
TEL AVIV UNIVERSITY
THE IBY AND ALADAR FLEISCHMAN FACULTY OF ENGINEERING

Department of Electrical Engineering – Systems

General Perfectly Periodic Scheduling

Thesis submitted toward the degree of

Master of Science in Electrical Engineering

in Tel Aviv University

by

Zvika Brakerski

June 2002

TEL AVIV UNIVERSITY
THE IBY AND ALADAR FLEISCHMAN FACULTY OF ENGINEERING

Department of Electrical Engineering – Systems

General Perfectly Periodic Scheduling

Thesis submitted toward the degree of

Master of Science in Electrical Engineering

in Tel Aviv University

by

Zvika Brakerski

This research work was carried out at Tel-Aviv University

in the Department of Electrical Engineering – Systems,

Faculty of Engineering

under the supervision of

Dr. Boaz Patt-Shamir

June 2002

Acknowledgements

I wish to express my gratitude to my advisor, Dr. Boaz Patt-Shamir, for his advices

and feedback. I am grateful for his guidance and support.

I wish to express my gratitude to Aviv Nisgav for his ideas and for his tremendous

contribution to this research.

I am thankful to Dr. Guy Even for his help throughout the past few years.

I thank the entire staff of the department of Electrical Engineering — Systems for

their companionship.

I would like to express my special gratitude to Elik and Shachar for their considera-

tion.

Abstract

In a perfectly-periodic schedule, time is divided into time-slots, and each client is sched-

uled precisely every some predefined number of slots, called the period of that client.

Periodic schedules are useful in wireless communication and other settings. The quality

of a schedule is measured by the proportion between the requested and the granted

periods: either the maximum over all jobs, or the average. There exist good scheduling

algorithms for the average measure in the unit-length single-server model in which all

jobs are one slot long, and at most one job is served in each time unit. In this pa-

per we study the general model, where each job may have a different length, and m

jobs can be served in parallel for some given m. We give a lower bound for this model

which demonstrates the inherent difficulty of multiple lengths, and present a sequence

of algorithms, culminating in an algorithm for the general case which is asymptotically

optimal under the maximum ratio measure (and hence also the average ratio measure).

The new algorithms utilize new techniques which are rather different from the known

algorithms used for the unit-length model. Some of the algorithms improve on the best

known bounds for the unit-length model.

Contents

1 Introduction 1

2 Problem Statement and Notation 6

3 A Lower Bound on the Approximation Factor 8

3.1 A Lower Bound for the AVE Measure . 8

3.2 A Lower Bound for the MAX Measure 11

4 The Scale & Balance Algorithm 12

4.1 The Balance Algorithm . 12

4.2 The Scale & Balance Algorithm . 17

4.3 Unslotted Versions for Algorithms bal and s&b 18

4.4 A 9
8

+ O(R) Approximation Algorithm for AVE 19

5 A 1 +
√

2
2

+ O(R) Approximation Algorithm for MAX 22

6 Separable Schedules 27

6.1 Definition of Separable Schedules . 27

6.2 Operations on Separable Schedules . 28

7 A General Algorithm for MAX 32

7.1 The Single Server Case . 32

7.1.1 A Slotted Version of Algorithm C 34

7.2 The Multiple Servers Case . 35

i

8 Conclusions and Discussion 39

8.1 Open Problems . 39

ii

List of Figures

2.1 Glossary of notation. 7

3.1 Illustration of the construction used for the lower bound proof. 8

4.1 Algorithm bal. 13

4.2 Example of running Algorithm bal. 14

4.3 Algorithm s&b. 18

4.4 Algorithm A. 20

5.1 Algorithm B. 23

5.2 Algorithm B - the first step. 23

5.3 Algorithm B - the small ∆′ case. 25

6.1 Algorithm P. 28

6.2 Example of Algorithm P. 28

6.3 Algorithm M. 30

6.4 Example of Algorithm M. 30

7.1 Algorithm C. 33

7.2 Algorithm genP. 36

8.1 Summary of presented algorithms and techniques. 40

iii

Chapter 1

Introduction

Consider a system that comprises a resource and some clients sharing it by means of

time multiplexing: in any given time, a different client may use the resource. Many

application domains (e.g., real-time tasks, multimedia applications, communication with

guaranteed quality-of-service) require that clients are served at some prescribed rate, and

this rate should be as smooth as possible even in small time-windows. Practically, this

means that the time axis is divided into small equal-size quanta called time slots, which

are allocated to clients in more-or-less equally spaced intervals. The allocation of time

slots to clients is governed by a scheduling algorithm. More precisely, the scheduling

algorithm is given a set of requested shares, and its goal is to produce an assignment of

time slots to clients, while trying to optimize two different measures:

• Approximation: a schedule is said to have good approximation if the fraction

of time-slots allocated to each client (called granted share below) is close to the

requested share of the client, according to some given metric.

• Smoothness: a schedule is said to have good smoothness if the time-slots al-

located to each client are as evenly spaced as possible (under some other given

metric).

The metrics may vary, according to the application at hand; in any case, the intuition is

that the best possible approximation is when the granted rates are exactly the requested

rates, and the best possible smoothness is when each client is scheduled exactly every p

time slots, for some p called the period of that client. Note that it is easy to optimize

one objective while neglecting the other: approximation can be trivially achieved to any

desired degree by taking long sequences of time slots and partitioning them to intervals

whose lengths are proportional to the requested shares, with some rounding. The longer

the sequence is, the better approximation can be guaranteed; but clearly, the longer the

sequence is, the worst smoothness we get. On the other end of the spectrum we have

1

the round-robin schedule, where each client gets one time slot in turn, regardless of its

requested share. This scheme features the best possible smoothness, but suffers from

poor approximation in general. Most prior work on this scheduling problem concentrated

on the variant where the chief goal is to obtain good approximation, while smoothness

was only of secondary importance. In this paper, we are interested in exploring the other

extreme: we insist on maintaining strict smoothness while relaxing the approximation

requirement. More precisely, we call a schedule perfectly periodic, if each client i is

scheduled exactly every pi time slots, for some pi called the period of i. In our setting,

the granted period may be different from the requested period. Our goal is to optimize

the approximation measure under the perfect periodicity constraint.

Perfect schedules are attractive from a few viewpoints, all due to the fact that mathe-

matically, they are very simple to describe: the schedule of a client is completely specified

by two numbers (period and offset). This inherent simplicity gives rise to several pleasing

consequences; let us list a few.

Wireless communication with portable devices. One of the major power consumers in

portable devices (such as PDAs) is their radio, used for wireless communication. This is

a critical issue, since a portable device may weigh only few grams, leaving very little room

for batteries. Perfect schedules help to significantly reduce the power requirement of a

mobile client while it is waiting for its turn: instead of “busy waiting” (constantly listen-

ing to the radio channel), the device can actually shut off its radio until its turn arrives.

This feature exists in modern wireless technologies [11]. For example, in Bluetooth,

which is a new technology for wireless communication of small devices, the standard

defines sniff mode [1]. A device in sniff mode is obliged to listen to the network only

in time windows defined in a strictly periodic fashion. Another example is the concept

of broadcast disks [2], where the server continuously broadcasts a “database.” A client

that wishes to access a certain “page” in the database waits until that item is scheduled.

If the schedule is perfectly periodic, it is extremely easy for the client to compute when

will be the next occurrence of its desired item. Moreover, if the schedule is perfectly pe-

riodic, then it is known [12, 15] how to interleave “index pages” between the data pages

so that a randomly arriving client does not need to continuously listen until its desired

data page is broadcasted. The index pages reduce significantly the active listening time

of the client. There is no such scheme for non-perfect schedules.

Fairness. Another important motivation for perfect periodicity is that in time-

sharing systems, one of the main objectives of schedules is that they should be fair:

intuitively, fairness means that the number of time slots client i waits should always be

inversely proportional to its share. A social example for this requirement is the classical

chairperson assignment problem [17], that can be illustrated with the following example.

A union of several states changes its chairperson every year. The schedule should be fair:

2

Each state gets its share of chairing the union according to its size, say. However, the

schedule should also attain this fairness quickly: no state would agree to wait hundreds

of years to get its first term of chairing the union. What constitutes a good solution?

Several fairness criteria were suggested. For example, in some network models, each

client i has two parameters (wi, ri), and the requirement is that in any time window

of length T ≥ wi, client i gets at least briT c time slots [9]. A stricter requirement is

the prefix criterion, where the requirement is that in any prefix of T slots, each client i

gets either bαiT c or dαiT e slots, where αi is the share allocated to client i [16]. Since

the number of slots is integral, this seems to be the best possible. Indeed, there exists

a schedule that meets the prefix fairness requirement [17]. Still, the gap between two

occurrences of the same client could be as large as twice its average gap. When fairness

is very important, perfect schedules provide the best solution.

What’s known. Early work on perfectly periodic schedules was motivated by teletex

systems. In [3], Ammar and Wong consider the problem of minimizing the average

response time in Teletext Systems (which is equivalent to the Broadcast Disks problem

presented above and further discussed below). They show that the optimal schedule for

this problem is cyclic and give nearly-optimal algorithms for the problem. The schedules

they produce can be easily modified to create perfectly-periodic schedules obtaining an

approximation factor of 2.

Another variant is the maintenance problem [4, 19]. In [4], Anily et al. give an

optimal solution for the case where there are only two jobs and give an approximation

factor of 2 for the general case.

Minimizing the waiting time for broadcast disks is studied in [14, 5]. Non-perfect

schedules are also studied in [16, 19, 6]. In [5], Bar-Noy et al. give an approximation

ratio of 9
8

to the problem of minimizing the average waiting time in a broadcast disks

setting. The algorithm uses the golden ratio schedule and therefore the gaps between

consecutive runs of the same client can take any of three distinct values (for perfect

schedules, only one value is allowed). The lower bound for the optimum in [5] is a

relaxation of the problem to a “fluid” model where more than one job can run at each

time slot. The resulting schedule in the “fluid” model is equivalent to a perfect schedule

in the “non-fluid” model. Therefore approximating the perfect scheduling problem (even

for the average measure) gives an approximation for the Broadcast Disks problem. In

[15], Khanna and Zhou define waiting time as the total time until the client gets its

requested share and tuning time as the time the client is active while waiting (busy

waiting). They use an indexing scheme that applies only to perfect schedules to give a

1.5 + ε approximation to the average waiting time with tuning time of O(log n). In [14],

Kenyon et al. give a polynomial-time approximation scheme to the Broadcast Disks

3

problem. The schedules they produce are not periodic in general.

The main reason to study non-perfect schedules, apparently, is that perfect schedules

are not always feasible: Consider, for example, the case where one client requests period

2 and another requests period 3. There is no way to satisfy both requests: the first

client must occupy either all the even-numbered slots or all the odd-numbered slots, but

the second client must occupy some even-numbered and some odd-numbered slots. It

therefore follows that if perfect periodicity is sought, there are cases where the periods

granted will not match the requests. Moreover, it is NP-hard even to decide whether a

given set of requests admits a perfectly periodic schedule [5]. Fortunately, it turns out

that perfect periodicity is not necessarily expensive in terms of approximation. Specif-

ically, define for each client its approximation ratio to be the proportion between its

requested period and its granted period. It is known [10] that if all jobs have unit size,

then there exist schedules that guarantee that the average approximation ratio (where

the weight of each client is its requested bandwidth) is close to optimal. These sched-

ules use a hierarchical round-robin method, called tree scheduling. In tree scheduling,

the schedule is built in the form of a tree where the leaves represent the jobs. The

period of a leaf is the product of the number of children of its ancestors. Tree scheduling

was further investigated in [7, 8]. In [7], the maximum measure is also studied: under

this measure, the quality of the schedule is the worst-case approximation ratio over all

clients. Bar-Noy et al. show in [7] how to construct optimal tree schedules (which don’t

necessarily provide an optimal solution to the problem) in exponential-time for either

the maximum or average measure.

The results above apply only to the unit-size model where all jobs have the same

length. The multiple-size case for the Broadcast Disks problem has been studied in [13]

where an approximation ratio of 3 was presented.

Our results and thesis organization. In this work, we extend the concept of per-

fectly periodic schedules in two ways. First, we consider the multiple lengths model, in

which each client i, in addition to its requested period τi, also has a length bi, and the

requirement is that the schedule must allocate bi time slots for each occurrence of that

client. The occurrences must be perfectly periodic as usual. Secondly, we consider the

multiple server model, where we assume that in each time slot, m clients can be served

in parallel, and the total requested bandwidth is m. We investigate these models under

both the average and the maximum measures. We start by showing that the multiple

length case is inherently different from the unit-length case: in contrast to the unit-

length model, even if all lengths and periods are powers of 2, there may be no perfect

schedule that satisfies the requests. It turns out that the ratio between the largest job

size and the shortest period is a key quantity. Formally, we define the extent of a given

4

instance J to be RJ
def
= max{bi|i∈J}

min{τi|i∈J} . Our lower bound shows that in general, the best pos-

sible average ratio (and hence, maximum ratio) is at least 1+RJ−O(1/ min {τi | i ∈ J}).
This lower bound is presented in Chapter 3. We then proceed to provide upper bounds

on the approximation ratio, also expressed in terms of RJ . The algorithms are presented

in a succession of refinements. In Chapter 4 we give an algorithm that guarantees a good

upper bound for the MAX measure, provided that all periods are powers of 2 times a

common multiple. Based on this algorithm, we analyze a simple algorithm that gets an

approximation ratio of 9
8

+ 3
2
RJ + 1

2
R2

J for the AVE measure. In Chapter 5 we present

another algorithm that is based on the basic algorithm of Chapter 4. This algorithm

guarantees an approximation ratio of at most 1+
√

2/2+2R ≈ 1.707+2R for the MAX

measure. A generalization of the schedules produced by the algorithm of Chapter 4 is

presented in Chapter 6. This generalization is used to achieve maximum ratio guarantee

of 1 + O(R
1/3
J), in the algorithm presented in Chapter 7. This algorithm easily gener-

alizes to the multiple server case. In Chapter 8 we conclude and summarize all of the

algorithms presented (in Figure 8.1) and discuss relevant open problems.

The formal model is presented in Chapter 2.

5

Chapter 2

Problem Statement and Notation

Most of the notation used in this work appears in the Glossary in Figure 2.1.

Instances. An instance of the perfectly-periodic scheduling problem is a set of n

jobs J = {ji = (bi : τi)}n
i=1, where bi is the size or length of ji, and τi is the requested

period of ji. We sometimes refer to jobs also as clients. The maximal length of a

job in an instance J is defined by BJ
def
= max {bi | i ∈ J}. The maximal and minimal

values of the requested periods in instance J are defined by TJ
def
= max {τi | i ∈ J}, and

tJ
def
= min {τi | i ∈ J}. The ratio between BJ and tJ is called the extent of J , formally

defined by RJ
def
= BJ

tJ
. For the single-server model, we assume that RJ ≤ 1 (otherwise,

no schedule can satisfy the requests of J). We omit subscripts when they are clear from

the context.

Schedules. A schedule S for an instance J is a set of infinite sequences of start times

S = {I1, . . . , In}, such that Ii = 〈Ai1 , Ai2 , Ai3 , . . .〉 where Aik is a nonnegative integer for

each i, k. We say that job i is scheduled in time slot t if for some k, Aik ≤ t < Aik + bi.

We assume that Aik+1
≥ Aik + bi for all i, k. A schedule is m-feasible if for all t, at

most m jobs are scheduled at t. The parameter m is called the number of servers. For

the most part of this paper, we will be interested in the single server case, i.e., m = 1.

A schedule S is said to be perfectly periodic (or just periodic for short) if for each job

i there exists a granted period τS
i such that for all j, Aij+1

− Aij = τS
i . Note that the

granted periods may be different from the requested periods, but the job lengths cannot

be truncated by the schedule. Periodic schedules can be represented by their cycles, i.e,

a sequence of time slots whose length is the least common multiple of job periods.

The requested bandwidth of job ji is defined by βi
def
= bi

τi
. The total bandwidth of an

instance J is defined by βJ
def
=

∑n
i=1 βi. Note that if βJ > m where m is the number of

servers, there is no feasible schedule for the instance. The free bandwidth of an instance

J is defined by ∆J
def
= m− βJ . We assume that input instances for the problem have no

6

Instances and jobs:

• J : an instance of the problem.

• n: number of jobs (clients) in an in-
stance.

• m: number of servers.

• ji: the ith job in an instance.

• bi: length (size) of ji.

• τi: requested period of ji.

• BJ
def= max {bi | i ∈ J}: maximal length

(size) in instance J .

• TJ
def= max {τi | i ∈ J}: maximal re-

quested period in instance J .

• tJ
def= min {τi | i ∈ J}: minimal re-

quested period in instance J .

• RJ
def= BJ

tJ
: extent of instance J .

Schedules and quality measures:

• S: a schedule.

• τS
i : granted period of ji in schedule S.

• βi
def= bi

τi
: requested bandwidth of ji.

• βJ
def=

∑
i∈J βi: total bandwidth of in-

stance J .

• ρi
def= τS

i
τi

: individual ratio of ji in sched-
ule S.

• CMAX(J, S) def= max {ρi | i ∈ J}: MAX
measure of instance J and schedule S.

• CAV E(J, S) def= 1
βJ

∑
i∈J βiρi: AVE mea-

sure of instance J and schedule S.

Figure 2.1: Glossary of notation.

free bandwidth.

Quality measures. Let J be an instance for the perfectly periodic scheduling

problem and let S be a schedule for J . The individual ratio of a job i in S is defined by

ρi
def
=

τS
i

τi
. The MAX measure is simply the maximum over the individual ratios, defined

formally by CMAX(J, S)
def
= max {ρi | i ∈ J} . The AVE measure is the weighted average

of the individual ratios, where the weight of i is its requested bandwidth.

CAVE(J, S)
def
=

1

βJ

n∑
i=1

βiρi =
1

βJ

n∑
i=1

bi
τS
i

τ 2
i

.

Slotted vs. unslotted. So far we have presented the model for slotted schedules.

In such schedules, all jobs have integer lengths and in addition, in the resulting schedule,

all jobs should start (and therefore end) at the beginning of a time slot (that is at an

integer time). However, sometimes we would like to refer to an unslotted model in which

the start time of a job can be any real number and so can the periods and the lengths

of the jobs. All algorithms presented have both slotted and unslotted versions.

7

Chapter 3

A Lower Bound on the

Approximation Factor

In this chapter we show that in general, it is impossible to achieve better results than

1+R−O(1
t
) for either the AVE or MAX measures, where R is the extent of the instance.

This result is interesting because it holds for any given values of B (the maximal client

size) and t (the shortest requested period). In particular, it holds even in the case where

all job sizes and requested periods are powers of 2, which is a trivial case to schedule

in the unit length model. In other words, the bad example below exposes an inherent

discrepancy between the unit length and the multiple length models. On the other hand,

it extends known lower bounds for the unit-length model [10].

3.1 A Lower Bound for the AVE Measure

Theorem 3.1 For any given integers B < t, there exists an instance J with maximal

job size B and minimal requested period t such that for all schedules S for J , we have

CAVE(J, S) > 1 + RJ − 2+RJ

t
.

Proof: Intuitively, the proof takes advantage of the variable-length property of the

problem. Consider an instance containing one very long job and many short jobs with

jtji ji

time

ti,1 ti,2 ti,3

S
iτ

t

Figure 3.1: Illustration of the construction used for the lower bound proof.

8

short periods and consider a time where the long job is scheduled. Since the schedule

is periodic, the short jobs need to be scheduled on both ends of the long job, at the

shortest possible distance. Since we have many short jobs, “traffic jams” are created at

both ends of the long job and a bound on the quality of the schedule is obtained.

Define an instance J with t− 1 “short” jobs and one “long” job as follows: the short

jobs have bi = 1 and τi = t for i = 1, . . . , t− 1; and the long job jt has bt = B, τt = Bt.

Clearly, the minimal period is t and the largest size is B. Consider any schedule S for

J , and let τS
i denote the granted period of job ji under S. Then, by definition and the

construction above, we have

CAVE(J, S) =
t∑

i=1

bi

τ 2
i

· τS
i

=
t−1∑
i=1

1

t2
· τS

i +
τS
t

Bt2

>
1

t2

t−1∑
i=1

τS
i .

(3.1)

We now bound the latter sum. Consider a time t in which the long job jt starts, and

consider, for any other job ji, the time interval between two consecutive occurrences of

ji that contains t. This interval has length τS
i by definition; partition it into three parts

(see Figure 3.1): the start of ji until t; t until the start of the job following jt; and the

start of the job following jt until the start of ji. Denote the lengths of these sub-intervals

by ti,1, ti,2 and ti,3, respectively. By definition, we have that τS
i = ti,1 + ti,2 + ti,3, and

that ti,2 = B. Hence

t−1∑
i=1

τS
i =

t−1∑
i=1

(ti,1 + ti,2 + ti,3)

=
t−1∑
i=1

ti,1 + (t− 1)B +
t−1∑
i=1

ti,3 .

(3.2)

The crucial observation is that
∑t−1

i=1 ti,1 ≥ t(t−1)
2

: this is true since the short jobs

j1, . . . , jt−1 must occupy t − 1 distinct slots prior to t. Similarly,
∑t−1

i=1 ti,3 ≥ (t−1)(t−2)
2

.

Thus we get from Eq. (3.1) and Eq. (3.2) that

CAVE(J, S) >
1

t2

(
t−1∑
i=1

ti,1 + (t− 1)B +
t−1∑
i=1

ti,3

)

≥ 1

t2

(
t(t− 1)

2
+ (t− 1)B +

(t− 1)(t− 2)

2

)

=

(
1− 1

t

)(
1 +

B

t
− 1

t

)
.

9

A more careful analysis gives a tighter version of the bound as shown below.

Theorem 3.2 For any given integers B < t, there exists an instance J with maximal

job size B and minimal requested period t such that for all schedules S for J , we have

CAV E(J, S) ≥ (
1 + 1

Bt
− 1

t

) (
1 + B

t
− 1

t

)
. Furthermore, there exists a schedule S0 such

that CAV E(J, S0) =
(
1 + 1

Bt
− 1

t

) (
1 + B

t
− 1

t

)
.

Proof: The instance J is defined as in the proof of Theorem 3.1. We have

CAVE(J, S) =
t−1∑
i=1

1

t2
· τS

i +
τS
t

Bt2
.

In the proof of Theorem 3.1 we showed that 1
t2

∑t−1
i=1 τS

i ≥ t−1
t

(
1 + B

t
− 1

t

)
. Now we

analyze for two cases of τS
t in order to achieve a tight bound.

Case 1: If τS
t ≥ B + (t− 1) then

CAV E(J, S) =
1

t2

t−1∑
i=1

τS
i +

τS
t

Bt2

≥ t− 1

t

(
1 +

B

t
− 1

t

)
+

B + (t− 1)

Bt2

=

(
1− 1

t

) (
1 +

B

t
− 1

t

)
+

1

Bt

(
1 +

B

t
− 1

t

)

=

(
1 +

1

Bt
− 1

t

)(
1 +

B

t
− 1

t

)
.

Equality holds when τS0
i = B + (t− 1) for all i, that is a round-robin scheduling of all t

jobs. Therefore S0 is the round-robin schedule.

Case 2: If τS
t < B + (t− 1). Let τS

t = B + (t− 1) − k for some integer k ≥ 1 then

at least k jobs have a ti,3 value of more than B which we need to account for separately.

We get

CAV E(J, S) =
1

t2

t−1∑
i=1

τS
i +

τS
t

Bt2

≥ 1

t2
(
(t− 1) ·B + (t− 1)2 + k ·B)

+
B + (t− 1)− k

Bt2

=

(
1 +

1

Bt
− 1

t

)(
1 +

B

t
− 1

t

)
+

1

t2

(
k ·B − k · 1

B

)

=

(
1 +

1

Bt
− 1

t

)(
1 +

B

t
− 1

t

)
+

k

t2

(
B − 1

B

)

≥
(

1 +
1

Bt
− 1

t

)(
1 +

B

t
− 1

t

)
.

Since B − 1
B
≥ 0 for all B ≥ 1.

10

3.2 A Lower Bound for the MAX Measure

A slightly stronger bound can be proven in this case.

Theorem 3.3 For any given integers B < t, there exists an instance J with maximal

job size B and minimal requested period t such that for all schedules S for J , we have

CMAX(J, S) ≥ 1+R− 1
t
. Furthermore, there exists a schedule S0 such that CMAX(J, S0) =

1 + R− 1
t
.

Proof: Use the same construction as in Theorem 3.1; consider the job ji0 whose value

of ti0,3 is maximal. This value is at least t − 2 since there are at least t − 2 jobs

scheduled prior to ji0 (otherwise it wouldn’t have a maximal ti0,3). Since ti0,1 ≥ 1, we

get τS
i ≥ 1 + B + t− 2 = t + B − 1. Therefore CMAX(J, S) ≥ 1 + R− 1

t
.

Equality holds when for all i, τS0
i = B + (t− 1), namely a round-robin scheduling of

all t jobs. Therefore S0 is the round-robin schedule.

11

Chapter 4

The Scale & Balance Algorithm

In this chapter we present a basic technique for periodic scheduling with multiple lengths.

The algorithm scales up the requested periods so as to have sufficient free bandwidth,

and then allocates the time slots in a balanced way.

The algorithms are presented for the slotted model and then extended to the unslot-

ted model.

The algorithms presented in this section use binary trees to construct schedules.

The use of trees here, however, is quite different from “tree scheduling” presented in

previous work [10, 8]. In “tree scheduling” the tree is used to construct a hierarchial

round-robin schedule where in this work the tree is used merely to help the balancing

process (described below).

4.1 The Balance Algorithm

We first present Algorithm bal (see Figure 4.1), that assumes that there is sufficient free

bandwidth, and finds the schedule with at most the requested periods. This algorithm

works when all requested periods are powers of 2 times a common constant (not neces-

sarily integral), and it is given a parameter t∗ (not necessarily integral) that is a power of
1
2

times the minimal requested period t. (The parameter t∗ will come into play later; for

the time being, it may be convenient to assume that t∗ = t.) The algorithm constructs

a complete binary tree with T/t∗ leaves (recall T is the largest requested period). Each

leaf represents a run of w = bt∗c time slots. The idea in the algorithm is to spread

the occurrences of jobs so as not to overload the leaves. To this end, we define a total

order on jobs: for jobs ji, jk with requested periods τi and τk, respectively, we say that

ji l jk if either τi < τk, or if τi = τk and i < k. The tree is constructed recursively, and

12

Algorithm bal

Input: Instance J , parameter t∗.
Output: Schedule S.

Code:

(1) Create a complete binary tree of 1 + log T
t∗ levels. Associate all jobs of the given

instance with the root.

(2) Traverse the tree, starting from the root (either depth-first or breadth-first). In

each visited non-leaf node v, scan all job parts associated with v in increasing “l”

order. For each scanned job-part j, let τj denote the period associated with j:

• If τj < T , add j to both children of v, with associated periods 2 · τj.

• If τj = T , add j to the child of v whose current total associated bandwidth

(i.e., sum of the job lengths divided by the associated periods) is smaller. In

case of a tie, add j to the left child.

(3) Scan the leaves left-to-right. For each leaf `:

3a: Output the job parts associated with ` in increasing l order.

3b: Let the number of time slots used by ` be denoted by s`. Add bt∗c − s`

following idle time slots.

Figure 4.1: Algorithm bal.

each node will contain “job parts”: each job part has its own local associated period.

For the “l” relation, each job-part uses its inherited position in “l”. The “l” relation

is determined once in the algorithm, before it begins, and is not re-calculated in each

node, even when the job part in that node has different period than the job it originated

from. See Figure 4.2 for example of how the algorithm runs.

Let us briefly justify Step 3b of Algorithm bal. We will show that given sufficient

free bandwidth in the instance, the total bandwidth associated with each leaf is at most

t∗/T ; since the associated period of all job parts in the leaves is T , it follows that the

sum of lengths of all job parts in any leaf is at most t∗. Since the lengths of the jobs

are integral, the sum of sizes is at most bt∗c, and hence Step 3b cannot fail. We remark

that completing the number of slots to bt∗c is essential to the periodicity of the resulting

schedule.

The main properties of Algorithm bal are summarized in the following lemma.

Lemma 4.1 Let J = {ji = (bi : τi)}n
i=1 be an instance of the periodic scheduling problem

with free bandwidth ∆ ≥ R t
t∗ , and suppose that there exists a real number c > 0 and

nonnegative integers e, e1, . . . , en such that τi = c · 2ei for all i. If t∗ = t/2e, then

Algorithm bal with parameter t∗ finds a periodic schedule for J where the granted period

13

)28:2(

)28:1(

)28:1(

)14:1(

)14:1(

)14:2(

)7:1(

)7:1(

=
=
=

=
=
=
=
=

h

g

f

e

d

c

b

a

)28:1(""

)28:1(""

)28:1(""

)28:2(""

)14:1(""

)14:1(""

=
=
=
=
=
=

g

e

d

c

b

a

)28:2(""

)28:1(""

)28:1(""

)28:1(""

)28:2(""

)14:1(""

)14:1(""

=
=

=
=
=
=
=

h

f

e

d

c

b

a

)28:1(""

)28:2(""

)28:1(""

)28:1(""

=
=
=
=

f

c

b

a

idle×2

)28:2(""

)28:1(""

)28:1(""

)28:1(""

)28:1(""

=
=
=
=
=

h

e

d

b

a

idle×1

)28:1(""

)28:2(""

)28:1(""

)28:1(""

=
=
=
=

g

c

b

a

idle×2

)28:1(""

)28:1(""

)28:1(""

)28:1(""

=
=
=
=

e

d

b

a

idle×3

__,,,,, fccba _,,,,, hhedba __,,,,, gccba __,_,,,,, edba

__,_,,,,,_,_,,,,,_,,,,,,_,_,,,,,: edbagccbahhedbafccbaCycle

Figure 4.2: Example of running Algorithm bal with parameter t∗ = t = 7. The alpha-

betical order of jobs complies with their l order. Note that in the root we have β = 2
7

and R = 5
7
. Also note that job parts with periods smaller than T are associated with

both children and jobs with period T are associated with one child only.

14

of each job ji is τi
bt∗c
t∗ ≤ τi.

Proof: Feasibility follows from Lemma 4.2, and periodicity and correctness are proven

in Corollary 4.6.

Lemma 4.2 If ∆ ≥ R t
t∗ , then the bandwidth associated with each leaf by Algorithm bal

is at most t∗/T .

Proof: Given any node x, let hx denote its height (distance from the leaves), let βx

denote the total bandwidth associated with x, and define ∆x = t∗
T

2hx − βx. We need

to show that ∆` ≥ 0 for any leaf `. We first claim that if y1 and y2 are children of an

internal node x, then

min(∆y1 , ∆y2) ≥
∆x − B

T

2
. (4.1)

To see that Eq. (4.1) is true let us assume, without loss of generality, that ∆y1 ≥ ∆y2 .

By the algorithm, βy2 − βy1 ≤ B
T
, since the children may differ at most by the maximal

bandwidth of a single element. Hence

∆y1 −∆y2 ≤
B

T
. (4.2)

Also, since βx = βy1 + βy2 , we have

∆y1 + ∆y2 = ∆x . (4.3)

Combining Eq. (4.2) and Eq. (4.3) yields Eq. (4.1). Now let ` be any leaf. Let p(·) denote

the “parent of” function of the tree, and let r denote the root node. Using Eq. (4.1),

and the assumption that ∆r ≥ R t
t∗ , we can conclude that

∆` ≥
∆p(`)

2
− 1

2

B

T

≥ ∆p(p(`))

4
− B

T

(
1

2
+

1

4

)

≥ · · ·
>

t∗

T
·∆r − B

T

≥ t∗

T
· B

t
· t

t∗
− B

T

= 0 .

Associate a schedule with each node x in the tree by applying Step 3 of Algorithm

bal only to the subtree rooted at x. The following lemmas conclude the correctness of

Algorithm bal.

15

Let x be a node in the tree and define P x
i

def
= {jk ∈ x | jk l ji} the set of job parts

in x that are smaller than ji by l. Denote the schedule associated with x by Sx and

denote the offset of ji in Sx by ox
i .

Lemma 4.3 Let x, y be two nodes of the same level in the tree, both containing job part

ji. Then P x
i = P y

i .

Proof: This property follows from the in-order and deterministic nature of step 2 of

Algorithm bal. We prove by induction on `, the level of x, y. That is, their distance

from the root. Let p(·) denote the “parent of” function of the tree.

Base: If ` = 0 then x = y and they are both the root of the tree and the result is

trivial.

Induction: Consider the status of p(x), p(y) when step 2 of Algorithm bal is executed,

right before ji is split between the children. By induction, P
p(x)
i = P

p(y)
i . If in p(x), p(y)

we have τi < T then ji and all of its predecessors by l are split to both children and

therefore P x
i = P

p(x)
i = P

p(y)
i = P y

i . Otherwise, since the algorithm runs in order and

deterministically, the status of the children of p(x), p(y) is identical. Due to determinism,

ji is treated in the same way in p(x), p(y) and therefore P x
i = P y

i .

Lemma 4.4 There exists a function ϕ that computes ox
i from P x

i and ji, namely: oi =

ϕ (ji, P
x
i).

Proof: We prove by induction on the height of x, hx.

Base: Here x is a leaf and therefore hx = 0. In this case ox
i = ϕ (ji, P

x
i) =

∑
jk∈P x

i
bk

according to step 3a of Algorithm bal.

Induction: Let yl, yr denote x’s left and right children respectively.

• If τi = T then ji is scheduled only in Syl
or only in Syr . The child with which ji

is associated is a function of P x
i since Algorithm bal is performed in-order on each

node. Therefore, by induction, in this case

ox
i = ϕ (ji, P

x
i) =





ϕ (ji, P
yl
i) if ji ∈ yl,

2h · w + ϕ (ji, P
yr

i) if ji ∈ yr.

Where w is the length of a leaf.

• If τi < T then ji is scheduled in both Syl
and Syr . Therefore in this case ox

i =

oyl
i = ϕ (ji, P

yl
i). Since P yl

i is a function of P x
i due to the in-order and deterministic

nature of Algorithm bal, we have ϕ (ji, P
x
i) = ϕ (ji, P

yl
i) in this case.

And the claim holds for all hx.

16

Lemma 4.5 Let ji be a job part at node x. Then ji is scheduled in a perfectly periodic

manner in Sx and has a period of τSx
i = τi

w
T
2h where w is the length of a leaf.

Proof: We prove by induction on the height of x, hx.

Base: Here x is a leaf and hx = 0. Therefore τi = T and ji is scheduled exactly

once. This means, by definition, that ji is scheduled in a perfectly periodic manner with

period τS
i = w = τi

w
T
20.

Induction: Let yl, yr denote x’s left and right children respectively.

• If τi = T then ji is scheduled only in Syl
or only in Syr . Therefore it is scheduled

in a perfectly periodic manner with period τSx
i = w · 2h = τi

w
T
2h.

• If τi < T then ji is scheduled in both Syl
and Syr . In this case P x

i = P yl
i = P yr

i since

all of ji’s predecessors also have τ < T (see Lemma 4.3). Therefore, by induction

and by Lemma 4.4 oyl
i = oyr

i . From step 2 of Algorithm bal, the job parts of ji in

yl, yr have τ value of 2τi and therefore, by induction τSl
i = τSr

i = 2τi
w
T
2h−1 = τi

w
T
2h.

Since τ
Syl
i = τ

Syr
i divides the lengths of Syl

and Syr (which are w · 2h) and since

the offsets are equal, concatenating these schedules produces a perfectly periodic

schedule with the same period.

And the claim holds for all hx.

Corollary 4.6 For each job ji, Algorithm bal produces a perfectly periodic schedule with

period τi
bt∗c
t∗ .

Note that since t∗|t and for all i, t|τi, we get integral periods for all jobs.

Proof: Apply Lemma 4.5 on the root whose level is hr = log T
t∗ and w = bt∗c.

4.2 The Scale & Balance Algorithm

We can now state Algorithm s&b (see Figure 4.3). This algorithm works for jobs whose

periods are powers of 2 times a common factor. It gets a parameter t∗ for the balancing

part. Let J be an instance of the periodic scheduling problem.

Theorem 4.7 Let J = {ji = (bi : τi)}n
i=1 be an instance of the periodic scheduling

problem, and assume that there exists a real number c > 0 and some nonnegative integers

e, e1, . . . , en such that τi = c·2ei for all i. If t∗ = t/2e, then Algorithm s&b with parameter

t∗ finds a periodic schedule S for J such that
τS
i

τi
= bft∗c

t∗ ≤ f for all i = 1, . . . , n where

f = β + R t
t∗ .

Proof: Let R∗ = R t
t∗ . The bandwidth of the instance submitted to bal is β′ = β

f
= β

β+R∗

and the new extent is R′ = R
f

= R
β+R∗ . Therefore, the free bandwidth of the instance

17

Algorithm s&b

Input: Instance J , parameter t∗.
Output: Schedule S.

Code:

(1) Let f = β + R t
t∗ , and let τ ′i = f · τi for each requested period τi.

(2) Run Algorithm bal with requested periods τ ′i and parameter f · t∗.

Figure 4.3: Algorithm s&b.

submitted to bal is 1−β′ = R∗
β+R∗ = R′ ft

ft∗ = R′ t
t∗ and the bandwidth requirement holds.

The scaling keeps all periods in the form of a constant factor times a power of 2, and so

the result follows from Lemma 4.1 when applying Algorithm bal with argument f · t∗.

4.3 Unslotted Versions for Algorithms bal and s&b

Algorithms bal and s&b are presented above in the slotted model. To derive unslotted

versions of these algorithms, all we have to do is change step 3b of Algorithm bal to add

t∗− s` following idle time slots (a non-integral number of slots) instead of bt∗c− s`. For

this algorithm we have the following result.

Lemma 4.8 Let J = {ji = (bi : τi)}n
i=1 be an instance of the periodic scheduling problem

with free bandwidth ∆ ≥ R t
t∗ , and suppose that there exists a real number c > 0 and

nonnegative integers e, e1, . . . , en such that τi = c · 2ei for all i. If t∗ = t/2e, then

the unslotted Algorithm bal with parameter t∗ finds a periodic schedule for J where the

granted period of each job ji is precisely τi.

Proof: Feasibility follows by Lemma 4.2. The proof of correctness is identical to the

one presented in Corollary 4.6, only here we have w = t∗.

Using this version of bal in s&b gives an uslotted version of Algorithm s&b for which

we have the following result.

Theorem 4.9 Let J = {ji = (bi : τi)}n
i=1 be an instance of the periodic scheduling

problem, and assume that there exists a real number c > 0 and some nonnegative integers

e, e1, . . . , en such that τi = c · 2ei for all i. If t∗ = t/2e, then the unslotted Algorithm s&b

with parameter t∗ finds a periodic schedule S for J such that
τS
i

τi
= f for all i = 1, . . . , n

where f = β + R t
t∗ .

Proof: The proof is identical to the one of Theorem 4.7 when referring to Lemma 4.8

instead of Lemma 4.1.

18

4.4 A 9
8 + O(R) Approximation Algorithm for AVE

In this section we present an algorithm for the AVE measure, without any preconditions.

This algorithm improves on the known upper bound for the unit-length model presented

in [10], and it demonstrates the applicability of Algorithm s&b.

The algorithm is a straightforward application of Algorithm s&b and its analysis

relies on a powerful lemma that bounds the approximation factor for AVE in terms of

the free bandwidth and bounds on the individual ratios. We start by stating the lemma,

which is a variant of the lemma first proven in Lemma 2.5 in [10] for the unit length

case.

Lemma 4.10 (Leftover Lemma for unit-size jobs from [10]) Let {a1, . . . , an} and

{f1, . . . , fn} be such that for all i, ai, fi > 0 and
∑

ai = 1,
∑

fi ≤ 1. Let ∆ = 1−∑
fi.

If for all i, ρl ≤ ai

fi
≤ ρh, for some ρl ≤ ρh, then

∑ a2
i

fi
≤ ρl + ρh − ρlρh + ρlρh∆.

We extend this lemma to the variable size case and change the notation to the one

we use.

Lemma 4.11 (Leftover Lemma for variable-size jobs) Let {b1, . . . , bn} be such that

for all i, bi > 0. Let {τ1, . . . , τn} , {τ ′1, . . . , τ ′n} be such that for all i, τi, τ
′
i > 0. Let∑

bi

τi
= 1,

∑
bi

τ ′i
≤ 1. Let ∆ = 1−∑

bi

τ ′i
. If for all i, ρl ≤ τ ′i

τi
≤ ρh, for some ρl ≤ ρh, then

∑ biτ
′
i

τi
2 ≤ ρl + ρh − ρlρh + ρlρh∆.

Proof: For all i, define ai to be ai = bi

τi
and fi to be fi = bi

τ ′i
. Our new sets of {ai}

and {fi} with ρl, ρh agree with the terms of Lemma 4.10 and therefore
∑ a2

i

fi
=

∑ biτ
′
i

τi
2 ≤

ρl + ρh − ρlρh + ρlρh∆.

Note that if the τis are the requested periods and τ ′i are the granted periods, this gives

a bound on the approximation factor for the AVE measure.

The Leftover Lemma enables us to analyze the approximation factor of the simple

algorithm presented in Figure 4.4 which we call Algorithm A. This is our first result for

any instance. In Algorithm A we round the periods to the next powers of 2 and then

run Algorithm s&b. Rounding the periods to the next powers of 2 is a fundamental

technique in the unit-size model and is quite commonly used.

Theorem 4.12 Let J = {ji = (bi : τi)}n
i=1 be an instance for the periodic scheduling

problem with requested bandwidth 1, and let S be the schedule produced for J by Algorithm

A. Then CAVE(J, S) ≤ 9
8

+ 3
2
R + 1

2
R2.

Proof: Let β′ and βf denote the total bandwidths after steps 1 and 2, respectively.

Denote min {τ ′i} by t′ and let R′ = B/t′, i.e., R′ is the extent of the instance submitted

to s&b in step 2. Let ti denote the granted period of job ji. Clearly, 1 ≤ τ ′i
τi

< 2. Step

19

Algorithm A

Input: Instance J .

Output: Schedule S.

Code:

(1) Round the requested periods τi up to the nearest powers of 2: let τ ′i = 2dlog τie.

(2) Apply Algorithm s&b to the jobs with requested periods τ ′i and parameter t∗ =

min {τ ′i}.

Figure 4.4: Algorithm A.

2 just multiplies the τ ′is by f0 = bft′c /t′ where f = β′ + R′ and hence ti
τ ′i

= f0 and

ρl ≤ ti
τi
≤ ρh for ρl = f0 and ρh = 2f0. Also note that βf = β′/f0. From the Leftover

Lemma (Lemma 4.11) we get

CAVE(J, S) ≤ f0 + 2f0 − 2f 2
0 + 2f 2

0 ∆f

= 3f0 − 2f 2
0 βf

= f0(3− 2β′)

≤ f(3− 2β′)

= (β′ + R′)(3− 2β′)

= −2β′2 + (3− 2R′)β′ + 3R′ .

Using elementary calculus we find that the latter expression is maximized when β′ =
3−2R′

4
, and since R′ ≤ R, we get that the worst-case performance is therefore

CAVE(J, S) ≤ (β′ + R′)(3− 2β′)

≤ 1

8
(3 + 2R′)2

≤ 1

8
(3 + 2R)2

=
9

8
+

3

2
R +

1

2
R2 .

Note that it follows from the analysis that Algorithm A gives a 2(1+R) approximation

for MAX by using ρh as a bound on the approximation factor since f0 ≤ 1 + R.

An unslotted version of this algorithm is trivially obtained by using the unslotted

version of Algorithm s&b.

An algorithm that achieves an asymptotic approximation ratio of 9
8

for the unit-size

case is presented in [10] (referred to as Algorithm B). Comparing the two algorithms

shows the following.

20

• Our Algorithm A is more general since it does not require that all jobs have the

same length.

• “Algorithm B” works only when a1 < 1
42

where a1 is the maximal share request.

Our Algorithm A has no such restriction.

• The approximation ratio Algorithm A achieves is better than the one of “Algorithm

B”. The approximation ratio for the AVE measure of “Algorithm B” is 9
8−20a1

=
9
8

∑∞
i=0

(
5
2
a1

)i
> 9

8
+ 45

16
a1 + 225

32
a2

1 which is greater than 9
8

+ 3
2
R + 1

2
R2 (in the

unit-size model, R is the maximal share request).

• We believe that the description and analysis of Algorithm A are simpler than the

ones of “Algorithm B”.

21

Chapter 5

A 1 +
√

2
2 + O(R) Approximation

Algorithm for MAX

In previous chapters we created “building blocks” for algorithms and showed how we

can get asymptotic approximation of 2 for the MAX measure using nothing but simple

rounding. In this chapter, we show that using a little more sophisticated rounding, we

can achieve an asymptotic approximation ratio of 1 +
√

2
2

< 2.

Previous work gave very little attention to the MAX measure. No algorithm with

asymptotic approximation of less than 2 has been presented so far for the MAX measure,

even for the case of unit-size jobs.

The algorithm presented in this chapter, which we call Algorithm B, is based on

Algorithm s&b, presented in Chapter 4, and shows the power of Algorithm s&b for the

MAX measure. The algorithm is presented in Figure 5.1.

The algorithm tries two forms of rounding. First we use the simple rounding of

Algorithm A and round all the periods to the next power of 2. Then we try a different

form of rounding, we round τi√
2

to the next power of 2 and try to run Algorithm s&b

on the resulting output. Our analysis shows that the best result of the two gives an

approximation of at most 1 +
√

2
2

+ 2R.

Theorem 5.1 Let J = {ji = (bi : τi)}n
i=1 be an instance for the periodic scheduling prob-

lem with requested bandwidth 1, and let S be the schedule produced for J by Algorithm

B. Then CMAX(J, S) ≤ 1 +
√

2
2

+ 2R.

Intuitively, it appears that step 2 can do better than step 1 only when the rounded jobs

{(bi : τ ′i)} of step 1 have a “small” unused bandwidth. In such a case, we are guaranteed

that not many of the jobs (in terms of bandwidth) were rounded up and therefore the

cost of rounding down some of the jobs is not too big. In this case we round some of the

22

Algorithm B

Input: Instance J .

Output: Schedule S.

Code:

(1) Let τ ′i = 2dlog τie, t′ = min {τ ′i}. Run Algorithm s&b on {(bi : τ ′i)} with parameter

t′ and denote the result by S1.

(2) Let τ ′′i = 2dlog(τi)− 1
2e, t′′ = min {τ ′′i }. Run Algorithm s&b on {(bi : τ ′′i)} with pa-

rameter t′′ and denote the result by S2.

(3) If CMAX(J, S1) ≤ CMAX(J, S2), return S1. Otherwise, return S2.

Figure 5.1: Algorithm B.

21 4 8
�

2 12 +
�

22 +
�

Figure 5.2: First Step: Round up all jobs.

jobs back down, which is equivalent (as shown below) to rounding τi to τ ′′i = 2dlog(τi)− 1
2e.

Proof: In the analysis we bound the performance of the algorithm by distinguishing

between two cases. We show that in the first case, running step 1 gives the required

approximation ratio and in the second, running step 2 gives the required approximation

ratio. Therefore taking the best of the two gives the required approximation ratio for

all cases.

We analyze the algorithm using a parameter δ that is later optimized to achieve the

best approximation ratio possible.

Consider the rounding performed in step 1 of the algorithm. The periods are rounded

to the next powers of 2 (see Figure 5.2). Denote the bandwidth of the new instance by

β′, its extent by R′ and its free bandwidth by ∆′ = 1 − β′. The two cases of the

analysis are for ∆′ ≥ δ and for ∆′ < δ. For the first case, ∆′ ≥ δ, we assume that we

have a “relatively large” ∆′ and therefore using Algorithm s&b on the rounded instance

should give a small enough approximation factor. If ∆′ < δ, we work more carefully.

Since we have a “relatively small” ∆′, the bandwidth of the elements that were rounded

up “by much” is quite small. Therefore we can take these elements and round them

down instead, while not increasing the total bandwidth by too much. This way we

get an instance where no element has been rounded up “by much” and improve the

approximation factor for the MAX measure.

The First Case (Large ∆′): Suppose ∆′ ≥ δ. In this case, we apply Algorithm s&b on

the rounded instance {(bi : τ ′i)}. By Theorem 4.7, the algorithm gives an approximation

23

ratio of at most 1−∆′ + R′ ≤ 1− δ + R. Since the rounding performed was by a factor

of at most 2, we have an overall approximation factor of CMAX(J, S1) ≤ 2− 2δ + 2R.

The Second Case (Small ∆′): Suppose ∆′ < δ. For some parameter γ ∈ [1, 2], we

divide the set of jobs into two subsets, G1 and G2, such that

G1 = {i | log τi − blog τic ≤ log γ}
G2 = {i | log τi − blog τic > log γ} .

We denote the bandwidth of G1, G2 by β1, β2 respectively. Note that rounding to τ ′i
increases the requested period by a factor of 21−(log τi−blog τic). Therefore, G1 is the set of

jobs with “big rounding” in step 1 and G2 is the set of jobs with “small rounding” in

step 1. We claim that β1 is “relatively small” since if G1 had significant bandwidth, we

would get a large ∆′. The following lemmas formalize and prove this claim.

Lemma 5.2 β′ ≤ γ
2
β1 + β2.

Proof: Let β′1, β
′
2 denote the bandwidth of G1, G2 respectively after performing the

rounding of step 1 of the algorithm. An element of G1 must be rounded by a factor of

at least 2
γ

and therefore β′1 ≤ γ
2
β1. For elements of G2, it is possible that no rounding is

performed at all and therefore β′2 ≤ β2 holds and is tight.

Lemma 5.3 β1 ≤ 2
2−γ

δ.

Proof: By Lemma 5.2 we have β′ ≤ γ
2
β1 + β2. Since ∆′ ≤ δ we have β′ ≥ 1 − δ. We

get γ
2
β1 + β2 ≥ 1 − δ and therefore δ ≥ (1 − β2) − γ

2
β1 =

(
1− γ

2

)
β1. Simple algebra

shows that β1 ≤ 2
2−γ

δ.

We now round G1 downwards (see Figure 5.3). By Lemma 5.3, this will not increase

the total bandwidth dramatically. The following lemma formalizes this claim. Denote

the periods after rounding by τ γ. Formally we define

τ γ
i =





2dlog τie−1 if i ∈ G1,

2dlog τie if i ∈ G2.

Denote the bandwidth of the instance {(bi : τ γ
i)} by βγ, denote its extent by Rγ and

denote the bandwidths of G1, G2 when using the new rounding by βγ
1 , βγ

2 . Note that

rounding G1 downwards and G2 upwards is equivalent to rounding τi

γ
upwards since if

i ∈ G1, dividing it by γ and then rounding will get the same result as rounding down.

Therefore, τ γ for γ =
√

2 is equivalent to τ ′′ in step 2 of the algorithm.

Lemma 5.4 βγ ≤ γβ1 + β2.

Proof: The jobs in G1 are rounded down by a factor of at most γ and therefore

βγ
1 ≤ γβ1. The jobs in G2 are still rounded up and still it is possible that the requested

24

21 4 8
�

2 12 +
�

22 +
�γ γ2 γ4 γ

�

2 γ12 +
�

Figure 5.3: The Second Case (Small ∆′): Round down the jobs of G1 and round up the

jobs of G2.

period of a job in G2 remains the same. Therefore βγ
2 ≤ β2 holds and is tight. We get

βγ = βγ
1 + βγ

2 ≤ γβ1 + β2.

When we apply Algorithm s&b to the instance obtained, we get, by Theorem 4.7, an

approximation factor of at most

βγ + Rγ ≤ γβ1 + β2 + Rγ

= γβ1 + (1− β1) + Rγ

= (γ − 1)β1 + 1 + Rγ .

We use Lemma 5.3 to bound β1. Rounding G1 downwards can only increase R by a

factor of γ and therefore βγ + Rγ ≤ 2δ γ−1
2−γ

+ 1 + γR. The approximation factor of the

algorithm is at most the maximal rounding up performed, times βγ + Rγ. The maximal

rounding up is no more than 2
γ

since only G2 is rounded up and a job of G2 can only be

rounded by a factor of at most 2
γ
. We get

CMAX(J, S2) ≤ 2

γ
(βγ + Rγ)

≤ 2

γ

(
2(γ − 1)

2− γ
δ + 1 + γR

)

=
2

γ

(
2δ

γ − 1

2− γ
+ 1

)
+ 2R .

We choose the value of γ that minimizes this expression. Denote g(γ) = 4(γ−1)
γ(2−γ)

δ + 2
γ

+

2R. The minimal value of g is found using the derivative. We get a minimal value

of g when using γ = 2
√

1− δ
√

1−δ−
√

δ
1−2δ

. This minimal value is g
(
2
√

1− δ
√

1−δ−
√

δ
1−2δ

)
=

2
√

1−δ(1−2δ)√
1−δ−

√
δ
− (1 − 2δ) + 2R and the approximation factor of the algorithm in this case

is CMAX(J, S2) ≤ 2
√

1−δ(1−2δ)√
1−δ−

√
δ
− (1− 2δ) + 2R.

After analyzing the two cases for any value of δ, we pick a value of δ that mini-

mizes the overall approximation ratio for both cases. For the first case we have shown

an approximation factor of CMAX(J, S1) ≤ 2 − 2δ + 2R and for the second case we

have shown an approximation factor of CMAX(J, S2) ≤ 2
√

1−δ(1−2δ)√
1−δ−

√
δ
− (1 − 2δ) + 2R.

Therefore, for a general input, the worst-case approximation ratio is CMAX(J, S) ≤
max

{
2− 2δ + 2R, 2

√
1−δ(1−2δ)√
1−δ−

√
δ
− (1− 2δ) + 2R

}
. The value of δ that minimizes this

25

expression is the one that makes the terms for the two cases equal, that is when

2 − 2δ + 2R = 2
√

1−δ(1−2δ)√
1−δ−

√
δ
− (1 − 2δ) + 2R. We get δ = 1

2
−

√
2

4
. This value of δ

gives γ =
√

2 and therefore τ ′′ = τ γ=
√

2 gives the required performance in the second

case.

We get a worst-case approximation ratio of CMAX(J, S) ≤ 1 +
√

2
2

+ 2R.

Note that the description and analysis of Algorithm B apply for both the slotted and

unslotted models depending on the version of Algorithm s&b used.

26

Chapter 6

Separable Schedules

In this chapter we introduce an additional new technique for periodic schedules, based

on the concept of Separable Schedules. The notion of separable schedules is new and

first presented in this work. Separable schedules are an abstraction of the schedules

produced by the s&b algorithm. We show how to perform certain operations on them

while bounding the approximation factor. We use these operations in Chapter 7 to

create better approximation algorithms.

6.1 Definition of Separable Schedules

Definition 6.1 A schedule S is called separable if S can be partitioned into equal-size

runs of time slots called bins such that the following conditions hold true.

(1) Each occurrence of a job that starts in some bin z ends in bin z.

(2) Each job appears at most once in each bin.

(3) If a job j starts in some bin z, there are no idle time slots before j in z.

Furthermore, all jobs that start in z before j, occur in each bin j occurs in, and

they all start before j in each of these bins.

(4) The occurrence of jobs in bins is periodic. That is, if a job appears in bin k and

in bin k + l, then it also appears in bin k + il for all integers i.

The following property is a direct consequence of Properties 4 and 3.

Lemma 6.1 A separable schedule is periodic.

Proof: From property 4 it follows that what needs to be shown is that in all bins

a job j appears in, it has the same offset. Since by property 3, the same sequence of

27

Algorithm P

Input: Separable schedule S with bin size w, natural parameter p.

Output: Schedule S ′.
Code:

(1) Partition each bin into p parts of size w/p each.

(2) Scan the bin parts in order. For each bin part z in turn:

2a: If the last job in z is not completely contained in z, add it to z and remove

it from z + 1.

2b: The schedule associated with z is all jobs in order (aligned to the beginning

of z) followed by idle time slots as to get total length of w/p + B slots.

Figure 6.1: Algorithm P.

w

B
3=p

Split

1 2 3 4 5 6 7 8 9 10 11 12

B3
w

1 2 3 4

3
w B

5 6 7 8

B3
w

9 10 11 12

Figure 6.2: Example of Algorithm P with parameter p = 3.

jobs appears in all bins before j with no spaces, it has the same offset in all bins and

periodicity follows.

6.2 Operations on Separable Schedules

We now present Algorithm P (see Figure 6.1) which splits a separable schedule, creating

another separable schedule with smaller bins and larger periods. The algorithm is given,

as input, a separable schedule S with bins of size w, and a natural number p.

An example of how the algorithm runs appears in Figure 6.2. The following lemma

summarizes the properties of Algorithm P.

Lemma 6.2 Let S be a separable schedule with bin size w. Then for any given p,

Algorithm P outputs a separable schedule S ′ with bin size w
p

+ B such that τS′
i = (1 +

pB
w

)τS
i .

Proof: Separability: From our construction it is clear that since S is separable, no job

28

can appear in a bin of S ′ more than once and a job finishes at the same bin it started

in and therefore properties 1 and 2 of Definition 6.1 hold.

For any job i, if i was assigned to the kth bin-part of its bin in S, it will be assigned

to the kth bin-part in all bins of S it appears in. This is since the prior elements in

the bins of S are the same by property 3 of S and since the association of jobs with

bin-parts is performed in-order. This argument is true for all of the predecessors of i as

well and since the predecessors of i are the same in all bins of S it appears in, it will also

have the same predecessors in all bins of S ′ it appears in. Therefore property 3 holds

for S ′. Combined with property 4 of S, this claim also gives property 4 for S ′: since job

i always appears in the kth bin part of its bin in S, and the bins of S it appears in are

periodic, then the bins of S ′ where i appears are also periodic.

Period: Assume a job has an original period τS
i = k · w. Its new period in S ′ is

τS′
i = k · p ·

(
w
p

+ B
)

=
(
1 + pB

w

)
τS
i since each bin of size w was split into p bins of size

w
p

+ B.

Note that Algorithm P as described here works at an unslotted model. We prefer

to use an unslotted model here in order to simplify the mathematics of the algorithms

below. We create a slotted version of Algorithm P by truncating the bin size of the new

schedule to
⌊

w
p

+ B
⌋
. In such case we get τS′

i = p
w

⌊
w
p

+ B
⌋

τS
i ≤ (1+ pB

w
)τS

i . Periodicity

is preserved by the lemma below.

Lemma 6.3 Let J = {ji = (bi : τi)}n
i=1 be an instance of periodic scheduling where bi, τi

are integral for all i, and let S be a separable schedule with bin size w for J . Then

truncating each bin of S to length bwc gives a separable schedule S ′ which is periodic

and for all i, τS′
i = bwc

w
τS
i ≤ τS

i .

Proof: From the integrality of the input and from property 3 in Definition 6.1, it follows

that truncating the bins gives a feasible schedule of J . This is because in each bin of S

we have jobs of integral length followed by (possibly) idle time and thus truncating the

bin to the nearest integral size does not cause any job to end outside the bin. The new

schedule S ′ complies with Definition 6.1 since the bins of S ′ contain the same jobs as

the bins of S and in the same order.

For any ji, let ui denote τS
i /w. From properties 2 and 3 of Definition 6.1 it follows

that ui is integral. In S ′, the period of ji is τS′
i = ui · bwc since the length of a bin is

now bwc and the offset within the bin remains unchanged. Therefore
τS′
i

τS
i

= bwc
w

.

Next, we define Algorithm M (see Figure 6.3) that performs the operation of merging

separable schedules. This time, the resulting schedule is not necessarily separable. The

input is k separable schedules S1, . . . , Sk with bin sizes w1, . . . , wk, respectively. The job

sets of the schedules are disjoint. An example of how the algorithm runs can be found

29

Algorithm M

Input: Separable schedules S1, . . . , Sk.

Output: Merged schedule S.

Code:

(1) Output the round robin schedule of bins: the first bin in S1, followed by the first

bin in S2, and so on, until the first bin in Sk, followed by the second bin in S1 etc.

Figure 6.3: Algorithm M.

S0 : Y0,1, Y0,2, Y0,3, . . . , Y0,`0

S1 : Y1,1, Y1,2, Y1,3, . . . , Y1,`1

...

Sk−1 : Yk−1,1, Yk−1,2, Yk−1,3, . . . , Yk−1,`k−1

Smerged : Y0,1, Y1,1, . . . , Yk−1,1, Y0,2, Y1,2, . . . , Yk−1,2, . . .

Figure 6.4: Example of Algorithm M. The lth bin in the ith schedule is denoted by Yi,l.

in Figure 6.4. We have the following result.

Lemma 6.4 Let S1, . . . , Sk be separable schedules with bin sizes w1, . . . , wk, respectively.

Then Algorithm M outputs a periodic schedule S such that for all j ∈ Si we have τS
j =

W
wi

τSi
j , where W =

∑k
i=1 wi.

Proof: Let j be some job of Si. The period of j in Si is τSi
j = k · wi. This means j

appears every kth bin of Si, with the same offset in every bin. In the merged schedule

S, a bin of ji appears every W time slots and the bins appear in order. Therefore, a bin

that j appears in is scheduled every k ·W time slots in S. Therefore S is periodic for j

and the period of j in S is k ·W . We get τS
j = W

wi
· τSi

j .

Finally, we prove that the schedules produced by Algorithm s&b are separable. This

property is later used to apply the spilt and merge operations on schedules produced

by Algorithm s&b. Note that we prove the claim for the unslotted model, while the

extension to the slotted case is trivial.

Lemma 6.5 Let J be an instance of the periodic scheduling problem. Let t∗ = tJ/2e for

some nonnegative integer e. Then Algorithm s&b with parameter t∗ produces a separable

schedule with bin size t∗(βJ + RJ
tJ
t∗) = t∗βJ + BJ .

Proof: Consider the schedule generated by s&b, and consider each leaf as a bin. By

construction, each bin has size t∗(βJ + RJ
tJ
t∗) = t∗βJ + BJ , and hence property 1 of

30

Definition 6.1 holds. Property 2 follows from the correctness of step 3b in Algorithm

bal: The sum of lengths of the jobs in each leaf is at most t∗(βJ +RJ
tJ
t∗) and therefore any

job that starts in some leaf ends in that leaf. Property 3 holds by Lemma 4.3. Property

4 follows from Lemma 4.5 and the fact that the granted periods of all jobs are divided

by the bin size.

31

Chapter 7

A General Algorithm for MAX

In this chapter we present our general algorithm for the MAX measure. The algorithm

is presented using parameters k and L that are determined later. Since the analysis is a

bit complicated, we first present the single server case in Section 7.1, and then explain

how to generalize it to multiple servers in Section 7.2.

7.1 The Single Server Case

In Figure 7.1 we present an algorithm, which we call Algorithm C, that works for the

unslotted model, we then describe how to adapt the algorithm to the slotted case in

subsection 7.1.1.

Theorem 7.1 Let J = {ji = (bi : τi)}n
i=1 be an instance of periodic scheduling, and let S

be the schedule produced by Algorithm C for J with parameters k, L. Then CMAX(J, S) ≤
(1 + 1

k
) · (1 + 1

L
) · (1 + 2k(L + 1)RJ).

Proof: First, observe that Algorithm s&b is applicable in Step 4: This is true since

the periods of all jobs in the same G` class are powers of 2 up to a common factor of 2
`
k .

In addition, the minimal period of jobs in G` is the minimal period in G`∗ times 2e+ `−`∗
k

for some integer e, and hence t` is a power of 1
2

times the minimal period in G`.

Next, we analyze the approximation factor. Step 1 contributes a factor of at most

2
1
k . For Step 4, let β` denote the total bandwidth of jobs in G`. By Theorem 4.9, Step

4 increases the periods of jobs in G` by a factor f` = β` + B
t`

. Define r` = B/t`. Note

that r` is an upper bound on the extent of the jobs in G`. Let R` = r`/f`: R` is an

upper bound on the extent of the jobs in S`. To analyze Step 5, note that by Lemma

6.2 and Lemma 6.5, the periods are increased by a factor of 1 + p`B
t`f`

= 1 + p`R`. The

32

Algorithm C

Input: Instance J , parameters k, L.

Output: Schedule S.

Code:

(1) Round the requested periods up to the next powers of 2
1
k . Formally, let τ ′i =

2
1
k
dk log(τi)e.

(2) Partition the jobs into k classes G0, . . . , Gk−1 according to their τ ′ values: Job j

is in G` if τ ′j = 2e+ `
k for some integer e.

(3) Let t′ = min
{
τ ′j | j ∈ J

}
. Let `∗ be such that G`∗ 3 j for some job j with τ ′j = t′.

Define t0 = t′
2`∗/k , and for ` = 1, . . . , k − 1, define t` = t0 · 2`/k.

(4) Apply Algorithm s&b to each class G` with parameter t`. Let S` denote the

resulting schedule for class G`.

(5) Apply Algorithm P to each schedule S`, with parameter p` =
⌈
L · 2`/k

⌉
.

(6) Apply Algorithm M to the k schedules produced, and output the resulting schedule.

Figure 7.1: Algorithm C.

latter expression can be bounded as follows.

1 + p`R` ≤ 1 + (L2`/k + 1)
r`

f`

=
β` + 2r` + Lr0

f`

.

To analyze Step 6, we compute the bin size w` for each S` produced by Step 5. On the

one hand, since
⌈
L2`/k

⌉ ≥ L2`/k, we get

w` ≤ f`t`
L · 2`/k

+ B

=
t0
L

(β` + r` + Lr0) .

On the other hand, since
⌈
L2`/k

⌉
< L2`/k +1, we get, after some algebraic manipulation,

w` >
f`t`

L · 2`/k + 1
+ B

=
t0(β` + r` + Lr0(1 + 2−`/kL−1))

L(1 + 2−`/kL−1)

=
t0(β` + 2r` + Lr0)

L(1 + 2−`/kL−1)
.

33

Hence we have that the sum of the bin sizes W is at most

W =
k−1∑

`=0

w`

≤
k−1∑

`=0

t0
L

(β` + r` + Lr0)

≤ t0(1 + kr0(1 + L))

L
.

Now we can apply Lemma 6.4 to get that Step 6 increases the periods by at most

W

w`

≤
t0
L
(1 + kr0(1 + L))

t0(β`+2r`+Lr0)

L(1+2−`/kL−1)

=
(1 + 2−`/kL−1)(1 + kr0(1 + L))

β` + 2r` + Lr0

.

To conclude, we multiply together all factors affecting the periods, and find that

CMAX(J, S) ≤ 21/k · f` · (1 + p`R`)
W

w`

≤ 21/k(1 + 2−`/kL−1)(1 + k(r0 + Lr0))

= 21/k(1 + 2−`/kL−1)(1 + k(1 + L)r0)

≤ L + 1

L
· k + 1

k
· (1 + 2kRJ(1 + L)) .

The last inequality follows from the fact that 2
1
k ≤ 1 + 1

k
for k ≥ 1, and since r0 < 2RJ

by the fact that t` > tJ/2 for all `.

Corollary 7.2 For any instance J of the periodic scheduling problem, there exists a

schedule S such that

CMAX(J, S) ≤ 1 + 3(2RJ)
1
3 + O(R

2
3
J) < 1 + 3.78RJ

1
3 + O(R

2
3
J) .

Proof: Apply Algorithm C with parameters k = L = (2RJ)−
1
3 .

7.1.1 A Slotted Version of Algorithm C

We now explain how to adapt Algorithm C to the slotted case. In the slotted case, each

job has integral length and a job must start at some integral time slot. A slotted version

of Algorithm C runs as follows. It runs Algorithm C but uses the slotted version of

Algorithm P in step 5 of the algorithm. In step 6 we therefore merge schedules with bin

34

sizes of bw0c , . . . , bwk−1c. Feasibility follows from the feasibility of Algorithm C and the

feasibility of the slotted Algorithm P.

We now show that this algorithm produces results that are at least as good as the

ones of the unslotted Algorithm C.

Theorem 7.3 Let J = {ji = (bi : τi)}n
i=1 be an instance of periodic scheduling where

bi, τi are integral for all i, and let S be the schedule produced by the slotted Algorithm C

for J with parameters k, L. Then S is slotted and CMAX(J, S) ≤ (1 + 1
k
) · (1 + 1

L
) · (1 +

2k(L + 1)RJ).

Proof: In step 6 of the algorithm, we merge schedules of integral bin size. Therefore

all bins of S0, . . . , Sk−1 start at integral points. Since all job lengths are integral and the

jobs of a bin are scheduled with no spaces, all jobs start at integral time slots. Therefore

S is a slotted schedule.

Denote the schedules produced in steps 5 and 6 of the unslotted Algorithm C by

S∗0 , . . . , S
∗
k−1, S

∗. Consider a job ji ∈ G`. Up to step 5 of the algorithm, the slotted and

unslotted versions are equivalent. In step 5, ji is scheduled with a period of τ
S∗`
i = ui ·w`

in the unslotted version and τS`
i = ui · bw`c in the slotted version. By Lemma 6.4, after

step 6, ji has a period of τS∗
i = ui · W in the unslotted case and τS

i = ui ·
∑k−1

`=0 bw`c
in the slotted one and therefore τS

i ≤ τS∗
i . Therefore the approximation factor of the

slotted version is at least as good as the one of the unslotted version and the result

follows from Theorem 7.1.

7.2 The Multiple Servers Case

It is almost straightforward to generalize Algorithm C above to the case of m servers.

The differences are in steps 5 and 6. In step 5, the new algorithm splits the schedules

using parameters p` = m
⌈
L2

`
k

⌉
. The result is that for each class G`, we get a number

of bins which is a multiple of m. Now we can take each “block” of m consecutive bins

and multiplex it among our m machines. This is possible since all m bins were split

from the same bin and therefore share no common jobs. We formalize the new Step

5 using a generalization of Algorithm P. The new algorithm, Algorithm genP, takes

two arguments m, p such that m|p and an input separable schedule S and creates m

separable schedules S0, . . . , Sm−1. The algorithm is presented in Figure 7.2.

The following lemma summarizes the properties of Algorithm genP.

Lemma 7.4 Let S be a separable schedule with bin size w. Then for any given m, p

such that m|p, Algorithm genP outputs separable schedules S0, . . . , Sm−1 with bin size
w
p

+ B such that τS`
i = 1

m
(1 + pB

w
)τS

i for all ji ∈ S`.

35

Algorithm genP

Input: Schedule S, parameters m, p s.t. m|p.

Output: Schedules S0, . . . , Sm−1.

Code:

(1) Apply Algorithm P with parameter p on S and enumerate the resulting bins in

order.

(2) For each `, the output schedule S` is a concatenation of all bins whose index is

congruent to ` modulo m.

Figure 7.2: Algorithm genP.

Proof: Let S ′ denote the schedule created in Step 1 of the algorithm. By Lemma 6.2,

this is a separable schedule with bin size w
p

+ B and τS′
i = (1 + pB

w
)τS

i . Therefore for

all jobs ji we are guaranteed that its offset inside the bin is constant. In order to prove

the claim, all we need to show is that if ji appears in bins numbered y and z in S ′, then

m|(z − y). This follows from Step 2 of Algorithm P. Assume bin z has originated from

bin z∗ of S and bin y originated from bin y∗ of S (obviously, z∗ 6= y∗ since ji cannot

appear in a bin of S more than once). Since ji appears only once in any bin of S, and

since Step 2 of Algorithm P assigns a bin to ji based only on its predecessors (which

are identical in z∗ and y∗), it follows that for some u < m: z = p(z∗ − 1) + u and

y = p(y∗ − 1) + u. Therefore z − y = p(z∗ − y∗) and m|(z − y) since m|p. The periods

in S` are the periods in S ′, reduced by a factor of m as for all m equal sized bins in S ′,
there is only one such bin in S`.

Now we can specify the generalized algorithm, which we call Algorithm genC. The

algorithm is identical to Algorithm C, except for the following modifications. In step 5,

we apply Algorithm genP to each class G` with parameters m and p` = m
⌈
L2

`
k

⌉
, thus

obtaining m schedules for each class. Let S`i
denote the ith schedule of class G`. Then,

in step 6, the algorithm produces m schedules by m applications of Algorithm M: the

ith application merges all schedules S`i
, ranging over all `.

Note that Algorithm genC is a generalization of Algorithm C: for m = 1 we get

Algorithm C precisely.

The generalization of the approximation factor analysis is very similar to the one

shown in Theorem 7.1.

Theorem 7.5 Let J = {ji = (bi : τi)}n
i=1 be an instance of periodic scheduling for m

machines, and let S be the schedule produced by Algorithm genC for J with parameters

36

k, L. Then

CMAX(J, S) ≤
(

1 +
1

k

)
·
(

1 +
1

L

)
·
(

1 + 2k

(
L +

1

m

)
RJ

)
.

Proof: The analysis is very similar to the one of Theorem 7.1. The feasibility argument

is identical to the one of Theorem 7.1 above while using Lemma 7.4 instead of Lemma

6.2. As to the approximation factor: as above, Step 1 contributes a factor of at most 2
1
k .

For Step 4, let β` denote the total bandwidth of jobs in G` as before. By Theorem 4.9,

Step 4 increases the periods of jobs in G` by a factor of f` = β` + B
t`

. Define r` = B/t`
and R` = r`/f` as above. To analyze Step 5, note that by Lemma 7.4, the periods

are increased by a factor of 1
m

(
1 + p`B

t`f`

)
= 1

m
(1 + p`R`). The latter expression can be

bounded as follows.

1

m
(1 + p`R`) ≤ 1

m

(
1 + m(L2`/k + 1)

) r`

f`

=
β` + (m + 1)r` + mLr0

mf`

.

To analyze Step 6, we compute the bin size w` for each S` produced by Step 5. On the

one hand, since
⌈
L2`/k

⌉ ≥ L2`/k, we get

w` ≤ f`t`
mL · 2`/k

+ B

=
t0

mL
(β` + r` + mLr0) .

On the other hand, since
⌈
L2`/k

⌉
< L2`/k +1, we get, after some algebraic manipulation,

w` >
f`t`

m(L · 2`/k + 1)
+ B

=
t0(β` + r` + mLr0(1 + 2−`/kL−1))

mL(1 + 2−`/kL−1)

=
t0(β` + (m + 1)r` + mLr0)

mL(1 + 2−`/kL−1)
.

Hence we have that the sum of the bin sizes W is at most

W =
k−1∑

`=0

w`

≤
k−1∑

`=0

t0
mL

(β` + r` + mLr0)

≤ t0(m + kr0(1 + mL))

mL
.

37

Now we can apply Lemma 6.4 to get that Step 6 increases the periods by at most W
w`

.

This size is bounded by:

W

w`

≤
t0

mL
(m + kr0(1 + mL))

t0(β`+(m+1)r`+mLr0)

mL(1+2−`/kL−1)

= m
(1 + 2−`/kL−1)(1 + kr0(

1
m

+ L))

β` + (m + 1)r` + mLr0

.

To conclude, we multiply together all factors affecting the periods, and find that

CMAX(J, S) ≤ 21/k · f` · 1

m
(1 + p`R`)

W

w`

≤ 21/k(1 + 2−`/kL−1)

(
1 + k

(
1

m
+ L

)
r0

)

≤ L + 1

L
· k + 1

k
·
(

1 + 2kRJ

(
1

m
+ L

))
.

Since as before 2
1
k ≤ 1 + 1

k
for k ≥ 1, and r0 < 2RJ .

Corollary 7.6 For any instance J of the periodic scheduling problem on m servers,

there exists a schedule S such that

CMAX(J, S) ≤ 1 + 3(2RJ)
1
3 + O(R

2
3
J) < 1 + 3.78RJ

1
3 + O(R

2
3
J) .

Proof: Apply Algorithm genC with parameters k = L = (2RJ)−
1
3 .

38

Chapter 8

Conclusions and Discussion

In this work a more general model to the perfectly-periodic scheduling problem is pre-

sented — the multiple-sizes multiple-servers model. By presenting a lower-bound on the

optimal schedule we show (in Chapter 3) that the multiple-sizes model is inherently

different from the unit-size model. The lower-bound also shows the importance of the

extent when trying to analyze the multiple-sizes model. We then proceed by introducing

the balancing technique (in Chapter 4) and the algorithms it produces (in Chapters 4

and 5). We generalize the schedules produced by balancing and present the notion of

separable schedules (in Chapter 6). We show that there are operations we can perform

on such schedules. We conclude by showing (in Chapter 7) an algorithm that uses all of

the techniques above to achieve a good approximation factor and show that it is easily

generalized to the multiple-servers model. Figure 8.1 summarizes all of the algorithms

presented throughout this work and the techniques used to obtain them.

8.1 Open Problems

The extended model and the algorithms presented in this work give rise to related

problems that require further research.

1. Improved approximation. We would like to achieve better approximation fac-

tors than shown above. It might be possible to compare the results of an algorithm

to the optimal schedule of the given instance instead of giving an approximation

ratio relative to the bandwidth.

2. Dynamic model. All of the algorithms presented above function in a static

model : we assume that the set of input jobs does not change after the schedule

is constructed. We might want to consider a dynamic model where jobs can be

39

Name Input Output Techniques used
bal

(fig. 4.1)
J s.t.
τi = c · 2ei , ∆ ≥ R · t

t∗ ,
parameter t∗ = t/2e.

S s.t. τS
i ≤ τi. Balancing.

s&b

(fig. 4.3)
J s.t. τi = c · 2ei ,
parameter t∗ = t/2e.

S s.t. τS
i ≤ (β + R · t

t∗)τi. Scaling periods by a
common factor and
balancing.

A

(fig. 4.4)
J . S s.t.

CAV E(J, S) ≤ 9
8 + 3

2R + 1
2R2,

CMAX(J, S) ≤ 2(1 + R).

Rounding to next
power of 2 and run-
ning s&b.

B

(fig. 5.1)
J . S s.t.

CMAX(J, S) ≤ 1 +
√

2
2 + 2R.

Rounding to next
power of 2, rounding
τi√
2

to next power of 2,
s&b.

P

(fig. 6.1)
Separable S with bins w,
parameter p.

Separable S′ with bins w
p + B

s.t. τS′
i ≤ (1 + pB

w)τS
i .

Separable schedules.

M

(fig. 6.3)
Separable S1, . . . Sk with
bins w1, . . . wk.

Periodic S s.t. τS
i ≤

Pk
`=1 w`

w`
τS`
i . Separable schedules.

C

(fig. 7.1)
J , parameters k, L. S s.t.

CMAX(J, S) ≤ (
1 + 1

k

) (
1 + 1

L

) ·
(1 + 2k(L + 1)R).

Rounding to next
power of 21/k, s&b,
separable schedules
(P, M).

genP

(fig. 7.2)
Separable S with bins w,
parameters m, p s.t. m|p.

Separable S1, . . . , Sm with bins
w
p + B s.t. τS`

i ≤ 1
m(1 + pB

w)τS
i .

Separable schedules,
parallelizing bins.

genC

(sec. 7.2)
J (m machines), parame-
ters k, L.

S s.t.
CMAX(J, S) ≤ (

1 + 1
k

) (
1 + 1

L

) ·(
1 + 2k

(
L + 1

m

)
R

)
.

Rounding to next
power of 21/k, s&b,
separable schedules
and parallelizing
(genP, M).

Figure 8.1: Summary of presented algorithms and techniques.

40

added or taken off in an online manner. This question is relevant in many practical

settings.

3. Dispatching. Assume we have a perfectly periodic schedule for some given input

instance. If we want to use this schedule for broadcasting purposes, our broadcast

server must store some representation of the schedule and decide, at each time slot,

which job needs to be broadcasted next. The problem of rapidly computing the

next job to dispatch while keeping the representation of the schedule on the server

small is known as the dispatching problem. A dispatching scheme for perfectly

periodic schedules represented in special “tree schedules” is presented in [8]. We

would like to construct good dispatching schemes for the schedules produced by

the algorithms presented above.

41

Bibliography

[1] Bluetooth technical specifications, version 1.1. Available from

http://www.bluetooth.com/, Feb. 2001.

[2] S. Acharya, R. Alonso, M. J. Franklin, and S. B. Zdonik. Broadcast disks: Data

management for asymmetric communications environments. In Proc. 1995 ACM

SIGMOD, pages 199–210, 1995.

[3] M. H. Ammar and J. W. Wong. The design of teletext broadcast cycles. Perfor-

mance Evaluation, 5(4):235–242, Dec 1985.

[4] S. Anily, C. A. Glass, and R. Hassin. Scheduling of maintenance services to three

machines. Annals of Operations Research, 86:375–391, 1999.

[5] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation

cost of periodic scheduling. In Proc. of the 9th Annual ACM-SIAM Symp. on

Discrete Algorithms, pages 11–20, 1998.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15:600–625,

1996.

[7] A. Bar-Noy, V. Dreizin, and B. Patt-Shamir. Efficient Periodic Scheduling by Trees.

To appear in INFOCOM 2002, June 2002.

[8] Z. Brakeski, V. Dreizin, and B. Patt-Shamir. Dispatching in Perfectly-Periodic

Schedules. Unpublished manuscript, 2001.

[9] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.

Williamson. Adversarial queueing theory. In Proceedings of the 28th Annual ACM

Symposium on Theory of Computing, pages 376–385, 1996.

[10] A. Bar-Noy, A. Nisgav, and B. Patt-Shamir. Nearly optimal perfectly-periodic

schedules. In Proceedings of the ACM Symposium on Principles of Distributed

Computing, pages 107–116, 2001.

42

[11] Y. D. Chung and M.-H. Kim. QEM: A scheduling method for wireless broadcast

data. In Proc. Sixth International Conf. on Database Systems for Advanced Appli-

cations, pages 135–142. IEEE Computer Society, 1999.

[12] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Energy efficient indexing on

air. In R. T. Snodgrass and M. Winslett, editors, Proc. 1994 ACM SIGMOD, pages

25–36. ACM Press, 1994.

[13] C. Kenyon and N. Schabanel. The data broadcast problem with non-uniform trans-

mission times. In Proc. 10th SODA, pages 547–556, Jan 1999.

[14] C. Kenyon, N. Schabanel, and N. Young. Polynomial-time approximation scheme

for data broadcast. In Proc. 32nd STOC, pages 659–666, May 2000.

[15] S. Khanna and S. Zhou. On indexed data broadcast. In Proc. 30th ACM STOC,

pages 463–472, 1998.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[17] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32:323–

330, 1980.

[18] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible

proportional-share resource management. In Proc. First Symposium on Operating

Systems Design and Implementation, November 1994.

[19] W. Wei and C. Liu. On a periodic maintenance problem. Operations Research

Letters, 2:90–93, 1983.

43

