Let r be the root of the tree. Then lind(r) = 1, rind(r) = n, ind(r) = dn/2e, lval(v) = −∞, lval(v) = ∞.
The value val(v) is defined by the specific construction.
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2. For any node p, if lind(p) = rind(p) or if S(v) = ∅ then p is a leaf. Otherwise let `, r denote its left and
right children respectively, then: lval(`) = lval(p), rval(`) = val(p), lind(`) = lind(p), rind(`) = ind(p)
and lval(r) = val(p), rval(r) = rval(p), lind(r) = ind(p) + 1, rind(r) = rind(p).

3. The values of ind(v), val(v) for all nodes are determined by the specific tree construction algorithm so that
lind(v) ≤ ind(v) < rind(v) and val(v) = f(j) for some j ∈ S(v).

For the entire tree, we define B
def=

⋃
v∈T (B≤(v) ∪ B>(v)). For any index-value tree T constructed for f , it

holds that f is monotone on [n] \B [25].
We use (a slight modification of) a construction described in [25] with the properties quoted below.

Corollary C.1 (Construction from [25]). Let f : [n] → R be some function. For all δ > 0, define γ = δ/ log(n).
Let r1 ∈ {0, 1}m1 be a random string of length m1 = Θ(log2(n)/γ2).

There exists a procedure FindPath that takes randomness r1, an input j ∈ [n] and has query access to f such
that:

1. FindPath makes at most Θ(log2(n)/γ2) queries to f .

2. For all r1 there exists an index-value tree Tr1 , some of which nodes are marked as empirically small.

3. For all j, FindPathf (r1, j) returns a path in Tr1 starting from the root and ending in the first node v for
which j ∈ I(v) and either v is a leaf or v is an empirically small node. For each node x along the returned
path, the algorithm returns lind(x), ind(x), rind(x), lval(x), val(x), rval(x).

4. With probability at least 1− 1/poly(n), the tree Tr1 has the following properties:

4a: The tree height is at most 2 log n.
4b: Each empirically small node v either satisfies s(v) ≤ γ |I(v)| or one of its ancestors is empirically

small.
4c: 1

n

∑
v∈Tr1

(b≤(v) + b>(v)) ≤ 2εmon(f) + 2δ.

Proof: The proof is simply quoting the properties of [25]’s “Algorithm 2” combined with an additional observation.
Algorithm 2 uses fresh randomness for computing each node in the path every time the algorithm is run. Since
consecutive runs may not agree, there is no implicit tree Tr1 . In the analysis, however, it is shown that the error
probability could be made smaller than any 1/poly(n). Therefore, since there are at most Θ(n) possible queries,
we can use a single random string to gain consistency and still have success probability at least 1 − 1/poly(n).

Definition 11 (semi-proper randomness). A random string r1 ∈ {0, 1}m1 is semi-proper if Tr1 satisfies item 4 of
Corollary C.1.

Definition 12 (small nodes). Let r1 be semi-proper. Then a node v ∈ Tr1 is small if it is empirically small or if

one of its ancestors is empirically small. Denote B1
def= {j ∈ [n] : j ∈ B or ∃small v∈Tr1 . j ∈ I(v)}.

B1 extends B as it includes all of B but also indices that are not in B but are “hard to find” (since upon reaching
a small node, FindPath may stop).

For any node v in Tr1 , we would like to estimate the fraction of the indices in I(v) that are not in B1. That is the
fraction of indices in I(v) that are both not in B and are reachable. Formally define β(v) = |I(v)\B1|

|I(v)| . Procedure
FindRatio described in Figure 9 estimates the value of β(v).

Definition 13 (proper randomness). Random strings r1 ∈ {0, 1}m1 , r2 ∈ {0, 1}m2 are proper if r1 is semi-proper
and for all v ∈ Tr1 it holds that

∣∣FindRatiof (r1, r2, v)− β(v)
∣∣ ≤ γ/4.

Lemma C.2. Let r1 ∈ {0, 1}m1 , r2 ∈ {0, 1}m2 be random strings. Then with probability at least 1 − 1/poly(n)
it holds that r1, r2 are proper.
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Procedure FindRatio

Input: Strings r1 ∈ {0, 1}m1 , r2 ∈ {0, 1}m2 where m1 = Θ(log2(n)/γ2), m2 = Θ(log2 /γ2). Node v (given as
the set of parameters defining it). Query access to function f .
Output: Estimation of β(v) in tree Tr1 .
Code:

(1) Let s = Θ(log(n)/γ2). Compute the path to v by running FindPathf (r1, j) for some j ∈ I(v).

(2) If v is small then return 0.

(3) If |I(v)| ≤ s, go over all indices j ∈ I(v), run FindPathf (r1, j), check if j ∈ B1 and compute β(v).

(4) Otherwise, randomly sample s indices of I(v) using r2 as random bits (note that r2 is sufficiently long). For
each such index j run FindPathf (r1, j) and check if j ∈ B1. Output the ratio of sampled indices that are
not in B1.

Figure 9: Procedure FindRatio.

Proof Sketch: By Corollary C.1, r1 is semi-proper with probability at least 1 − 1/poly(n). We use Chernoff’s
bound to bound the probability that r1 is semi-proper but r1, r2 are not proper. The expected ratio of I(v) \ B1 in
the sample is β(v), the chance of deviating by more than γ/4 is bounded by 1

poly(n) . We can take the constant in
the Θ(·) notation to be large enough so that even after applying a union bound over all Θ(n) possible nodes we
still have a chance of failure of at most 1/poly(n) and the result follows.

We now define another useful extension of the set of “problematic” nodes in the tree.

Definition 14 (deserted nodes). For any proper r1, r2, for any level h = 0, . . . , 2 log n of Tr1 , define ηh
def=

(1 + 2 log n − h) · γ
2 . A node v of level h in Tr1 is deserted if either FindRatiof (r1, r2, v) < ηh or if one of its

ancestors is deserted. Define B2
def= {j ∈ [n] : ∃deserted v∈Tr1 . j ∈ I(v)}.

Again we extend our set of “non-treatable” indices. Our new set B2 has a hierarchial structure which will
enable us to efficiently search the tree for indices either in or out of B2. Details follow.

Lemma C.3. Let r1, r2 be proper. Let v ∈ Tr1 and let v0, v1 be its children. Then if v0, v1 are both deserted then
v is deserted.

Proof: Obviously if either v0 or v1 “inherited” the property then v must also have it. Let h be the level of v in the
tree. If FindRatiof (r1, r2, v0/1) < ηh+1 then by Lemma C.2 it holds that β(v0/1) < ηh+1 + γ

4 . Thus

β(v) =
β(v0) |I(v0)|+ β(v1) |I(v1)|

|I(v)| < (ηh+1 +
γ

4
)
|I(v0)|+ |I(v1)|

|I(v)| = ηh+1 +
γ

4
.

Applying Lemma C.2 to v yields FindRatiof (r1, r2, v) < ηh+1 + γ
2 = ηh and the result follows.

Lemma C.4. Let r1, r2 be proper. Then B1 ⊆ B2.

Proof: Let j ∈ B1 then consider the leaf v that contains j (and possibly other indices), if j ∈ B then s(v) = 0 and
hence FindRatiof (r1, r2, v) < γ

4 < ηh. If j ∈ B1 \B then v is small and thus deserted, yielding j ∈ B2.

Lemma C.5. Let r1, r2 be proper. Then |B2| ≤ (2εmon(f) + 4δ)n.

Proof: By item 4c of Corollary C.1, it follows that |B| ≤ (2εmon(f) + 2δ)n.
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We now bound |B1 \B|. Let V be the set of vertices in Tr1 that are small but have no small ancestor. If
j ∈ B1 \B then j ∈ S(v) for some v ∈ V and from item 4b it follows that

∑
v∈V |S(v)| ≤ ∑

v∈V γ |I(v)| ≤ γn.
Therefore |B1 \B| ≤ γn.

We similarly bound |B2 \B1|. Let U be the set of vertices in Tr1 that are deserted and have no deserted
ancestor. All indices j ∈ B2 \B1 belong to I(v) \B1 for some v ∈ U . Therefore

|B2 \B1| ≤
∑

v∈U

|I(v) \B1| =
∑

v∈U

β(v) |I(v)| <
∑

v∈U

(ηh(v) + γ/4) |I(v)| ≤ (γ + δ)
∑

v∈U

|I(v)| ≤ (γ + δ)n .

We conclude that |B2| ≤ (2εmon(f) + 3δ + 2γ)n ≤ (2εmon(f) + 4δ)n.

Next we present Procedure FindVal (Figure 10). We show that for all i it can efficiently find the closest value
j < i such that j 6∈ B2. The restorer will replace the values of all i ∈ B2 with the value of the nearest j 6∈ B2

(from below). Thus replacing (among others) all values of i ∈ B and making the function monotone.

Procedure FindVal

Input: Random strings r1, r2. Index i ∈ [n]. Query access to f .
Output: Maximal j ∈ ([n] \B2) such that j < i, if such j doesn’t exist, (−1) is returned.
Code:

(1) Use FindPathf (r1, i) and FindRatiof (r1, r2, ·) to find the first ancestor of the leaf containing i that is not
deserted and whose left child is not deserted, denote it by v. If no such node exists, return (−1).

(2) Let u be the left child of v. Find its rightmost non-deserted leaf by going down the tree, taking the right
child if it is not deserted and the left otherwise. Return the index in the non-deserted leaf.

Figure 10: Procedure FindVal.

Lemma C.6. Let r1, r2 be proper. Then FindValf (r1, r2, i) makes O(log4(n)/γ4) queries to f and for i ∈ B2 it
returns the value of the maximal j ∈ ([n] \B2) such that j < i. If such index does not exist then it returns (−1).

Proof: If r1, r2 are proper, then the procedure calls FindPath and FindRatio at most O(log(n)) times and thus it
makes at most O(log4(n)/γ4) oracle calls.

If such j exists, then by definition all of its ancestors are not deserted. Let v be the least common ancestor of
j and i. Since j < i, it must be a descendant of the left child of v. Therefore if such j exists then i has to have an
ancestor that is not deserted and whose left child is not deserted. Thus the procedure returns (−1) if and only if no
such j exists.

Since by Lemma C.3 if v is not deserted then it has at least one non-deserted child, then in the second step of
the procedure, we first check if the right child is non-deserted, if so this means that j is in that subtree. Otherwise
the whole subtree is deserted and j is in the left child. Therefore we always find the rightmost (that is, maximal)
non-deserted leaf that is to the left of i, such leaf must contain j 6∈ B2.

The restorer (InitMonotone, EvalMonotone) is described in Figures 11, 12. Note that EvalMonotone uses
Procedures FindPath, FindRatio, FindVal that have been described and analyzed above. We can now finally prove
Theorem 5.1 from Section 5.
Proof of Theorem 5.1: The claims on the number of queries and on the running time follow immediately from
definition and from Lemma C.6.

It remains to show that if r1, r2 are proper (which happens with probability at least 1− 1/poly(n)), then hσ is
monotone and dist(f, hσ) ≤ 2εmon(f) + 4δ. From here on let r1, r2 be proper.

We note that {i ∈ [n] : f(i) 6= hσ(i)} ⊆ B2. Thus by Lemma C.5 we get that:

dist(f, hσ) = Pr
i∈[n]

[f(i) 6= hσ(i)] ≤ Pr[i ∈ B2] =
|B2|
n

≤ 2εmon(f) + 4δ .
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Algorithm InitMonotone

Input: Query access to function f .
Output: Initial state σ = (r1, r2).
Code:

(1) Randomly select r1
R← {0, 1}m1 , r2

R← {0, 1}m2 for m1,m2 defined in Procedure FindRatio.

(2) Return σ = (r1, r2).

Figure 11: Algorithm InitMonotone.

Algorithm EvalMonotone

Input: Initial state σ = (r1, r2). Index i ∈ [n]. Query access to function f .
Output: Value of restored function hσ(i).
Code:

(1) Use FindPathf (r1, r2, i) and FindRatiof (r1, r2, ·) to check if i ∈ B2.

(2) If i 6∈ B2 then return hσ(i) = f(i).

(3) If i ∈ B2 then compute j = FindValf (r1, r2, i). If j = (−1) then return hσ(i) = minR (minimal value of
R), otherwise return hσ(i) = f(j).

Figure 12: Algorithm EvalMonotone.

As to monotonicity, note that B2 ⊇ B and therefore f is monotone on [n] \ B2. Clearly hσ does not violate
this monotonicity as by Lemma C.6, for each value in i ∈ B2 it takes hσ(i) = f(j) where j is the maximal index
that is smaller than i and not in B2 (or the smallest possible value if there is no such index). Therefore hσ(i) is at
least as big as f(j) but at most as big as f(k) for any B2 63 k > i.
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