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Abstract

The recent transition to “cloud computing” is changing the way people store and use
digital data. Data is more often stored remotely (on a cloud server) and accessed by
very weak devices over the internet (e.g. smartphones). In addition to storage, the
cloud is expected to manipulate and process the data per the user’s requests, since local
processing on the end user’s device is infeasible. This allows for great flexibility in the
use of data, but also means new challenges for data privacy.

To answer these challenges, we need to add new tools to our cryptographic toolbox.
We want to store our data in the cloud in an encrypted form, for privacy purposes,
but still want the cloud to process the data for us. We need a fast local decryption
solution that can be executed securely in the presence of side channel attacks. We need
to store cryptographic keys in a secure manner to utilize cloud services securely, which
necessitates the ability to encrypt the cryptographic keys themselves.

In this thesis, we present three results that push the state of the art for public-key
encryption in the face of cloud challenges.

1. We present a fully homomorphic encryption scheme that is based on worst-case
short-vector problems in arbitrary lattices. Fully homomorphic encryption allows
to process encrypted data in an arbitrary way without decrypting it, and hence is
tremendously useful for outsourcing computation.

Our construction is simpler than previous candidates and does not require the
infamous “squashing” phase. Thus it could be a step towards a practical fully
homomorphic scheme.

2. We present a public key encryption scheme that is secure against continual leakage
of information on the secret key. That is, we show how to periodically update
the secret key (without any change to the public key) so that even if information
constantly leaks to an adversary, our encryptions stay secure.

3. We construct a circular secure public-key encryption scheme based on factoring-
related assumptions. A circular secure scheme is one that can securely encrypt its
own secret key (or have a number of secret keys encrypting each other).

We present a unified approach for proving a number of interesting properties: cir-
cular security, bounded leakage resilience and auxiliary-input security, in a generic
way that applies to a number of cryptographic assumptions.
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Chapter 1

Introduction

“We stand today on the brink of a revolution in cryptography.”
– “New Directions in Cryptography”, W. Diffie and M. E. Hellman, 1976.

This quotation opens the seminal paper of Diffie and Hellman [DH76], which marks the birth
of public-key cryptography. The projected revolution was driven by the increasing availability of
computers and computer networks, which necessitated solutions for secure storage and transmission
of digital data.

Today, we are fully realizing this revolution, as the size and weight of computers decreased to
the point that a computer with internet connectivity can be found virtually in any pocket. We
want our data to be accessible from anywhere, so we store it “in the cloud”, on remote servers; To
increase battery life and reduce the size of our portable devices, we build them with the weakest
possible processors, and outsource the computation itself to the cloud. We now hold in our hands
an extremely weak device, which nonetheless gives us access to limitless storage and computation
resources.

The opportunities and flexibility are great, but so are the risks. To ensure our privacy, we would
like to perform all cloud operations in an encrypted way: Encrypt our data before we send it to
the cloud (so the cloud itself doesn’t know the content), and then have the cloud compute on this
encrypted data. If we could do that, then all our portable device needs is sufficient computational
power to encrypt and decrypt the data sent to and received from the cloud, and a way to securely
store cryptographic keys. To implement this plan, we need the following tools:

1. An encryption scheme that can perform any desirable operation on encrypted data (clearly,
an arbitrary encryption scheme will not allow processing encrypted data without decrypting).

2. A way to decrypt securely on local devices in spite of hacking attacks.

3. A way to store cryptographic keys in an encrypted form (surprisingly, this does not follow
trivially from secure encryption).

Indeed, in the last few years, there has been a flux of research effort on these matters, achieving
a number of breakthroughs.

1



2 Chapter 1: Introduction

1. Homomorphic Encryption. A fully homomorphic encryption scheme is one where en-
crypted data can be processed without decrypting. Thus we can get the cloud to perform a
computation for us, while revealing nothing of the input (or output).

The question of whether fully homomorphic encryption exists was put forth by Rivest Adle-
man and Dertouzos [RAD78] back in 1978, and remained open for 30 years (with some partial
progress), until the first candidate scheme was presented by Gentry late in 2008 [Gen09b,
Gen09a] in one of the major breakthroughs in cryptography of recent years.

Gentry’s solution showed us that fully homomorphic encryption can, in principle, be con-
structed. However, his solution involves new and relatively untested cryptographic assump-
tions: quantum hardness of short-vector problems in ideal lattices, and the hardness of the
sparse subset-sum problem. In addition, it is quite complex and far from usable in prac-
tice. A small number of follow-up works [SV10, vDGHV10, BV11a] used slightly different
assumptions to achieve similar results.

The question of finding simpler, more efficient constructions, and most importantly, ones that
are based on more traditional and well studied hardness assumptions, remained open.

2. Key Leakage Resilience. The basic notion of semantic security for public key encryption,
presented by Goldwasser and Micali [GM82, GM84], guarantees that an attacker that only
knows the public key, cannot find two messages that he can distinguish between their encryp-
tions. This is equivalent to not being able to learn anything on the message given a ciphertext
— exactly what we require. However, it gives no guarantee for the case where an attacker gets
a hold of some information about the secret key as well (e.g. by hacking the device where the
key is stored). Indeed, for many schemes, even releasing a small amount of information about
the secret key makes the scheme insecure. This motivated a number of attacks such as “side
channel attacks” [Koc96, KJJ99] or the “cold-boot attack” [HSH+08], that take advantage
of the physical implementation of the scheme to gather information about the secret key and
breach security.

An important step in this direction was made, late in 2008, by Akavia, Goldwasser and
Vaikuntanathan [AGV09]. They showed a specific scheme that (provably) remains secure
even if the attacker can obtain a bounded amount of (arbitrary) information about the secret
key. This notion of security was termed the bounded memory leakage model. Naturally, this
opened the door to many questions. Is it possible to achieve such leakage resilience for other
schemes?How much of the secret key can be leaked while keeping the scheme secure? Naor
and Segev [NS09] gave partial answers by extending the set of assumptions for which bounded
leakage resilience could be achieved.

More importantly, it seemed that the bounded memory leakage model does not capture the
full extent of side channel attacks: A hacker might keep extracting information from the
device until it acquires the entire secret key, in which case security cannot hold. To protect
against such continual leakage, one would need to keep updating the secret key, to prevent
the attacker from obtaining all of it. Whether this can be done without changing the public
key (which at the time of the attack has already been published) remained an intriguing open
problem.



3

3. Circular Security. Using a variety of cloud services naturally requires managing a large
number of cryptographic keys. It should come as no surprise, therefore, that sometimes the
secret keys themselves are encrypted. This turns out to open the door for a new security risk.
Consider a case where we use two cloud services, and we would like to store the password for
cloud A in cloud B and vice versa. It turns out that such key cycles are not guaranteed to be
secure by standard security notions (this was already noticed by Goldwasser and Micali when
they defined semantic security). Black, Rogaway and Shrimpton [BRS02] formally defined
this notion of security, coining the term key-dependent message (KDM) security (though the
name circular security is also widely used).

KDM-security also comes up in other (seemingly unrelated) areas. For example, in axiomatic
security, and interestingly also in the context of fully homomorphic encryption. The security
of all known candidate fully homomorphic encryption schemes relies on the circular security
of some derived scheme.

The first scheme that was provably circular secure (without random oracles) was presented in
2008, more than 25 years after the problem was raised, by Boneh, Halevi, Hamburg and Ostro-
vsky [BHHO08], followed by a work of Applebaum, Cash, Peikert and Sahai [ACPS09]. Their
schemes allowed to encrypt any linear function of the secret key. Interestingly, these works
utilized similar properties to those used for showing (bounded) memory leakage resilience.

Several intriguing open questions remained: Does the similarity in technique imply a con-
nection between circular security and leakage resilience? Can circular security be achieved
under additional cryptographic assumptions? Specifically assumptions that are related to
the problem of factoring large numbers. In addition, can circular security be achieved with
respect to bigger classes of functions?

We remark that interestingly enough, we do not know of any attack that utilizes encryptions
of the secret key (putting aside contrived examples). Thus, for all we know, it is possible that
all schemes (under some restriction) are circular secure!

In this thesis, we present a number of novel results, using a variety of new techniques, that push
forward the state of the art in the field, thus advancing the new cryptographic transition.

1. We present the first fully homomorphic encryption scheme that is based on worst-case short-
vector problems in arbitrary lattices (via the learning with errors assumption). Our construc-
tion is simpler than previous candidates and does not require the hardness of sparse subset
sum or the infamous “squashing” phase. Thus it could be a step towards a practical fully
homomorphic scheme. See Section 1.1 for more details.

2. We present the first public key encryption scheme that is secure against continual leakage.
To this end, we present new linear-algebraic techniques for leakage resilience. See Section 1.2.

3. We present the first construction of a circular secure and bounded memory leakage resilient
public-key encryption scheme based on factoring related assumptions (specifically: quadratic
residuosity and decisional composite residuosity). This is done using a new and generic proof
technique that applies to both properties and can be instantiated from a number of hardness
assumptions. See Section 1.3.
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1.1 Fully Homomorphic Encryption from LWE

We present a fully homomorphic encryption scheme based on the learning with errors (LWE) as-
sumption. Using known reductions, the security of our scheme can be shown to rely on the hardness
of short vector problems in worst case (arbitrary) lattices. We further use our scheme as a building
block for a near-optimal LWE-based private information retrieval (PIR) protocol.

Recall that fully homomorphic encryption, which allows evaluating arbitrarily complex programs
on encrypted data, was contemplated in 1978 but a first plausible candidate was only presented by
Gentry 30 years later (although, there has been partial progress in the meanwhile [GM82, Pai99,
BGN05, IP07]).

Gentry’s solution showed us that fully homomorphic encryption can in principle be constructed
(where many believed it might be straight out impossible!). His solution, however, involved new
and relatively untested cryptographic assumptions: the quantum hardness of short-vector prob-
lems in ideal lattices (roughly, ideal lattices correspond to a geometric embedding of an ideal in a
number field) in conjunction with the hardness of the sparse subset sum problem. This made his
construction difficult to evaluate (as one might be leery of untested assumptions at start). Our work
aims to put fully homomorphic encryption on a firm theoretical footing, by basing it on standard,
well-studied cryptographic assumptions.

Gentry’s construction had two main building blocks: A so-called “somewhat” homomorphic
encryption scheme, which can only evaluate low-complexity functions, was constructed based on
the hardness of (quantumly) finding short-vectors in ideal lattices; and an additional “squashing”
phase that simplified the decryption circuit of the aforementioned somewhat homomorphic scheme.1

This was done, roughly, by giving the encryptor an obfuscated version of the secret key, and having
him do a part of the decryption himself. To argue that the obfuscated secret key can be released
without breaking the security of the scheme, Gentry needed to make an additional strong hardness
assumption, namely the hardness of the sparse subset-sum problem.

Subsequent works [SV10, vDGHV10, BV11a] followed the same outline, implementing the some-
what homomorphic scheme under slightly different assumptions, and then squashing.

Our construction breaks from this paradigm. We present a somewhat homomorphic scheme
whose decryption complexity is low “right out of the box”, without squashing. The security of our
scheme relies on the hardness of worst-case short vector-problems in arbitrary lattices: Either on
the classical hardness of the gapSVPγ,ζ problem (using the reduction in [Pei09]) or on the quantum
hardness of the SIVP or gapSVP problems (using the reduction in [Reg05]), all with sub-exponential
approximation factor. This is achieved by relying on the learning with errors (LWE) assumption
and applying known reductions.

Our construction is based on two new techniques:

1. Re-linearization that is used to obtain an LWE-based somewhat homomorphic encryption
(without hardness assumptions on ideals).

1Gentry’s bootstrapping theorem showed that somewhat homomorphic scheme that can evaluate its own decryp-
tion circuit can be made “leveled” fully homomorphic (the parameters of a leveled scheme depend on the depth of
the evaluated function). A third component to the construction, which is less relevant to this discussion, is a circular
security assumption which is needed to make the scheme depth independent. Such an assumption is required in order
to achieve the stronger variant in all known constructions, including ours.
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2. Dimension-modulus reduction, that turns our somewhat homomorphic scheme into a fully
homomorphic one, without squashing and without additional assumptions.

We proceed to construct (single-server) private information retrieval (PIR) protocols, where
a client wishes to retrieve a single entry from a very large (e.g. exponential size) database main-
tained by a powerful server, without the server learning anything about the entry being indexed.
This problem was introduced in an information theoretic multi-server setting by Chor, Goldre-
ich, Kushilevitz and Sudan [CGKS95, CKGS98] and in the cryptographic single server setting by
Kushilevitz and Ostrovsky [KO97]. A first efficient construction (with polylogarithmic complexity)
was presented by Cachin, Micali and Stadler [CMS99].

The main quality measure for such a protocol is its communication complexity, namely the
number of bits being exchanged between the parties until the client is satisfied. We show how
to use our homomorphic scheme, in conjunction with other techniques, to obtain a scheme whose
communication complexity, for database size N and security parameter k, is logN + k · polylog(k)
in the public-key model (where each client is associated with a publicly known key that is generated
ahead of time independently of the database or the query). This is near optimal since logN is an
obvious information theoretic lower bound. The previous best known [CMS99, Lip05, GR05] was
O(log3−o(1)N) for k = O(logN) (with a delicate interplay between the security parameter and the
database size).

1.2 Continual Memory Leakage Resilience

We construct the first public-key encryption scheme that is secure against continual memory leakage
(namely, against an attacker that continuously steals secret information from our device). We show
how to periodically update the secret key, leaving the public key unaffected, such that the scheme
remains secure even if a (1− o(1)) fraction of the secret key is leaked between any two consecutive
updates. Prior to our work, it was not known whether this is achievable even in weaker adversarial
models.

We present a model for continual memory leakage (CML) which generalizes the previous “only
computation leaks information” model of Micali and Reyzin [MR04] and the “bounded memory
leakage” model of Akavia, Goldwasser and Vaikuntanathan [AGV09]. The secret key in our model
is updated over time and the total amount of leakage, over the lifetime of the system, is unbounded.
The leakage between key updates can be an arbitrary function of the secret key, subject only to
a restriction on the total length of the leakage. We believe that this more accurately models new
attacks such as side channel and cold boot attacks.

Our continual memory leakage resilient scheme is based on the d-linear assumption in bilinear
groups (for any d ≥ 1). The allowed leakage between consecutive updates, i.e. the amount of
information the attacker can obtain in that period without breaking the scheme, is up to a (1/d−
o(1)) fraction of the secret key length. Hence, if we rely on the SXDH (1-linear) assumption, we
obtain a scheme that can allow almost the entire key to leak before updating.

A principle component in our proof is a linear algebraic theorem that states (roughly) that
“random linear subspaces are resilient to continual memory leakage”. This theorem has already
found applications in follow-up works. Our secret keys are essentially (obfuscated) vectors in a linear
subspace, and an update operation is a random rotation of the secret key. We show that to an
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adversary, this rotation is computationally indistinguishable from sampling random vectors from the
subspace which, in turn, statistically hides the identity of the subspace (using the aforementioned
theorem).

1.3 Circular Security and Leakage Resilience from Subgroup In-
distinguishability

We present a unified approach for achieving public-key encryption with key-dependent message
security (circular security), as well as high resilience to secret key leakage and high resilience to
the presence of auxiliary input information.2. We instantiate this approach under the quadratic
residuosity (QR) assumption and more generally, under a class of assumptions that includes QR as
well as Paillier’s decisional composite residuosity (DCR) assumption.

In particular, under what we call the subgroup indistinguishability assumption, of which QR and
DCR are special cases, we can construct a scheme that has:

• Key-dependent message (circular) security. Achieves security even when encrypting affine
functions of its own secret key (in fact, w.r.t. affine “key-cycles” of predefined length). This
is leveraged to security w.r.t. broader classes of functions of the key using the techniques
of [BGK11, BHHI10, App11].

• Leakage resilience. Remains secure even if any adversarial low-entropy (efficiently com-
putable) function of the secret key is given to the adversary. A proper selection of parameters
allows for a “leakage rate” of (1− o(1)) of the length of the secret key.

• Auxiliary-input security. Remains secure even if any sufficiently hard to invert (efficiently
computable) function of the secret key is given to the adversary.

Our scheme is the first to achieve key-dependent security and auxiliary-input security based on
the DCR and QR assumptions. Previous schemes that achieved these properties relied either on
the DDH [BHHO08, DGK+10] or LWE [ACPS09, DGK+10] assumptions. The proposed scheme
is also the first to achieve leakage resiliency for leakage rate (1 − o(1)) of the secret key length,
under the QR assumption. This was again known before under the LWE (extension of [AGV09])
or DDH [NS09] assumptions.

To achieve the above, we notice that LWE and DDH share the common feature that, very
roughly, a random linear combination of elements (over some group and possibly with added noise)
is computationally indistinguishable from uniform. This feature, seemed to play a central role in
proving all above properties, cannot be obtained from QR.

We show that in fact this feature is not necessary. We present a proof technique that we call
“adaptive vector game”, and show that it can be used to prove all above properties. We show how
to achieve a secure adaptive vector game under QR,3 and then how to use it to construct a scheme
that has the desired properties.

2Auxiliary-input security is a generalization of leakage resilience to the case where the bound on the amount of
leakage is computational rather than information theoretic. We do not elaborate further in this high level introduction.

3We remark that adaptive vector games under LWE and DDH are fairly easy to achieve using the common feature
we describe above.
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Our results generalize to a class of assumptions that share common algebraic structure with QR.
This specifically includes Paillier’s DCR assumption. We formally define this class of assumptions
and present the generalized version of our QR construction.

1.4 Sources and Organization of This Thesis

The material for the three main parts of the thesis is taken from the following papers, respectively.

1. Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Stan-
dard) LWE. In 52nd Annual IEEE Symposium on Foundations of Computer Science — FOCS
2011.

2. Z. Brakerski, Y. T. Kalai, J. Katz and V. Vaikuntanathan. Overcoming the Hole in the
Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage. In 51st Annual
IEEE Symposium on Foundations of Computer Science — FOCS 2010.

3. Z. Brakerski and S. Goldwasser. Circular and Leakage Resilient Public-Key Encryption Under
Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back). In Advances in
Cryptology, 30th International Cryptology Conference — CRYPTO 2010.

Chapters 2, 3, 4 are dedicated to these contributions, respectively. In Chapter 5 we conclude
and discuss open problems in the field. The appendix overviews additional works that were not
included in this thesis (see below).

1.5 Works Not Included in This Thesis

In the appendix, we briefly overview additional projects that were not included in the thesis:

1. Z. Brakerski and Y. T. Kalai. A Parallel Repetition Theorem for Leakage Resilience. Manuscript,
2011.

2. Z. Brakerski and V. Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and
Security for Key Dependent Messages. In Advances in Cryptology, 31th International Cryp-
tology Conference — CRYPTO 2011.

3. Z. Brakerski and G. Segev. Better Security for Deterministic Public-Key Encryption: The
Auxiliary-Input Setting. In Advances in Cryptology, 31th International Cryptology Confer-
ence — CRYPTO 2011.

4. Z. Brakerski, J. Katz, G. Segev and A. Yerukhimovich. Limits on the Power of Zero-
Knowledge Proofs in Cryptographic Constructions. In Theory of Cryptography, 8th Theory
of Cryptography Conference — TCC 2011.

5. Z. Brakerski, S. Goldwasser and Y. T. Kalai. Black-Box Circular-Secure Encryption Beyond
Affine Functions. In Theory of Cryptography, 8th Theory of Cryptography Conference —
TCC 2011.
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6. Z. Brakerski and Y. T. Kalai. A Framework for Efficient Signatures, Ring Signatures and
Identity Based Encryption in the Standard Model. Manuscript, 2010.

7. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham and S. Yilek. Hedged
Public-Key Encryption: How to Protect Against Bad Randomness. In Advances in Cryp-
tology, 15th International Conference on the Theory and Application of Cryptology and
Information Security — ASIACRYPT 2009.

8. Z. Brakerski and B. Patt-Shamir. Distributed Discovery of Large Near-Cliques. In Distributed
Computing, 23rd International Symposium — DISC 2009 (brief announcement in PODC
2009).

9. Z. Brakerski and O. Goldreich. From Absolute Distinguishability to Positive Distinguishabil-
ity. In Studies in Complexity and Cryptography, 2011.

10. Z. Brakerski, S. Goldwasser, G. N. Rothblum, V. Vaikuntanathan. Weak Verifiable Random
Functions. In Theory of Cryptography, 6th Theory of Cryptography Conference — TCC
2009.



Chapter 2

Fully Homomorphic Encryption from
LWE

Fully-homomorphic encryption is one of the holy grails of modern cryptography. In a nutshell, a
fully homomorphic encryption scheme is an encryption scheme that allows evaluation of arbitrar-
ily complex programs on encrypted data. The problem was suggested by Rivest, Adleman and
Dertouzos [RAD78] back in 1978, yet the first plausible candidate came thirty years later with
Gentry’s breakthrough work [Gen09b, Gen10] (although, there has been partial progress in the
meanwhile [GM82, Pai99, BGN05, IP07]).

Gentry’s work showed for the first time that fully homomorphic encryption can be based on
cryptographic assumptions. However, his solution involved new and relatively untested such as-
sumptions. Our work aims to base fully homomorphic encryption on standard, well-studied cryp-
tographic assumptions.

The main building block in Gentry’s construction (a so-called “somewhat” homomorphic en-
cryption scheme) was based on the (worst-case, quantum) hardness of problems on ideal lattices. 1

Although lattices have become standard fare in cryptography and lattice problems have been fairly
well-studied, ideal lattices are a special breed that we know relatively little about. Ideals are a
natural mathematical object to use to build fully homomorphic encryption in that they natively
support both addition and multiplication (whereas lattices are closed under addition only). Indeed,
all subsequent constructions of fully homomorphic encryption [SV10, vDGHV10, BV11a] relied on
ideals in various rings in an explicit way. Our first contribution is the construction of a “somewhat”
homomorphic encryption scheme whose security relies solely on the (worst-case, classical) hardness
of standard problems on arbitrary (not necessarily ideal) lattices.

Secondly, in order to achieve full homomorphism, Gentry had to go through a so-called “squash-
ing step” which forced him to make an additional strong hardness assumption – namely, the hard-
ness of the (average-case) sparse subset-sum problem. As if by a strange law of nature, all the
subsequent solutions encountered the same difficulty as Gentry did in going from a “somewhat”
to a fully homomorphic encryption, and they all countered this difficulty by relying on the same
sparse subset-sum assumption. This additional assumption was considered to be the main caveat

1Roughly speaking, ideal lattices correspond to a geometric embedding of an ideal in a number field. See [LPR10]
for a precise definition.

9
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of Gentry’s solution and removing it has been, perhaps, the main open problem in the design of
fully homomorphic encryption schemes. Our second contribution is to remove the necessity of this
additional assumption.

Thus, in a nutshell, we construct a fully homomorphic encryption scheme whose security is based
solely on the classical hardness of solving standard lattice problems in the worst-case.2 Specifically,
out scheme is based on the learning with errors (LWE) assumption that is known to be at least
as hard as solving hard problems in general lattices. Thus our solution does not rely on lattices
directly and is fairly natural to understand and implement.

To achieve our goals, we deviate from two paradigms that ruled the design of (a handful of)
candidate fully homomorphic encryption schemes [Gen09b, SV10, vDGHV10, BV11a]:

1. We introduce the re-linearization technique, and show how to use it to obtain a somewhat
homomorphic encryption that does not require hardness assumptions on ideals.

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Section 2.1.1, 2.1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very efficient
private information retrieval protocols (see Section 2.1.3 below for overview).

Chapter Organization. We start by providing an overview of our contributions and techniques,
as well as surveying related and follow-up works, in Section 2.1.

Some preliminaries and notation are described in Section 2.2. We formally define somewhat
and fully homomorphic encryption and describe Gentry’s “bootstrapping theorem” in Section 2.3.
The main technical section of this chapter is Section 2.4, where our scheme is presented and fully
analyzed. Lastly, our private information retrieval protocol is presented in Section 2.5.

2.1 Overview of Our Contributions and Techniques

In this section, we overview our contributions and techniques, as well as survey related prior
and follow-up work. We start, in Sections 2.1.1, 2.1.2, by explaining our re-linearization and
dimension-modulus reduction techniques (respectively) and their use for our scheme. We proceed
in Section 2.1.3 to overview our private information retrieval protocol. Additional related work is
discussed in Section 2.1.4.

2.1.1 Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the

2Strictly speaking, under this assumption, our scheme can evaluate polynomial-size circuits with a-priori bounded
(but arbitrary) depth. A fully homomorphic encryption scheme independent of the circuit depth can be obtained by
making an additional “circular security” assumption. See Section 2.3.
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class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
off the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI → m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c1 and c2 be encryptions of m1 and m2 respectively,

c1c2 = (m1 + xI)(m2 + yI) = m1m2 + (m1y +m2x+ xyI)I = m1m2 + zI

When decrypting, the ideal is annihilated and the product m1m2 survives. Thus, c1c2 is indeed an
encryption of m1m2, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10] presented a different
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s ∈ Znq is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coefficients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically, {

ai, 〈ai, s〉+ ei
}poly(n)

i=1

c
≈

{
ai, ui

}poly(n)

i=1
,

where ai ∈ Znq and ui ∈ Zq are uniformly random, and the “noise” ei is sampled from a noise distri-
bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared to
the corresponding problems on ideal lattices. Despite considerable effort, the best known algorithms
to solve the n-dimensional LWE problem with noise magnitude q/2n

ε
run in time roughly 2n

1−ε
. The

LWE assumption also turns out to be particularly amenable to the construction of simple, efficient

3All known schemes, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].



12 Chapter 2: Fully Homomorphic Encryption from LWE

and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps additional testament to its power and elegance.

Constructing a (symmetric-key) encryption scheme whose security is based on the LWE assump-
tion is rather straightforward. To encrypt a bit m ∈ {0, 1} using secret key s ∈ Znq , we choose a
random vector a ∈ Znq and a “noise” e and output the ciphertext

c = (a, b = 〈a, s〉+ 2e+m) ∈ Znq × Zq .

The key observation in decryption is that the two “masks” – namely, the secret mask 〈a, s〉 and
the “even mask” 2e – do not interfere with each other.5 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask 〈a, s〉 and subtracts it from b, resulting in 2e + m (mod q). Since e � q, then 2e + m
(mod q) = 2e + m. Removing the even mask is now easy – simply compute 2e + m (mod 2).6

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents a
thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Znq → Zq defined as:

fa,b(x) = b− 〈a,x〉 (mod q) = b−
n∑
i=1

a[i] · x[i] ∈ Zq ,

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coefficients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s, and then taking the result modulo 2. (A similar representation of the ciphertext was
also used in [BV11a].)

Homomorphic addition and multiplication can now be described in terms of this function f .
Adding two ciphertexts corresponds to the addition of two linear functions, which is again another
linear function. In particular, f(a+a′,b+b′)(x) = fa,b(x)+f(a′,b′)(x) is the linear function correspond-
ing to the “homomorphically added” ciphertext (a + a′, b + b′). Similarly, multiplying two such
ciphertexts corresponds to a symbolic multiplication of these linear equations

f(a,b)(x) · f(a′,b)(x) = (b−
∑

a[i]x[i]) · (b′ −
∑

a′[i]x[i])

= h0 +
∑

hi · x[i] +
∑

hi,j · x[i]x[j] ,

which results in a degree-2 polynomial in the variables x = (x[1], . . . ,x[n]), with coefficients hi,j
that can be computed from (a, b) and (a′, b′) by opening parenthesis of the expression above.

5We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

6Such “even mask” was required in the schemes of [Gen09b, vDGHV10] as well, in addition to the aforementioned
“ideal mask”. Roughly speaking, they needed this to ensure semantic security, as we do.
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Decryption, as before, involves evaluating this quadratic expression on the secret key s (and then
reducing modulo 2). We now run into a serious problem – the decryption algorithm has to know
all the coefficients of this quadratic polynomial, which means that the size of the ciphertext just
went up from (n+ 1) elements to (roughly) n2/2.

A New Technique: Re-Linearization. This is where our re-linearization technique comes into
play. Re-linearization is a way to reduce the size of the ciphertext back down to (n+ 1) elements.
The main idea is the following: imagine that we publish “encryptions” of all the linear and quadratic
terms in the secret key s, namely all the numbers s[i] as well as s[i]s[j], under a new secret key t.
Thus, these ciphertexts (for the quadratic terms) look like (ai,j , bi,j) where

bi,j = 〈ai,j , t〉+ 2ei,j + s[i] · s[j] ≈ 〈ai,j , t〉+ s[i] · s[j] .

Actually, calling these “encryptions” is inaccurate: s[i] · s[j] ∈ Zq is not a single bit and therefore
the “ciphertext” cannot be decrypted. However, we feel that thinking of these as encryptions
may benefit the reader’s intuition. The sum h0 +

∑
hi · s[i] +

∑
hi,j · s[i]s[j] can now be written

(approximately) as

h0 +
∑

hi(bi − 〈ai, t〉) +
∑
i,j

hi,j · (bi,j − 〈ai,j , t〉) ,

which is a linear function in t! The bottom-line is that multiplying the two linear functions f(a,b)

and f(a′,b′) and then re-linearizing the resulting expression results in a linear function with (n+ 1)
coefficients. Evaluating this new linear function on the new secret key t results in the product of
the two original messages (upon reducing modulo 2). The resulting ciphertext is simply the (n+ 1)
coefficients of this linear function. This ciphertext will decrypt to m ·m′ using the secret key t.

In this semi-formal description, we ignored an important detail which has to do with the coeffi-
cients’ hi,j being potentially large. Thus, even though (bi,j − 〈ai,j , t〉) ≈ s[i]s[j], it may be the case
that hi,j · (bi,j − 〈ai,j , t〉) 6≈ hi,j · s[i]s[j]. This is handled by considering the binary representation

of hi,j , namely hi,j =
∑blog qc

τ=0 2τ · hi,j,τ . If, for each value of τ , we had a pair (ai,j,τ , bi,j,τ ) such that

bi,j,τ = 〈ai,j,τ , t〉+ 2ei,j,τ + 2τs[i] · s[j] ≈ 〈ai,j,τ , t〉+ 2τs[i] · s[j] ,

then indeed

hi,j · s[i]s[j] =

blog qc∑
τ=0

hi,j,τ2τs[i]s[j] ≈
blog qc∑
τ=0

hi,j,τ (bi,j,τ − 〈ai,j,τ , t〉) ,

since hi,j,τ ∈ {0, 1}. This increases the number of pairs we need to post by a (polynomial) factor
of (blog qc+ 1).

This process allows us to do one multiplication without increasing the size of the ciphertext,
and obtain an encryption of the product under a new secret key. But why stop at two keys s
and t? Posting a “chain” of L secret keys (together with encryptions of quadratic terms of one
secret key using the next secret key) allows us to perform up to L levels of multiplications without
blowing up the ciphertext size. It is possible to achieve multiplicative depth L = ε log n (which
corresponds to evaluating a degree D = nε polynomial) for an arbitrary constant ε < 1 under
reasonable assumptions, but beyond that, the growth of the error in the ciphertext kicks in, and
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destroys the ciphertext. Handling this requires us to use the machinery of bootstrapping, which we
explain in the next section.

In conclusion, the above technique allows us to remove the need for “ideal assumptions” and
obtain somewhat homomorphic encryption from LWE. This scheme, which we call SH, will be a
building block towards our full construction. The scheme SH is formally presented in Section 2.4.1.

2.1.2 Fully Homomorphic Encryption Without Squashing

As explained above, the “bootstrapping” method for achieving full homomorphism requires a C-
homomorphic scheme whose decryption circuit resides in C. All prior somewhat homomorphic
schemes fell short in this category and failed to achieve this requirement in a natural way. Thus
Gentry, followed by all other previous schemes, resorted to “squashing”: a method for reducing
the decryption complexity at the expense of making an additional and fairly strong assumption,
namely the sparse subset sum assumption.

We show how to “upgrade” our somewhat homomorphic scheme (explained in Section 2.1.1)
into a scheme that enjoys the same amount of homomorphism but has a much smaller decryption
circuit. All of this, without making any additional assumption (beyond LWE).

Our starting point is the somewhat homomorphic scheme from Section 2.1.1. Recall that a
ciphertext in that scheme is of the form (a, b = 〈a, s〉+ 2e+m) ∈ Znq × Zq, and decryption is done
by computing (b − 〈a, s〉 mod q) (mod 2). One can verify that this computation, presented as a
polynomial in the bits of s, has degree at least max(n, log q), which is more than the maximal degree
D that our scheme can homomorphically evaluate. The bottom line is that decryption complexity
is governed by (n, log q) which are too big for our homomorphism capabilities.

A New Technique: Dimension-Modulus Reduction. Dimension-modulus reduction enables
us to take a ciphertext with parameters (n, log q) as above, and convert it into a ciphertext of the
same message, but with parameters (k, log p) which are much smaller than (n, log q). To give a hint
as to the magnitude of improvement, we typically set k to be of size the security parameter and
p = poly(k). We can then set n = kc for essentially any constant c, and q = 2n

ε
. We will thus be

able to homomorphically evaluate functions of degree roughly D = nε = kc·ε and we can choose c
to be large enough so that this is sufficient to evaluate the (k, log p) decryption circuit.

To understand dimension-modulus reduction technically, we go back to re-linearization. We
showed above that, posting proper public parameters, one can convert a ciphertext (a, b = 〈a, s〉+
2e + m), that corresponds to a secret key s, into a ciphertext (a′, b′ = 〈a′, t〉 + 2e′ + m) that
corresponds to a secret key t.7 The crucial observation is that s and t need not have the same
dimension n. Specifically, if we chose t to be of dimension k, the procedure still works. This brings
us down from (n, log q) to (k, log q), which is a big step but still not sufficient.

Having the above observation in mind, we wonder if we can take t to have not only low dimension
but also small modulus p, thus completing the transition from (n, log q) to (k, log p). This is indeed
possible using some additional ideas, where the underlying intuition is that Zp can “approximate”
Zq by simple scaling, up to a small error.

7In the previous section, we applied re-linearization to a quadratic function of s, while here we apply it to the
ciphertext (a, b) that corresponds to a linear function of s. This only makes things easier.
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The public parameters for the transition from s to t will be (ai,τ , bi,τ ) ∈ Zkp × Zp, where

bi,τ = 〈ai,τ , t〉+ e+

⌊
p

q
· 2τ · s[i]

⌉
.8

Namely, we scale 2τ · s[i] ∈ Zq into an element in Zp by multiplying by p/q and rounding. The
rounding incurs additional noise of magnitude at most 1/2. It follows that

2τ · s[i] ≈ q

p
· (bi,τ − 〈ai,τ , t〉) ,

which enables converting a linear equation in s into a linear equation in t. The result of dimension-
modulus reduction, therefore, is a ciphertext (â, b̂) ∈ Zkp × Zp such that b̂ − 〈â, t〉 = m + 2ê. For
security, we need to assume the hardness of LWE with parameters k, p. We can show that in the
parameter range we use, this assumption is as hard as the one used for the somewhat homomorphic
scheme.9

In conclusion, dimension-modulus reduction allows us to achieve a bootstrappable scheme, based
on the LWE assumption alone. We refer the reader to Section 2.4 for the formal presentation and
full analysis of our entire solution. Specifically, dimension-modulus reduction is implemented in the
scheme BTS described in Section 2.4.2.

As a nice byproduct of this technique, the ciphertexts of the resulting fully homomorphic scheme
become very short. They now consist of (k+ 1) log p = O(k log k) bits. This is a desirable property
which enables efficient private information retrieval protocols (see Section 2.1.3 below).

2.1.3 Near-Optimal Private Information Retrieval

In (single-server) private information retrieval (PIR) protocols, a very large database is maintained
by a sender (the sender is also sometimes called the server, or the database). A receiver wishes to
obtain a specific entry in the database, without revealing any information about this entry to the
server. Typically, we consider databases of size exponential in the security parameter and hence we
wish that the receiver’s running time and communication complexity are polylogarithmic in the size
of the database N . The first polylogarithmic candidate protocol was presented by Cachin, Micali
and Stadler [CMS99] and additional polylograithmic protocols were introduced by Lipmaa [Lip05]
and by Gentry and Ramzan [GR05]. Of which, the latter achieves the best communication com-
plexity of O(log3−o(1)(N)).10 The latter two protocols achieve constant amortized communication

8A subtle technical point refers to the use of noise term e, instead of 2e as we did for re-linearization. The reason is
roughly that q

p
·2 is non-integer. Therfore we “divide by 2” before performing the dimension-reduction and “multiply

back” by 2 after.
9For the informed reader we mention that while k, p are smaller than n, q and therefore seem to imply lesser

security, we are able to use much higher relative noise in our k, p scheme since it needs not support homomorphism.
Hence the two assumptions are of roughly the same hardness.

10It is hard to compare the performance of different PIR protocols due to the multitude of parameters. To make
things easier to grasp, we compare the protocols on equal grounds: We assume that the database size and the
adversary’s running time are exponential in the security parameter and assume the maximal possible hardness of
the underlying assumption against known attacks. We also assume that each query retrieves a single bit. We will
explicitly mention special properties of individual protocols that are not captured by this comparison.
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complexity when retrieving large consecutive blocks of data. See a survey in [OS07] for more details
on these protocols.

Fully homomorphic, or even somewhat homomorphic, encryption is known to imply polylog-
arithmic PIR protocols (to be precise, one needs sub-exponentially secure such schemes). Most
trivially, the receiver can encrypt the index it wants to query, and the database will use that to
homomorphically evaluate the database access function, thus retrieving an encryption of the answer
and sending it to the receiver. The total communication complexity of this protocol is the sum of
lengths of the public key, encryption of the index and output ciphertext. However, the public key is
sent only once, it is independent of the database and the query, and it can be used for many queries.
Therefore it is customary to analyze such schemes in the public key model where sending the public
key does not count towards the communication complexity. Gentry [Gen09a] proposes to use his
somewhat homomorphic scheme towards this end, which requires O(log3N) bit communication.11

We show how, using our somewhat homomorphic scheme, in addition to new ideas, we can bring
down communication complexity to a near optimal logN ·polyloglogN (one cannot do better than

logN). To obtain the best parameters, one needs to assume 2Ω̃(k)-hardness of polynomial-factor
approximation for short vector problems in arbitrary dimension k lattices, which is supported by
current knowledge. Details follow.

A major obstacle in the näıve use of somewhat homomorphic encryption for PIR is that ho-
momorphism is obtained with respect to the boolean representation of the evaluated function.
Therefore, the receiver needs to encrypt the index to the database in a bit-by-bit manner. The
query is then composed of logN ciphertexts, which necessitate at least log2N bits of communica-
tion. As a first improvement, we notice that the index needs not be encrypted under the somewhat
homomorphic scheme. Rather, we can encrypt using any symmetric encryption scheme. The
database will receive an encrypted symmetric key (under the homomorphic scheme), which will
enable it to convert symmetric ciphertexts into homomorphic ciphertexts without additional com-
munication. The encrypted secret key can be sent as a part of the public key as it is independent
of the query. This, of course, requires that our somewhat homomorphic scheme can homomorphi-
cally evaluate the decryption circuit of the symmetric scheme. Fully homomorphic schemes will
certainly be adequate for this purpose, but known somewhat homomorphic schemes are also suf-
ficient (depending on the symmetric scheme to be used). Using the most communication efficient
symmetric scheme, we bring down the query complexity to O(logN). As for the sender’s response,
our dimension-modulus reduction technique guarantees very short ciphertexts (essentially as short
as non-homomorphic LWE based schemes). This translates into logN · polyloglogN bits per ci-
phertext, and the communication complexity of our protocol follows. We remark that in terms of
retrieving large blocks of consecutive data, one can slightly reduce the overhead to O(logN) bits
of communication for every bit of retrieved data. We leave it as an open problem to bring the
amortized communication down to a constant. See Section 2.5 for the full details.

Prior to this work, it was not at all known how to achieve even polylogarithmic PIR under
the LWE assumption. We stress that even if the size of the public key does count towards the
communication complexity, our protocol still has polylogarithmic communication.

11Gentry does not provide a detailed analysis of this scheme, the above is based on our analysis of its performance.
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2.1.4 Other Related Work

Aside from Gentry’s scheme (and a variant thereof by Smart and Vercauteren [SV10] and an
optimization by Stehle and Steinfeld [SS10]), there are two other fully homomorphic encryption
schemes [vDGHV10, BV11a]. The innovation in both these schemes is the construction of a new
somewhat homomorphic encryption scheme. Both these works then invoke Gentry’s squashing and
bootstrapping transformations to convert it to a fully homomorphic scheme, and thus the security of
both these schemes relies on the sparse subset-sum assumption (plus other assumptions). The first
of these schemes is due to van Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10]. Their scheme
works over the integers and relies on a new assumption which, roughly speaking, states that finding
the greatest common divisor of many “noisy” multiples of a number is computationally hard. They
cannot, however, reduce their assumption to worst-case hardness. The second is a recent work with
Vaikuntanathan [BV11a], where somewhat homomorphic encryption scheme is constructed based
on the ring LWE problem [LPR10] whose security can be reduced to the worst-case hardness of
problems on ideal lattices.

The efficiency of implementing Gentry’s scheme also gained much attention. Smart and Ver-
cauteren [SV10], as well as Gentry and Halevi [GH11b] conduct a study on reducing the complexity
of implementing the scheme.

In a recent independent work, Gentry and Halevi [GH11a] showed how the sparse subset sum
assumption can be replaced by either the (decisional) Diffie-Hellman assumption or an ideal lattice
assumption, by representing the decryption circuit as an arithmetic circuit with only one level of
(high fan-in) multiplications.

In a follow-up work with Gentry and Vaikuntanathan [BGV11], we extend the techniques in
this chapter. Specifically we show how to reduce the modulus in such a way that the growth of the
error is better bounded. This implies a scheme that is based on weaker LWE variants (i.e. harder
problems) and with greater efficiency.

2.2 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x
$← D denotes that x is

chosen from the distribution D. When we say x
$← S, we mean that x is chosen from the uniform

distribution over S. Unless explicitly mentioned, all logarithms are to base 2.
In this work, we utilize “noise” distributions over integers. The only property of these distri-

butions we use is their magnitude. Hence, we define a B-bounded distribution to be a distribution
over the integers where the magnitude of a sample is bounded with high probability. A definition
follows.

Definition 2.2.1 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if

Pr
e

$←χn
[|e| > B] ≤ 2−Ω̃(n) .

We denote scalars in plain (e.g. x) and vectors in bold lowercase (e.g. v), and matrices in bold
uppercase (e.g. A). The `i norm of a vector is denoted by ‖v‖i. Inner product is denoted by 〈v,u〉,
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recall that 〈v,u〉 = vT · u. Let v be an n dimensional vector. For all i = 1, . . . , n, the ith element
in v is denoted v[i]. We use the convention that v[0] , 1.

We use the following variant of the leftover hash lemma [ILL89].

Lemma 2.2.1 (matrix-vector leftover hash lemma). Let κ ∈ N, n ∈ N, q ∈ N, and m ≥ n log q+2κ.

Let A
$← Zm×nq be a uniformly random matrix, let r

$← {0, 1}m and let y
$← Znq . Then,

dist
(
(A,AT r), (A,y)

)
≤ 2−κ ,

where dist(A,B) denotes the statistical distance between the distributions A and B.

2.2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Zq,
let As,χ be the distribution obtained by choosing a vector a

$← Znq uniformly at random and a noise

term e
$← χ, and outputting (a, 〈a, s〉+ e) ∈ Znq × Zq. A formal definition follows.

Definition 2.2.2 (LWE). For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is defined as follows: Given m independent samples from
As,χ (for some s ∈ Znq ), output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted DLWEn,m,q,χ, is to distinguish

(with non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Znq ),

from m samples chosen according to the uniform distribution over Znq×Zq. We denote by DLWEn,q,χ
the variant where the adversary gets oracle access to As,χ, and is not a-priori bounded in the number
of samples.

For cryptographic applications, we are primarily interested in the average case decision problem

DLWE, where s
$← Znq . There are known quantum [Reg05] and classical [Pei09] reductions between

DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be (discretized versions of) the Gaussian distribution, which is B-bounded for an appropriate
B. Since the exact distribution χ does not matter for our results, we state a corollary of the results
of [Reg05, Pei09] in terms of the bound on the distribution.

Corollary 2.2.2 ([Reg05, Pei09]). Let q = q(n) ∈ N be a product of co-prime numbers q =
∏
qi

such that for all i, qi = poly(n), and let B ≥ n. Then there exists an efficiently sampleable B-
bounded distribution χ such that if there is an efficient algorithm that solves the (average-case)
DLWEn,q,χ problem. Then:

• There is a quantum algorithm solving SIVP
Õ(n
√
n·q/B)

and gapSVP
Õ(n
√
n·q/B)

on any n dimen-

sional lattice, and runs in time poly(n).

• There is a classical algorithm solving the ζ-to-γ decisional shortest vector problem gapSVPζ,γ,

where γ = Õ(n
√
n · q/B), and ζ = Õ(q

√
n), on any n-dimensional lattice, and runs in time

poly(n).



2.3. Homomorphic Encryption: Definitions and Tools 19

We refer the reader to [Reg05, Pei09] for the formal definition of these lattice problems, as they
have no direct connection to this work. We only note here that the best known algorithms for these
problems run in time nearly exponential in the dimension n [AKS01, MV10]. More generally, the

best algorithms that approximate these problems to within a factor of 2k run in time 2Õ(n/k).

2.2.2 Symmetric Encryption

A symmetric encryption scheme SYM = (SYM.Keygen,SYM.Enc, SYM.Dec), over message space
M = {Mκ}κ∈N, is a triple of ppt algorithms as follows. (We always denote the security parameter
by κ.)

• Key generation. The algorithm sk←SYM.Keygen(1κ) takes a unary representation of the
security parameter and outputs symmetric encryption/decryption key sk.

• Encryption. The algorithm c←SYM.Encsk(µ) takes the symmetric key sk and a message
µ ∈Mκ and outputs a ciphertext c.

• Decryption. The algorithm µ∗←SYM.Decsk(c) takes the symmetric key sk and a ciphertext
c and outputs a message µ∗ ∈Mκ.

Correctness and security against chosen plaintext attacks (IND-CPA security) are defined as
follows.

Definition 2.2.3. A symmetric scheme SYM is correct if for all µ and all sk←SYM.Keygen(1κ),

Pr[SYM.Decsk(SYM.Encsk(µ)) 6= µ] = negl(κ) ,

where the probability is over the coins of SYM.Keygen, SYM.Enc (we can assume w.l.o.g that
SYM.Dec is deterministic).

Definition 2.2.4. A symmetric scheme SYM is (t, ε)-IND-CPA secure if for any adversary A that
runs in time t it holds that∣∣∣Pr[ASYM.Encsk(·)(1κ) = 1]− Pr[ASYM.Encsk(0)(1κ) = 1]

∣∣∣ ≤ ε ,
where the probability is over sk←SYM.Keygen(1κ), the coins of SYM.Enc and the coins of the
adversary A.

Namely, no adversary can distinguish between an oracle that encrypts messages of its choice
and an oracle that only returns encryptions of 0 (where 0 is some arbitrary element in the message
space).

2.3 Homomorphic Encryption: Definitions and Tools

In this section we discuss the definition of homomorphic encryption and its properties as well as
some related subjects. We start by defining homomorphic and fully homomorphic encryption in
Section 2.3.1. Then, in Section 2.3.2 we discuss Gentry’s bootstrapping theorem.

We note that there is a number of ways to define homomorphic encryption and to describe the
bootstrapping theorem. We chose the definitions that best fit our constructions and we urge even
the knowledgeable reader to go over them so as to avoid confusion in interpreting our results.
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2.3.1 Homomorphic Encryption – Definitions

We define homomorphic encryption and its desired properties. Throughout this section (and this
work) we use κ to indicate the security parameter. In addition, all schemes in this paper encrypt
bit-by-bit and therefore our definitions only refer to this case. The generalization to an arbitrary
message space is immediate.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows.

• Key generation. The algorithm (pk, evk, sk)←HE.Keygen(1κ) takes a unary representation
of the security parameter and outputs a public encryption key pk, a public evaluation key
evk and a secret decryption key sk.

• Encryption. The algorithm c←HE.Encpk(µ) takes the public key pk and a single bit message
µ ∈ {0, 1} and outputs a ciphertext c.

• Decryption. The algorithm µ∗←HE.Decsk(c) takes the secret key sk and a ciphertext c and
outputs a message µ∗ ∈ {0, 1}.

• Homomorphic evaluation. The algorithm cf←HE.Evalevk(f, c1, . . . , c`) takes the evalua-
tion key evk, a function f : {0, 1}` → {0, 1} and a set of ` ciphertexts c1, . . . , c`, and outputs
a ciphertext cf .

The representation of the function f can vary between schemes. In this work, f will be
represented by an arithmetic circuit over GF(2).

We note that while one can treat the evaluation key as a part of the public key, as has been done
in the literature so far, we feel that there is an expository value to treating it as a separate entity.
We thus distinguish between the public elements that are used for encryption and those that are
used only for homomorphic evaluation.

The only security notion we consider in this chapter is semantic security, namely security w.r.t.
passive adversaries. We use its widely known formulation as IND-CPA security, defined as follows.

Definition 2.3.1 (CPA security). A scheme HE is IND-CPA secure if for any polynomial time
adversary A it holds that

AdvCPA[A] , |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(0)) = 1]| = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ).

In fact, based on the best known about lattices, the schemes we present in this paper will
be secure against even stronger adversaries. In order for our reductions to make sense for such
adversaries as well, we also consider a parameterized version of CPA security. There, we allow the
adversary to run in time t (which is typically super-polynomial) and succeed with probability ε
(which is typically sub-polynomial).

Definition 2.3.2 ((t, ε)-CPA security). A scheme HE is (t, ε)-IND-CPA secure if for any adversary
A that runs in time t for t = t(κ) it holds that

AdvCPA[A] , |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(0)) = 1]| ≤ ε = ε(κ) ,
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where (pk, evk, sk)←HE.Keygen(1κ).

We move on to define the homomorphism property. Note that we do not define the “correctness”
of the scheme separately, but rather (some form of) correctness will follow from our homomorphism
properties.

We start by defining C-homomorphism, which is homomorphism with respect to a specified class
C of functions. This notion is also known as “somewhat homomorphism”.

Definition 2.3.3 (C-homomorphism). Let C = {Cκ}κ∈N be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic (or, homomorphic for the class C) if
for any sequence of functions fκ ∈ Cκ and respective inputs µ1, . . . , µ` ∈ {0, 1} (where ` = `(κ)), it
holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , c`)) 6= f(µ1, . . . , µ`)] = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ) and ci←HE.Encpk(µi).

We point out two important properties that the above definition does not require. First of all, we
do not require that the ciphertexts ci are decryptable themselves, only that they become decryptable
after homomorphic evaluation.12 Secondly, we do not require that the output of HE.Eval can
undergo additional homomorphic evaluation (this is termed “1-hop homomorphism” in [GHV10a]).

Before we define full homomorphism, let us define the notion of compactness (note that a
C-homomorphic scheme is not necessarily compact).

Definition 2.3.4 (compactness). A homomorphic scheme HE is compact if there exists a polyno-
mial s = s(κ) such that the output length of HE.Eval(· · · ) is at most s bits long (regardless of f or
the number of inputs).

We give the minimal definition of fully homomorphic encryption, which suffices for most appli-
cations.

Definition 2.3.5 (fully homomorphic encryption). A scheme HE is fully homomorphic if it is both
compact and homomorphic for the class of all arithmetic circuits over GF (2).

As in the definition of C homomorphism, one can require that the outputs of HE.Eval can again
be used as inputs for homomorphic evaluation (“multi-hop homomorphism”). Indeed, all known
schemes have this additional property. However, due to the complexity of the formal definition in
this case, we refrain from describing it.

An important relaxation of fully homomorphic encryption is the following.

Definition 2.3.6 (leveled fully homomorphic encryption). A leveled fully homomorphic encryp-
tion scheme is a homomorphic scheme where the HE.Keygen gets an additional input 1L (now
(pk, evk, sk)←HE.Keygen(1κ, 1L)) and the resulting scheme is homomorphic for all depth-L binary
arithmetic circuits. The bound s(κ) on the ciphertext length must remain independent of L.

In most cases, the only parameter of the scheme that becomes dependent on L is the bit-length
of the evaluation key evk.

12This might seem strange at first, but such notion of somewhat homomorphism is all that is required to bootstrap
into full homomorphism. This definition makes our schemes easier to describe and we note that one can always
perform a “blank” homomorphic operation and then decrypt, so functionality is not hurt.
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2.3.2 Gentry’s Bootstrapping Technique

In this section we formally define the notion of a bootstrappable encryption scheme and present
Gentry’s bootstrapping theorem [Gen09b, Gen09a] which implies that a bootstrappable scheme can
be converted into a fully homomorphic one.

Definition 2.3.7 (bootstrappable encryption scheme). Let HE be C-homomorphic, and let fadd
and fmult be the augmented decryption functions of the scheme defined as

f c1,c2add (s) = HE.Decs(c1) XOR HE.Decs(c2) and f c1,c2mult (s) = HE.Decs(c1) AND HE.Decs(c2) .

Then HE is bootstrappable if {
f c1,c2add , f c1,c2mult

}
c1,c2
⊆ C .

Namely, the scheme can homomorphically evaluate fadd and fmult.

We describe two variants of Gentry’s bootstrapping theorem. The first implies leveled fully
homomorphic encryption but requires no additional assumption; where the second makes an ad-
ditional (weak) circular security assumption and achieves the stronger (non-leveled) variant of
Definition 2.3.5.

The first variant follows.

Theorem 2.3.1 ([Gen09b, Gen09a]). Let HE be a bootstrappable scheme, then there exists a leveled
fully homomorphic encryption scheme as per Definition 2.3.6.

Specifically, the leveled homomorphic scheme is such that only the length of the evaluation key
depends on the level L. All other parameters of the scheme are distributed identically regardless
of the value of L.

For the second variant, we need to define circular security.

Definition 2.3.8 (weak circular security). A public key encryption scheme (Gen,Enc,Dec) is weakly
circular secure if it is IND-CPA secure even for an adversary with auxiliary information containing
encryptions of all secret key bits: {Encpk(sk[i])}i.

Namely, no polynomial time adversary can distinguish an encryption of 0 from an encryption
of 1 even given the additional information.

We can now state the second theorem.

Theorem 2.3.2 ([Gen09b, Gen09a]). Let HE be a bootstrappable scheme that is also weakly circular
secure. Then there is a fully homomorphic encryption scheme as per Definition 2.3.5.

Finally, we want to make a statement regarding the ciphertext length of a bootstrapped scheme.
The following is implicit in [Gen09b, Gen09a].

Lemma 2.3.3. If a scheme FH is obtained from applying either Theorem 2.3.1 or Theorem 2.3.2 to
a bootstrappable scheme HE, then both FH.Enc and FH.Eval produce ciphertexts of the same length
as HE.Eval (regardless of the length of the ciphertext produced by HE.Enc).
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2.4 The New Fully Homomorphic Encryption Scheme

In this section, we present our fully homomorphic encryption scheme and analyze its security and
performance. We present our scheme in a gradual manner. First, in Section 2.4.1 we present an
LWE-based somewhat homomorphic scheme, SH, that will serve as building block for our construc-
tion (the scheme SH by itself is not sufficient to achieve full homomorphism). The main technique
used here is re-linearization. Our bootstrappable scheme, BTS, which utilizes dimension-modulus
reduction, is presented in Section 2.4.2. In Section 2.4.3 we prove the security of the schemes based
on LWE and discuss the worst case hardness implied by known reductions. In Section 2.4.4 we ana-
lyze the homomorphic properties of SH and BTS. This analysis enables us to prove (in Section 2.4.5)
that the bootstrapping theorem is applicable to BTS, and thus obtain a fully homomorphic scheme
based on LWE. We then discuss the parameters and efficiency of our scheme.

2.4.1 The Scheme SH: A Somewhat Homomorphic Encryption Scheme

We present a somewhat homomorphic public-key encryption scheme, based on our re-linearization
technique, whose message space is GF(2).13 Let κ ∈ N be the security parameter. The scheme is
parameterized by a dimension n ∈ N, a positive integer m ∈ N, an odd modulus q ∈ N (note that
q needs not be prime) and a noise distribution χ over Z, all of which are inherited from the LWE
assumption we use. An additional parameter of the scheme is a number L ∈ N which is an upper
bound on the maximal multiplicative depth that the scheme can homomorphically evaluate.

During the exposition of the scheme, we invite the reader to keep the following range of pa-
rameters in mind: the dimension n is polynomial in the security parameter κ, m ≥ n log q + 2κ
is a polynomial in n, the modulus is an odd number q ∈ [2n

ε
, 2 · 2nε) which is sub-exponential in

n (ε ∈ (0, 1) is some constant), χ is some noise distribution that produces small samples (say, of
magnitude at most n) in Z, and the depth bound is L ≈ ε log n.

• Key generation SH.Keygen(1κ): For key generation, sample L+ 1 vectors s0, . . . , sL
$← Znq , and

compute, for all ` ∈ [L], 0 ≤ i ≤ j ≤ n, and τ ∈ {0, . . . , blog qc}, the value

ψ`,i,j,τ :=

(
a`,i,j,τ , b`,i,j,τ :=〈a`,i,j,τ , s`〉+ 2 · e`,i,j,τ + 2τ · s`−1[i] · s`−1[j]

)
∈ Znq × Zq , (2.1)

where a`,i,j,τ
$← Znq , e`,i,j,τ

$← χ (recall that, according to our notational convention, s`−1[0] , 1).

We define Ψ , {ψ`,i,j,τ}`,i,j,τ to be the set of all these values.14 At this point, it may not yet be
clear what is the purpose of the 2τ factors; indeed, this will be explained later when we explain
homomorphic multiplication.

The key-generation algorithm proceeds to choose a uniformly random matrix A
$← Zm×nq and a

vector e
$← χm, and compute b:=As0 + 2e.

13It is quite straightforward to generalize the scheme to work over a message space GF(t), where t is relatively
prime to q. Since we mostly care about the binary case, we choose not to present this generalization.

14A knowledgeable reader may notice that the above is similar to encryptions of 2τ · s`−1[i] · s`−1[j] (mod q) via
an LWE-based scheme, except this “ciphertext” is not decryptable since the “message” is not a single bit value.
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It then outputs the secret key sk = sL, the evaluation key evk = Ψ, and the public key
pk = (A,b) (the public key pk is essentially identical to the public key in Regev’s scheme).

• Encryption SH.Encpk(µ): Recall that pk = (A,b). To encrypt a message µ ∈ GF(2), sample a

vector r
$← {0, 1}m and set (just like in Regev’s scheme)

v:=AT r and w:=bT r + µ .

the encryption algorithm outputs c:=((v, w), 0). The output ciphertext c contains the pair
(v, w), in addition to a “level tag” which is used during homomorphic evaluation and indicates
the “multiplicative depth” in which the ciphertext has been generated. For a freshly encrypted
ciphertext, therefore, the level tag is zero.

• Homomorphic evaluation SH.Evalevk(f, c1, . . . , ct) where f : {0, 1}t → {0, 1}: We require that
f is represented by a binary arithmetic circuit with ’+’ gates of arbitrary fan-in and ’×’ gates
with fan-in 2. We further require that the circuit is layered, namely that it is composed of
homogenous layers of either all ’+’ gates or all ’×’ gates (it is easy to see that any arithmetic
circuit can be converted to this form). Lastly, we require that the multiplicative depth of the
circuit (the total number of ‘×‘ layers) is exactly L. (Jumping ahead, additional restrictions on
the circuit structure will be imposed when we turn to prove homomorphism, see Section 2.4.4.)

We homomorphically evaluate the circuit f gate by gate. Namely, we will show how to perform
homomorphic addition (of arbitrarily many ciphertexts) and homomorphic multiplication (of
two ciphertexts). Combining the two, we will be able to evaluate any such function f .

Ciphertext structure during evaluation. During the homomorphic evaluation, we will
generate ciphertexts of the form c = ((v, w), `), where the tag ` indicates the multiplicative level
at which the ciphertext has been generated (as we saw, fresh ciphertexts are tagged with 0).
The requirement that f is layered will make sure that throughout the homomorphic evaluation,
all of the inputs to a gate have the same tag. In addition, we will keep the invariant that the
output of each gate evaluation: c = ((v, w), `), is such that

w − 〈v, s`〉 = µ+ 2 · e (mod q) , (2.2)

where µ is the correct plaintext output of the gate, and e is a noise term that depends on the
gate’s input ciphertexts.

Note that all ciphertexts will have tag ` ≤ L due to the bound on the multiplicative depth,
and that the output of the homomorphic evaluation of the entire circuit is expected to have tag
` = L.

Homomorphic evaluation of gates:

− Addition gates. Homomorphic evaluation of a ’+’ gate on inputs c1, . . . , ct, where ci =
((vi, wi), `), is performed by outputting

cadd = ((vadd, wadd), `):=

((∑
i

vi,
∑
i

wi

)
, `

)
.
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Informally, one can see that

wadd − 〈vadd, s`〉 =
∑
i

(wi − 〈vi, s`〉) =
∑
i

(µi + 2ei) =
∑
i

µi + 2
∑
i

ei ,

where µi is the plaintext corresponding to µi. The output of the homomorphic evaluation,
thus, corresponds to the sum of the inputs, with the noise term being the sum of input noises.

− Multiplication gates. We show how to multiply ciphertexts c, c′ where c = ((v, w), `) and
c′ = ((v′, w′), `) (recall that multiplication gates have fan-in 2), to obtain an output ciphertext
cmult = ((vmult, wmult), `+ 1). Note that the level tag increases by 1.

We first consider an n-variate symbolic polynomial over the unknown vector x:

φ(x) = φ(w,v),(w′,v′)(x) , (w − 〈v,x〉) · (w′ − 〈v′,x〉) . (2.3)

We symbolically open the parenthesis of this quadratic polynomial, and express it as

φ(x) =
∑

0≤i≤j≤n
hi,j · x[i] · x[j] ,

where hi,j ∈ Zq are known (we can compute them from (v, w), (v′, w′) by opening parenthesis
in Eq. (2.3)).15

For technical reasons (related to keeping the error growth under control), we want to express
φ(·) as a polynomial with small coefficients. We consider the binary representation of hi,j ,
letting hi,j,τ be the τ th bit in this representation. In other words

hi,j =

blog qc∑
τ=0

hi,j,τ · 2τ ,

for hi,j,τ ∈ {0, 1}.
We can express φ therefore as

φ(x) =
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ ·
(
2τ · x[i] · x[j]

)
,

which can be interpreted as a polynomial with small coefficients in variables (2τ · x[i] · x[j]).

We recall that the evaluation key evk = Ψ contains elements of the form ψ`,i,j,τ = (a`,i,j,τ , b`,i,j,τ )
such that

2τs`[i]s`[j] ≈ b`+1,i,j,τ − 〈a`+1,i,j,τ , s`+1〉 .

The homomorphic multiplication algorithm will thus set

vmult:=
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · a`+1,i,j,τ ,

15We once again remind the reader that because of the notational trick of setting x[0] , 1, this expression captures
the constant term in the product, as well as all the linear terms, thus homogenizing the polynomial φ(x).
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and
wmult =

∑
0≤i≤j≤n

τ∈{0,...,blog qc}

hi,j,τ · b`+1,i,j,τ .

The final output ciphertext will be

cmult:=((vmult, wmult), `+ 1) .

Note that the level tag is increased by one as expected. Let us now verify that our invariant
as per Eq. (2.2) still holds for the new ciphertext:

wmult − 〈vmult, s`+1〉 =
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · (b`+1,i,j,τ − 〈a`+1,i,j,τ , s`+1〉)

=
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · 2τ · s`[i] · s`[j] + 2 · hi,j,τ · e`+1,i,j,τ

= φ(s`) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= (w − 〈v, s`〉) · (w′ − 〈v′, s`〉) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= (µ+ 2e)(µ′ + 2e′) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= µµ′ + 2

µe′ + µ′e+ 2ee′ +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · e`+1,i,j,τ

 .(2.4)

Indeed, we get the plaintext output µµ′, in addition to a noise term that is inherited from
the input ciphertexts and from the evaluation key.

• Decryption SH.DecsL(c): Recall that we are only required to decrypt ciphertexts that are output
by SH.Eval(· · · ) and those will always have level tag L. To decrypt a ciphertext c = ((v, w), L),
compute

(w − 〈v, sL〉 (mod q)) (mod 2) . (2.5)

2.4.2 The Scheme BTS: A Bootstrappable Scheme

We now utilize the dimension-modulus reduction technique to present the scheme BTS, which
uses SH as a building block. BTS inherits its homomorphic properties from SH, but has much
shorter ciphertexts and lower decryption complexity. These properties will enable us to apply the
bootstrapping theorem to obtain full homomorphism.
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Our bootstrappable scheme is parameterized by (n,m, q, χ, L), which are the parameters for
SH, and additional parameters (k, p, χ̂). We refer to n, q ∈ N as the “long” dimension and modulus
respectively, while k, p are the “short” dimension and modulus. χ, χ̂ are the long and short noise
distributions, respectively, over Z. The parameter m ∈ N is used towards public key generation.
The parameter L is an upper bound on the multiplicative depth of the evaluated function.

While we discuss parameter values below, we encourage the reader to consider the following
(non-optimal, but easier to understand) settings as a running example: k = κ, n = k4, q ≈ 2

√
n,

L = 1/3 log n = 4/3 log k, p = (n2 log q) · poly(k) = poly(k), m = O(n log q). The distributions χ, χ̂
can be thought of as being n- and k-bounded, respectively.

• Key generation BTS.Keygen(1κ): Run SH.Keygen(1κ) to obtain the secret key sL, evaluation
key Ψ and public key (A,b) of SH.

Recall that sL ∈ Znq , (A,b) ∈ Zm×nq × Zmq , and Ψ ∈ (Znq × Zq)(n+1)2·(blog qc+1)·L.

Proceed by sampling the “short” secret key ŝ
$← Zkp and compute the following additional

parameters for the evaluation key: For all i ∈ [n], τ ∈ {0, . . . , blog qc}, sample âi,τ
$← Zkp,

êi,τ
$← χ̂, and compute

b̂i,τ :=〈âi,τ , ŝ〉+ êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉
(mod p) .

Set ψ̂i,τ :=
(
âi,τ , b̂i,τ

)
∈ Zkp × Zp, and

Ψ̂:={ψ̂i,τ}i∈[n],τ∈{0,...,blog qc} .

This is very similar to the generation of Ψ in the scheme SH, but now ψ̂i,τ “encodes” scaled
linear terms, rather than quadratic terms.

Finally, output the secret key sk = ŝ, evaluation key evk = (Ψ, Ψ̂), and public key pk =
(A,b). Note that the public key is identical to that of SH.

• Encryption BTS.Encpk(µ): Use the same encryption algorithm as SH. To encrypt a bit
µ ∈ {0, 1}, compute c←SH.Enc(A,b)(µ) and output c as the ciphertext.

• Homomorphic evaluation BTS.Evalevk(f, c1, . . . , ct), where f : {0, 1}t → {0, 1}: Recall that
evk = (Ψ, Ψ̂). To perform homomorphic evaluation, we will use the homomorphic evaluation
function of SH. We thus require that f is represented by a binary arithmetic circuit which is
a legal input for SH.Eval.

The first step in the homomorphic evaluation is computing

cf←SH.EvalΨ(f, c1, . . . , ct) .

This results in a ciphertext of the form cf = ((v, w), L) ∈ Znq × Zq × {L}.
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Next, we reduce the dimension and modulus of cf to k, p as follows. Consider the following
function from Zn into the rationals modulo p

φ(x) , φv,w(x) ,
p

q
·
(
q + 1

2
· (w − 〈v,x〉)

)
(mod p) .

Rearranging, one can find h0, . . . , hn ∈ Zq such that

φ(x) =

n∑
i=0

hi · (
p

q
· x[i]) (mod p) .

Let hi,τ be the τ th bit of hi, for all τ ∈ {0, . . . , blog qc}. Then

φ(x) =

n∑
i=0

blog qc∑
τ=0

hi,τ · (
p

q
· 2τ · x[i]) .

Using the parameters in Ψ̂, we create a new ciphertext ĉ = (v̂, ŵ) ∈ Zkp × Zp by setting

v̂ := 2 ·
n∑
i=0

blog qc∑
τ=0

hi,τ · âi,τ (mod p) ∈ Zkp

ŵ := 2 ·
n∑
i=0

blog qc∑
τ=0

hi,τ · b̂i,τ (mod p) ∈ Zp .

The output of BTS.Eval is the new ciphertext ĉ ∈ Zkp × Zp. Note that the bit-length of ĉ is
(k + 1) log p.

Recall the invariant we enforce on the structure of ciphertexts of SH (see Eq. 2.2). We show
that a similar invariant holds for ĉ: Namely, that if cf is such that w − 〈v, sL〉 = µ + 2e
(mod q), then

ŵ − 〈v̂, ŝ〉 = µ+ 2ê (mod p) ,

where ê is proportional to p
q e (an appropriately scaled version of e), plus some additional

noise.

To see the above (in a somewhat indirect way, which will prove to be useful later), recall that
(p+ 1)/2 is the inverse of 2 modulo p, and notice that

p+ 1

2
(ŵ − 〈v̂, ŝ〉) =

n∑
i=0

blog qc∑
τ=0

hi,τ ·
(
b̂i,τ − 〈âi,τ , ŝ〉

)
(mod p)

=
n∑
i=0

blog qc∑
τ=0

hi,τ

(
êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉)
(mod p)
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= φ(sL) +

n∑
i=0

blog qc∑
τ=0

hi,τ (êi,τ + ω̂i,τ )︸ ︷︷ ︸
, δ1

(mod p) , (2.6)

where we define

ω̂i,τ ,

⌊
p

q
·
(
2τ · sL[i]

)⌉
− p

q
·
(
2τ · sL[i]

)
,

and notice that |ω̂i,τ | ≤ 1/2. Since hi,τ ∈ {0, 1} and since êi,τ is small, it follows that δ1

(defined in Eq. (2.6)) is “small” as well.

Now, letting w = 〈v, sL〉 + 2e + µ (mod q), we wish to examine φ(sL) , φ(v,w)(sL) more
closely, as follows.

φ(sL) ,
p

q
·
(
q + 1

2
· (w − 〈v, sL〉)

)
(mod p)

=
p

q
·
(
q + 1

2
· (2e+ µ+Mq)

)
(mod p) (where M ∈ Z)

=
p

q
·
(
q + 1

2
µ+ e+M ′q

)
(mod p) (where M ′ = M + e ∈ Z)

=
p

q
· q + 1

2
µ+

p

q
· e (mod p)

=
p+ 1

2
· µ+ (

p

q
− 1) · µ

2
+
p

q
· e︸ ︷︷ ︸

,δ2

(mod p)

=
p+ 1

2
· µ+ δ2 . (2.7)

Notice that if p ≤ q (as is the case in our setting), |δ2| ≤ p
q |e|+

1
2 .

Putting together Eq. (2.6) and (2.7), we see that

p+ 1

2
(ŵ − 〈v̂, ŝ〉) =

p+ 1

2
· µ+ (δ1 + δ2) (mod p) . (2.8)

Multiplying by 2, we have

ŵ − 〈v̂, ŝ〉 = µ+ 2(δ1 + δ2) (mod p) . (2.9)

Now defining ê , δ1 + δ2, the invariant follows.

It is important to notice that, while not immediate from its definition, ê = δ1 + δ2 is an
integer. To see this, note that it can be represented as a difference between integers:

δ1 + δ2 =
p+ 1

2
(ŵ − 〈v̂, ŝ〉)− p+ 1

2
· µ .
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• Decryption BTS.Decŝ(ĉ): To decrypt ĉ = (v̂, ŵ) ∈ Zkp × Zp (recall, again, that we only need
to decrypt ciphertexts that are output by BTS.Eval), compute

µ∗:= (ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2) .

If indeed ŵ − 〈v̂, ŝ〉 = µ+ 2ê (mod p), and if ê is small enough, then we get µ∗ = µ.

2.4.3 Security Analysis

In this section, we analyze the security of SH and BTS based on LWE. Then, using known connec-
tions, we base security on worst case hardness of lattice problems.

The following theorem asserts the security of SH and BTS based on two DLWE problems: One
with modulus q, dimension n and noise χ, and one with modulus p, dimension k and noise χ̂. The
security of SH follows based only on the former while the security of BTS requires both.

Theorem 2.4.1 (security). Let n = n(κ), k = k(κ), q = q(κ), p = p(κ) and L = L(κ) be functions
of the security parameter. Let χ, χ̂ be some distributions over the integers, and define m , (n +
1) log q + 2κ. Then the following hold:

1. The scheme SH is CPA secure under the DLWEn,q,χ assumption. In particular, if the DLWEn,q,χ
problem is (t, ε)-hard, then the scheme is (t− poly(κ), 2L · (2−κ + ε))-semantically secure.

2. The scheme BTS is CPA secure under the DLWEn,q,χ and the DLWEk,p,χ̂ assumptions. In
particular, if both the DLWEn,q,χ and the DLWEk,p,χ̂ problems are (t, ε)-hard, then the scheme
is (t− poly(κ), 2(L+ 1) · (2−κ + ε))-semantically secure.

Essentially, the view of a CPA adversary for our scheme is very similar to Regev’s scheme, with
the exception that our adversary also gets to see the evaluation key. However, the evaluation key
contains a sequence of LWE instances which, based on our assumption, are indistinguishable from
uniform. Therefore our reduction, for the scheme SH, will perform a sequence of L hybrids to
replace the Ψ component of the evaluation key with a set of completely uniform elements. For the
scheme BTS, an additional hybrid will imply the same for Ψ̂. Once this is done, we will use the
known proof techniques from Regev’s scheme and get the security of our scheme. A formal proof
follows.

Proof. We first prove CPA security for BTS. CPA security for SH will then follow as a special case
of our argument.

Let A be an IND-CPA adversary for BTS that runs in time t. We consider a series of hybrids
where AdvH [A] denotes the success probability of A in hybrid H.

• Hybrid ĤL+1: This is the identical to the IND-CPA game, where the adversary gets prop-
erly distributed keys pk, evk, generated by BTS.Keygen, and an encryption of either 0 or 1
computed using BTS.Enc. By definition,

AdvĤL+1
[A] ,

∣∣Pr[A(pk,SH.Encpk(µ0) = 1]−Pr[A(pk, SH.Encpk(µ1) = 1]
∣∣ = AdvCPA,BTS[A] .
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• Hybrid HL+1: This hybrid is identical to ĤL+1 in everything except the generation of Ψ̂.
In this hybrid, Ψ̂ is not generated as prescribed, but is rather sampled uniformly. Namely,

for all i, τ we set ψ̂i,τ
$← Zkp × Zp.

It follows that there exists an adversary B̂ that solves the DLWEk,p,χ̂ problem in time t +
poly(κ) and advantage

DLWEk,p,χ̂Adv[B̂] ≥ 1/2 ·
∣∣∣AdvĤ`+1

[A]−AdvH`+1
[A]
∣∣∣ .

The adversary B̂ will sample all vectors s0, . . . , sL by himself and generate pk,Ψ. Then, he will
use the LWE oracle to obtain either Aŝ,χ̂ samples, which will result in properly generated Ψ̂,

or uniform samples which will result in a uniform Ψ̂. B will then sample a uniform b
$← {0, 1}

and return 1 if and only if A(pk, (Ψ, Ψ̂),BTS.Encpk(µb)) = b. Using simple algebra, the result
follows.

• Hybrid H`, for ` ∈ [L]: Hybrid H` is identical to H`+1, except for a change in some of
the elements in Ψ. Specifically, we change the components ψ`,i,j,τ , for all i, j, τ : Instead of
computing ψ`,i,j,τ as prescribed (i.e., (a`,i,j,τ , 〈a`,i,j,τ , s`〉+ 2e`,i,j,τ + 2τ · s`−1[i] · s`−1[j])), we

set ψ`,i,j,τ
$← Znq × Zq (namely, a uniform sample).

It follows that there exists an adversary B` that solves the DLWEn,q,χ problem in time t +
poly(κ) with advantage

DLWEn,q,χAdv[B`] = 1/2 ·
∣∣AdvH` [A]−AdvH`+1

[A]
∣∣ .

The argument is very similar to the previous hybrid: We note that at this point, Ψ̂ and
{ψλ,i,j,τ}λ>`,i,j,τ are completely uniform and can be generated without any knowledge of
s`+1, . . . , sL, ŝ. The adversary B` will sample all vectors s0, . . . , s`−1 himself, and turn to the
LWE oracle for samples in order to generate ψ`,i,j,τ . This will result in Ψ being identical
to H`+1 if the oracle returns As,χ samples, or Ψ being identical to H` if the oracle returns
uniform elements. Once again, sampling a random b and checking whether A’s response is
identical to b completes the argument.

Note that in the hybrid H1, the evaluation key evk = (Ψ, Ψ̂) is completely uniform, and hence
the view of the adversary is like in Regev’s scheme.

• Hybrid H0: Hybrid H0 is identical to H1 except that the vector b in the public key is
chosen uniformly at random from Zmq , rather than being computed as A · s0 + 2e. Under
the DLWEn,q,χ assumption, hybrids H0 and H1 are indistinguishable. Namely, there exists an
adversary B0 that runs in time t+ poly(κ) and whose advantage is

DLWEn,q,χAdv[B0] = 1/2 · |AdvH1 [A]−AdvH0 [A]| .

The adversary B0 gets m samples from the LWE oracle and uses them to generate (A,b). If
the samples come from As,χ, then b is distributed like in H1, but if they are uniform then b
is distributed like in H0. The same testing of A’s success as before implies the argument.
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• Hybrid Hrand: Hybrid Hrand is identical to H0 except that the ciphertext is chosen uniformly
at random from Znq × Zq, rather than being computed as (AT · r,bT · r + µ).

We now claim that
|AdvH0 [A]−AdvHrand

[A]| ≤ 2−κ .

This is due to the Leftover hash lemma (Lemma 2.2.1), since m > (n+ 1) log q + 2κ.

Note that in Hrand, all the elements of both the public key and the ciphertext are uniformly random
and independent of the message. Thus,

AdvHrand
[A] = 0 .

Putting these together, we get that

AdvCPA,BTS[A] ≤ 2−κ + 2 ·

(
DLWEk,p,χ̂Adv[B̂] +

L∑
`=0

DLWEn,q,χAdv[B`]

)
,

and the security of BTS follows.
To finish the proof, we notice that the view of A in hybrid HL+1 is equivalent to the view of

an adversary in the IND-CPA game for SH (since Ψ̂ is replaced by a uniform sequence). Therefore
for every adversary A,

AdvCPA,SH[A] ≤ 2−κ + 2 ·
L∑
`=0

DLWEn,q,χAdv[B`] ,

and the security of SH follows.

Specific Parameters and Worst-Case Hardness. The parameters we require for homomor-
phism (see Theorem 2.4.2 below) are as follows. We require that q = 2n

ε
for some ε ∈ (0, 1), χ is

n-bounded, p = 16nk log(2q) and χ̂ is k-bounded. In order to achieve the best lattice reduction,
we will choose q as a product of polynomially bounded co-prime numbers. Applying known results
(see Corollary 2.2.2), DLWEn,q,χ translates into approximating short-vector problems in worst case

n-dimensional lattices to within a factor of Õ
(√
n · 2nε

)
, while DLWEk,p,χ̂ translates to approximat-

ing k-dimensional lattice problems to within Õ
(
n1+ε · k1.5

)
factor.16 These problems are essentially

incomparable as the hardness of the problem increases as the dimension increases on one hand, but
decreases as the approximation factor increases on the other. The best known algorithms solve the

first problem in time (roughly) 2Õ(n1−ε), and the second in time 2Õ(k).
The relation between n and k is determined based on the required homomorphic properties. In

this work, we only prove there there exists a constant C such that setting n = kC/ε implies fully
homomorphic encryption. Given the value of C, setting ε ≈ 1 − 1

C+1 will make the two problems
equally hard (at least based on the current state of the art).

16We do not mention the specific lattice problem or the specific type of reduction (quantum vs. classical) since, as
one can observe from Corollary 2.2.2, the approximation factor we get is essentially the same for all problems, and
the state of the art is roughly the same as well.
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2.4.4 Homomorphic Properties of SH And BTS

In this section, we analyze the homomorphic properties of SH and BTS. Both schemes have es-
sentially the same homomorphic properties, but BTS has the additional advantage of having low
decryption complexity (as analyzed in Section 2.4.5). Thus, BTS would be our main focus, and the
properties of SH will follow as a by-product of our analysis.

We start by formally defining the class of functions for which we prove homomorphism, and
proceed by stating the homomorphic properties and proving them.

The Function Class Arith[L, T ]. We consider arithmetic circuits over GF(2) with bounded fan-
in and bounded depth, and with an additional final “collation”: a high fan-in addition gate at the
last level. We require that the circuit is structured in a canonical “layered” manner as defined
below.

Definition 2.4.1. Let L = L(κ), T = T (κ) be functions of the security parameter. The class
Arith[L, T ] is the class of arithmetic circuits over GF(2), with {+,×} gates, with the following
structure. Each circuit contains exactly 2L + 1 layers of gates (numbered 1, . . . , 2L + 1 starting
from the input level), gates of layer i + 1 are fed only by gates of layer i. The odd layers contain
only ’+’ gates and the even layers contain only ’×’ gates. The gates at layers 1, . . . , 2L have fan-in
2, while the final addition gate in layer 2L+ 1 is allowed to have fan-in T .

We note that Arith[L, T ] conforms with the requirements on the evaluated function imposed by
SH.Eval and BTS.Eval. Indeed, the multiplicative depth of any circuit in Arith[L, T ] is exactly L,
and hence, homomorphic evaluation is well defined on any such function.

To motivate the choice of this function class, we first note that any arithmetic circuit of fan-in
2 and depth D can be trivially converted into a circuit in Arith[D, 1].17 This will be useful for
the purpose of bootstrapping. Jumping ahead, the collation gate will be useful for constructing
a private information retrieval protocol, where we will need to evaluate polynomials with a very
large number of monomials and fairly low degree. The collation gate will thus be used for the final
aggregation of monomials.

Our goal is now to prove that with the appropriate choice of parameters, SH and BTS are Arith[L, T ]-
homomorphic.

Theorem 2.4.2. Let n = n(κ) ≥ 5 be any polynomial, q ≥ 2n
ε ≥ 3 for some ε ∈ (0, 1) be odd,

χ be any n-bounded distribution, and m = (n + 1) log q + 2κ. Let k = κ, p = 16nk log(2q) (odd)
and χ̂ be any k-bounded distribution. Then SH and BTS are both Arith[L = Ω(ε log n), T =

√
q]-

homomorphic.

Not surprisingly, the homomorphism class depends only on n and not on k. This is because,
recalling the definition of BTS.Eval, the homomorphism property is inherited from SH.Eval. We note
that it is possible to further generalize the class of circuits that we can homomorphically evaluate

17One way to do this is to separate each level of the original circuit into two levels – an addition level and a
multiplication level – and finally, adding a dummy fan-in-1 addition gate at the top. This gives us a 2D + 1 depth
circuit with alternating addition and multiplication levels, or, in other words, the transformed circuit belongs to
Arith[D, 1].
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(for example, circuits with high multiplicative depth but low multiplicative degree), however since
this is not required for our results, and since the proof will use the exact same tools, we choose not
to further complicate the theorem statement and proof.

To prove the theorem, we introduce a sequence of lemmas as follows. Recall that the encryption
algorithms of both schemes are identical, and that BTS.Eval first calls SH.Eval as a subroutine. We
first analyze the growth of the noise in the execution of SH.Eval in Lemma 2.4.3 (which will imply
the theorem for SH), and then, in Lemma 2.4.4, we complete the noise calculation of BTS.Eval,
which will complete the proof of the theorem.

To track the growth of the noise, we define, for any ciphertext c = ((v, w), `) a noise measure
η(c) ∈ Z as follows. We let e ∈ Z be the smallest integer (in absolute value) such that

µ+ 2e = w − 〈v, sd〉 (mod q) ,

and define η(c) , µ+ 2e (note that η(c) is defined over the integers, and not modulo q). We note
that so long as |η(c)| < q/2, the ciphertext is decryptable. We can now bound the error in the
execution by bounding η(cf ) of the output ciphertext.

Lemma 2.4.3. Let n = n(κ) ≥ 5, q = q(κ) ≥ 3, χ be B-bounded and L = L(κ) and let f ∈
Arith[L, T ], f : {0, 1}t → {0, 1} (for some t = t(κ)). Then for any input µ1, . . . , µt ∈ {0, 1}, if
we let (pk, evk, sk)←SH.Keygen(1κ), ci←BTS.Encpk(µi) = SH.Encpk(µi) and we further let cf =
((v, w), L)←SH.Evalevk(f, c1, . . . , ct) be the encryption of f(µ1, . . . , µt), it holds that with all but
negligible probability

|η(cf )| ≤ T · (16nB log q)2L .

Proof. We assume that all samples of χ (there are only polynomially many of them) are indeed of
magnitude at most B. This happens with all but exponentially small probability. The remainder
of the analysis is completely deterministic.

We track the growth of noise as the homomorphic evaluation proceeds.

• Fresh ciphertexts. Our starting point is level-0 ciphertexts ((v, w), 0), that are generated
by the encryption algorithm. By definition of the encryption algorithm we have that

w − 〈v, s0〉 = rT · b + µ− rT ·A · s0 = µ+ rT · (b−As0) = µ+ 2rT · e (mod q) .

Since
∣∣µ+ 2rT · e

∣∣ ≤ 1 + 2nB, it follows that

|η(c)| ≤ 2nB + 1 . (2.10)

• Homomorphic addition gates. When evaluating ’+’ on ciphertexts c1, . . . , ct to obtain
cadd, we just sum their (v, w) values. Therefore

|η(cadd)| ≤
∑
i

|η(ci)| .
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• Homomorphic multiplication gates. When evaluating ‘×‘ on c = ((v, w), `), c′ =
((v′, w′), `) to obtain cmult = ((vmult, wmult), `+ 1), we get, by Eq. (2.4), that

wmult − 〈vmult, s`+1〉 = η(c) · η(c′) + 2
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · e`+1,i,j,τ (mod q) .

It follows that

|η(cmult)| ≤ |η(c)| ·
∣∣η(c′)

∣∣+ 2 · (n+ 1)(n+ 2)

2
· (log q + 1) ·B .

If we define
E , max

{
|η(c)| ,

∣∣η(c′)
∣∣ , (n+ 2)

√
B log(2q)

}
,

then |η(cmult)| ≤ 2E2.

Putting all of the above together, let

E0 = max
{

2nB + 1, (n+ 2)
√
B log(2q)

}
≤ 2nB log q

be an upper bound on |η(c)| of fresh ciphertexts.
Then it holds that a bound E2` on |η(c)| of the outputs of layer 2` (recall that the even layers

contain multiplication gates) is obtained by

E2` ≤ 2(2E2(`−1))
2 .

Therefore, recursively,
E2L ≤ (8E0)2L ≤ (16nB log q)2L .

And after the final collation gate it holds that

|η(cf )| ≤ T · (16nB log q)2L .

We now analyze the noise in the ciphertext ĉ = (v̂, ŵ), produced by BTS.Eval(f, · · · ): Recall
that by Eq. (2.9), ŵ − 〈v̂, ŝ〉 = µ+ 2ê (mod p), where ê = δ1 + δ2 (defined in Eq. (2.6) and (2.7)).
Therefore, in order for ĉ to decrypt correctly, we want to show that |δ1 + δ2| < p/4. As a step in
that direction, the following lemma bounds |δ1 + δ2| in terms of η(cf ).

Lemma 2.4.4. Let n = n(κ) ≥ 5, q = q(κ) ≥ 3, χ be B-bounded and L = L(κ). Let p = p(κ),
k = k(κ) and χ̂ be B̂-bounded. Consider a homomorphic evaluation ĉ←BTS.Evalevk(f, c1, . . . , ct),
and the terms δ1, δ2 defined in Eq. (2.6) and (2.7), respectively. Let cf ∈ Znq × Zq × {L} be the
intermediate value returned by the call to SH.Eval. Then with all but negligible probability

|δ1 + δ2| ≤
p

2q
|η(cf )|+ 2nB̂ log(2q) .
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Proof. We assume that all samples from χ̂ are indeed of magnitude at most B̂. This happens with
all but exponentially small probability.

By definition (recall that δ1, δ2 have been defined over the rationals), we have that

|δ1| =

∣∣∣∣∣∣
n∑
i=0

blog qc∑
τ=0

hi,τ (êi,τ + ω̂i,τ )

∣∣∣∣∣∣ ≤ (n+ 1) log(2q)(B̂ + 1/2) ,

and

|δ2| =

∣∣∣∣(pq − 1) · µ
2

+
p

q
· e
∣∣∣∣

=

∣∣∣∣pq · µ+ 2e

2
− µ

2

∣∣∣∣
≤ p

2q
|η(cf )|+ 1/2 .

Adding the terms together, the result follows.

We can now finally prove Theorem 2.4.2.

Proof of Theorem 2.4.2. Let us consider the homomorphism claim about BTS (the argument for
SH will follow as by-product): A sufficient condition for ciphertext ĉ = (v̂, ŵ) to decrypt correctly
is that ê < p/4. By Lemma 2.4.4, it is sufficient to prove that

p

2q
|η(cf )|+ 2nB̂ log(2q) < p/4 .

Since it holds that 2nB̂ log(2q) ≤ p/8, it is sufficient to prove that

|η(cf )| < q/4 .

We note that if we prove this, then it also follows that cf is decryptable, and hence the claim about
the homomorphism of SH holds as well.

Plugging the bound on |η(cf )| from Lemma 2.4.3 into the above, we get

T · (16nB log q)2L < q/4 ,

and plugging in all the parameters and T =
√
q, we need

(16n2+ε)2L < 2n
ε/2/4

which clearly holds for some L = Ω(ε log n).



2.4. The New Fully Homomorphic Encryption Scheme 37

2.4.5 Bootstrapping and Full Homomorphism

We now show how to apply Gentry’s bootstrapping theorem (Theorems 2.3.1, 2.3.2) to achieve
full homomorphism. In order to do this, we first need to bound the complexity of an augmented
decryption circuit. Since our decryption is essentially a computation of inner product, we bound
the complexity of this operation.

Lemma 2.4.5. Let (v̂, ŵ) ∈ Zkp × Zp. There exists an arithmetic circuit with fan-in 2 gates and

O(log k + log log p) depth, that on input ŝ ∈ Zkp (in binary representation) computes

(ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2) .

Proof. We let ŝ[i](j) denote the jth bit of the binary representation of ŝ[i] ∈ Zp. We notice that

ŵ − 〈v̂, ŝ〉 = ŵ −
k∑
i=1

ŝ[i]v̂[i] (mod p)

= ŵ −
k∑
i=1

blog pc∑
j=0

ŝ[i](j) · (2j · v̂[i]) (mod p) .

Therefore computing ŵ − 〈v̂, ŝ〉 (mod p) is equivalent to summing up k(1 + blog pc) + 1 numbers
in Zp, and then taking the result modulo p. The summation (over the integers) can be done in
depth O(log k+ log log p). In order to take modulo p, one needs to subtract, in parallel, all possible
multiples of p (there are at most O(k log p) options) and check if the result is in Zp. This requires
depth O(log k + log log p) again. Then a selection tree of depth O(log k + log log p) is used to
choose the correct result. Once this is done, outputting the least significant bit implements the
final modulo 2 operation.

The total depth is thus O(log k + log log p) as required.

We can now apply the bootstrapping theorem to obtain a fully homomorphic scheme.

Lemma 2.4.6. There exists C ∈ N such that setting n = kC/ε and the rest of the parameters as in
Theorem 2.4.2, BTS is bootstrappable as per Definition 2.3.7.

Proof. Lemma 2.4.5 guarantees that the decryption circuit is in Arith[O(log k), 1] (note that log log p =
o(log k)). The augmented decryption circuits only adds 1 to the depth and therefore they are also
in Arith[O(log k), 1].

Theorem 2.4.2, on the other hand, guarantees homomorphism for any Arith[Ω(ε log n),
√
q] func-

tion. Taking a large enough C, it will hold that Arith[O(log k), 1] ⊆ Arith[Ω(ε log n),
√
q] and the

lemma follows.

Finally, we conclude that there exists an LWE based fully homomorphic encryption based on
Theorem 2.4.1 and Lemma 2.4.6.

Corollary 2.4.7. There exists a leveled fully homomorphic encryption based on the DLWEn,q,χ and
DLWEk,p,χ̂ assumptions.

Furthermore, if BTS is weakly circular secure (see Definition 2.3.8), then there exists a fully
homomorphic encryption based on the same assumptions.
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Efficiency of the Scheme. Interestingly, our scheme is comparable to non-homomorphic LWE
based schemes (e.g. Regev’s) in terms of encryption, decryption and ciphertext sizes. Namely, so
long as one doesn’t use the homomorphic properties of the scheme, she does not need to “pay” for it.
To see why this is the case, we observe that our scheme’s secret key has length k log p = O(κ log κ)
and the ciphertext length is (k + 1) log p = O(κ log κ). The decryption algorithm is essentially the
same as Regev’s. As far as encryption is concerned, it may seem more costly: The public key (as
described above) contains (n+ 1)((n+ 1) log q + 2κ) log q bits, and encryption requires performing
operations over Zq. However, we note that one can think of sampling a public key (Â, b̂) where

Â
$← Zm×kp , b̂ = Âŝ + 2ê ∈ Zmp (where m = ((k + 1) log p + 2κ)). This will enable generating

short ciphertexts that will be “bootstrapped up” during the homomorphic evaluation. If such short
public key is used, then encryption also becomes comparable to Regev’s scheme.

Homomorphic evaluation is where the high price is paid. the evaluation key has sizeO(Ln2 log2 q+
n log q log p) = Õ(n2+2ε). Considering the fact that n = κC/ε, this accumulates to a fairly long eval-
uation key, especially considering that in a leveled scheme, this size increases linearly with the
depth of the circuit to be evaluated. The bright side, as we mention above, is that evk only needs
to be known to the homomorphic evaluator and is not needed for encryption or decryption.

Circuit Privacy. A property that is sometimes desired in the context of fully homomorphic
encryption is circuit privacy. A scheme is circuit private if the output of homomorphic evaluation
reveals no information on the evaluated function (other than its output), even to a party that knows
sk. Circuit privacy for our scheme can be achieved by adding more noise to the ciphertext cf , right
before applying dimension-modulus reduction. Similar techniques were used in previous schemes
and thus we feel that a more elaborate discussion is unnecessary here.

2.5 LWE-Based Private Information Retrieval

In this section, we present a single-server private information retrieval (PIR) protocol with nearly
optimal communication complexity. First, we present the definitions of PIR in Section 2.5.1. Then,
in Section 2.5.2, we show a generic construction of PIR from somewhat homomorphic encryp-
tion. Finally, in Section 2.5.3, we instantiate the generic construction using our own scheme from
Section 2.4 and analyze its parameters.

2.5.1 Definitions of Single Server PIR

We define single server private information retrieval in the public-key setting. In this setting, there
is a public key (or public parameters) associated with the receiver (who holds the respective secret
key). This public key is independent of the query and of the database, it can be generated and sent
(or posted) before the interaction begins, and it may be used many times. Thus, the size of the
public key is not counted towards communication complexity of the protocol. We formalize this by
an efficient setup procedure that runs before the protocol starts and generate this public key.

Letting κ be the security parameter and let N ∈ N be the database size, a PIR protocol
PIR in the public-key setting is defined by a tuple of polynomial-time computable algorithms
(PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) as follows:
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0. Setup. The protocol begins in an off-line setup phase that does not depend on the index to
be queried nor on the contents of the database.

The receiver runs the setup algorithm

(params, setupstate)←PIR.Setup(1κ) .

It thus obtains a public set of parameters params (the aforementioned “public key”) that is
sent to the sender, and a secret state setupstate that is kept private.

Once the setup phase is complete, the receiver and sender can run the remainder of the
protocol an unbounded number of times.

1. Query. When the receiver wishes to receive the ith element in the database, DB[i], it runs

(query, qstate)←PIR.Query(1κ, setupstate, i) .

The query message query is to be sent to the sender, and qstate is a query-specific secret
information that is kept private.

2. Response. The sender has access to a database DB ∈ {0, 1}N . Upon receiving the query
message query from the receiver, it runs the response algorithm

resp←PIR.Response(1κ, DB, params, query) .

The response resp is then sent back to the receiver.

3. Decode. Upon receiving resp, the receiver decodes the response by running

x←PIR.Decode(1κ, setupstate, qstate, resp) .

The output x ∈ {0, 1} is the output of the protocol.

We remark that one could consider a definition with multi-round query-response interaction per
each database query. However, the simpler (and more round-efficient) definition above is sufficient
for our protocols.

The communication complexity of the protocol is defined to be |query| + |resp|. Namely, the
number of bits being exchanged to transfer a single database element (excluding the setup phase).

Correctness and privacy are defined as follows.

• Correctness. For all κ ∈ N, DB ∈ {0, 1}∗ where N , |DB|, and i ∈ [N ], it holds that

Pr[PIR.Decode(1κ, setupstate, qstate, resp) 6= DB[i]] = negl(κ) ,

where (params, setupstate)←PIR.Setup(1κ), (query, qstate)←PIR.Query(1κ, setupstate, i) and
resp←PIR.Response(1κ, DB, params, query).
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• (t, ε)-Privacy. For all κ ∈ N, N ∈ N and for any adversary A running in time t = tκ,N it
holds that

max
i=(i1,...,it),

j=(j1,...,jt)∈[N ]t

∣∣Pr[A(params, i, queryi) = 1]− Pr[A(params, j, queryj) = 1]
∣∣ ≤ ε ( = εκ,N

)
,

where (params, setupstate)←PIR.Setup(1κ), (queryi` , qstatei`)←PIR.Query(1κ, setupstate, i`)
and (queryj` , qstatej`)←PIR.Query(1κ, setupstate, j`), for all ` ∈ [t].

We note that the definition of privacy above differs from the one usually found in literature.
The standard definition refers to vectors i, j of dimension 1. That is, only allow the adversary to
see one query to the database. The reason is that a hybrid argument can show that (allowing
proper degradation in parameters) the dimension-1 definition guarantees privacy for our definition
as well. However, in the public-key setting, where the same public key is used for all queries, this
hybrid argument no longer works. Thus, we must require that the adversary is allowed to view
many query strings.18 In fact, one could consider even stronger attacks in the public-key setting,
which are outside the scope of this work.

The definition of privacy deserves some further discussion since we did not define the ranges
of parameters for (t, ε) for which the protocol is considered “private”. Indeed there are several
meaningful ways to define what it means for a protocol to be private. Let us discuss two options
and provide corresponding definitions.

i. The first approach is to argue that the resources of the adversary are similar to those of an
honest server (we can think of an adversary as a “server gone bad”). Thus, in this approach the
adversary can run in polynomial time in N,κ and must still not succeed with non-negligible
probability in N,κ. We say that a protocol is (i)-private if it is (p(κ,N), 1/p(κ,N))-private
for any polynomial p(·, ·).

ii. The second approach argues that the security parameter is the “real” measure for privacy.
Thus the protocol needs to be exponentially secure in the security parameter. Thus a protocol
is (ii)-private if it is (2Ω(κ), 2−Ω(κ))-private.

2.5.2 PIR via Somewhat Homomorphic and Symmetric Encryption

In this section, we describe a generic PIR protocol that uses a somewhat homomorphic encryption
and an arbitrary symmetric encryption schemes as building blocks. This protocol has the useful
property that the somewhat homomorphic scheme is not used to encrypt the index to the database.
Rather, we use the symmetric scheme to encrypt the index, and have the server homomorphically
decrypt it during query evaluation. Thus, the receiver’s query can be rather short.

Our PIR protocol relies on two building blocks – a semantically secure symmetric encryption
scheme SYM = (SYM.Keygen,SYM.Enc,SYM.Dec) over the message space [N ], and a somewhat
homomorphic encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval).

18We feel that our definition captures the essence of an attack on a PIR protocol better than the standard single-
query definition, even in the non-public-key setting: As we mention above, converting between the definitions incurs
a linear blowup in the adversary’s advantage. Namely, a (t, ε)-private protocol according to the old definition is only
(t, tε)-private according to ours (recall that t can be super-polynomial).
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Jumping ahead, the level of somewhat homomorphism required for the protocol depends on the
symmetric scheme being used (in particular, the decryption complexity of the symmetric scheme).
Specifically, relying on a leveled fully homomorphic scheme (such as the one obtained from LWE
in Section 2.4) will allow us to use an arbitrary symmetric scheme. A clever selection of the
symmetric scheme, however, could imply that weaker somewhat homomorphic schemes (such as
BTS) will suffice.

Our protocol PIR = (PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) runs as follows.

• PIR.Setup(1κ): In the setup procedure, we generate a symmetric key symsk←SYM.Keygen(1κ)
and keys for the somewhat homomorphic scheme (hpk, hevk, hsk)←HE.Keygen(1κ).

The symmetric key is then encrypted using the homomorphic public key to create a ciphertext

csymsk←HE.Enchpk(symsk) .

We note that if HE is a bit encryption scheme, then symsk is encrypted bit by bit.

The setup procedure then outputs the public parameters

params:=(hevk, csymsk) ,

and the secret state
setupstate:=(hpk, hsk, symsk) .

• PIR.Query(1κ, setupstate, i): To generate a query string, we just encrypt i using the symmetric
scheme. Recall that setupstate = (hpk, hsk, symsk), then

query←SYM.Encsymsk(i) .

In our scheme, no additional information needs to be saved per query: qstate:=φ.

• PIR.Response(1κ, DB, params, query): Upon receiving a query, a response is computed as fol-
lows. Recall that params = (hevk, csymsk) and consider the function h defined as follows:

h(x) , DB[SYM.Decx(query)] .

Namely, the function h uses its input as a symmetric key to decrypt the query, and then uses
the plaintext to index the database and retrieve the appropriate value. Note that h(symsk) =
DB[i], where i is the index embedded in query.

While PIR.Response does not know symsk, it does know csymsk and thus can homomorphically
evaluate h(symsk) and set

resp←HE.Evalhevk(h, csymsk) .

Note that resp should correspond to a decryptable ciphertext of DB[i].

• PIR.Decode(1κ, setupstate, qstate, resp): We recall that setupstate = (hpk, hsk, symsk) and
that qstate is null. To decode the response to the query, we decrypt the ciphertext associated
with resp, outputting

b←HE.Dechsk(resp) .
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Correctness and privacy are easily reduced to those of the underlying primitives in the following
lemmas.

Lemma 2.5.1 (correctness). If our symmetric scheme SYM, and our somewhat homomorphic
scheme HE are correct, and if the somewhat homomorphic scheme can evaluate the function h
defined above, then our PIR protocol is correct.

Proof. Since HE is correct with regards to homomorphic evaluation, then with all but negligible
probability b = h(symsk). Since SYM is correct, it follows that h(symsk) = DB[i] with all but
negligible probability.

Lemma 2.5.2 (privacy). If our somewhat homomorphic scheme is (t ·poly(κ), ε1)-CPA secure and
our symmetric scheme is (t+poly(κ), ε2)-CPA secure, then our PIR protocol is (t, 2(ε1+ε2))-private.

Proof. We prove this by a series of hybrids (or experiments). Let A be an adversary that runs in
time t against the privacy of our protocol and has advantage ε. We consider the behavior of A
in a number of hybrids H0, H1, H2 defined below. We let AdvHi [A] denote the advantage of A in
hybrid Hi.

• Hybrid H0. This is identical to the original privacy game of the protocol. By definition

AdvH0 [A] = ε .

• Hybrid H1. We now change the game so that instead of computing csymsk←HE.Enchpk(symsk)
in PIR.Setup, we will set csymsk←HE.Enchpk(0).

There exists an adversary B for the CPA-security of the somewhat homomorphic scheme that
runs in time t · poly(κ) and whose advantage is

CPAAdv[B] = (1/2) · |AdvH0 [A]−AdvH1 [A]| .

It follows that
|AdvH0 [A]−AdvH1 [A]| ≤ 2ε1 .

• Hybrid H2. We now change the game so that instead of setting query`←SYM.Encsymsk(i`)
in PIR.Query, we will set query`←SYM.Encsymsk(0) for all ` ∈ [t].

There exists an adversary C for the CPA-security of the symmetric scheme that runs in time
t+ poly(κ) and whose advantage is

CPAAdv[C] = (1/2) · |AdvH1 [A]−AdvH2 [A]| .

It follows that
|AdvH1 [A]−AdvH2 [A]| ≤ 2ε2 .

However, in H2, the view of the adversary is independent of the queried indices. Therefore

AdvH2 [A] = 0 .
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It follows that ε ≤ 2(ε1 + ε2) as required.

Lastly, let us analyze the communication complexity of our protocol. It follows by definition
that the query size is the length of an encryption of {0, 1}dlogNe bits using our symmetric scheme,
and the response is the encryption of a single bit using our somewhat homomorphic scheme.

2.5.3 Instantiating the Components: The PIR Protocol

We show how to implement the primitives required in Section 2.5.2 in two different ways.

An Explicit LWE-Based Solution. The first idea is to use an optimized, symmetric-key LWE-
based encryption as the symmetric encryption scheme in the PIR protocol, together with our
scheme BTS as the homomorphic scheme. Specifically, using the same parameters k, p as in our
bootstrappable scheme, we get a symmetric scheme whose decryption is almost identical to that
of our bootstrappable scheme. We overview our approach below and then provide the formal
argument.

We apply the optimization of [PVW08, ACPS09] to Regev’s scheme to get a scheme that
encrypts the logN bits of the index using a ciphertext of only O(logN) +O(k log k) bits. Roughly
speaking, this optimization is based on two observations: First, rather than encrypting a single bit
using an element of Zp, we can “pack in” O(log p) bits, if we set the error in the LWE instances
to be correspondingly smaller (but still a 1/poly(k) fraction of p). Secondly, observe that in a
symmetric ciphertext (v, w) ∈ Zkp × Zp, most of the length is dedicated to the vector v. The
observation of [PVW08, ACPS09] is that v can be re-used to encrypt multiple messages using
different secret keys s1, . . . , s`. Using these optimizations, the resulting PIR protocol has query
length of O(k log k + logN) bits and response length O(k log k), for k = poly(κ). The following
corollary summarizes the properties of this scheme.

Corollary 2.5.3 ([PVW08, ACPS09]). Let p, k, χ̂ be as in Theorem 2.4.2. Then there exists a
DLWEk,p,χ̂-secure symmetric encryption scheme whose ciphertext length is O(k log k + `) for `-bit
messages, and whose decryption circuit has the same depth as that of BTS.Dec.

Recall the analysis of BTS from Section 2.4. We can prove that the function h can be evaluated
homomorphically.

Lemma 2.5.4. Let SYM be the scheme from Corollary 2.5.3, then h(x) , DB[SYM.Decx(query)]
is such that h ∈ Arith[O(log k) + log logN,N ].

Proof. We implement h as follows. First, we decrypt the value of query to obtain an index i.
Then, we compute the function

∑
j∈[N ] DB[j] ·1i=j . The decryption circuit is implemented in depth

O(log k) as in Lemma 2.4.5. The function 1i=j is implemented using a comparison tree of depth
log logN . Finally, a collation gate of fan-in N is used to compute the final sum. The result
follows.

This means that we can choose n to be large enough such that h can be evaluated by BTS.
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Theorem 2.5.5. There exists a PIR protocol with communication complexity O(k log k + logN)
based on the DLWEn,q,χ and DLWEk,p,χ̂ assumptions, for n = poly(k) and the remainder of the
parameters as in Theorem 2.4.2.

Proof. We choose n such that L = Ω(ε log n) > O(log k)+ log logN and such that
√
q = 2n

ε/2 ≥ N .
This will result in n = poly(k, logN). The result follows from Theorem 2.4.2 and Theorem 2.4.3
(recall that the communication complexity does not depend on n).

For the best currently known attacks on LWE (see [MR09, LP11, RS10]), this protocol is
(2Ω(k/polylogk), 2−Ω(k/polylogk))-private. Thus, going back to our definitions in Section 2.5.1, and
setting k = κ·polylog(κ), we get a (ii)-private PIR protocol with a total communication complexity
of O(logN) +O(κ · polylog(κ)); and a (i)-private protocol with communication complexity logN ·
polyloglog(N) by setting κ = logN · polyloglog(N) = ω(logN).

An Almost Optimal Solution Using Pseudorandom Functions. A second instantiation
aims to bring the (ii)-private communication complexity down to logN + κ · polylog(κ). This
can be done by instantiating our generic construction with an ciphertext-length-optimal symmetric
encryption scheme, i.e. one with ciphertexts length logN . Such a scheme follows immediately given
any pseudo-random function (PRF).

If we want to base security solely on LWE, we can use the LWE-based PRF that is obtained
by applying the GGM transformation [GGM86] to an LWE based pseudorandom generator. Note
that using such instantiation, we cannot argue that h ∈ Arith[L, T ] for reasonable L, T (since
the complexity of evaluating the PRF might be high). However, we can use our leveled fully
homomorphic scheme to evaluate a function of any depth, and in particular the aforementioned
PRF.

The Complexity of Transmitting the Public Parameters. Finally, we note that the pa-
rameters produced in the setup phase of our protocol are of length poly(κ). Thus our proto-
col can be trivially modified to work in a setting without setup, with communication complexity
logN + poly(κ) (under the (ii)-private notion) and polylog(N) (under the (i)-private notion).
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Continual Memory Leakage

In most of cryptography, key secrecy is paramount, and compromise of even a portion of the secret
key often yields a break of the entire cryptosystem. In practice, unfortunately, it is difficult to
maintain perfect secrecy of cryptographic keys. For one, it has been shown that various side-channel
attacks [Koc96, KJJ99], exploiting physical characteristics of the execution of a cryptographic
algorithm (e.g., timing measurements, power consumption, or electromagnetic radiation), can be
used to obtain information about secret keys. More recently, so-called “cold boot” attacks [HSH+08]
have been used to recover some (noisy) fraction of the secret keys used in poor cryptographic
implementations.

Responding to this challenge, cryptographers over the past several years have begun to investi-
gate the construction of cryptographic schemes that are provably resilient to various forms of key
leakage. There are, of course, many different ways in which this desired notion of leakage resilience
can be modeled. Early work (e.g., [Riv97, CDH+00]) focused on an adversary who could learn (a
bounded number of) specific bits of the secret key. Considering known attacks, the early models
had a number of undesirable properties:

1. The attacker is allowed to obtain information about the secret key, but not about intermediate
values that are used for the computation (e.g. secret randomness). A side channel attack
performed at the time of signing, for example, quite plausibly exposes information about
intermediate values.

2. The attacker’s view is further restricted to include only bits of the secret key (or some other
very specific function). Thus an assumption is made on the nature of the measuring devices
used by the attacker. As technology advances, this is undesirable.

3. The time dimension of the attack is ignored. There is an absolute upper bound on the amount
of information gained throughout the attack. Naturally, in real life we cannot guarantee that
the attacker will stop gathering information at some point in time.

Newer works, therefore, tried to address these issues and bring about protection against broader
classes of attacks. Ishai, et al. [ISW03, IPSW06] addressed the first and third drawbacks. They
consider a circuit that implements the cryptographic functionality at hand, and allow the attacker
to obtain the values of some arbitrary wires in that circuit. The circuit can further be updated after
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each computation, so as to allow for future probing. They showed how to compile any cryptographic
computation into a circuit that is secure in their model.

Micali and Reyzin [MR04] presented a model addressing the second drawback under the sim-
plifying assumption that “only computation leaks information”. They consider an adversary that
can learn arbitrary information (and not just the values of specific bits) about portions of memory
that are accessed during a particular computational step, but is assumed to learn nothing about
any portions of memory that are untouched. Various works (see related work below) showed how
to implement various primitives in this model, some of which also included an update operation to
address continual (time unbounded) attacks.

Akavia, Goldwasser, and Vikuntanathan [AGV09] addressed the first and second drawbacks,
allowing the leakage to depend on all parts of the memory arbitrarily (regardless of whether they
are computed on at some specific time period), and allowing to output an arbitrary function of the
entire memory, provided that the total-length of the leaked information is bounded. Namely, they
impose a global bound on the amount of leakage in the entire lifetime of the scheme, regardless of
the time dimension. Variants of this so called bounded memory leakage model require that the secret
key retains sufficient min-entropy given the leakage [NS09] (see also [DOPS04]), or require that the
secret key remains computationally hard to compute given the leakage [DKL09]. Subsequent work
in the bounded memory leakage model includes [KV09, ADW09, DGK+10, ADN+10].

Continual Memory Leakage. In this work, we introduce a new model that adds the time
dimension to the aforementioned bounded memory leakage model (hence “continual memory leak-
age”). We consider implementations in which the secret state is updated over time, and the total
leakage over the lifetime of the system is unbounded, while continuing to allow the leakage between
updates to be an arbitrary function of the secret state, subject only to a restriction on the rate of
the leakage.

Our model, therefore, is unrestricted in both time (since leakage may occur forever) and space
(since leakage may always depend on all portions of the secret memory). We remark, however, that
we do make the implicit assumption in our model that data can be completely erased from memory
(as otherwise the adversary would be able, over time, to leak the entire initial secret key).

While this thesis is focused on public-key encryption, our model applies to virtually any cryp-
tographic primitive. We will therefore illustrate our model in the context of public-key encryption,
while keeping in mind its applicability to other tasks (digital signatures will be used as running
example). Initially, a public and secret key-pair is generated and the secret key is stored on the
decrypting device. The lifetime of the system is divided into discrete time periods, where during
each time period the decrypting device may use the secret key to decrypt messages at will (more
generally: performing any cryptographic task, like generating digital signatures). At the end of
each time period, a “refresh” or “update” operation is performed on the secret key, and the old
secret key is erased. We stress that, as in forward-secure cryptosystems, the public key remains
fixed throughout the lifetime of the system and is all that is needed for encryption (or signature
verification).

We consider an attacker that can leak information about the secret state of the decrypting
device, as we now make precise. We view the decrypting device as containing two types of memory:

1. Public memory that stores, e.g., the public key and any public randomness used.
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2. Secret memory that stores the secret key and any secret randomness used to perform the
desired cryptographic task (e.g. signing).

We assume the attacker can see the contents of the public memory in its entirety, at all times.
Leakage from the secret memory is bounded per time period, but unbounded overall.

Formally, at each time period, the adversary can specify a leakage function f , and is given
f(sk, r), where sk is the secret key at that time period and r is the secret random tape. We remark
that the case of decryption is simpler since this is a deterministic task (compared to signing, for
example). The only restriction placed on f is that the output length of all such leakage functions
during any specific time period should be bounded to some pre-specified fraction of the number of
bits of the secret state. Our model also incorporates leakage that may occur during the key-update
process itself.

Our Contributions. We present the first public-key encryption scheme that is secure in the
continual memory leakage model. To this effect, we formalize the model in a general context and
also specifically for public-key encryption. We present a new linear algebraic technique which we
use to finally present a continual memory leakage resilient encryption scheme and prove its security.

Our scheme can be based on any d-linear assumption in bilinear groups: Given a group G, the
d-linear assumption is that rank d matrices of group elements are computationally indistinguishable
from completely random matrices. For d = 1, this is equivalent to the decisional Diffie-Hellman
assumption. For a bilinear map e : G1×G2 → GT , the d-linear assumption is that the former holds
for both G1 and G2. There are groups on which the assumption is believed to hold even for d = 1,
and as d increases, the assumption becomes weaker (i.e. more secure). For d ≥ 2, the assumption
is believed to hold in some groups where G1 = G2.

Our scheme is secure even if a (1/d − o(1)) fraction of the secret state is leaked per time
period, which translates to an optimal (1− o(1)) fraction when using 1-linear (an assumption also
known as SXDH or “symmetric external Diffie-Hellman”). In addition, for all d, our scheme can be
shown resilient to O(log k) bits of leakage during the key-update process itself (and during the key
generation process), where k is the security parameter. (If we are willing to rely on sub-exponential
hardness assumptions, we can tolerate O(kε) bits of leakage from each key update.) We prove this
property (resilience to leakage during updates) in a semi-generic way:1 We show that any scheme
that is secure without leakage from the updates, but allows the adversary to “rewind” and go back
to an older key, is also secure with logarithmic leakage from the update.

It is easy to see that any public-key encryption scheme resilient to continual leakage automati-
cally implies a private-key encryption scheme with similar leakage resilience. Thus, our scheme can
be used to enable two parties who share a secret key to interact over an insecure channel in the pres-
ence of side-channel attacks. The parties simply individually and independently update their secret
keys. Thus, at any point of time, the two communicating parties might have completely different
secret keys, and still they will be able to communicate meaningfully. We stress that, as opposed to
previous solutions to this problem, here the key update requires no interaction whatsoever.

Since the focus of this thesis is on public-key encryption, we do not include additional results
that appeared in the original paper [BKKV10]. Specifically, there, we showed a continual memory
leakage resilient identity-based encryption scheme and digital signature schemes.

1This proof technique is implicit in our original proof in [BKKV10], as was pointed out to us by Daniel Wichs.
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Other Related Work. Dziembowski and Pietrzak [DP08, Pie09] constructed stream ciphers
under the “only computation leaks information” assumption. Faust, et al. [FKPR10] construct a
signature scheme that is secure in the same leakage model.

Additional research has aimed at achieving leakage resilience by relying on a small amount
of perfectly leakage-proof hardware. In this model, Juma and Vahlis [JV10] and Goldwasser and
Rothblum [GR10] show how to obtain continual leakage resilience for general cryptographic algo-
rithms, based also on the assumption that “only computation leaks information” (for computation
not done on the secure hardware). Faust, et al. [FRR+10] show how to use leakage-proof hardware
to tolerate length-bounded leakage computed by a function in AC0

In work done concurrently with our own, Dodis, et al. [DHLW10] construct efficient signature
schemes, identification schemes, and authenticated key-agreement protocols that are secure in the
model of continual memory leakage. Unlike this work, they do not address the issue of leakage from
the key-update process and, furthermore, they do not construct public-key encryption schemes.

Follow-Up Work. In the short period of time since our work has first been presented, a large
number of follow-ups has already appeared.

Lewko, Lewko and Waters [LLW11] showed a scheme that can tolerate a linear fraction of the
secret state being leaked even during key updates (in our work, we could only prove for a logarithmic
number of bits). Again, linear algebraic techniques extending ours were used.

Kalai, Kanukurthi and Sahai [KKS11] extend our model to consider continual tampering, where
the adversary can, in addition to leakage, change the contents of the secret memory. They present
results based on the d-linear assumption by extending our linear algebraic techniques. In addition,
they show how to modify our scheme to tolerate leakage of (1 − o(1)) fraction of the secret key,
regardless of d.

In the context of identity-based encryption, Lewko, Rouselakis and Waters [LRW11] showed,
using our linear algebraic techniques among others, how to construct a hierarchal identity-based
encryption scheme that is resilient to continual memory leakage from all secret keys. For digital
signatures, Malkin, Teranishi, Vahlis and Yung [MTVY11] and Boyle, Segev and Wichs [BSW11]
addressed the issue of leakage during the signing process, presenting improved results in this context.

Akavia, Goldwasser and Hazay [AGH10] considered a different, distributed model, where the key
is split between two continually-leaky entities who communicate over a public channel to perform
cryptographic tasks. They present an identity based encryption scheme in that model, that can tol-
erate (1−o(1)) leakage even during key updates. Very recently, a distributed storage scheme where
the updates require no interaction was presented by Dodis, Lewko, Waters and Wichs [DLWW11].
Their result also simplifies and improves upon the public-key scheme of [LLW11] mentioned above.

Chapter Organization. Some notational conventions and definitions appear in Section 3.1,
followed by a formal definition of the d-linear assumption in bilinear groups in Section 3.2. We
present our model for continual memory leakage in Section 3.3. Section 3.4 contains our linear
algebraic tool: “random subspaces are continual memory leakage resilient”, that will be used to
prove the security of our scheme, but is of independent interest. Finally, in Section 3.5 we present
our scheme and a proof overview, while the full proof appears in Section 3.6.
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3.1 Definitions and Notation

We use the following notational conventions. Bold uppercase denotes matrices (X ∈ Zn×kq ) and
bold lowercase denotes vectors (x ∈ Znq ). All vectors are column vectors, row vectors are denoted

by xT . For a scalar (usually a group element) g and a matrix X ∈ Zk×n (or a vector, as a special
case), we let gX denote a k × n matrix such that (gX)i,j = g(X)i,j .

Linear Algebra. We use the term span of a matrix to indicate its row span, i.e. for A ∈ Zn×kq , we
denote Span(A) = {zT ·A : z ∈ Znq }. The kernel of a matrix is the linear space that is orthogonal

to its span, this corresponds to defining ker(A) = {x ∈ Zkq : A · x = 0}.
The set of (n × k)-matrices having rank-d is denoted by Rkd(Zn×kp ). We will also use the

following simple fact (see e.g. [BK10]), we provide a proof for completeness.

Lemma 3.1.1. Consider a finite field F of order p. For any n,m ∈ N such that m ≥ n, the
distance between the distributions U(Fn×m) and U(Rkn(Fn×m)) is at most 1/(pm−n · (p− 1)).

Proof. Consider sampling the matrix row by row. The probability that row i is a linear combination
of previous rows is at most p−m · pi−1. Applying the union bound gives the result.

Groups and Bilinear Maps. If g ∈ G is an element in a group G of order p and X ∈ Zm×np

is a matrix, then gX ∈ Gm×n denotes the matrix where (gX)i,j = g(X)i,j . Observe that given a
matrix gX ∈ Gm×n and a matrix A ∈ Zp`×m one can efficiently compute gAX by working “in the
exponent”.

Consider multiplicative groups G1, G2, GT , all of prime order p, and let g1, g2 be generators for
G1,G2 respectively. A bilinear map e : G1 × G2 → GT has the following properties. Bilinearity:
for all x ∈ G1, y ∈ G2, a, b ∈ Z it holds that e(xa, yb) = e(x, y)ab; Non-degeneracy: e(g1, g2) 6= 1.

Note further that if e : G1 × G2 → GT is a bilinear map, then given matrices gX1 ∈ Gm×n and
gY2 ∈ Gn×` one can efficiently compute the matrix e(g1, g2)XY ∈ Gm×`

T .

Probability. Let X be a probability distribution over a domain S, we write x
$← X to indicate

that x is sampled from the distribution X. We use x
$← S to indicate the sampling uniformly over

S. For any function f with domain S we let f(X) denote the random variable (or corresponding

distribution) obtained by sampling x
$← X and outputting f(x).

We write negl(k) to denote an arbitrary negligible function, i.e. one that vanishes faster than
the inverse of any polynomial.

The statistical distance between two distributions X,Y (or random variables with those distri-
butions) is denoted dist(X,Y ). Two ensembles X = {Xk}k, Y = {Yk}k are ε = ε(k)-close if the
statistical distance between them is at most ε(k). They are called statistically indistinguishable if
ε(k) = negl(k). An ensemble X = {Xk}k over domains S = {Sk}k is ε = ε(k)-uniform in S if it is
ε-close to the uniform ensemble over S (we sometimes omit S when it is clear from the context).
X = {Xk}k, Y = {Yk}k are computationally indistinguishable if every poly(k)-time adversary A
has negligible distinguishing advantage:

|Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| = negl(k) .
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3.2 The Decision d-Linear Assumption in Bilinear Groups

Our construction here relies on the (matrix form of the) decisional linear assumption in bilinear
groups [BBS04, NS09].

Definition 3.2.1. Given a multiplicative cyclic group G (or rather, an ensemble of groups) of order
p, generated by a generator g, the d-linear assumption, for d ∈ N, states that the ensembles

{
gX
}

and
{
gY
}

are computationally indistinguishable, where X is a random rank-d matrix over Zp, and
Y is a random rank-(d+ t) matrix (t ≥ 0) over Zp of the same dimensions.

Given (ensembles of) groups G1,G2,GT , all cyclic of order p, and a bilinear map e : G1×G2 →
GT , the bilinear d-linear assumption states that the d-linear assumption holds for both G1 and G2.

We note that d-linear is (potentially) weaker than (d + 1)-linear (indeed there are black box
separations between d- and (d + 1)-linear for all d). The 1-linear assumption is equivalent to the
decision Diffie-Hellman assumption. Therefore, the bilinear 1-linear assumption cannot hold if
G1 = G2 (or if they have an efficient isomorphism between them). The bilinear 1-linear assumption
is also known as symmetric external Diffie-Hellman (or SXDH). There exist candidate groups for
which this assumption is believed to hold. For d ≥ 2, there are candidate bilinear maps with
G1 = G2 where the assumption is believed to hold.

3.3 A Model for Continual Memory Leakage

In this section, we formalize our model of continual memory leakage (i.e., the CML model). We
choose to start by describing the model at a high level in the context of digital signature schemes,
and only then discuss public-key encryption. This is because the signing operation involves (possibly
secret) randomness and thus exposes interesting aspects of the model. Deriving a definition for
public-key encryption will then be straightforward, as we formally do in Section 3.3.1. (A formal
definition for signature schemes is outside the scope of this thesis.)

In the CML model, the lifetime of the system is divided into discrete time intervals, and the
secret key is updated at the end of every such interval. Within a given interval, the adversary may
submit a leakage function f of his choice, and is given f(sk). In addition, as usual, the adversary
may make signing queries to obtain valid signatures on messages of its choice. At the time of each
signing query, though, the adversary is also allowed to submit a leakage function f ; in return,
the adversary is given f(sk, r) where sk is the secret key (at the current time interval) and r is
the secret randomness used to answer the signing query. (We assume r is securely erased once
signature generation is complete.) The signing process may also use some “public randomness”,
which is given to the adversary “for free” and not counted toward the leakage bound. We restrict
the leakage (i.e., the output length of f) per signature query to be some fraction of the total length
of the secret state (i.e., |sk| + |r|). We also restrict the total leakage per time interval to be some
fraction of the length of the secret key.

At the end of an interval, the secret key is updated and the old secret key is erased. We allow
the adversary also to probe the memory during this update process. The leakage during the key-
update procedure is counted toward both the previous interval and the next interval; this is because
the secret keys for both time intervals are completely determined by the inputs to the key-update
procedure.
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When public-key encryption is considered, the definition is very similar, except, naturally, for
leakage during signing. Leakage during decryption does not need special treatment since it is
deterministic.

In the formulation of the model just described, the leakage is restricted to be strictly smaller
than the length of the secret key (following [AGV09]). Other restrictions could also be used; for
example, we could require only that the secret key has sufficient min-entropy given the leakage
(as in [NS09]), or that the secret key should be hard to compute given the leakage (see [DKL09]).
These, however, are outside the scope of this thesis.

3.3.1 Definitions for Public-Key Encryption

A public-key encryption scheme CML in the CML model is a quadruple of probabilistic polynomial
time (in the security parameter k) algorithms (CML.Keygen,CML.Enc,CML.Dec,CML.Update):

• Key generation. CML.Keygen takes as input a security parameter 1k and outputs a secret
key sk and a public key pk. We denote this by (sk, pk)←CML.Keygen(1k).

• Encryption. CML.Enc takes a public key pk and a message m, and outputs a ciphertext c.
We write c←CML.Encpk(m).

• Decryption. CML.Dec takes keys sk, pk and a ciphertext c and outputs a message m∗. We
write m∗:=CML.Decsk,pk(c).

• Key update. CML.Update Takes as input keys sk, pk and outputs a “refreshed” secret key
sk′. We denote this by sk′←CML.Updatepk(sk).

We remark that we must not allow the update operation to blow up the key. Specifically, in
our construction, |sk| = |CML.Updatepk(sk)| (i.e. the size of the secret key remains unchanged by
update operations).

Correctness is defined as follows.

Definition 3.3.1 (correctness). The scheme CML is correct if for all m and all polynomially
bounded t ∈ N, setting (sk0, pk)←CML.Keygen(1k), ski←CML.Updatepk(ski−1) for i ∈ [t], and
c←CML.Encpk(m), we have m = CML.Decskt,pk(c) with all but negligible probability (where the
probability is over all randomness in the experiment).

We next define semantic security (i.e., security against chosen-plaintext attacks) in the CML
model. Our definition has three leakage parameters ρG, ρU , ρM , where ρG bounds the leakage rate
from the key-generation process, ρU bounds the leakage rate from the update process, and ρM is a
“global” leakage bound that is enforced between key updates. Taking ρG = ρU = 0 corresponds to
allowing leakage only during “normal” operation of the system, and not from the key-generation
or key-update processes.

Definition 3.3.2 (security under continual memory leakage). An encryption scheme CML is
(ρG, ρU , ρM)-leakage resilient if the advantage of any ppt adversary A in the following game is
negligible:
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1. Initialize. A specifies a circuit f with |f(r, τ)| ≤ ρG·|r| for all r, τ . The challenger chooses “se-
cret randomness” r and “public randomness” τ , generates (sk0, pk)← CML.Keygen(1k; r, τ),
sends (pk, τ, f(r, τ)) to the adversary, and sets i:=0 and L0:= |f(r, τ)|.

2. Leakage and updates. A makes the following queries:

• Update queries (q-update, f), where f is a circuit with |f(sk, r, τ)| ≤ ρU · (|sk|+ |r|)
for all sk, r, τ . The challenger chooses “secret randomness” r and “public random-
ness” τ , and computes ski+1:=CML.Updatepk(ski; r, τ). If Li + |f(ski, r, τ)| ≤ ρM · |ski|
then the challenger returns (τ, f(ski, r, τ)) to the adversary, sets i:=i + 1, and sets
Li+1:=|f(ski, r, τ)|. Otherwise, the challenger aborts.

• Leakage queries (q-mem, f), where f is a circuit. If Li + |f(ski)| ≤ ρM · |ski| then the
challenger returns f(ski) to the adversary and sets Li:=Li + |f(ski)|. Otherwise, the
challenger aborts.

3. Challenge. A outputs two messages m0,m1. A random bit b
$← {0, 1} is chosen and c ←

CML.Encpk(mb) is given to A.

4. Finish. The adversary outputs b′ ∈ {0, 1}.

The advantage of the adversary is |Pr[b′ = b]− 1
2 |.

We do not explicitly consider leakage during decryption because we assume that decryption is
deterministic (and so any such leakage is captured by leakage queries as above).

3.4 Random Subspaces are Leakage Resilient

We introduce a linear-algebraic tool that is crucial to our leakage-resilient constructions. Roughly,
we show that random subspaces are resilient to continual leakage in an information-theoretic sense.
We believe this tool is interesting in its own right, and it indeed found further applications in
follow-up works.

For concreteness we work in Zmp (p prime), though our arguments generalize to arbitrary vector
spaces over finite fields. Fix an arbitrary leakage function f on the ambient space Zmp . Let X ∈
Zm×np be a random matrix of rank n ≥ 2; abusing notation, we also let X denote the linear subspace
(of dimension n) generated by the columns of this matrix. We show that when the output length
of f is sufficiently short, then the random variables (X, f(v)) (for random v ∈ X) and (X, f(u))
(for random u ∈ Zmp ) are statistically close. Since f(u) is independent of X (and hence leaks no
information about X), we conclude that when the output length of f is sufficiently short, then f(v)
for a random v ∈ X leaks almost no information about X.

More generally, we consider the case where the leakage function is applied to d random vectors
in X. In other words, the leakage function is applied to a random dimension-d subspace Y ⊆ X
(in matrix notation Y = X · T, where T ∈ Zn×dp is a random matrix of rank d). In this case, we
need to assume that the subspace X has dimension n ≥ 2d.
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Theorem 3.4.1. Let p be prime, ε > 0, and m,n, d ∈ N with 2 ≤ 2d ≤ n ≤ m. Fix an arbitrary
function f : Zm×dp →W with |W | ≤ 4 · (1− 1/p) · pn−(2d−1) · ε2. Then

dist
(

(X, f(X ·T)) , (X, f(U))
)
≤ ε , (3.1)

where X
$← Zm×np , T

$← Rkd(Zn×dp ), and U
$← Zm×dp .

Note that for d = 1 and m ≈ n, the leakage function f(v) can leak almost the entire v. This
is the case, since according to our parameters, |v| = m · log p, and as long as the leakage size is
at most log |W | ≤ (n − 1) log p − 2 log(1/ε), the leakage f(v) hides the subspaces X, up to an ε
statistical distance. Taking p to be super-polynomial in the security parameter and taking ε = 1/p
(as we do when applying the theorem in this paper), we get that as long as the leakage contains at
most (n− 3) log p bits, f(v) statistically hides the subspaces X.

Proof. The proof is an adaptation of the “simple case” in the proof of [BFO08, Lemma 7.1] for
the “crooked leftover hash lemma” of [DS05].2 The first part of our proof, up to and including
Eq. (3.2), is taken directly from there (with the required changes of notation), the remainder of the
proof is a sequence of straightforward derivations.

Define, for random variables X,Y supported on a domain W ,

Col(X) ,
∑
w∈W

Pr[X = w]2

D(X,Y ) ,
∑
w∈W

(Pr[X = w]− Pr[Y = w])2 .

It holds that

dist
(
(X, f(X ·T)), (X, f(U))

)
≤ 1

2

√
|W | · EX[D(f(X ·T), f(U))] . (3.2)

Let us focus, therefore, on EX[D(f(X ·T), f(U))], recalling that for all T ∈ Rkd(Zn×dp ) it holds

that X ·T is uniformly distributed in Zm×dp (i.e. identically distributed to U).

EX[D(f(X ·T), f(U))] = EX

∑
w∈W

(
Pr
T

[f(X ·T) = w]− Pr
U

[f(U) = w]
)2

= EX

∑
w∈W

(
ET[1f(X·T)=w]− EU[1f(U)=w]

)2
= EX,T1,T2

[ ∑
w∈W

1f(X·T1)=f(X·T2)=w

]
− 2 · EX,T,U

[ ∑
w∈W

1f(X·T)=f(U)=w

]
+EX,U1,U2

[ ∑
w∈W

1f(U1)=f(U2)=w

]
= EX,T1,T2 [1f(X·T1)=f(X·T2)]− 2 · EX,T,U[1f(X·T)=f(U)]

+EU1,U2 [1f(U1)=f(U2)]

2We thank Yevgeniy Dodis, Gil Segev, and Daniel Wichs for pointing out this analysis to us.
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= EX,T1,T2 [1f(X·T1)=f(X·T2)]− Col(f(U)) .

We are left with analyzing EX,T1,T2 [1f(X·T1)=f(X·T2)]. Denote by F the event where the matrix
[T1‖T2] is of full rank (and by F̄ the complementary event). Note that for all T1,T2 for which F
happens, it holds that X ·T1 and X ·T2 are uniform and independent. Therefore

EX,T1,T2 [1f(X·T1)=f(X·T2)] ≤ Pr
T1,T2

[F̄ ] + ET1,T2|F
[
EX[1f(X·T1)=f(X·T2)]

]
= Pr[F̄ ] + Col(f(U)) .

To bound PrT1,T2 [F̄ ], we use Lemma 3.1.1 to get

Pr
T1,T2

[F̄ ] = Pr
[
[T1‖T2] is not full rank

]
≤ Pr

R
$←Zn×2d

p

[R is not full rank] ≤ p2d−n

p− 1
.

Putting it all together, we get that

dist
(
(X, f(X ·T)), (X, f(U))

)
≤

√
|W |

4 · (1− 1/p) · pn−(2d−1)
,

and the result follows.

3.5 A Continual Memory Leakage Resilient Public-Key Encryp-
tion Scheme

In this section, we present our continual memory leakage resilient scheme PK-CML and state its
properties (in Section 3.5.1). This is followed by an overview of the security proof (in Section 3.5.2).
For a formal proof, see Section 3.6. Before we get to these, however, let us start with a high level
discussion overviewing the main ideas behind the structure of our scheme.

We start by recalling a simplified version of the identity-based encryption scheme of [BK10], and
then we explain what changes need to be made to achieve continual leakage resilience. We stress
that in the context of this thesis, we do not discuss identity based encryption and we completely
ignore this aspect of the scheme. To simplify this high level discussion, we assume here that d = 2
and G1 = G2 = G (as is the case in the [BK10] scheme).

Let G be a group of prime order p, with g ∈ G a generator. In the scheme of [BK10], the
public key is gA where A ∈ Zp2×` is chosen at random. To encrypt a “0”, the sender chooses a

random (column) vector r ∈ Zp2 and computes the ciphertext gr
TA; to encrypt a “1”, the sender

chooses a random vector u ∈ Zp` and outputs the ciphertext gu
T

. Indistinguishability (based on
the decisional 2-linear assumption) follows by looking at the 3× ` matrix defined by the public key
and ciphertext: when a 0 is encrypted, this matrix takes the form gX, for X ∈ Zp3×` of rank 2,
but when a 1 is encrypted the matrix takes the form gX, for X of rank 3 (with overwhelming
probability).

The next question, of course, is how to decrypt such ciphertexts. Notice that any non-zero
vector y in the kernel of A can be used to decrypt: given a ciphertext gv

T
, the receiver can

compute gv
T ·y and check if the result is g0. This will always be the case for encryptions of 0, and
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will only happen with negligible probability for encryptions of 1. Namely, any such y can be used
as a secret key. In [BK10], due to constraints related to the identity-based property, gy is used as
the secret key and decryption is performed using the bilinear map. We will use a similar (but not
identical) secret key in our scheme, and the main challenge is then to provide a mechanism for this
key to be updated while tolerating leakage.

In order to allow for updates, we use a secret key of the form gY, where Y = [y1|y2] ∈ Z`×2
p ,

and y1,y2 ∈ Z`p are random vectors in the kernel of A. Decryption of a ciphertext gv
T

is done by

checking whether e(g, g)v
TY is equal to e(g, g)0.

The key-update operation is done by “rotating” the matrix Y; i.e., the receiver samples a
random 2 × 2 full-rank matrix R ∈ Z2×2

p and sets the new secret key to gY·R. Intuitively, the
2-linear assumption implies that running the update operation is indistinguishable from sampling
a fresh random secret key, which turns out to be a useful property.

3.5.1 The Scheme PK-CML

We now formally present our scheme, motivated by the discussion above and generalizing it. Our
scheme PK-CML = (PK-CML.Keygen,PK-CML.Update,PK-CML.Enc,PK-CML.Dec) is parameter-
ized by 3 groups G1,G2,GT of prime order p, with a bilinear map e : G1 × G2 → GT . Let
g1, g2 be generators for G1,G2 respectively (this means that e(g1, g2) is a generator for GT ). Ad-
ditional parameters are an integer d ∈ N that corresponds to the hardness assumption we use
(namely, the security of the scheme will be proven based on the d-linear assumption on the bilinear
groups), and an integer ` = `(k) ≥ 3d + 1.3 We will prove that the scheme is resilient to leakage
of ρM = (1/d − 5/`) fraction of the key between updates. Namely, increasing d decreases the
asymptotic leakage resilience and efficiency, but potentially increases security (since (d+ 1)-linear
is potentially a weaker assumption than d-linear). Increasing ` decreases efficiency as well, but
increases the convergence to the asymptotic leakage rate of 1/d.

• Key generation PK-CML.Keygen(1k): Sample A
$← Zd×`p and Y

$← kerd(A) (so that Y ∈
Z`×dp ). Output pk = gA1 and sk = gY2 .

• Key update PK-CML.Updatepk(sk): Recall that sk = gY2 ∈ G`×d
2 . To update, sample R

$←
Rkd(Zd×dp ) and output sk′:=gY·R2 .

• Encryption PK-CML.Encpk(b): Let pk = gA1 . To encrypt a bit b ∈ {0, 1}, do the following.

– If b = 0, sample r
$← Zdp and output c = gr

T ·A
1 .

– If b = 1, sample u
$← Z`p and output c = gu

T

1 .

• Decryption PK-CML.Decsk(c): Let sk = gY2 and c = gv
T

1 . Compute e(g1, g2)v
TY and output

0 if and only if the result is e(g1, g2)0.

The leakage resilience properties of the scheme are summarized in the following theorem.

3Due to some slackness in our proof, we will only guarantee leakage resilience for ` > 5d.
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Theorem 3.5.1. Based on the decision d-linear assumption in bilinear groups, the scheme PK-CML
is (ρG, ρU , ρM) continual memory leakage resilient for

(ρG, ρU , ρM) = (0, 0, 1/d− 5/`) ,

and more generally, for all c > 0, the scheme is resilient for

(ρG, ρU , ρM) =

(
c log k

2d` log p
,

c log k

(d`+ d2) log p
, 1/d− 5/`− c log k

d` log p

)
.

The theorem implies that we can trade off the leakage between the updates for leakage during the
updates (but only up to a logarithmic number of bits). This tradeoff is formalized in Theorem 3.6.3,
presented in Section 3.6.3. In fact, for the scheme PK-CML, one can achieve logarithmic leakage
from the update without affecting ρM at all. However, this complicates the proof a great deal and
has marginal effect on the asymptotic behavior, so we avoid it here. In addition, if one is willing
to assume the hardness of the d-linear assumption against T (k)-time adversaries, then the term
c log k can be replaced with c log T (k) using essentially the same proof.

Lastly, we note that tolerating leakage of O(log k) bits once is trivial, since this leakage can be
guessed. However, tolerating leakage of O(log k) bits repeatedly is significantly harder.

3.5.2 Proof Outline of Theorem 3.5.1

We present an outline for the proof of Theorem 3.5.1. For the sake of simplicity, we assume here
that G1 = G2 = G and d = 2. The formal proof can be found in Section 3.6.

Our proof contains two main parts. First, we assume ρG, ρU = 0 and prove only leakage resilience
between updates. Then, we will describe a semi-generic technique to achieve resilience against
leakage of a logarithmic number of bits during each key update and during the key generation.

Let us start by considering a possible proof for standard CPA security of our scheme (as already
sketched in the motivating discussion above). The public key gA contains a random 2 × ` matrix
(in the exponent), and the challenge ciphertext is either a linear combination of the rows of A,
or a random vector of length `. The joint distribution of the public key and ciphertext (we can
consider this to be a matrix A′ ∈ Z3×`

p whose first 2 rows are the matrix A and its last row is the
challenge vT ) is statistically close to either a random rank-2 matrix or a random rank-3 matrix
(in the exponent), respectively. An adversary that distinguishes these distributions, therefore,
immediately breaks the decisional linear assumption.

In order to make the proof work when the adversary can leak information about the secret key,
we need to somehow simulate the leakage from the secret key. This seems self defeating, as having
a secret key for the scheme should mean that the CPA adversary becomes useless (as we can use
the secret key and decrypt the ciphertext ourselves).4 We show that this discouraging intuition is
not correct. To this end, we rely on the fact that decryption in our scheme is not perfectly correct,
but instead has negligible probability of error.

Consider, at this point, the case where no update queries are made, i.e., the same secret key is
used throughout the attack. At a very high level, we will show how to generate keys and a challenge
ciphertext in such a way that the secret key, while being appropriately distributed respective to the

4A similar problem arises in most works on leakage resilience, and is addressed in various manners.



3.5. A Continual Memory Leakage Resilient Public-Key Encryption Scheme 57

public key, is useless against our challenge ciphertext. Namely, the distribution (pk, sk) is proper
and the distribution (pk, c) is proper, but (pk, sk, c) is far from being proper, in the sense that the
secret key sk is useless in decrypting the specific ciphertext c (specifically, c will always decrypt to
0 using sk).5 Hence, a CPA adversary that decrypts c correctly can actually be useful in breaking
the decisional linear assumption.

We then show that if the amount of leakage is sufficiently bounded, an adversary cannot gain
sufficient information about the secret key sk to discriminate the ciphertext c from a random
ciphertext, and thus should indeed decrypt c correctly (with non-negligible probability). We explain
this in detail below and then explain how to extend this to the continual leakage scenario where
key updates occur (and thus multiple secret keys are used and are leaked during the attack).

Let us first explain how to generate keys and a challenge ciphertext in such a way that the keys
are properly distributed but are still useless against the challenge ciphertext, so that a successful
CPA adversary can be used to break the decisional linear assumption. An instance of the decisional
linear assumption is a matrix gC, where C ∈ Z3×3

p is either rank-2 or rank-3. We will use a successful
CPA adversary A to construct a ppt algorithm B that distinguishes between the case that C is of
rank 2 and the case that C is of rank 3.

The algorithm B, on input gC, does the following. It samples a random matrix V
$← Z3×`

p and

sets gA
′

= gC·V. It can then produce a matrix X
$← ker`−3(V). Namely, X is a collection of `− 3

random vectors in ker(V). By symmetry, these are also `− 3 random vectors in ker(A′).
The algorithm B feeds the adversary A with the first two rows of gA

′
as the public key (denoted

gA) . It generates a secret key gy1 , gy2 by choosing at random y1,y2
$← {X · t : t ∈ Z`−3

p }, i.e.,
randomly sampling from the column-span of X. Then, it feeds A with the challenge ciphertext
gv

T
, which is the last row of gA

′
. Notice that our secret key will always decrypt the challenge

ciphertext gv
T

to 0, even if vT is independent of the rows of A and hence should be decrypted
to 1 (thus, our secret key is “crippled” w.r.t. the ciphertext gv

T
). A CPA adversary that succeeds

in decrypting c correctly (in spite of getting leakage from a “crippled” secret key) will, therefore,
break the decisional linear assumption by determining if A′ (and hence C) is rank-2 or rank-3.

We next must explain why the adversary A, which is given leakage from our “crippled” secret
key, should nevertheless decrypt c correctly (with noticeable probability). To this end, we use
Theorem 3.4.1 to show that a small enough leakage statistically hides the subspace X that the
secret key is sampled from, making it statistically hard to distinguish this distribution of the secret

key and the legal distribution where y1,y2
$← ker(A). Thus, the adversary cannot use the leakage

to distinguish between our “crippled” secret key and a genuine one. This completes the proof for
the case of non-continual leakage.

We now address the fact that the leakage is continual, namely, that there is a sequence of
phases in which leakage occurs, each followed by a refresh operation. At this point, however, we
still assume that the key-update procedure does not leak (i.e., ρU = 0).

While our “legal” key-update procedure never changes the column-span of the secret key (recall
that the update procedure takes sk = gY and outputs sk′ = gY·R for an invertible R), we notice
that this is computationally indistinguishable from an update procedure that re-samples new vectors
y1,y2 from the column-span of X (i.e., an update procedure that sets sk′ = gX·T, for a properly

5It is here that we use the fact that our scheme is not perfectly correct.
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sampled matrix T, regardless of the previous sk). Indistinguishability holds as the legal distribution
on keys can be described by setting sk′ = gX

′·T, where X′ is a random rank-2 matrix; thus,
distinguishing gX and gX

′
is hard by the decisional linear assumption, and this holds even in the

presence of the matrix A. (Jumping ahead, it is this indistinguishability argument that becomes
troublesome when leakage from the key-update procedure is allowed.) Note that this “improper”
update can be simulated, since we explicitly know X. This enables us to apply the above argument
consecutively: at each phase, we will leak from new vectors in the column-span of X. Applying
Theorem 3.4.1, the view of the adversary is statistically close to the case where the leakage function

is applied to y1,y2
$← ker(A) which, in turn, is indistinguishable from “legally” distributed keys.

Leakage During Key Generation and Update. To explain how to treat leakage from the
key generation and update processes (i.e., ρG, ρU > 0), we start by adapting our specific proof from
above, and then generalize the argument to hold for all schemes with certain properties.

It may appear that any amount of leakage during the update process can completely break
the indistinguishability argument of the previous paragraph. Intuitively, the adversary is getting
leakage from the input to the update procedure (including the random tape used), and thus may
have some information on what the legal output should be. Once the adversary sees some memory
leakage from an improper secret key, used for the security reduction, it can compare it to what it
knows about the legal secret key, thus catching any attempt for a switch of distributions as above.
In order to overcome this barrier, we must simulate the leakage from the update in a way that
makes A behave similarly, in spite of the discrepancy between the distributions.

The key observation is that whether or not A “behaves similarly” is an efficiently checkable
event. We can simulate the remainder of the security game, using the proposed improper secret
key and some candidate leakage value (as if everything from this point on is done legitimately) and
see if A’s success probability decreases or not. If the number of bits being leaked is small enough,
specifically O(log k), we can efficiently go over all possible values until we find one that works.

There is one small problem: what if no leakage value works? In this case, we recall again that
the improper distribution on keys used in our reduction is indistinguishable from the original one.
Therefore, since in the original distribution there is always a good leakage value — the legal value
— this should also be the case with the improper one. This holds since the event of not finding
an acceptable leakage value is also efficiently checkable (again, by simulating A). A change in
behavior in this respect yields a distinguisher between the real and improper distributions, which
is impossible under our hardness assumption. (In fact, this is only true with noticeable probability
over the sampling of the secret key, and therefore we may need to try a few keys before we find a
good one. This turns out to be a real problem when we try to generalize our method.)

We obtain, therefore, that leakage of O(log k) bits from the update procedure can indeed be
tolerated. This can be generalized in a straightforward manner to imply a tolerable leakage of
O(log T (k)) bits, if we assume that the decisional linear assumption is hard for (roughly) T (k)-time
adversaries.

Leakage from the key-generation step is handled similarly: after generating our initial secret
key, we go over all possible values of key-generation leakage, and find one for which A works well.

The above seems like a solution that is tailored to our specific proof, since it requires the
reduction to know a secret key value to simulate A forward. To generalize this technique, we notice
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that the leakage function itself has access to the secret key. Therefore, given a scheme that is secure
with ρG, ρU = 0 but ρM > 0, we can use the memory leakage to simulate the adversary forward
and find the logarithmic leakage value for which A behaves well. Unfortunately, as we remarked
above, we sometimes need to try a few secret keys until we find a good one, which we cannot do
generically. To this end, we strengthen the model of the attack and require that the scheme we
start with (the one without leakage from the key generation and update) is also resilient against
rewinding adversaries that are allowed to ask to update the key from some previous value. This
property holds for our scheme and presumably for others.6

3.6 Formal Proof of Security

In this section, we prove Theorem 3.5.1. The proof is a formalization of the outline in Section 3.5.2.
As we explain, in order to prove leakage from the key generation and update generically, we require
the notion of rewinding adversaries. We formally define resilience against such adversaries in
Section 3.6.1. In Section 3.6.2 we prove leakage resilience against rewinding adversaries, but without
leakage from the update or key generation. Finally, in Section 3.6.3 we show how to trade off leakage
between updates for leakage from the update and key generation.

Theorem 3.5.1 follows as a straightforward corollary from Theorem 3.6.1 (in Section 3.6.2) and
Theorem 3.6.3 (in Section 3.6.3).

3.6.1 Continual Leakage with Rewinding Adversaries.

We define a slightly stronger notion of continual memory leakage resilience. In this new notion, the
adversary is allowed to instruct the challenger to update the secret key not from the value currently
in memory, but rather from some past value. We therefore call this “resilience against rewinding
adversaries”. A scheme that is secure in this sense will be useful for obtaining leakage resilience
during the update and key generation.

Definition 3.6.1. A scheme CML is (ρG, ρU , ρM)-leakage resilient against rewinding adversaries if
any polynomial time adversary A has negligible advantage in a game identical to that in Defini-
tion 3.3.2 except for the update queries:

• Rewinding update queries (q-rew-update, f, j), where f is a circuit with |f(sk, r, τ)| ≤ ρU ·
(|sk|+ |r|) for all sk, r, τ , and j ≤ i (if j > i, the challenger aborts). The challenger
sets i:=j and proceeds as before: The challenger chooses “secret randomness” r and “pub-
lic randomness” τ , and computes ski+1:=CML.Updatepk(ski; r, τ). If Li + |f(ski, r, τ)| ≤
ρM · |ski| then the challenger returns (τ, f(ski, r, τ)) to the adversary, sets i:=i+ 1, and sets
Li+1:=|f(ski, r, τ)|. Otherwise, the challenger aborts.

We clarify that when rewinding to secret key j, secret key skj+1 is re-written. One can think
of a definition where the adversary is allowed to go back to other “branches” in history (indeed, in
a followup work [LRW11] uses such a definition), but for our purposes, the above is sufficient.

Note that a rewinding update query is identical to a standard update query if j = i. Therefore
Definition 3.6.1 is strictly stronger than Definition 3.3.2.

6This property will hold for any scheme where the update re-randomizes the key completely, as is the case in ours.
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3.6.2 Security Without Leakage from Key-Generation or Update

We state and prove the resilience of our scheme against rewinding adversaries.

Theorem 3.6.1. The scheme PK-CML is (0, 0, 1/d− 5/`)-secure against rewinding adversaries
under the d-linear assumption.

The proof is a formalization of the outline from Section 3.5.2. However, since we prove by a
series of hybrids, the proof goes in “reverse order” compared to the outline. At a high level, we first
show that instead of updating by re-randomizing the initial key, we can sample new keys uniformly
from the kernel of the public key. Then we use Theorem 3.4.1 to argue that this is indistinguishable
from sampling the keys uniformly in the kernel of the matrix A′ (which is a concatenation of the
public key and the challenge ciphertext). At this point we have secret keys that are “powerless”
against our ciphertext. The next step is going back to sampling not uniformly in the kernel of A′,
but from a small subspace of the kernel, similarly to the original scheme (only now we are in the
kernel of A′ and not A). At this point, we can use our adversary to break the d-linear assumption
as our outline suggests.

Proof. Consider a rewinding (0, 0, 1/d− 5/`)-adversary A that plays the CML security game with
the scheme PK-CML. We assume w.l.o.g that A makes alternating q-rew-update and q-mem queries
(the q-rew-update queries are made with empty leakage function). Let t be a polynomial upper
bound on the number of q-mem queries made by A. Given that the secret key of the scheme is
`d log p bits long, the bit length of each q-mem query is at most

λ = (1/d− 5/`) · (`d log p) = (`− 5d) log p ≤ (`− 3d− 2) log p . (3.3)

Let us introduce some notation that will be used throughout the proof. Our proof works by a
series of hybrids. For hybrid H we let AdvH [A] denote the advantage of A when playing in that
hybrid (i.e. |Pr[b′ = b]− 1/2|). The public key will be denoted pk = gA1 and the secret key on which

A makes the jth leakage query is denoted g
Yj

2 . Note that this element may not be identical to skj
due to rewinding queries. We do not reserve any special notation for ski (we will see quite early

in the argument that this is not necessary). Finally, we let gv
T

1 denote the challenge ciphertext.
Using this notation, the view of the adversary is always of the form

view[A] ,
(
gA1 , w1 = f1(gY1

2 ), . . . , wt = ft(g
Yt
2 ), gv

T

1

)
, (3.4)

where the functions fj are chosen adaptively, and the bit-length of each wj is at most λ. We also
denote viewH [A] to indicate the view of A in hybrid H.

Some of our hybrids will be statistical, and we would like to consider a “statistical view” where
we consider the discrete logarithms of the group elements

stat-view[A] , (A, w1 = f1(Y1), . . . , wt = ft(Yt),v
T ) . (3.5)

Clearly, viewH [A] is a (deterministic) function of stat-viewH [A].
We can now present our series of hybrids.
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• Hybrid H0. This hybrid is identical to the CML game. By definition

AdvH0 [A] = Adv[A] .

• Hybrid H1. This hybrid is technical and carries no important insight. Essentially, we
rearrange the probability space in a way that is easier to manipulate later. Recall that in

the previous hybrid, Y0
$← kerd(A) and Yj :=Yj′ ·Rj , for Rj

$← Rkd(Zd×dp ) and some j′ < j
(note that j′ will not equal j − 1 in case of rewinding). In this hybrid, we sample one matrix

Y
$← Rkd(kerd(A)) and for all j, we set Yj :=Y ·Rj , for Rj

$← Zd×dp .

The key observation is that in both H0 and H1, the matrices Yj are (up to a O(1/p) statistical
distance) random samples from a (dimension d) subspace of ker(A) that is spanned by the
columns of Y1. Specifically, if both Y1 of the hybrid H0 and all Rj ’s of the hybrid H1 are full
rank, then the two hybrids are identical. Since this happens with all but O(t/p) probability,
we have that

|AdvH0 [A]−AdvH1 [A]| ≤ O(t/p) .

• Hybrid H2. In this hybrid, secret keys are re-sampled independently in the kernel of A,
rather than as rotations of the same key. Formally, we again change the way we compute Yj .

Now we will set Yj :=Zj , where Zj
$← kerd(A). Namely, the new Yj values will be chosen

not from the same dimension d subspace of the kernel, but rather completely uniformly in
the span of the kernel.

Hybrids H1, H2 are computationally indistinguishable (under d-linear) since A’s view de-

pends only on g
Yj

2 (and not on Yj itself). The d-linear assumption asserts that all spaces of
dimension at least d, taken to the exponent, are indistinguishable from uniform. The formal
argument is provided in Lemma 3.6.2 below. Thus

|AdvH1 [A]−AdvH2 [A]| ≤ dLINAdv[B] ,

where dLINAdv[B] is the distinguishing advantage of some efficient B over d-linear distribu-
tions.

• Hybrid H3. In this step we go from meaningful to meaningless secret keys. Once again, we
change the distributions of Yj . We define

A′ , [AT‖v]T =

[
A

vT

]
,

a concatenation of the public key and the challenge ciphertext, and let Yj :=Z′j where Z′j
$←

kerd(A′). The secret keys in this hybrid cannot decrypt the ciphertext (they will always
output 0).

Our indistinguishability here is statistical. Therefore, it is sufficient to prove for the case
where vT 6∈ Span(A) (otherwise the distributions are identical). We further notice that the
conditional distribution of vT is uniform (over the respective domain vT 6∈ Span(A)).
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We use Theorem 3.4.1 to show that H2 and H3 are statistically indistinguishable in this case.
Intuitively, ker(A) will correspond to the ambient space Zmp of the theorem, and ker(A′) is a
random subspace of dimension ` = m− 1. The matrices Zj will thus correspond to uniformly
sampling in the ambient space (hence to the matrix U in the theorem statement), while the
matrices Z′j will correspond to X ·T since they are uniformly sampled from the subspace. A
formal description follows.

We want to bound dist(stat-viewH2 [A], stat-viewH3 [A]). A straightforward hybrid argument
implies that for a properly defined distribution D,

dist(stat-viewH2 [A], stat-viewH3 [A]) ≤ t · dist
(
(A, w = f(Z),vT ), (A, w = f(Z′),vT )

)
,

with w being at most λ bits long, Z
$← kerd(A) (which corresponds to the distributions of

Yj in H2) and Z′
$← kerd(A′) (corresponding to the distribution in H3).

Let B ∈ Z`×mp be some basis for ker(A), where m is the dimension of the kernel (m ≥ `− d).
Let X be such that B ·X is a random basis for ker(A′). Then by symmetry, X is uniform in

Rkm−1(Zm×(m−1)
p ).

Using the new notation, we need to bound

dist ((A, w = f(B ·U),X), (A, w = f(B ·X ·T),X)) , (3.6)

where X
$← Rkm−1(Zm×(m−1)

p ), U
$← Zm×dp , T

$← Z(m−1)×d
p . Note that vT does not appear

anymore since it is a (randomized) function of A,X.

To apply Theorem 3.4.1, we change the distributions of X and T to X
$← Zm×(m−1)

p and T
$←

Rkd(Z
(m−1)×d
p ). This increases the statistical distance by at most O(1/p) (by Lemma 3.1.1).

We can then apply Theorem 3.4.1 with n = m− 1 ≥ 2d, ε = 1/p and (recalling Eq. (3.3))

|W | ≤ 2λ ≤ 2(`−3d−2) log p = pn−(2d−1) · (1/p)2 ≤ 4 · (1− 1/p) · pn−(2d−1) · ε2 .

It follows that

dist ((A, w = f(B ·U),X), (A, w = f(B ·X ·T),X)) ≤ O(1/p) ,

and thus that
|AdvH2 [A]−AdvH3 [A]| ≤ O(t/p) .

• Hybrid H4. We change the secret keys to be sampled from only a subspace of ker(A′).
To this end, we change the distribution of Yj for the last time. We sample one matrix

Y′
$← Rkd(kerd(A′)), and let Yj :=Y′ ·Rj , where Rj

$← Zd×dp .

This is very similar to what we did in hybrid H2 and indeed the same Lemma 3.6.2 (now
working on A′ instead of A) proves that

|AdvH3 [A]−AdvH4 [A]| ≤ dLINAdv[B′] ,

for some adversary B′.
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• Hybrid H5. We are a small technical change from being done. We slightly change the way
A,vT are sampled to make things easier for the next hybrid.

In the case where b = 0, we will now sample C0
$← Rkd(Z

(d+1)×(d+1)
p ) and V

$← Z(d+1)×`
p , and

set A′:=C0 ·V. This changes the distribution of A′ by statistical distance O(1/p).

In the case where b = 1, we will now sample C1
$← Rkd+1(Z(d+1)×(d+1)

p ), and as before

V
$← Z(d+1)×`

p , and set A′←C1 · V. Again, the resulting matrix is O(1/p)-close to the
previous case.

Thus
|AdvH4 [A]−AdvH5 [A]| ≤ O(1/p) .

Recall that this is how we started our outline, the matrix A′ now becomes a product of a
rank d or d+ 1 matrix, times a randomizer V and Y′ becomes uniform in Rkd(kerd(V)).

Finally, we notice that given gCb1 , we can sample V,Y′,Rj and generate the entire view of A
by ourselves. Therefore the advantage of A in H5 is an advantage of distinguishing gC0

1 and
gC1

1 and therefore
AdvH5 [A] ≤ dLINAdv[B′′] ,

for some adversary B′′.

Combining all the hybrids, the result follows.

Lemma 3.6.2. Let G be a d-linear hard group of order p with generator g. Let n, ` be integers such

that ` ≥ n+ d and let A ∈ Zn×`p be any matrix. Let Y
$← Rkd(kerd(A)). Then for any polynomial

t, under the d-linear assumption it holds that the distributions

(A, gY·R1 , . . . , gY·Rt) and (A, gZ1 , . . . , gZt)

are computationally indistinguishable, where Ri
$← Zd×dp , Zi

$← kerd(A).

Proof. Letting R = [R1‖ · · · ‖Rt] ∈ Zd×dtp and Z = [Z1‖ · · · ‖Zt] ∈ Zd×dtp , the aforementioned
distributions can be expressed as

(A, gY·R) and (A, gZ) .

Let B ∈ Z`×mp be a basis for ker(A), where m is the dimension of the kernel of A (so m ≥
`− n ≥ d). Clearly B is easy to compute given A. Then

• Y ·R is distributed identically to B ·C1 ·R′ where C1
$← Rkd(Zm×mp ) and R′

$← Zm×dtp .

• Z is distributed identically to B ·C1 ·R′ where C2
$← Rkm(Zm×mp ) and as before R′

$← Zm×dtp .

It follows that a distinguisher between the above distributions implies a distinguisher between
gC1 and gC2 : This is done by computing B, sampling R′ and obtaining either of the above distri-
butions, depending on whether gC1 or gC2 was given as input.
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3.6.3 Leakage from Key Generation and Update: A Generic Reduction

Finally, we provide our semi-generic proof for trading off ρM for ρG, ρU . Note that in the transition
we lose the resilience for rewinding adversaries.

Theorem 3.6.3. Let CML be (0, 0, ρM)-leakage resilient against rewinding adversaries and let
(sG, sU , sM) be upper bounds on the size of the secret memory during initialize, update, and leak
operations, respectively.

Then for all c > 0, CML is also
(
c log k
sG

, c log k
sU

, ρM − c log k
sM

)
-leakage resilient against non-rewinding

adversaries.

The proof essentially follows the outline in Section 3.5.2, we use the leakage function to estimate
the success probability of the adversary, and make sure that it doesn’t drop by too much over the
experiment.

Proof. Let CML be as above and let c > 0. Consider a
(
c log k
sG

, c log k
sU

, ρM − c log k
sM

)
non-rewinding

adversary A against CML (assume w.l.o.g that A never causes abortions). Let t be a polynomial
upper bound on the running time of A and let ε denote its advantage. We show a (0, 0, ρM)
rewinding adversary B for CML with success probability (ε/4) · (ε/2 − poly(k) · 2−k) and running
time poly(k, t, 1/ε).

The adversary A makes at most t queries during its run (including the key generation leakage).
We assume w.l.o.g that the first query is the leakage from the key generation, that query 2i (for all
i) is a q-mem query, and query 2i + 1 is a q-update query (recall that A is not allowed rewinding
queries). So we have a sequence that starts with key generation query and continues with alternating
memory and update queries. We further assume that the key generation and all update queries
return c log k bits, and that all q-mem queries return λ bits for some integer λ.

We define values Apk,ski,state, parameterized by a public key, the current secret key and the
state of the adversary A, which contains its random tape and all information A saw so far. We
let Apk,ski,state denote the advantage of A conditioned on pk, ski, state. Namely, the advantage of
A if the game continues “fairly” from this point and on. Note that since A is not rewinding, this
value depends only on ski and not on past secret keys. We stress that Apk,ski,state is not a random
variable and its value is deterministically determined by pk, ski, state.

Our adversary B will need to estimate the value of Apk,ski,state. The next claim shows that this
can be done efficiently.

Claim 3.6.3.1. Given (pk, ski, state), and a parameter δ, there is a probabilistic algorithm that

runs in time poly(k, t, 1/δ) and computes a value Â
(δ)
pk,ski,state

such that with all but 2−k probability
on the random coins, ∣∣∣Apk,ski,state − Â(δ)

pk,ski,state

∣∣∣ ≤ δ .
Proof. Naturally, the claim is proven by the (additive) Chernoff bound. Let X be a random variable
that continues the execution of the game between A and the challenger, and outputs 1 if A outputs
b′ = b. Then by definition

Apk,ski,state =

∣∣∣∣E[X]− 1

2

∣∣∣∣ .
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Furthermore, X is efficiently sampleable. Therefore our algorithm will generate n =
⌈
(k + ln 2)/(2δ2)

⌉
independent samples of X, denoted x1, . . . , xn, and will return

Â
(δ)
pk,ski,state

:=

∣∣∣∣∣∣ 1n
∑
i∈[n]

xi −
1

2

∣∣∣∣∣∣ .
The additive Chernoff bound implies that

Pr

∣∣∣∣∣∣ 1n
∑
i∈[n]

xi − E[X]

∣∣∣∣∣∣ > δ

 ≤ 2e−2δ2n ≤ 2−k ,

and the claim follows. �

We can finally define the rewinding adversary B.

1. B samples a random tape for A. Upon receiving the public key pk, B will forward it to A.

2. When A wants to receive the leakage value from the key generation, B will make a (q-mem, f)
query, with the following function f :

On input pk, sk0, the function f will go over all values α ∈ {0, 1}c log k. For each such value, it

will compute Â
(ε/(4t))
pk,sk0,state

, where state is the state of A, assuming it got α as the response to
the leakage query. If there exists an α such that the estimated value is at least ε/2− ε/(4t),
then this α is returned, otherwise, f returns ⊥.

The adversary B gets the output of this query, i.e. the value f(pk, sk0). If ⊥ is returned,
then B aborts. Otherwise, it returns the output α to A, as if it was the answer to the key
generation leakage query.

Note that this means that if ⊥ was not returned, the conditional advantage of A (with all
but exponentially small probability) is at least ε/2− ε/(2t).

3. On the (2i)th query of A, which is a q-mem query, B forwards this query to the challenger
and forwards the answer back to A.

4. On the (2i+ 1)th query of A (i ≥ 1), which is a q-update query, B does the following.

(a) B makes a (q-rew-update,⊥, i − 1) query to the challenger. Namely, requests that the
secret key is updated from ski−1. It then makes the following (q-mem, f) query. The
leakage function f will again go over all possible leakage values α ∈ {0, 1}c log k and

compute Â
(ε/(6t))
pk,ski,state

as if the value α was the answer to the update query that A just
made.

If there exists an α for which the estimated value is at least (ε/2− iε/(2t)− 2ε/(6t)),
then f outputs this α, otherwise ⊥ is output.

(b) If ⊥ is returned, then B goes back to step 4a. Otherwise, it forwards α to A as the
answer to the query. Note that in such case it holds (with all but exponentially small
probability) that the conditional advantage of A from this point and on is at least
(ε/2− (i+ 1)ε/(2t)).
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(c) If ⊥ has been returned for more than k · (6t/ε) times, then B aborts.

5. After all t queries have been carried out, if B hasn’t aborted, it holds that with all but
exponentially small probability, the conditional advantage of A is at least

ε

2
− t

2
· ε

2t
=
ε

4
.

Now it’s time for the challenge phase: A outputs m0,m1 and asks for a challenge. When this
happens, B forwards the messages to the challenger, gets the challenge, forwards that to A
and returns the same b′ that A returned.

From the presentation above, it is clear that conditioned on B not aborting, the advantage of
B is at least ε/4. It is also clear that B makes q-mem queries that are c log k bits longer than A’s
queries (in order to obtain the value α). All that remains is bounding the abortion probability.

Claim 3.6.3.2. With probability at least
(
ε/2− poly(k) · 2−k

)
, B does not abort.

Proof. We start by assuming that all estimations of Â indeed succeed up to the prescribed δ.
Since we do a polynomial number of estimations, the probability that this doesn’t hold is at most
poly(k) · 2−k. Let us now go over all the places where B might abort.

• Step 2. Here we use a Markov type argument. With probability at least ε/2 over the random
tape of A and the random tape of the key generation, the success probability of A conditioned
on these values is at least ε/2.

Namely, with probability at least ε/2, it holds that there exists α for which Apk,sk0,state ≥ ε/2.

This α, in particular, will have Â ≥ ε/2− ε/(4t) and therefore B will not abort.

Note that if B doesn’t abort, the conditional success probability of A is at least ε/2− ε/(4t)−
ε/(4t) = ε/2− ε/(2t).

• Step 4. We assume inductively that when we get to this step, it holds that the conditional
success probability of A is at least ε/2− iε/(2t) (note that this indeed holds for i = 1).

A Markov type argument implies that with probability ε/(6t) over the randomness of the
update from ski−1 to ski, the conditional success probability ofA will be at least ε/2−iε/(2t)−
ε/(6t). If we indeed “hit” the correct randomness for the update, f will not return⊥. It follows
that a ⊥ is returned with probability at most 1−ε/(6t). Repeating for k·(6t/ε) guarantees that
the probability for abort is at most 2−k. Furthermore, in case there is no abort, the conditional
success probability of A is at least ε/2− iε/(2t)− 2ε/(6t)− ε/(6t) = ε/2− (i+ 1)ε/(2t), and
the invariant continues to hold.

By the union bound, the probability of non-aborting is at least ε/2− poly(k) · 2−k. �



Chapter 4

Circular Security and Leakage
Resilience from Subgroup
Indistinguishability

The “classical” definition of semantic secure public-key encryption by Goldwasser and Micali [GM82,
GM84], requires that an efficient attacker with access to the public encryption key must not be able
to find two messages such that it can distinguish a random encryption of one from a random en-
cryption of the other. Numerous candidate public-key encryption schemes that meet this definition
have been presented over the years, both under specific hardness assumptions (like the hardness
of factoring) and under general assumptions (such as the existence of injective one-way trapdoor
functions).

This notion of security, however (as well as other commonly accepted ones), does not capture
certain situations that may occur in the “real world”:

• Functions of the secret decryption key can be encrypted and sent (note that semantic security
only guarantees security with respect to messages which an efficient attacker can find).

• Information about the secret key may leak.

• The same secret key may be used in more than one application, or more generally, the attacker
can somehow obtain the value of a hard-to-invert function of the secret key.

In recent years, extensive research effort has been invested in providing encryption schemes
which are provably secure even in the above settings. Such schemes are said to achieve key-
dependent message (KDM) security, leakage-resilience, and auxiliary-input security, respectively to
the aforementioned real world settings. Prior to our work, we knew of: (1) Candidate schemes
which are KDM secure under the decisional Diffie-Hellman (DDH) and under the learning with
errors (LWE) assumptions; (2) Candidate schemes that are resilient to key leakage of rate (1 −
o(1)) (relative to the length of the secret key), under the LWE assumption and under the DDH
assumption. In addition, we knew of candidate scheme achieving limited leakage resilience based
on a general primitive: universal hash-proof systems, where the leakage rate depended on the
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hash proof system being used (in particular, under the quadratic residuosity assumption, a leakage
rate of only o(1) followed); (3) Candidate schemes that are auxiliary input secure under the DDH
assumption and under the LWE assumption.

In this chapter, we present an encryption scheme under what we call the subgroup indistin-
guishability assumption, of which quadratic residuosity (QR) and decisional composite residuosity
(DCR) are special cases, that has:

1. Key-dependent message security (circular security). Achieves security even when encrypting
affine functions of its own secret key (in fact, w.r.t. affine “key-cycles” of predefined length).1

2. Leakage resilience. Remains secure even if any adversarial low-entropy (efficiently com-
putable) function of the secret key is given to the adversary. A proper selection of parameters
allows for a “leakage rate” of (1− o(1)) of the length of the secret key.

3. Auxiliary-input security. Remains secure even if any sufficiently hard to invert (efficiently
computable) function of the secret key is given to the adversary.

In addition, our schemes have the following interesting property: the secret key consists of a
randomly chosen binary vector independent of the group at hand.2 The instantiation of our scheme
under QR enjoys the same useful properties for protocol design as the original [GM82, GM84]
scheme, including re-randomization of ciphertexts and support of the XOR homomorphic operation
over the {0, 1} message space, with the added benefit of leakage resilience.

Chapter Organization. To best describe our results, we start, in Section 4.1, by surveying in
detail the background for the new work. This is followed by an overview in Section 4.2, which
provides a high level description of our contributions (Section 4.2.1) and techniques (Section 4.2.2),
as well as related and follow-up work (Section 4.2.3).

Preliminaries and definitions are presented in Section 4.3. The definition of subgroup indistin-
guishability assumptions and instantiations from QR and DCR appear in Section 4.4.

Our QR-based encryption scheme is presented in Section 4.5, followed, in Section 4.6, by intro-
duction of the adaptive vector game: a central technical tool to be used for the analysis throughout
this chapter. The security of our QR based scheme is analyzed in Section 4.7: We start with
CPA security in Section 4.7.1, KDM-security is discussed in Section 4.7.2, leakage-resilience in Sec-
tion 4.7.3 and auxiliary-input security in Section 4.7.4. Since the QR assumption is a special case
of subgroup indistinguishability assumptions, we take the liberty to not always provide full proofs
in this part, as those can be derived as a special case of the following Section 4.8.

The latter contains the generalization of all results to any subgroup indistinguishability as-
sumption, together with the full proofs. In addition, this last section contains an interesting
generalization of our scheme to non-binary secret key distributions.

1Our scheme also meets the requirements for extending key-dependent message security to broader classes of
functions beyond affine functions using previous techniques of [BGK11, BHHI10, App11].

2One can also use a non-binary vector as secret key, subject to some restrictions.
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4.1 Background

Key-dependent messages. The shortcoming of the standard security definition in the case
where the plaintext to be encrypted depends on the secret key was already noticed in [GM82]. It
was later observed that this situation is not so unlikely, and may sometimes even be desirable [CL01,
ABHS05, LC03]. Black, Rogoway and Shrimpton [BRS02] formally defined KDM-security: the
attacker can obtain encryptions of (efficient) functions of its choosing, taken from some specified
class of functions F , applied to the secret key. The requirement is that the attacker cannot tell if
all of its queries are answered by encryptions of some constant symbol 0, instead of the requested
values. This definition is extended to the case of many (say n) users that can encrypt each others’
secret keys: the attacker queries now contain functions to be applied to all secret keys, and an
identity of the user whose public key should be used to encrypt. This latter case is referred to as
KDM(n)-security, while the single-user case is called KDM(1)-security.

Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] constructed a public key encryption scheme
that is KDM(n) secure w.r.t. all affine functions,3 under the decisional Diffie-Hellman (DDH) as-
sumption, for any polynomial n. This first result was followed by the work of Applebaum, Cash,
Peikert and Sahai [ACPS09] who proved that a variation of Regev’s scheme [Reg05] is also KDM
secure w.r.t. all affine functions, under the learning with errors (LWE) assumption.

More recent works by Brakerski, Goldwasser and Kalai [BGK11] and by Barak, Haitner,
Hofheinz and Ishai [BHHI10] presented each general and different techniques to extend KDM-
security to richer classes of functions. The work of [BHHI10] was later generalized and greatly
simplified by Applebaum [App11], as we explain below. In [BGK11], the notion of entropy-κ
KDM-security is introduced. A scheme is entropy-κ KDM-secure if it remains KDM-secure even if
the secret key is sampled from a high-entropy distribution, rather than a uniform one. They show
that an entropy-κ KDM-secure scheme implies a scheme that is KDM-secure w.r.t. roughly any
pre-defined set of functions of polynomial cardinality. In [BHHI10], the notion of targeted public-
key encryption is introduced and is shown to imply a KDM-secure scheme w.r.t. all functions
computable by circuits of some predefined (polynomial) size. In a follow-up, [App11] presented a
general completeness theorem for KDM security, which implies that the results of [BHHI10] (and
more) are achievable from any scheme that is KDM-secure w.r.t. affine functions of the secret key.
Thus targeted encryption was no longer necessary.

These two approaches achieve incomparable performance. While in the former, the public key
and ciphertext lengths depend on the size of the function class (but not on its complexity) and
are independent of the number of users n, in the latter the public key size does not depend on the
function class, but the ciphertext length is linear in the product of n times the complexity of the
functions.

Leakage resilience. The work on cold boot attacks by Halderman et al. [HSH+08], gave rise to
the notion of public-key encryption resilient to (bounded) memory leakage attacks, presented by
Akavia, Goldwasser and Vaikuntanathan [AGV09] and further explored by Naor and Segev [NS09].
In their definition, security holds even if the attacker gets some information of its choosing (de-

3More precisely “affine in the exponent”: the secret key is a vector of group elements g1, . . . , g` and the scheme is
secure w.r.t. functions of the form h ·

∏
gaii .
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pending on the value of the public key) on the scheme’s secret key, so long as the total amount
of information leaked does not exceed an a-priori information theoretic bound. More formally, the
attacker can request and receive f(sk) for a length-restricted function f .4 [AGV09, NS09] presented
public-key encryption schemes that are resilient to leakage of even a (1−o(1)) fraction of the secret
key (we call this the “leakage rate”). In particular, [AGV09] showed how this can be achieved under
the LWE assumption, while [NS09] showed that this can be achieved under the DDH (or d-linear)
assumption. It is further shown in [NS09] that some leakage resilience can be achieved using any
universal hash proof system (defined in [CS02]), where the leakage rate depends on the parameters
of the hash proof system. This implies secure schemes under the the QR and DCR assumptions
as well. However, using the known hash proof systems, the leakage rate achievable under the QR
assumption was only o(1) — much less than the desired (1−o(1)). Based on the DCR assumption,
a leakage rate of (1− o(1)) was achievable [NS09, CS02, DJ01].

Auxiliary input. Dodis, Kalai and Lovett [DKL09] and Dodis, Goldwasser, Kalai, Peikert and
Vaikuntanathan [DGK+10] considered the case where the leakage is not restricted information
theoretically, but rather computationally. In the public key setting, the attacker is allowed to
access any information on the secret key, under the following computational restriction: recovering
the secret key sk from said information f(pk, sk), for f of the attackers choosing, needs to be
computationally hard to a sufficient extent (see discussion of several formalizations in [DGK+10]).
This notion of security was termed security in the presence of auxiliary input (or auxiliary-input
security, for short). Public-key auxiliary-input secure encryption schemes under the DDH and LWE
assumptions were recently presented in [DGK+10].

To summarize, prior to this work it was known how to achieve KDM security, resilience to leakage
of (1−o(1)) fraction of the secret key, and auxiliary-input security based on either the LWE or DDH
assumption. While the techniques for achieving all of those seemed related, a formal connection
was not known. Further, it seemed that previous methods do not extend to assumptions such as
quadratic residuosity.

4.2 Overview of Our Contributions and Techniques

We give a high level description of our schemes in Section 4.2.1, and of our unified proof technique
in Section 4.2.2. Other related work and follow-up work is then discussed in Section 4.2.3.

4.2.1 Our Contributions

Let us define a generalized class of assumptions called subgroup indistinguishability (SG) assump-
tions. A subgroup indistinguishability problem is defined by a group GU (“the universe group”)
which is an internal direct product of two groups GU = GM × GL (interpreted as “the group of
messages” and “the language group”) whose orders, denoted by M,L respectively, are relatively
prime and where GM is a cyclic group. Essentially, the subgroup indistinguishability assumption
is that a random element of the universe GU is computationally indistinguishable from a random

4To be more precise, the requirement is that the min-entropy of the secret sk drops by at most a bounded amount,
given f(sk).
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element in GL. In other words, the language GL is hard on average in the universe GU . The precise
definition is a little more involved, see Section 4.4 for details.

Two special cases of the subgroup indistinguishability assumptions are the quadratic residuosity
(QR) assumption on Blum integers and Paillier’s decisional composite residuosity (DCR) assump-
tion. This is easily seen for QR as follows. Consider an integer N = p · q, where p, q are random
primes of equal bit-length, let Z∗N = {x ∈ ZN : gcd(x,N) = 1}, let JN denote the group of Ja-
cobi symbol (+1) elements of Z∗N , and QRN = {x2 : x ∈ Z∗N} denote its subgroup of quadratic
residues. The quadratic residuosity (QR) assumption is then, that the uniform distributions over
JN and QRN are computationally indistinguishable. Taking N to be a Blum integer where p, q = 3
(mod 4) (otherwise the orders of GL,GM we define next will not be relatively prime) and setting
GU = JN , GL = QRN (which is of odd order), and GM = {±1} (which is cyclic and has order 2),
the QR assumption falls immediately into the criteria of subgroup indistinguishability assumptions.

We are now ready to describe our encryption scheme for a given subgroup problem (GU ,GM ,GL),
where h is a generator for GM . In general, we view the plaintext message space as the elements
hm ∈ GM (sometimes the exponent m itself can be viewed as the message). For the case of QR,
the plaintext message space is GM = {±1}.

A word on the choice of parameters is in order. All parameters are measured as a function of the
security parameter k. As customary, in the QR and DCR cases, think of the security parameter
as the size of the modulus N (i.e. k = dlogNe). We let ` denote a parameter whose value is
polynomially related to k,5 selected in accordance to the desired properties of the scheme (KDM
security, amount of leakage resilience etc.).

The Encryption Scheme for Subgroup Problem (GU ,GM ,GL) with Parameter `:

• Key generation. Set the secret key to a random binary vector s = (s1, . . . , s`) of length `. Set
the public key to be the tuple (g1, . . . , g`, g0) where g1, . . . , g` are uniformly chosen elements
of GL and g0 =

∏
g−sii . (For the QR assumption, the public key thus consists of ` random

squares, followed by a product of a random subset of them, selected by the secret key s).

• Encryption. On input message hm,6 sample a uniform integer r from a large enough domain
and output the ciphertext (gr1, . . . , g

r
` , h

m · gr0). (For the QR assumption case, encryption is
of single bits {±1}, and the ciphertext is the tuple of squares in the public key, raised to a
random power, where the last one is multiplied by the plaintext message.)

• Decryption. On ciphertext (c1, . . . , c`, c0), compute hm = c0 ·
∏
csii . (For the case of QR,

m = c0 ·
∏
csii .) In general, recoverability of the exponent m depends on whether taking

discrete logs in base h of hm is easy.

We remark that in this high level overview we only consider binary secret keys, as we will for
the most part of this chapter. However, our scheme is also meaningful when the secret key vector
is sampled from a distribution over different domains. The properties of the scheme in such a case
become more dependent on the specific group.

5More precisely, ` is a polynomial function `(k).
6Recall that h is a generator of GM , which is a part of the description of GU .
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The basic structure of our construction is strikingly similar to [BHHO08], where the public
key also contains ` independent “random” elements and an additional element that is statistically
close to uniform, but in fact is a combination of the previous ones. The difference and challenge
is in how to prove security. This challenge is due to the fact that subgroup indistinguishability
assumptions seem inherently different from the DDH assumption. In the latter, for cyclic group
G where DDH is assumed, the assumption implies that the distribution (g1, g2, g

r
1, g

r
2) is compu-

tationally indistinguishable from (g1, g2, g
′
1, g
′
2) , implying complete re-randomization (a similar

property follows for LWE). Such re-randomization does not follow nor is it necessarily true from
subgroup indistinguishability. Rather, we will have to use the weaker guarantee that (g1, g2, g

r
1, g

r
2)

is indistinguishable from (g1, g2, h
r′ ·gr1, hr

′′ ·gr2), which only “masks” of the GM part of the elements.
Similarly to the scheme of [BHHO08], our scheme is lacking in efficiency. This is most noticeable

when instantiating with the QR assumption, where a single bit message is encrypted by `+1 group
elements, each of size roughly the security parameter k. The situation is somewhat better when
relying on DCR, where each such ciphertext encrypts Ω(k) bits. Improved efficiency can be achieved
by using the same values g1, . . . , g` with many vectors s, however this makes KDM security hold
only with respect to a less natural function class (this is similar to the more efficient LWE based
scheme of [ACPS09]) and significantly reduces leakage resilience. Coming up with more efficient
KDM secure or leakage resilient schemes remains an interesting open problem and some steps in
that direction has been taken, see Section 4.2.3.

On top of standard semantic security, we prove the following properties for the new scheme.

Property 1: KDM-Security

First, we prove that the scheme is KDM(1)-secure w.r.t. affine functions of the secret key. To
show this for QR case, we show that for any affine function specified by a0, . . . , a`, the encryption
of (−1)a0+

∑
i aisi is indistinguishable from the encryption of (−1)0. For the general case, it is

more natural to view KDM(1) with respect to the affine functions “in the exponent”: for any
h0, h1, . . . , h` ∈ GM where hi = hai (and h is a generator), we show that an encryption of h0·

∏
hsii =

ha0+
∑
i aisi is indistinguishable from an encryption of h0.

Second, we prove that for any polynomial value of n, the above encryption scheme satisfies
KDM(n) security, if ` is larger than, roughly, n logL. We note thus that the public key size and
ciphertext size grow with n to achieve provable KDM(n) security. Interestingly, in the works of
[BHHO08, ACPS09], ` did not need to grow with n. This seems difficult to achieve without the
complete “re-randomization” property discussed above which follows from the DDH and LWE
assumptions, but not from ours.

Finally, we can also show that our scheme can be used to obtain KDM security for larger
classes of functions than affine function: The scheme is entropy-κ KDM-secure (for proper values
of `), as required in [BGK11] and therefore implies a scheme that is secure w.r.t. functions of the
form a0 +

∑
i aifi(sk) for (roughly) any set of polynomially-many efficiently computable functions

{f1, . . . , f`}. Our scheme also satisfies the conditions for the completeness theorem of [App11],
and therefore implies that for any polynomial bound p, there is a scheme that is secure w.r.t.
all functions computable by size-p circuits. A more complicated proof can be derived using the
methods of [BHHI10].
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Property 2: Improved Key-Leakage Resilience

We prove that the new scheme is resilient to any leakage of a (1− o(1)) fraction of the bits of the
secret key. Stated differently, if one specifies in advance the amount of leakage λ (a polynomial in
the security parameter) to be tolerated, we can choose ` to obtain a scheme that is secure against
a leakage of λ bits. The growth of ` is additive in λ (i.e. ` = `0 + λ) which implies leakage rate of
(1− (`0/`)). An appropriate selection of ` thus brings the rate to (1− o(1)).

We emphasize that while schemes with the above guarantees were known under LWE [AGV09]
or DDH [NS09], and even (implicitly) under DCR [NS09, CS02], this was not the case under QR.
Previous results with regards to QR-based leakage resilience [NS09, CS02] could only approach
a leakage rate of 1/k = o(1) (recall that k is the security parameter, or the bit-length of the
modulus N), compared to (1− o(1)) in our scheme.

In addition, leakage resilience based on QR or DCR was previously only achievable based on
hash proof systems. These, in turn, required that the modulus in the assumption N = p · q is
such that p, q are safe primes. We do not impose this restriction. Under QR, we only require that
p, q = 3 (mod 4) (i.e. N is a Blum integer), and under DCR, we only require that p, q have the
same bit-length.

Property 3: Auxiliary Input Security

We prove that our schemes remain secure when the attacker has access to additional information
on the secret key sk, in the form of fpk(sk), where fpk is a polynomial time function (which may
depend on the public key) that is evaluated on the secret key sk. First, we consider the case where
f is such that the transition (fpk(sk), pk) → sk is computationally hard. Namely, that retrieving
the secret key sk given the public key pk and the auxiliary information fpk(sk), is sufficiently hard.
This notion was termed weak auxiliary-input security in [DGK+10]. In turn, [DGK+10] show how
to leverage weak auxiliary-input security to achieve security when the requirement on f is weaker:
now, only the transition fpk(sk)→ sk needs to be hard. The latter is called auxiliary-input security.

We conclude that for all δ > 0, we can select the value of ` such that the scheme is auxiliary-
input secure relative to any function that is hard to invert (in polynomial time) with probability

2−`
δ
. We note that the input to the function is the secret key – a length ` binary string, and

therefore we measure hardness as a function of ` (and not of the security parameter k).

4.2.2 A Unified Proof Technique

The circular security, leakage resilience and auxiliary-input security properties of our scheme are
proved using a new technical tool introduced in this work: the adaptive vector game. This proof
technique can also provide an alternative proof for the KDM(1)-security, leakage resilience and
auxiliary-input security of (known) public-key encryption schemes based on DDH and LWE, thus
providing an alternative, more generic proof for some of the results of [BHHO08, ACPS09, NS09,
DGK+10].7

7In this work, the adaptive vector game is defined only for our subgroup indistinguishability assumptions, but it
easily extends to other assumptions.
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This suggests an alternative explanation to the folklore belief that the three notions are related:
that it is the proof technique that is related in fact. Namely, the proof techniques for each property
can be generalized to adaptive vector games which, in turn, imply the other properties.

We proceed to overview the proofs of security for the various properties of our scheme. Again,
let us consider the groups GU = GM ×GL with h being a generator for GM , such that the subgroup
indistinguishability assumption holds.

To best explain the ideas of the proof, let us consider, as a first step, a simple semantically
secure encryption scheme (which is a generalization of the Goldwasser-Micali scheme [GM82]). An
encryption of 0 is a random element g ∈ GL and an encryption of 1 is h · g (in the QR case, the
encryption of (+1) is a random quadratic residue and the encryption of (−1) is a random quadratic
non-residue). The two distributions are clearly indistinguishable (consider the indistinguishable
experiment where g is uniform in GU ). In order to decrypt, one needs some “trapdoor information”
that would enable to distinguish between elements in GL and GU (such as the factorization of the
modulus N in the QR (and DCR) case).

The first modification of this simple idea was to fix g and put it in the public key, and set the
ciphertext for hm to hm · gr for r large enough. For the QR case, this modification still amounts to
encrypting (+1) by a random square, and (−1) by a random non-square.

The second modification does away with the need of the secret key owner to distinguish between
elements in GL and GU (e.g. with the need to know the factorization of N in the QR case),
by replacing the “trapdoor information” with a secret key that is a uniform binary vector s =
(s1, . . . , s`). Holding the secret key will not enable us to solve subgroup indistinguishability, but
will enable us to decrypt as in [BHHO08]. We take a set of random elements g1, . . . , g` ∈ GL and
define g0 =

∏
g−sii . If ` is large enough, then the leftover hash lemma guarantees that g0 is almost

uniform. As the ciphertext is (gr1, . . . , g
r
` , h

m · gr0), one can recover hm using s. Recovering m itself
is also possible if the discrete logarithm problem in GM is easy, as is the case in the QR scenario.

The crux of the idea in proving security is the following. First, we note that the distribution
of g0 is close to uniform in GL, even given g1, . . . , g` (by the leftover hash lemma). Recall that
in a DDH-based proof, we could claim that ((g1, . . . , g`, g0), (gr1, . . . , g

r
` , g

r
0)) is computationally

indistinguishable from ((g1, . . . , g`, g0), (g′1, . . . , g
′
`, g
′
0)) (where g′i are uniform). However, based on

subgroup indistinguishability, a different method is required: Consider replacing g0 with g′0 =
h · g0, the distribution ((g1, . . . , g`, g0), (gr1, . . . , g

r
` , g

r
0)) is computationally indistinguishable from

((g1, . . . , g`, h · g0), (gr1, . . . , g
r
` , h

r · gr0)) under the subgroup indistinguishability assumption. The
crucial observation now is that since the orders of GM and GL are relatively prime, then in fact
g′r0 = hr

′ · gr0, where r′ is independent of r. Combined with the fact that GM is cyclic, we get that
((g1, . . . , g`, g0), (gr1, . . . , g

r
` , g

r
0)) is indistinguishable from ((g1, . . . , g`, h · g0), (gr1 . . . g

r
` , h
′ · gr0)), for a

random h′ ∈ GM . Semantic security now follows.
To address the issues of circular security, leakage resilience and auxiliary-input, we generalize

the idea presented above, and prove that the distribution ((g1, . . . , g`), (h
a1 · gr1, . . . , ha` · gr` )) is

indistinguishable from ((g1, . . . , g`), (g
r
1, . . . , g

r
` )). We provide an adaptive variant of this claim,

which we call an adaptive `-vector game, where the values of a1, . . . , a` ∈ Z are selected by the
distinguisher, and can depend on (g1, . . . , g`), and show that the above is hard even in such case.
The adaptive vector game will be employed in the proofs of all properties of the scheme.

For key-dependent message security, we consider the ciphertext (gr0, g
r
1, . . . , h · gri , . . . , gr` ). This
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ciphertext will be decrypted to hsi and in fact can be shown (using an adaptive vector game) to be
computationally indistinguishable from a legal encryption of hsi . Key-dependent message security
follows from this fact.

Proving KDM(n)-security for our scheme is more complex. To illustrate this, we contrast it with
the ideas in the proof of [BHHO08]. They used homomorphism and re-randomization to achieve
KDM(n)-security: Their scheme is shown to have homomorphic properties that enable to “shift”
public keys and ciphertexts that are relative to a certain secret key, into ones that are relative to
another secret key. In order to apply these “shifts”, one only needs to know the relation between
the original and final keys (and not the keys themselves). In addition, their scheme is shown to
have re-randomization properties that enable to take a public key (or ciphertext) and produce
an independent public key (or ciphertext) that corresponds to the same secret key (and message,
in the ciphertext case). These two properties enable simulating the KDM(n)-security game using
only one “real” secret key, fabricating the n required keys and ciphertexts using homomorphism
and re-randomization. In [ACPS09], similar ideas are employed, but the re-randomization can be
viewed as implicit in the assumption (the ability to generate independently looking vectors that
are in fact linearly related).

Our scheme can be shown to have such homomorphic properties, but it doesn’t enjoy as strong
re-randomizability as required to use the above techniques. As an example, consider a public key
pk = (g0, g1, . . . , g`) corresponding to a secret key sk = (s1, . . . , s`), i.e. g0 =

∏
g−sii . Let j ∈ [`] and

consider p̂k = (ĝ0, ĝ1, . . . , ĝ`) defined as follows: for all i 6∈ {j, 0}, set ĝi = gi; for j, set ĝj = g−1
j ;

and finally set ĝ0 = gj ·g0 = ĝ
−(1−sj)
j ·

∏
i 6=j ĝ

−si
i . We get that p̂k is a properly distributed public key

corresponding to the secret key ŝk = sk ⊕ ej (sk XORed with the jth unit binary string). Namely,
we were able to “shift” a public key to correspond to another (related) secret key, without knowing
the original key. However, the joint distribution of pk, p̂k is easily distinguishable from that of two
independent public keys. What we lack is the ability to re-randomize p̂k so that it is distributed
as a public key for ŝk which is independent of the original pk.

Intuitively, this shortcoming requires us to use more “real randomness”. Our proof simulates
the KDM(n)-security game using only one “real” secret key, as in the idea presented above. This
secret key is used to fabricate n secret and public keys. However, when we want to apply the
leftover hash lemma to claim that the g0 components of all n fabricated public keys are close to
uniform, we need the one real secret key to have sufficient entropy. This requires a secret key whose
size is linear in n. These ideas, combined with the ones used to prove KDM(1) security, give our
final proof.

To go beyond affine functions, we use techniques from either [BGK11] or [App11]. The property
of entropy-κ KDM-security [BGK11] requires that the scheme remains secure even when the secret
key is sampled from a high-entropy (but not necessarily uniform) distribution. This is shown to
hold using the leftover hash lemma, since

∏
gsii is a 2-universal hash function. For the completeness

theorem of [App11], KDM security w.r.t. affine functions of the bits of the secret key is a sufficient
condition.8

Leakage resilience and auxiliary-input security are proven by an almost identical argument:

8The more complicated methods of [BHHI10] can also be used: a targeted encryption scheme can be constructed
based on the ability to “fabricate” ciphertexts that correspond to affine functions of the secret key without knowing
the secret key itself.
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consider a case where we replace the ciphertext (hm · gr0, gr1, . . . , gr` ) with a computationally indis-
tinguishable one: (h−

∑
σisi ·hm ·gr0, hσ1 ·gr1, . . . , hσ` ·gr` ), where σi ∈ ZM are uniform. Computational

indistinguishability (even for a known secret key) follows from the adaptive vector game mentioned
above. For leakage-resilience, the leftover hash lemma implies that so long as there is sufficient
entropy in s after the leakage,

∑
σisi will be close to uniform and will “mask” the value of m. For

auxiliary input we use the generalized Goldreich-Levin theorem of [DGK+10] to show that
∑
σisi

is close to uniform in the presence of a function of s that is hard to invert, even given the public
key. Thus obtaining weak auxiliary-input security. In the QR case, the inner product is over Z2

and therefore we can use the “standard” Goldreich-Levin theorem [GL89], which implies better
parameters. We use leveraging (as used in [DGK+10]) to obtain the full result.

From the discussion above it is apparent that the distribution of s only comes into play when
the leftover hash lemma is to be applied (or the generalized Goldreich-Levin theorem for the case
of auxiliary input). Thus we can use other (non-binary) secret key distributions, so long as the
extraction properties are preserved. We formalize this argument in Section 4.8.7.

4.2.3 Other Related Work

Cramer and Shoup [CS02] presented the notion of hash proof systems, which are similar to subgroup
indistinguishability assumptions. Their implementations from QR and DCR does not require the
factorization of N in order to decrypt, as in our scheme. However they use the discrete logarithm of
(their analog to) the gi’s as a secret key for the system. Our scheme can be seen as taking another
step towards “stripping” the secret key of all structure: in our scheme, it is just a uniform sequence
of bits (resulting in a weaker form of a hash proof system that is “universal on average”).

Boneh, Goh and Nissim [BGN05] construct a scheme with useful homomorphic properties based
on the “bilinear decision subgroup assumption”. This assumption is similar in syntax to our sub-
group indistinguishability assumptions, however their assumption does not fall under our category.
The reason is, essentially, the bilinear map: in our work, we require that a generator for each
subgroup is publicly known, whereas in [BGN05], since an efficient bilinear map exists, revealing
generators for both subgroups breaks the indistinguishability.

Hemenway and Ostrovsky [HO09] show how to construct lossy trapdoor functions (see [PW08]
for definition) from the QR and DCR assumptions (among other assumptions). Similar ideas
can be used in a straightforward manner to construct lossy trapdoor functions from subgroup
indistinguishability assumptions with special properties.

In a follow-up work, Malkin, Teranishi and Yung [MTY11] showed how to use our techniques,
among others, to achieve KDM security for a different class of functions, based on the DCR as-
sumption. The main building block in their construction is an instantiation of our scheme with
` = 1, and with a non-binary secret key distribution. The secret key is represented as an integer
over some ring, and KDM security will hold w.r.t. the class of arithmetic circuits over this ring.
The possibility of working with non-binary secret key distributions was implicit in our original
work [BG10] and we now make it explicit in Section 4.8.7.

In a follow-up work with Segev [BS11], we used tools from this work and from [HO09] to
present a deterministic encryption scheme that is secure for message distributions that don’t have
any entropy, but are computationally unpredictable (a short abstract of this work appears in the
appendix).
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4.3 Preliminaries

We denote scalars in plain lowercase (x ∈ {0, 1}) and vectors in bold lowercase (x ∈ {0, 1}n). The
ith coordinate of x is denoted xi. The vector inner product of x,y is denoted by 〈x,y〉 and is
defined to be

∑
xi · yi. The vector ei is the ith unit vector.

For any K ∈ N, we denote [K] = {1, . . . ,K}. We let ZK denote the ring Z/KZ and let Z∗K
denote the group of units in ZK . Euler’s totient function is denoted by ϕ(·).

Arithmetic operations are always performed in Z but can sometimes also be interpreted as
being performed over ZK , for some value K ∈ N. Specifically, if h is an element of order K in a
multiplicative group, then hx = h(x mod K), so operations “in the exponent of h” can be interpreted
as operations over ZK . We usually write (mod K) to indicate that an operation is performed over
ZK , but we sometimes omit this when K is clear from the context.

For vectors g,h ∈ Gn, where G is a multiplicative commutative group, we denote by gr the
vector whose ith coordinate is gri . We denote by h ·g the vector whose ith coordinate is hi · gi. Note
that this does not denote an inner product. For a group element g ∈ G and a vector x ∈ Z, we let
gx denote the vector whose ith coordinate is gxi .

Let X be a probability distribution over a domain S, we write x
$← X to indicate that x is

sampled from the distribution X. The uniform distribution over a set S is denoted U(S). We use

x
$← S as abbreviation for x

$← U(S). For any function f with domain S we let f(X) denote the

random variable (or corresponding distribution) obtained by sampling x
$← X and outputting f(x).

The min-entropy of a (discrete) random variable X is H∞(X) = minx∈S{− log Pr[X = x]}.
We write negl(k) to denote an arbitrary negligible function, i.e. one that vanishes faster than

the inverse of any polynomial.
The statistical distance between two distributions X,Y (or random variables with those distribu-

tions) over a common domain S is maxA⊆S |Pr[X ∈ A]− Pr[Y ∈ A]|. Two ensembles X = {Xk}k,
Y = {Yk}k are ε = ε(k)-close if for all k, the distance between Xk and Yk is at most ε(k) and are
statistically indistinguishable if ε(k) = negl(k). An ensemble X = {Xk}k over domain S = {Sk}k
is ε = ε(k)-uniform in S if it is ε-close to the uniform ensemble over S (we sometimes omit S when
it is clear from the context). X = {Xk}k, Y = {Yk}k are computationally indistinguishable if every
poly(k)-time adversary A has negligible distinguishing advantage:

DistX,Y Adv[A] = |Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| = negl(k) .

We often abbreviate and write DistAdv[A] when X,Y are clear from the context.

4.3.1 Public-Key Encryption and Semantic/CPA Security

A public-key encryption scheme E = (G,E,D) is defined by its key generation, encryption and
decryption algorithms. The key generation algorithm G takes as input the unary vector 1k, where
k is called the security parameter of the scheme. All other parameters of the scheme are a function
of k. We let S = {Sk} denote the space of secret keys and M = {Mk} denote the message space
of the encryption scheme. The scheme is correct if for any sequence {mk ∈Mk} it holds that

Pr[Dsk(Epk(mk)) 6= mk] = negl(k) ,
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where the probability is over the random coins of (sk, pk)←G(1k) and the random coins of E,D.
The standard notion of security (against passive adversaries) for public-key encryption is “se-

mantic security”. We bring here an equivalent formulation of security under chosen plaintext attack
(CPA), which is close to our formulation of KDM security below. Intuitively, CPA security requires
that no attacker can distinguish between an encryption of a message of its choice and an encryption
of a fixed message “0”. We refer the reader to [Gol04] for a formal definition of encryption schemes
and their security.

We define the CPA game played between a challenger and an adversary as follows.

• Initialize. The challenger selects b
$← {0, 1} and generates a key pair (sk, pk)

$← G(1k). The
challenger then sends pk to the adversary.

• Query. The adversary sends a message m to the challenger. The challenger sends the
following ciphertext to the adversary.

c←
{
Epk(m) if b = 0
Epk(0) if b = 1.

• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is CPA secure if any polynomial time adversary A has negligible advantage:

CPAAdv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

4.3.2 KDM Security

In the scenario of key-dependent messages, we wish to model the case where functions of the
secret key can be encrypted, and require that the resulting ciphertexts are indistinguishable from
encryptions of 0. We want our definition to apply also for the case of “key cycles” where a function
of one user’s secret key is encrypted by another’s public key and vice versa. The most inclusive
definition, therefore, is parameterized by the number of users n and allows encrypting a function
of the entire vector of n secret keys under any of the corresponding public keys (this is sometimes
referred to as “clique security”). An additional parameter to be considered is the set of functions
of the secret key that we allow to encrypt. We use the definition presented in [BHHO08].

Formally, let E = (G,E,D) be a public key encryption scheme, n > 0 be an integer, S = {Sk}
be the space of secret keys, and let F = {Fk} be a class of functions such that Fk ⊆ Snk →Mk.

We define the KDM(n) game, w.r.t. the function class F , played between a challenger and an
adversary as follows.

• Initialize. The challenger selects b
$← {0, 1} and generates, for all i ∈ [n], key pairs

(ski, pki)
$← G(1k). The challenger then sends {pki}i∈[n] to the adversary.

• Query. The adversary makes queries of the form (i, f) ∈ [n] × Fk. For each query, the
challenger computes y ← f(sk1, . . . , skn) and sends the following ciphertext to the adversary.

c←
{
Epki(y) if b = 0
Epki(0) if b = 1.
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• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is KDM(n) secure if any polynomial time adversary A has negligible advantage:

KDM(n)Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

We sometime denote KDM
(n)
F to indicate the function class in discussion.

We note that even the notion KDM(1)-security generalizes CPA-security. To see this, take F to
be the class of constant functions.

4.3.3 Leakage Resilient Encryption

In the scenario of key-leakage resilience, we wish to model the case where some (adversarially
selected restricted amount of) information about the secret key is revealed to the attacker. We
require that even in the presence of this additional information, the security of the scheme remains
intact. The definition below is essentially adopted from [NS09].

Let E = (G,E,D) be a public key encryption scheme with key-space S = {Sk} and message
spaceM = {Mk}. We define the λ-leakage game, for the non-negative parameter λ = λ(k), played
between a challenger and an adversary as follows.

• Initialize. The challenger selects b
$← {0, 1} and generates a key-pair (sk, pk)

$← G(1k). The
challenger sends pk to the adversary.

• Leakage. The adversary sends an efficiently computable function f : Sk → {0, 1}λ to the
challenger. The challenger computes f(sk) and returns this value to the adversary.

• Challenge. The adversary sends m0,m1 ∈ Mk to the challenger. The challenger computes
y ← Epk(mb) and sends y to the adversary.

• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is λ-leakage secure if for any polynomial time adversary A it holds that

LeakλAdv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

We note that the definition can be extended to the case of chosen ciphertext attacks (see [NS09]).
In this work, however, we only consider the case of chosen plaintext attacks described above.

4.3.4 Auxiliary-Input Secure Encryption

The scenario of auxiliary-input security is quite similar to that of key-leakage resilience described
in Section 4.3.3. As in the previous case, we model a scenario where the attacker can access
additional information about the secret key. In this case, however, the restriction on the amount
of information is computational rather than information theoretic. The definition is adopted (and
slightly adapted) from [DGK+10].

Let E = (G,E,D) be a public key encryption scheme with secret key space S = {Sk}, public key
space P = {Pk} and message space M = {Mk}. For any family of functions f = {fk : Sk × Pk →
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{0, 1}∗}, we define the inverting advantage and weak inverting advantage of an adversary A as
follows.

InvfAdv[A] = Pr
(sk,pk)←G(1k)

[A(1k, fk(sk, pk)) = sk] ,

Invweak
f Adv[A] = Pr

(sk,pk)←G(1k)
[A(1k, pk, fk(sk, pk)) = sk] .

If the scheme E has public parameters, then those are given as additional input to A, in both
flavors above. Let ` denote the length of the binary representation of the secret key. A polynomial
time computable function f is ε = ε(`)-hard to invert (resp. ε-weakly hard to invert) if for any
polynomial time A it holds that InvfAdv[A] ≤ ε (resp. Invweak

f Adv[A] ≤ ε). Note that we measure
the hardness of f relative to its input length ` and not the security parameter k. We stress that
the notion of “hard to invert functions” is weaker than the standard notion of one-way functions,
since we require the recovery of the original secret key (and not of just any pre-image). Thus a
function that is not one-way can still be hard to invert.

For any efficiently computable function family f , we consider the f -auxiliary input game, played
between a challenger and an adversary as follows.

• Initialize. The challenger selects b
$← {0, 1} and generates a key-pair (sk, pk)

$← G(1k). The
challenger sends pk to the adversary.

• Auxiliary input. The challenger computes z ← fk(sk, pk) and sends z to the adversary.

• Challenge. The adversary sends m0,m1 ∈ Mk to the challenger. The challenger computes
y ← Epk(mb) and sends y to the adversary.

• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is ε-auxiliary input secure if for any ε-hard to invert f and for any polynomial
time A it holds that

AuxfAdv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

E is ε-weakly auxiliary-input secure if the above holds for any ε-weakly hard to invert function f .

4.3.5 Technical Tools

We use the following simple lemma.

Lemma 4.3.1. Let T,N ∈ N and let x
$← [T ], then x (mod N) is (N/T )-uniform in ZN .

Proof. Define d = (T mod N), then conditioned on the event x ∈ [T − d], it holds that (x mod N)
is uniform in ZN . Therefore (x mod N) is (d/T ) ≤ (N/T )-uniform.
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Simplified Leftover Hash Lemma and Applications

We use the following lemma which is an immediate corollary of the leftover hash lemma and
explicitly appears in [BHHO08, Lemma 2].

Lemma 4.3.2. Let H be a 2-universal hash family from a set X to a set Y . Then the distribution

(h, h(x)) where h
$← H, x

$← X, is
√
|Y |

4|X| -uniform in H × Y .

We also require the following consequence.

Lemma 4.3.3. Let H be a 2-universal hash family from a set X to a set Y . Let f : X → Z be

some function. Then the distribution (h, h(x), f(x)) where h
$← H, x

$← X, is
√
|Y |·|Z|
4|X| -close to

(h, y, f(x)), for y
$← Y .

Proof. For all z ∈ Z, denote Xz = {x ∈ X : f(x) = z} and pz = |Xz| / |X|. Then by Lemma 4.3.2,

(h, h(x), f(x)) conditioned on f(x) = z is
√
|Y |

4|Xz | -close to (h, y, f(x)) conditioned on f(x) = z.

Averaging over all z ∈ Z, we get that the distance between (h, h(x), f(x)) and (h, y, f(x)) is at
most ∑

z∈Z

(
pz ·

√
|Y |

4 |Xz|

)
=

√
|Y |

4 |X|
·
∑
z∈Z

√
pz ≤

√
|Y | |Z|
4 |X|

.

The result follows.

We often use families of 2-universal hash functions of the form presented below.

Lemma 4.3.4. Let G be any finite commutative group and let ` ∈ N. Then the set of functions
H = {hg1,...,g` : {0, 1}` → G}g1,...,g`∈G where hg1,...,g`(x) =

∏
i∈[`] g

xi
i , is 2-universal.

Note that the group G needs not be cyclic.

Proof. Consider x 6= y and assume w.l.o.g that x1 6= y1. Then for g1, . . . , g`
$← G it holds that

gx1−y1
1 is uniformly distributed in G and the result follows.

The Goldreich-Levin Theorem

The Goldreich-Levin hard core predicate is stated in the following theorem.

Theorem 4.3.5 ([GL89]). Let f : {0, 1}n → {0, 1}∗ be any (possibly randomized) function and let
A be such that∣∣∣ Pr

x,r
$←{0,1}n

[A(f(x), r, 〈r,x〉) = 1]− Pr
x,r

$←{0,1}n,
u

$←{0,1}

[A(f(x), r, u) = 1]
∣∣∣ ≥ ε ,

then there exists BA that runs in time poly(n, 1/ε) such that

Pr[BA(f(x)) = x] ≥ Ω(ε3/n) .
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A Generalized Goldreich-Levin Theorem

We use a generalized version of Theorem 4.3.5, essentially adopted from [DGK+10, Theorem 1] and
slightly adapted (see explanation below).

Theorem 4.3.6 (adapted from [DGK+10, Theorem 1]). Let f : {0, 1}n → {0, 1}∗ be any (possibly
randomized) function, let K ∈ N, K > 1 and let A be such that∣∣∣Pr[A(f(x), r, 〈r,x〉) = 1]− Pr[A(f(x), r, u) = 1]

∣∣∣ ≥ ε ,
where x

$← {0, 1}n, r $← ZnK , u
$← ZK and the inner product is over ZK , then there exists BA that

runs in time poly(n, 1/ε) such that

Pr[BA(f(x)) = x] ≥ ε

8 ·K1+log(8n/ε2)
.

We remark that the theorem extends to groups that are isomorphic to ZK since the adversary
B only needs “oracle access” to ZK allowing it to sample elements uniformly, add elements and
compare elements.

Comparing our theorem statement to [DGK+10, Theorem 1] shows a number of differences. We
allow K to take any value (so long as operations over ZK are efficient), while they restricted their
attention to prime K. This has a technical effect on the proof, since we need to find a big set of
elements {ρi} ⊆ ZK such that for all i 6= j, (ρi− ρj) ∈ Z∗K (namely, is a unit in the ring ZK). This
is easy for prime K, but harder for a general K, whose factorization is unknown. Therefore, in our
proof, we use a trivial set with the aforementioned property, {0, 1}, which implies a degradation
in parameters: the power of K in the success probability of the inverter is logarithmic in our
statement, but constant (specifically, 2) in [DGK+10, Theorem 1]. We remark that if ZK is such
that finding a non-unit is computationally hard (one example is ZN for an RSA number N), then
similar parameters to [DGK+10, Theorem 1] can be achieved, using the same techniques.

An additional change is that we only allow f : {0, 1}n → {0, 1}∗, while their theorem applies to
f : Hn → {0, 1}∗, for any set H ⊆ ZK of polynomial cardinality. This change is mostly to simplify
the theorem statement and proof.

The formal proof follows.

Proof. Given an algorithm A as stated in the theorem, it holds that

Pr
x

[∣∣∣∣Pr
r

[A(f(x), r, 〈r,x〉) = 1]− Pr
r,u

[A(f(x), r, u) = 1]

∣∣∣∣ > ε/2

]
≥ ε/2 .

Our reduction BA will succeed with sufficiently high probability for y = f(x) for which

Pr
r

[A(f(x), r, 〈r,x〉) = 1]− Pr
r,u

[A(f(x), r, u) = 1] > ε/2 .

Note that we removed the absolute value, which incurs a factor of 1/2 in the final success probability.
From now on, condition on this event.
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The reduction BA, on an input y = f(x), runs as follows. Define m = 8n/ε2 and let c = 1 +

blogmc. Sample z1, . . . , zc
$← ZnK and g1, . . . , gc

$← ZK . With probability 1/Kc ≥ 1/K1+log(8n/ε2)

it holds that for all j ∈ [c], 〈zj ,x〉 = gj . From now on, condition on this event as well.
For all ρ ∈ {0, 1}c \ {0}, define rρ =

∑
j∈[c] ρj · zj and hρ =

∑
j∈[c] ρj · gj . Then {rρ} are

uniformly distributed, pairwise independent (this is where we use the fact that ±1 are units in ZK)
and it holds that 〈rρ,x〉 = hρ.

Next, it samples τρ
$← ZK for all ρ and computes, for all i ∈ [n] and ρ ∈ {0, 1}c \ {0},

si,ρ = A(y, rρ + τρ · ei, hρ + τρ)−A(y, rρ + τρ · ei, hρ) ,

it then computes si = Eρ[si,ρ] =
∑

ρ si,ρ
2c−1 (i.e. we consider the uniform distribution over all values of

ρ) and if si ≥ 0, it sets xi = 1, otherwise it sets xi = 0.
To analyze, we notice that si,ρ is distributed like A(f(x), r, 〈r,x〉) − A(f(x), r, u) if xi = 1

and like A(f(x), r, u) − A(f(x), r, 〈r,x〉) if xi = 0. Thus, for any fixed value of ρ, Erρ [si,ρ] ≥ ε/2
if xi = 1 and Erρ [si,ρ] ≤ −ε/2 if xi = 0. Since {si,ρ}ρ are pairwise independent, we can apply
Chebishev’s inequality and get that with probability at least 1 − 1/(m · (ε/2)2) ≥ 1 − 1/(2n), it
holds that si is within ε/2 of its expected value, in which case xi is computed correctly. Applying
the union bound over all i, we have that x is computed correctly with probability 1/2.

Combining all of the terms above, the result follows.

4.4 Subgroup Indistinguishability Assumptions

We present the class of subgroup indistinguishability assumptions in Section 4.4.1 and then discuss
instantiations under the QR and DCR assumptions in Section 4.4.2.

4.4.1 Definition of a Subgroup Indistinguishability (SG) Problem

Let GU be a finite commutative multiplicative group, such that GU can be decomposed as an
internal direct product: GU = GM × GL.9 The “message group” GM is cyclic of order M , the
“language group” GL is of order L (and is not necessarily cyclic), and GU is of order M · L (we
use M,L both to index the groups and to denote their orders). We require that gcd(M,L) = 1.
Let h be a generator for GM such that h is efficiently computable from the description of GU . We
require that there exists an efficient algorithm OPGU to perform group operations in GU , and also
that there exist efficient sampling algorithms SGM , SGL that sample a random element from GM ,
GL respectively. We further require that an upper bound T ≥M · L is known.

We stress that, as always, all groups described above are in fact families of groups, indexed by
the security parameter k. To be more precise, there exists a polynomial time randomized algorithm
that given the security parameter 1k, outputs IGU = (OPGU , SGM , SGL , h, T ). We refer to IGU as
an instance of GU .

For any adversary A we denote the subgroup distinguishing advantage of A by

SGAdv[A] =
∣∣∣ Pr
x

$←GU
[A(1k, x)]− Pr

x
$←GL

[A(1k, x)]
∣∣∣ .

9Internal direct product means that GM ,GL are subgroups of GU , and every element in GU can be written as
h · g, where h ∈ GM and g ∈ GL.
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That is, the advantage A has in distinguishing between GU and GL. The subgroup indistinguisha-
bility (SG) assumption is that for any polynomial A it holds that for a properly sampled instance
IGU , we have SGAdv[A] = negl(k) (note that in such case it must be that 1/L = negl(k)). In other
words, thinking of GL ⊆ GU as a language, the assumption is that this language is hard on average.
We define an additional flavor of the assumption by

SG′Adv[A] =
∣∣∣ Pr
x

$←GL
[A(1k, h · x)]− Pr

x
$←GL

[A(1k, x)]
∣∣∣ .

It follows immediately that for any adversary A there exists an adversary B such that SG′Adv[A] ≤
2 · SGAdv[B].

4.4.2 Instantiations

We instantiate the SG assumption based on the QR and DCR assumptions.
For both instantiations we consider a modulus N of the form N = pq, where p, q are random

k-bit odd primes (such a modulus is sometimes called an “RSA number”). Note that we will not
require that p, q are “safe primes”.

Instantiation Under the QR Assumption with Any Blum Integer

Consider a modulus N as described above. We use JN to denote the set of elements in Z∗N with
Jacobi symbol +1, we use QRN to denote the set of quadratic residues (squares) modulo N .
Overloading notation, JN ,QRN also denote the respective groups with the multiplication operation

modulo N . The groups JN ,QRN have orders ϕ(N)
2 , ϕ(N)

4 respectively and we denote N ′ = ϕ(N)
4 .

We require that N is a Blum integer, namely that p, q = 3 (mod 4). In such case it holds that
gcd(2, N ′) = 1 and that (−1) ∈ JN \QRN .

The quadratic residuosity (QR) assumption is that for a properly generated N , the distribu-
tions U(JN ) and U(QRN ) are computationally indistinguishable.10 This leads to the immediate
instantiation of the SG assumption by setting GU = JN , GM = {±1}, GL = QRN , h = (−1),
T = N ≥ 2N ′.

Instantiation Under the DCR Assumption

The decisional composite residuosity (DCR) assumption, introduced by Paillier [Pai99], states that
for a properly generated RSA number N , it is hard to distinguish between a random element in
Z∗N2 and a random element in the subgroup of N th-residues {xN : x ∈ Z∗N2}. The group Z∗N2 can
be written as a product of the group generated by 1 +N (which has order N) and the group of N th

residues (which has order ϕ(N)). This implies that setting GU = Z∗N2 , GL = {xN : x ∈ Z∗N2} and
GM = {(1+N)i : i ∈ [N ]} provides an instantiation of the SG assumption, setting h = (1+N) and
T = N2. It is left to check that indeed gcd(N,ϕ(N)) = 1. This follows since p, q are odd primes of

10The QR assumption usually refers to random RSA numbers, which are not necessarily Blum integers. However,
since Blum integers have constant density among RSA numbers, the flavor we use is implied.
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equal length: assume w.l.o.g that p/2 < q < p, then the largest prime divisor of ϕ(N) = (p−1)(q−1)
has size at most (p− 1)/2 < p, q and the claim follows.11

4.5 The New Encryption Scheme (Under Quadratic Residuosity)

In the interest of clarity, we first present the QR-based scheme. The general case is presented in
Section 4.8.1. The scheme E [`] is defined below.

• Parameters. The scheme is parameterized by ` ∈ N which is polynomial in the security
parameter. The exact value of ` is determined based on the specific properties we require of
the scheme.

The message space of E [`] is M = {0, 1}, i.e. this is a bit-by-bit encryption scheme.

• Key generation. The key generator first samples a Blum integer N , which can be used as
public parameter and only be sampled once for all users. Furthermore, no entity needs to
know the factorization of N . We assume that N is an implicit input to all of our algorithms.

The key generator also samples s
$← {0, 1}` and sets sk = s. It then samples g

$← QR`N and
sets g0 = (

∏
i∈[`] g

si
i )−1. The public key is set to be pk = (g0,g) (with N as an additional

implicit public parameter).

• Encryption. On inputs a public key pk = (g0,g) and a message m ∈ {0, 1}, the encryption

algorithm runs as follows: it samples r
$← [N2],12 and computes c = gr and c0 = (−1)m · gr0.

It outputs a ciphertext (c0, c).

• Decryption. On inputs a secret key sk = s and a ciphertext (c0, c), the decryption algorithm
computes (−1)m = c0 ·

∏
i∈[`] c

si
i and outputs m.

The correctness of the scheme follows immediately by definition, security will be treated in the
following sections.

We note that correctness holds regardless of the distribution of the vector s. Indeed, we can
use secret keys that are not binary strings. The implications are discussed in Section 4.8.7.

11If greater efficiency is desired, we can use a generalized form of the assumption, presented in [DJ01]. Let d ≥ 1
be a parameter that is polynomial in the security parameter and consider the group GU = Z∗Nd+1 . Then GU can be
written as a product GU = GM × GL where GM is cyclic and has order M = Nd and generator h = (N + 1). The

group GL is the group {xN
d

: x ∈ Z∗Nd+1} which is isomorphic to Z∗N . Clearly gcd(Nd, ϕ(N)) = 1 and we can use the
bound T = Nd+1 ≥ Nd · ϕ(N).

It is proven in [DJ01] that under the DCR assumption, the subgroup indistinguishability problem defined by the
above groups is hard for any polynomial d. Specifically, taking d = 1 gives Paillier’s original assumption.

12A more natural choice is to sample r
$← [|JN |], but since |JN | = 2N ′ = ϕ(N)

2
is hard to compute, we cannot

sample from this distribution directly. However, since r is used as an exponent of a group element, it is sufficient
that (r mod 2N ′) is uniform in Z2N′ , and this is achieved by sampling r from a much larger domain.

Alternatively, we can use r
$← [(N −1)/2], since U([(N −1)/2]) and U([ϕ(N)/2]) are statistically indistinguishable.
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4.6 The Adaptive Vector Game (Under Quadratic Residuosity)

We define the adaptive `-vector game played between a challenger and an adversary. We only
present the QR-based game in this section, and refer the reader to the general definition in Sec-
tion 4.8.2.

• Initialize. The challenger samples b
$← {0, 1} and also generates a Blum integer N and a

vector g
$← QR`N . It sends N and g to the adversary.

• Query. The adversary adaptively makes queries, where each query is a vector a ∈ {0, 1}`.
For each query a, the challenger samples r

$← [N2] and returns (−1)a · gr if b = 0, or gr if
b = 1.

• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

AV`Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ .
Under the QR assumption, no poly(k)-time adversary (where k is the security parameter) can

obtain a non-negligible advantage in the game, as formally stated below.

Lemma 4.6.1. Let A be an adversary for the adaptive `-vector game that makes at most t queries,
then there exists an adversary B for QR such that

AV`Adv[A] ≤ 4t` ·QRAdv[B] + 2t`/N .

Proof. A standard hybrid argument implies the existence of A1 which is an adversary for a 1-round
game (t = 1 in our notation) such that AV`Adv[A] ≤ t ·AV`Adv[A1].

We consider a series of hybrids (experiments). For each hybrid Hi, we let Pr[Hi] denote the
probability that the experiment “succeeds” (an event we define below).

• Hybrid H0. In this experiment, we flip a coin b
$← {0, 1} and also sample i

$← [`]. We simulate
the 1-round game with A1, where the challenger answers a query a with (gr1, . . . , g

r
i−1, (−1)b·ai ·

gri , (−1)ai+1 · gri+1, . . . , (−1)a` · gr` ). The experiment succeeds if b′ = b.

A standard argument shows that

AV`Adv[A1]

2`
=

∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .
• Hybrid H1. In this hybrid we replace gi (which is a uniform square) with (−gi). We get

that there exists B such that |Pr[H1]− Pr[H0]| ≤ 2 ·QRAdv[B].

We note that in this hybrid, the adversary’s query is answered with (gr1, . . . , g
r
i−1, (−1)b·ai ·

(−gi)r, (−1)ai+1 · gri+1, . . . , (−1)a` · gr` ).



4.7. Security Under Quadratic Residuosity 87

• Hybrid H2. In this hybrid, the only change is that now r
$← Z2N ′ (recall that N ′ = ϕ(N)

4 )
rather than U([N2]). By Lemma 4.3.1 it follows that |Pr[H2]− Pr[H1]| ≤ 1/N . We note that
while N ′ is not explicitly known to any entity, the argument here is statistical and there is
no requirement that this hybrid is efficiently simulated.

We denote r1 = (r mod 2) and r2 = (r mod N ′). Since N ′ is odd, the Chinese Remainder
Theorem implies that r1, r2 are uniform in Z2,ZN ′ , respectively, and are independent. The
answer to the query in this scenario is therefore

(gr1, . . . , g
r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gri+1, . . . , (−1)a` · gr` ) =

(gr21 , . . . , g
r2
i−1, (−1)b·ai+r1 · gr2i , (−1)ai+1 · gr2i+1, . . . , (−1)a` · gr2` ) .

However since r1 is a uniform bit, the answer is independent of b. It follows that Pr[H2] = 1
2 .

It follows that AV`Adv[A1] ≤ 4` ·QRAdv[B] + 2`/N , and the result follows.

4.7 Security Under Quadratic Residuosity

4.7.1 CPA Security

We start by proving the basic property of CPA security for our QR-based scheme. This will serve
as a warm-up towards proving the stronger properties. We prove the CPA-security of E [`], for
` ≥ logN + ω(log k). Proof of CPA security under subgroup indistinguishability is provided in
Section 4.8.3.

Intuitively, CPA security follows since the view of the adversary contains that public key (g0,g)
and the ciphertext ((−1)m · gr0,gr). If g0 was uniform, then this would have been identical to its
view in a 1-round adaptive (`+ 1)-vector game, and security would follow. To complete the proof,
therefore, we use the leftover hash lemma to prove that g0 is statistically indistinguishable from
uniform. A formal statement and proof follows.

Theorem 4.7.1. Let A be a CPA-adversary for E [`], then there exists an adversary B such that

CPAAdv[A] ≤ 4(`+ 1) ·QRAdv[B] +
√
N · 2−` +O(`/N) .

The theorem implies that taking ` = logN + ω(log k) is sufficient to obtain CPA-security.

Proof. The proof proceeds by a series of hybrids.

• Hybrid H0. This hybrid is identical to the CPA game with b = 0. By definition PrH0 [b′ =
1] = Pr[b′ = 1|b = 0].

• Hybrid H1. In this hybrid, we change the distribution of g0, which will now be sampled from

U(QRN ). By Lemma 4.3.4, combined with Lemma 4.3.2, (g0,g) is
√

N ′

2`+2 ≤
√

N
2`+2 -uniform.

Thus ∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤
√

N

2`+2
.
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• Hybrid H2. In this hybrid, we change the way the challenger answers queries. Now instead of
answering (c0, c) = ((−1)m · gr0,gr)), the challenger answers (c0, c) = (gr0,g

r). The difference
between H1 and H2 is now a 1-query adaptive (`+ 1)-vector game and thus by Lemma 4.6.1,∣∣∣∣Pr

H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤ 4(`+ 1) ·QRAdv[B] +O(`/N) ,

for some B.

• Hybrid H3. We now revert the distribution of g0 back to the original
∏
i∈[`] g

−si
i . Similarly

to H1, we have ∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤
√

N

2`+2
.

However, hybrid H3 is identical to the CPA game with b = 1, as all queries are answered
by encryptions of 0: PrH3 [b′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result
follows.

4.7.2 KDM Security

In this section, we discuss the KDM-security related properties of our scheme. We only discuss
our QR-based encryption scheme in this section, in the interest of clarity. We prove the KDM(1)-
security of E [`], for ` ≥ logN + ω(log k), in Section 4.7.2.1. Then, in Section 4.7.2.2, we state and
prove that for ` ≥ n · logN +ω(log k), E [`] is also KDM(n)-secure. Finally, extensions beyond affine
functions are stated without proof in Section 4.7.2.3.

A presentation and analysis of the general case, including all relevant proofs, is provided in
Section 4.8.4.

Throughout this section, we define Faff to be the class of affine functions over Z2, namely the
class of all functions of the form fa0,a(x) = a0 +

∑
aixi, where ai, xi ∈ Z2, and arithmetics are also

over Z2.

4.7.2.1 KDM(1)-Security

The intuition behind the KDM(1)-security of E [`] is as follows. Consider a public key (g0 =∏
g−sii ,g) that corresponds to a secret key s, and a function fa0,a ∈ Faff. The encryption of

fa0,a(s) = (−1)a0+
∑
aisi is

(c0, c) = ((−1)a0+
∑
aisi · gr0,gr) = ((−1)a0 ·

∏
((−1)ai · gri )−si ,gr) .

We notice that if s, a0,a are known, then c0 is completely determined by c = gr. Therefore, if we
replace gr with (−1)a · gr (an indistinguishable vector, even given the public key, by an adaptive
vector game), we see that (c0, c) is indistinguishable from (c′0, c

′) = ((−1)a0 · gr0, (−1)a · gr), even
when the secret key and the message are known. Applying the same argument again, taking into
account that g0 is close to uniform, implies that (c′0, c

′) is computationally indistinguishable from
(gr0,g

r), which is an encryption of 0. A formal statement and analysis follow.
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Theorem 4.7.2. Let A be a KDM
(1)
Faff

-adversary for E [`] that makes at most t queries, then there
exists an adversary B such that

KDM
(1)
Faff

Adv[A] ≤ 4t(2`+ 1) ·QRAdv[B] +
√
N · 2−` +O(t`/N) .

The theorem implies that taking ` = logN + ω(log k) is sufficient to obtain KDM(1)-security.

Proof. The proof proceeds by a series of hybrids.

• Hybrid H0. This hybrid is identical to the KDM(1) game with b = 0. By definition PrH0 [b′ =
1] = Pr[b′ = 1|b = 0].

• Hybrid H1. In this hybrid, we change the way the challenger answers the adversary’s queries.
Recall that in hybrid H0, the query fa0,a ∈ Faff was answered by (c0, c) = ((−1)a0+

∑
aisi ·

gr0,g
r). In hybrid H1, it will be answered by (c0, c) = ((−1)a0 · gr0, (−1)a · gr).

We prove that∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤ AV`Adv[A′] ≤ 4t` ·QRAdv[B1] +O(t`/N) ,

for some A′,B1, even when s is fixed and known.

To see this, we notice that in both hybrids c0 = (−1)a0 ·
∏
i∈[`]((−1)ai · c−1

i )si and g0 =∏
i∈[`] g

−si
i . Therefore an adversary A′ for the adaptive `-vector game can simulate A, sam-

pling s on its own and using g to generate g0 and “translate” the challenger answers. Applying
Lemma 4.6.1, the result follows.

• Hybrid H2. In this hybrid, we change the distribution of g0, which will now be sampled from

U(QRN ). By Lemma 4.3.4, combined with Lemma 4.3.2, (g0,g) is
√

N ′

2`+2 ≤
√

N
2`+2 -uniform.

Thus ∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤
√

N

2`+2
.

• Hybrid H3. In this hybrid, we again change the way the challenger answers queries. Now
instead of answering (c0, c) = ((−1)a0 ·gr0, (−1)a ·gr)), the challenger answers (c0, c) = (gr0,g

r).
The difference between H2 and H3 is now a t-query adaptive (` + 1)-vector game and thus
by Lemma 4.6.1,∣∣∣∣Pr

H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤ 4t(`+ 1) ·QRAdv[B2] +O(t`/N) ,

for some B2.

• Hybrid H4. We now revert the distribution of g0 back to the original
∏
i∈[`] g

−si
i . Similarly

to H2, we have ∣∣∣∣Pr
H4

[b′ = 1]− Pr
H3

[b′ = 1]

∣∣∣∣ ≤
√

N

2`+2
.
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However, hybrid H4 is identical to the KDM(1) game with b = 1, as all queries are answered
by encryptions of 0: PrH4 [b′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result
follows (where B is, say, a weighted average between B1 and B2).

4.7.2.2 KDM(n)-Security

A formal statement and proof for the QR case follows. For the statement and proof in the general
case, see Section 4.8.4.3.

Theorem 4.7.3. Let A be a KDM
(n)
Faff

-adversary for E [`] that makes at most t queries, then there
exists an adversary B such that

KDM
(n)
Faff

Adv[A] ≤ 4nt(2`+ 1) ·QRAdv[B] + (N · 2−`/n)n/2 +O(nt`/N) .

The theorem implies that taking ` = n · logN + ω(log k) is sufficient for KDM(n)-security.

Proof. Let us first introduce the notation used in the proof: We now consider functions in Faff that
are applied to a concatenated vector of n secret keys. We will denote such functions by fa0,a1,...,an ,
where a0 ∈ {0, 1} and aj ∈ {0, 1}`, and such that for all x1, . . . ,xn ∈ {0, 1}` the function is defined
by

fa0,a1,...,an(x1, . . . ,xn) = a0 +
∑

j∈[n],i∈[`]

aj,i · xj,i .

All arithmetic operations are over Z2.
The proof follows the outline of the proof of Theorem 4.7.2 with slight modifications to the

hybrids.

• Hybrid H0. This hybrid is identical to the KDM(n) game with b = 0. Let {ski = si}i∈[n]

denote the generated secret keys and {pki = (g0,i,gi)}i∈[n] denote the public keys produced
by the challenger. By definition PrH0 [b′ = 1] = Pr[b′ = 1|b = 0].

• Hybrid H1. We change the way the challenger answers the adversary’s queries. For each
query ((a0, {aj}j∈[n]), i) made by A, the challenger does as follows.

Define yi,j = si⊕ sj (the binary XOR operation). Given {yi,j}i,j , the challenger finds (a′0,a
′)

such that fa′0,a′(si) = fa0,{aj}j∈[n]
(s1, . . . , sn). This is possible to do without knowing the

values of the {si}, only {yi,j}: Consider the element sj,i′ (the i′th element of sj). We know
that sj,i′ = si,i′ ⊕ (yi,j)i′ . Therefore we know that if (yi,j)i′ = 0 then sj,i′ = si,i′ and if
(yi,j)i′ = 1 then sj,i′ = 1− si,i′ . We can thus replace the aj,i′ · sj,i′ element in the description
of the function f with either aj,i′ · si,i′ or aj,i′ · (1− si,i′), depending on the (known) value of
(yi,j)i′ . Doing this for one variable after another, results in an affine function of only si. We
again stress that we only used {yi,j}i,j for this transformation.

The challenger in this hybrid answers with (c0, c) = ((−1)a
′
0 · gr0,i, (−1)a

′ · gri ) instead of

(c0, c) = ((−1)a
′
0+

∑
j∈[`] a

′
j ·si,j · gr0,i,gri ).

It holds that ∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤ 4nt` ·QRAdv[B1] +O(nt`/N) ,
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since, as in the proof of Theorem 4.7.2, the difference between the hybrids can be viewed as a
t-round adaptive (n`)-vector game, considering (g1, . . . ,gn) as the first message, and now the
simulated adversary only needs a part of the answer for each query (the one that is respective
to the user i for which the query was made).

• Hybrid H2. Following the proof outline of Theorem 4.7.2, we change the distributions of
g0,i for all i ∈ [n], to U(QRN ). The challenger still needs to know {yi,j}i,j∈[n] in order to
answer the queries, so we need to prove that even fixing {yi,j}i,j∈[n], hybrid H2 is close to
H1. Intuitively speaking, this will require us to “extract” n uniform elements of QRN out of
a single s (because once one of them is specified, all others are determined by the values of
yi,j). Therefore, for security to hold, we have to require that ` is proportional to n.

We now wish to apply Lemma 4.3.2 to claim that the hybrids are statistically close. To do
that, we consider the following family of hash functions (defined for a fixed value of {yi,j})

zg1,...,gn(s1) =
(∏

g
s1,i
1,i ,

∏
g
s1,i⊕(y1,2)i
2,i , . . . ,

∏
g
s1,i⊕(y1,n)i
n,i

)
.

This family is 2-universal (by a similar argument to Lemma 4.3.4, using the fact that the
vectors gi are independent). The output describes the distribution of g0,i in the case where
all yi,j are known, but s1 is not. We can now apply Lemma 4.3.2 respective to this family
and conclude that∣∣∣∣Pr

H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤
√

(N ′)n

2`+2
≤
√

Nn

2`+2
=

1

2
· (N · 2−`/n)n/2 .

• Hybrid H3. Note that at this point the public keys are distributed uniformly and indepen-
dently of yi,j ’s. We again change the way the challenger answers queries, along the lines of
the proof of Theorem 4.7.2. Instead of answering with (c0, c) = ((−1)a

′
0 · gr0,i, (−1)a

′ · gri ), the
challenger now answers with (c0, c) = (gr0,i,g

r
i ). This can be viewed as a t-round adaptive

n(`+ 1)-vector game (similarly to the previous hybrid) and thus∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤ 4nt(`+ 1) ·QRAdv[B2] +O(nt`/N) .

• Hybrid H4. We revert the distributions of the g0,i’s to the original one. As in hybrid H2 we
have |PrH4 [b′ = 1]− PrH3 [b′ = 1]| ≤ 1

2 · (N · 2
−`/n)n/2.

Hybrid H4 is identical to the KDM(n) game with b = 1 as all queries are answered by
encryptions of 0 and the claim follows.

4.7.2.3 Beyond Affine Functions

Two building blocks have been suggested in [BGK11, BHHI10] to obtain KDM-security w.r.t. a
larger class of functions. The work of [BHHI10] was later generalized and simplified by [App11]. Our
scheme has the properties required to apply both constructions, yielding the following corollaries.

The first corollary is derived using [BGK11, Theorem 1.1]. A set of functions H = {h1, . . . , h` :
hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) = (h1(x)‖ · · · ‖h`(x)) is injective
(the operator ‖ represents string concatenation).
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Corollary 4.7.4. Consider E [`] and let κ be polynomial in the security parameter such that κ ≥
logN + ω(log k). Then for any entropy preserving set H = {h1, . . . , h` : hi ∈ {0, 1}κ → {0, 1}}
of efficiently computable functions, with polynomial cardinality (in the security parameter), there
exists a KDM(1)-secure scheme under the QR-assumption w.r.t. the class of functions

F =
{
f(x) = a0 +

∑
aihi(x) : (a0,a) ∈ Z2 × Z`2

}
.

The second corollary is derived using [App11, Proposition 4.9].13

Corollary 4.7.5. Based on the QR assumption, for any polynomial p there exists a KDM(1)-secure
encryption scheme w.r.t. all functions computable by circuits of size p(k) (where k is the security
parameter).

These results can be generalized to any SG assumption. For the generalized statements and
proofs, see Section 4.8.4.4.

4.7.3 Leakage Resilience

We prove that the scheme E [`] (our QR based scheme) is resilient to a leakage of up of λ =
`− logN − ω(log k) bits. This implies that taking ` = ω(logN), achieves (1− o(1)) leakage rate.

Intuitively, to prove leakage resilience, we consider the case where instead of outputting the
challenge ciphertext ((−1)m · gr0,gr), we output ((−1)m · (−1)

∑
σisi · gr0, (−1)σ · gr), for a random

vector σ
$← Z`2. The views of the adversary in the two cases are indistinguishable (by an adaptive

vector game).14 Using the leftover hash lemma, so long as s has sufficient min-entropy, even given
g0 and the leakage, then

∑
σisi is close to uniform. In other words, the ciphertexts generated by

our scheme are computationally indistinguishable from ones that contain a strong extractor (whose
seed is the aforementioned σ), applied to the secret key. This guarantees leakage resilience.15 The
result in the QR case is formally stated and proven below. The general result is stated and proven
in Section 4.8.5.

Theorem 4.7.6. Let A be a λ-leakage adversary for E [`]. Then there exists an adversary B such
that

LeakλAdv[A] ≤ 8` ·QRAdv[B] +
√
N · 2λ−` +O(`/N) .

Proof. We prove by a series of hybrids (experiments). Each experiment defines a binary random
variable (one can think of a value of 1 as a “success” in the experiment).

• Hybrid H0. This hybrid describes the following experiment: a challenger flips a coin b
$←

{0, 1} and plays the λ-leakage game with A. It returns 1 if and only if b′ = b, where b′ is the
value returned by A. By definition∣∣∣Pr[H0 = 1]− 1

2

∣∣∣ =
LeakλAdv[A]

2
.

13A more complicated proof, based on [BHHI10, Theorem 4.1], appeared in an earlier version of this work.
14Of course the latter ciphertext can only be generated using the secret key, but the indistinguishability holds even

when the secret key is known.
15In the spirit of [NS09], we can say that our scheme defines a new hash proof system that is universal with high

probability over illegal ciphertexts, a property which is sufficient for leakage resilience.
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• Hybrid H1. We change the encryption algorithm. In this hybrid, the challenger encrypts the
message mb by first computing c = gr and then using s to produce c0 = (−1)mb ·

∏
i∈[`] c

−si
i .

The ciphertext distribution does not change and hence Pr[H1 = 1] = Pr[H0 = 1].

• Hybrid H2. Again we change the encryption. This time the challenger samples σ
$← {0, 1}`

and uses c = (−1)σ · gr instead of c = gr. Note that the difference between H1 and H2 is
exactly a 1-round adaptive `-vector game and thus by Lemma 4.6.1, there exists an adversary
B such that

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` ·QRAdv[B] +O(`/N) .

• Hybrid H3. We notice that in H2, the distribution of c0 is

c0 = (−1)mb ·
∏
i∈[`]

(−1)si·σi ·
( ∏
i∈[`]

g−sii

)r
= (−1)mb+

∑
si·σi ·

( ∏
i∈[`]

g−sii

)r
.

In hybrid H3 we change this distribution. The challenger samples u
$← {0, 1} and sets

c0 = (−1)mb+u ·
( ∏
i∈[`]

g−sii

)r
.

To analyze this hybrid, we recall that
∏
i∈[`] g

−si
i ∈ QRN and use Lemma 4.3.4 and Lemma 4.3.3

to conclude that for any value of g, it holds that (σ,
∑
siσi,

∏
i∈[`] g

−si
i , f(s)) is 1

2 ·
√
N · 2λ−`-

close to (σ, u,
∏
i∈[`] g

−si
i , f(s)). It follows that

|Pr[H3 = 1]− Pr[H2 = 1]| ≤ 1

2
·
√
N · 2λ−` .

• Hybrid H4. We further change c0 and now set it to be

c0 = (−1)u ·
( ∏
i∈[`]

g−sii

)r
.

Since u is uniform, it is distributed identically to mb + u (note that the arithmetics here are
over Z2) and thus Pr[H4 = 1] = Pr[H3 = 1]. In H4, however, the ciphertext distribution is
independent of b. Therefore Pr[H4 = 1] = 1

2 .

Combining all of the above, the result follows.

4.7.4 Auxiliary-Input Security

As in previous work, we start by proving weak auxiliary-input security in Lemma 4.7.7 below and
then derive general auxiliary-input security for sub-exponentially hard functions in Corollary 4.7.8.
The complete proofs for the general case appear in Section 4.8.6.
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Lemma 4.7.7. Let ε(`) and f be such that ε is negligible and f is ε-weakly uninvertible function
(more precisely, family of functions). Let A be an f -auxiliary input adversary for E [`]. Then there
exists an adversary B such that

Auxweak
f Adv[A] ≤ 8` ·QRAdv[B] +O(`/N) + negl(k) .

We note that the above may seem confusing, since it appears to imply auxiliary-input security,
and thus also semantic security, regardless of the value of `. However, we recall that if ` is too small,
then we may be able to retrieve s from pk without the presence of any auxiliary input. Therefore,
the value of ` must be large enough in order for f to be weakly uninvertible.

We only provide a proof sketch of Lemma 4.7.7, for a full proof (for the general case) see
Lemma 4.8.9 in Section 4.8.6.

Proof sketch. The proof is almost identical to that of Theorem 4.7.6. The only difference is that now
we argue that |Pr[H3 = 1]− Pr[H2 = 1]| = negl(k) by applying Theorem 4.3.5 (the Goldreich-Levin
theorem) to the uninvertible function f ′(s) = (g,

∏
g−sii , f(s)).

An immediate corollary (see [DGK+10, Lemma 4]) enables us to state that E [`] is (ε/N)-auxiliary
input secure for any negligible ε, this is because the only part of the public key that depends on
the secret key is g0, whose value can be “guessed” with probability 1/N . For a formal proof, see
Corollary 4.8.10 in Section 4.8.6. Note that in order for (negl(k)/N)-hard to invert functions to
even exist, it must be that ` ≥ logN + ω(log k), since any function of ` input bits is trivially
invertible with probability at least 2−`.

We can derive the following corollary (for proof, see Corollary 4.8.11 in Section 4.8.6).

Corollary 4.7.8. Assuming that a subgroup indistinguishability assumption holds, then for any
constant δ > 0 there exists a 2−`

δ
-auxiliary input secure encryption scheme.

4.8 Constructions and Proofs for General Subgroup Indistinguisha-
bility Assumptions

4.8.1 Description of the Encryption Scheme

The scheme E [GU , `], which is a generalization of E [`] presented in Section 4.5, is defined as follows.

• Parameters. The scheme is parameterized by a group GU , as described in Section 4.4.
Namely, a probabilistic algorithm that given the security parameter 1k, produces an instance
IGU of GU .

An additional parameter is the value `, which is polynomial in the security parameter, but
its exact value is determined based on the specific application. The message space for the
encryption scheme is M = GM .

• Key generation. First, sample an instance IGU of subgroup indistinguishability (which
can be used as a joint public parameter for all users, similarly to N in our QR-based
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scheme). Then, sample s
$← {0, 1}` and set sk = s.16 Lastly, sample g

$← GL
` and set

g0 = (
∏
i∈[`] g

si
i )−1. The public key is pk = (g0,g) (and, implicitly, also IGU ).

• Encryption. Given a public key pk = (g0,g) and a message m ∈ GM , sample r
$← [T 2] and

compute c = gr and c0 = m · gr0. Outputs the ciphertext (c0, c).

• Decryption. Given a secret key sk = s and a ciphertext (c0, c), compute m = c0 ·
∏
i∈[`] c

si
i .

As in our QR-based scheme, correctness is by definition, and security will be proven in the
following sections. As before, correctness holds regardless of the distribution of the vector s, and
in Section 4.8.7 we discuss the use secret keys which are not binary strings and its effect on the
various notions of security.

4.8.2 The Adaptive Vector Game

The adaptive `-vector game, for a general SG assumption, is defined as follows (see Section 4.6 for
an explicit presentation of the QR case).

• Initialize. Let GU be as defined in Section 4.4.1. The challenger samples b
$← {0, 1} and

also generates an instance IGU and a vector g
$← GL

`. It sends IGU and g to the adversary.

• Query. The adversary adaptively makes queries where each query is a vector a ∈ GM
`. For

each query a, the challenger samples r
$← [T 2] and returns a(1−b) · gr. Namely, if b = 0 it

returns a · gr and if b = 1 it returns gr.

• Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

AV`Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ .
We show that under the SG assumption, no polynomial time adversary can obtain a non-

negligible advantage in the game.

Lemma 4.8.1. Let A be an adversary for the adaptive `-vector game that makes at most t queries,
then there exists an adversary B for SG such that

AV`Adv[A] ≤ 4t` · SGAdv[B] + 2t`/T .

Proof. A standard hybrid argument implies the existence of A1, which is an adversary for a 1-round
game (t = 1 in our notation) such that AV`Adv[A] ≤ t ·AV`Adv[A1].

We consider the following hybrids (experiments). For each hybrid Hi, we let Pr[Hi] denote the
probability that the experiment “succeeds” (an event we define below).

16Alternatively, set sk = hs, and extract s via discrete logarithm during the decoding process (which is easy since
si ∈ {0, 1}). This alternative representation will lead to a different representation of the class of functions for which
we get KDM security. See Section 4.8.4.1 for more details.
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• Hybrid H0. In this experiment, we flip a coin b
$← {0, 1} and also sample i

$← [`]. We
simulate the 1-round game with A1, where the challenger answers a query a ∈ GM

` with
(gr1, . . . , g

r
i−1, a

b
i · gri , ai+1 · gri+1, . . . , a` · gr` ). The experiment succeeds if b′ = b.

A standard argument shows that

AV`Adv[A1]

2`
=

∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .
• Hybrid H1. In this hybrid we replace gi (which is uniform in GL) with h · gi. Namely, the

adversary’s query is now answered with

(gr1, . . . , g
r
i−1, a

b
i · (h · gi)r, ai+1 · gri+1, . . . , a` · gr` ) .

In a straightforward manner, there exist B′,B such that

|Pr[H1]− Pr[H0]| ≤ SG′Adv[B′] ≤ 2 · SGAdv[B] .

• Hybrid H2. In this hybrid, the only change is that now r
$← ZM ·L rather than U([T 2]). By

Lemma 4.3.1, it follows that |Pr[H2]− Pr[H1]| ≤ 1/T .

We denote r1 = (r mod M) and r2 = (r mod L). By the Chinese Remainder Theorem, it
holds that r1, r2 are uniform in ZM ,ZL respectively and are independent. The answer to the
query in this scenario is therefore

(gr1, . . . , g
r
i−1, a

b
i ·(h·gi)r, ai+1·gri+1, . . . , a`·gr` ) = (gr21 , . . . , g

r2
i−1, a

b
i ·hr1 ·g

r2
i , ai+1·gr2i+1, . . . , a`·g

r2
` ) .

However since hr1 is uniform in the cyclic group GM then abi · hr1 is also uniform and is
independent of b. It follows that Pr[H2] = 1

2 .

It follows that AV`Adv[A1] ≤ 4` · SGAdv[B] + 2`/T , and the result follows.

4.8.3 CPA Security

In this section, we state and prove the CPA security of our general scheme E [GU , `]. We show that
for ` ≥ logL+ω(log k), E [GU , `] is CPA-secure. The high level idea is the same as in the QR-based
scheme as described in Section 4.7.1.

Theorem 4.8.2. Let A be a CPA-adversary for E [GU , `], then there exists an adversary B such
that

CPAAdv[A] ≤ 4(`+ 1) · SGAdv[B] +
√
L · 2−` +O(`/T ) .

The theorem implies that taking ` = logL+ ω(log k) is sufficient to obtain CPA-security.

Proof. The proof proceeds by a series of hybrids.

• Hybrid H0. This hybrid is identical to the KDM(1) game with b = 0. By definition PrH0 [b′ =
1] = Pr[b′ = 1|b = 0].
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• Hybrid H1. In this hybrid, we change the distribution of g0, which will now be sampled

from U(GL). By Lemma 4.3.4, combined with Lemma 4.3.2, (g0,g) is
√

L
2`+2 -uniform. Thus

∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤
√

L

2`+2
.

• Hybrid H2. In this hybrid, we change the way the challenger answers queries. Now instead
of answering (c0, c) = (m · gr0,gr), the challenger answers (c0, c) = (gr0,g

r). The difference
between H2 and H1 is now a 1-query adaptive (`+ 1)-vector game and thus by Lemma 4.8.1,∣∣∣∣Pr

H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤ 4(`+ 1) · SGAdv[B] +O(`/T ) ,

for some B.

• Hybrid H3. We now revert the distribution of g0 back to the original
∏
i∈[`] g

−si
i . Similarly

to H1, we have ∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤
√

L

2`+2
.

However, hybrid H4 is identical to the CPA game with b = 1 as all queries are answered by
encryptions of 0: PrH3 [b′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result
follows.

4.8.4 KDM Security

In this section, we state and prove the KDM-related properties of our general scheme E [GU , `].
We start by defining the class Faff of affine functions over GM in Section 4.8.4.1. Then, in Sec-

tion 4.8.4.2, we show that for ` ≥ logL + ω(log k), E [GU , `] is KDM
(1)
Faff

-secure. We proceed, in

Section 4.8.4.3, to show that for ` ≥ n logL + ω(log k), it holds that E [GU , `] is KDM
(n)
Faff

-secure.
Section 4.8.4.4 explains how to extend the KDM results of the preceding sections beyond affine
functions, by using either the techniques of [BGK11] or those of [BHHI10, App11]. This section
contains the general versions and full proofs of the statements in Section 4.7.2.

4.8.4.1 The Class of Affine Functions

Recall that GM is a cyclic group of order M with generator h. The class of affine functions over
GM is the class of affine functions over ZM “in the exponent”. If the discrete logarithm problem
in h is easy, then the two are computationally equivalent.

Formally, the class Faff with input length ` is the set of functions Faff = {fα,β : Z`M →
GM}β∈GM ,α∈GM` , where

fα,β(x) = β ·
∏
i∈[`]

αxii .

The function fα,β is represented by (α, β).
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In Section 4.8.4.3, we consider affine functions for input dimension n · `, in which case we will
“break” α into n parts and denote

Faff = {fα1,...,αn,β : (Z`M )n → GM}β∈GM ,αi∈GM` ,

where
fα1,...,αn,β(x1, . . . ,xn) = β ·

∏
i∈[n],j∈[`]

α
xi,j
i,j .

We remark that [BHHO08] used a “dual” definition of this function class. In their formulation,
the secret key of the encryption scheme is hs, and the decryption algorithm needs to recover s as
a first step. A description of an affine function using their formulation contains a vector a ∈ ZM
such that ha corresponds to α in our formulation. Our proofs (as well as theirs) can be presented
using either definition, we prefer ours for for aesthetic reasons.17

4.8.4.2 KDM(1)-Security

We can now prove KDM(1)-security for E [GU , `]. The high level idea is the same as in the QR-based
scheme described in Section 4.7.2.1.

Theorem 4.8.3. Let A be a KDM
(1)
Faff

-adversary for E [GU , `] that makes at most t queries, then
there exists an adversary B such that

KDM
(1)
Faff

Adv[A] ≤ 4t(2`+ 1) · SGAdv[B] +
√
L · 2−` +O(t`/T ) .

The theorem implies that taking ` = logL+ ω(log k) is sufficient to obtain KDM(1)-security.

Proof. The proof proceeds by a series of hybrids.

• Hybrid H0. This hybrid is identical to the KDM(1) game with b = 0. By definition PrH0 [b′ =
1] = Pr[b′ = 1|b = 0].

• Hybrid H1. In this hybrid, we change the way the challenger answers the adversary’s queries.
Recall that in hybrid H0, the query (α, β) ∈ Faff was answered by (c0, c) = (β ·

∏
i∈[`] α

si
i ·

gr0,g
r). In hybrid H1, it will be answered by (c0, c) = (β · gr0,α · gr).

We prove that∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤ AV`Adv[A′] ≤ 4t` · SGAdv[B1] +O(t`/T ) ,

for some A′,B1, even when s is fixed and known.

To see this, we notice that in both hybrids c0 = β·
∏
i∈[`](αi·c

−1
i )si and g0 =

∏
i∈[`] g

−si
i . There-

fore, an adversary A′ for the adaptive `-vector game can simulate A, sampling s on its own
and using g to generate g0 and “translate” the challenger answers. Applying Lemma 4.8.1,
the result follows.

17Special care needs to be taken when the group GM is not efficiently recognizable (i.e. one cannot tell between
members of the group and non-members). In such case, we require that the description of the function also contains
a proof that it indeed belongs to the prescribed class. This is to prevent the adversary from querying illegal functions
that “pretend” to be legal.
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• Hybrid H2. In this hybrid, we change the distribution of g0, which will now be sampled

from U(GL). By Lemma 4.3.4, combined with Lemma 4.3.2, (g0,g) is
√

L
2`+2 -uniform. Thus

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤
√

L

2`+2
.

• Hybrid H3. In this hybrid, we again change the way the challenger answers queries. Now
instead of answering (c0, c) = (β · gr0,α · gr), the challenger answers (c0, c) = (gr0,g

r). The
difference between H2 and H3 is now a t-query adaptive (` + 1)-vector game and thus by
Lemma 4.8.1, ∣∣∣∣Pr

H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤ 4t(`+ 1) · SGAdv[B2] +O(t`/T ) ,

for some B2.

• Hybrid H4. We now revert the distribution of g0 back to the original
∏
i∈[`] g

−si
i . Similarly

to H2, we have ∣∣∣∣Pr
H4

[b′ = 1]− Pr
H3

[b′ = 1]

∣∣∣∣ ≤
√

L

2`+2
.

However, hybrid H4 is identical to the KDM(1) game with b = 1 as all queries are answered
by encryptions of 0: PrH4 [b′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result
follows (where B is, say, a weighted average between B1 and B2).

4.8.4.3 KDM(n)-Security

We go on to prove KDM(n)-security for our scheme. Unlike the schemes of [BHHO08, ACPS09],
we do not achieve a single scheme that is secure w.r.t. any polynomial n. We do, however, prove
that increasing the value of ` enables supporting more users. The result is stated in the following
theorem.

Theorem 4.8.4. Let A be a KDM
(n)
Faff

-adversary for E [GU , `] that makes at most t queries, then
there exists an adversary B such that

KDM
(n)
Faff

Adv[A] ≤ 4nt(2`+ 1) · SGAdv[B] + (L · 2−`/n)n/2 +O(nt`/T ) .

The theorem implies that taking ` = n logL+ ω(log k) is sufficient for KDM(n)-security.

Proof. The proof follows the outline of the proof of Theorem 4.8.3 with slight modifications to the
hybrids.

• Hybrid H0. This hybrid is identical to the KDM(n) game with b = 0. Let {ski = si}i∈[n]

denote the generated secret keys and {pki = (g0,i,gi)}i∈[n] denote the public keys produced
by the challenger. By definition PrH0 [b′ = 1] = Pr[b′ = 1|b = 0].
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• Hybrid H1. We change the way the challenger answers the adversary’s queries. For each
query (({αj}j∈[n], β), i) made by A, the challenger does as follows.

Define yi,j = si⊕ sj (the binary XOR operation). Given {yi,j}i,j , the challenger finds (α′, β′)
such that fα′,β′(si) = f{αj}j∈[n],β(s1, . . . , sn). This is possible to do without knowing the

values of the {si}, only {yi,j}: Consider the element sj,i′ (the i′th element of sj). We know
that sj,i′ = si,i′ ⊕ (yi,j)i′ . Therefore we know that if (yi,j)i′ = 0 then sj,i′ = si,i′ and if

(yi,j)i′ = 1 then sj,i′ = 1 − si,i′ . We can thus replace the α
sj,i′

j,i′ element in the description of

the function f with either α
si,i′

j,i′ or α
1−si,i′
j,i′ , depending on the (known) value of (yi,j)i′ . Doing

this for one variable after another, results in an affine function of only si. We again stress
that we only use {yi,j}i,j for this transformation.

The challenger in this hybrid answers with (c0, c) = (β′ · gr0,i,α′ · gri ) instead of (c0, c) =

(β′ ·
∏
j∈[`] α

′si,j
j · gr0,i,gri ).

It holds that ∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]

∣∣∣∣ ≤ 4nt` · SGAdv[B1] +O(nt`/T ) ,

since, as in the proof of Theorem 4.8.3, the difference between the hybrids can be viewed as a
t-round adaptive (n`)-vector game, considering (g1, . . . ,gn) as the first message, and now the
simulated adversary only needs a part of the answer for each query (the one that is respective
to the user i for which the query was made).

• Hybrid H2. Following the proof outline of Theorem 4.8.3, we change the distributions of g0,i

for all i ∈ [n], to U(GL). The challenger still needs to know {yi,j}i,j∈[n] in order to answer the
queries so we need to prove that even fixing {yi,j}i,j∈[n], hybrid H2 is close to H1. Intuitively
speaking, this will require us to “extract” n uniform elements of GL out of a single s (because
once one of them is specified, all others are determined by the values of yi,j). Therefore, for
security to hold, we have to require that ` is proportional to n.

We now wish to apply Lemma 4.3.2 to claim that the hybrids are statistically close. To do
that, we consider the following family of hash functions (defined for a fixed value of {yi,j})

zg1,...,gn(s1) =
(∏

g
s1,i
1,i ,

∏
g
s1,i⊕(y1,2)i
2,i , . . . ,

∏
g
s1,i⊕(y1,n)i
n,i

)
.

This family is 2-universal (by a similar argument to Lemma 4.3.4, using the fact that the
vectors gi are independent). The output describes the distribution of g0,i in the case where
all yi,j are known, but s1 is not. We can now apply Lemma 4.3.2 respective to this family
and conclude that ∣∣∣∣Pr

H2

[b′ = 1]− Pr
H1

[b′ = 1]

∣∣∣∣ ≤
√

Ln

2`+2
=

1

2
· (L · 2−`/n)n/2 .

• Hybrid H3. Note that at this point, the public keys are distributed uniformly and indepen-
dently of yi,j ’s. We again change the way the challenger answers queries, along the lines of
the proof of Theorem 4.8.3. Instead of answering with (c0, c) = (β′ ·gr0,i,α′ ·gri ), the challenger
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now answers with (c0, c) = (gr0,i,g
r
i ). This can be viewed as a t-round adaptive n(`+1)-vector

game (similarly to the previous hybrid) and thus∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]

∣∣∣∣ ≤ 4nt(`+ 1) · SGAdv[B2] +O(nt`/T ) .

• Hybrid H4. We revert the distributions of the g0,i’s to the original one. As in hybrid H2,
we have |PrH4 [b′ = 1]− PrH3 [b′ = 1]| ≤ 1

2 · (L · 2
−`/n)n/2.

Hybrid H4 is identical to the KDM(n) game with b = 1 as all queries are answered by
encryptions of 0 and the claim follows.

4.8.4.4 Beyond Affine Functions

Two approaches have been suggested to obtain KDM-security w.r.t. a larger family of functions.
The first is due to [BGK11] and the second is due to [BHHI10, App11]. In this section we show
that both extend to the SG assumption.

Entropy-κ Security. The notion of entropy-κ KDM-security was introduced in [BGK11] as a
way to extend KDM-security beyond affine functions. In their work [BGK11, Definitions 3.1, 3.2],
an encryption scheme is called projective if the key-generation can be described as follows: First, the
secret key is uniformly sampled from some set S, and then the public key is computed as a (possibly
randomized) efficient function of the secret key. A projective scheme is entropy-κ KDM(n)-secure
if for any distribution D with H∞(D) ≥ κ supported inside S, the scheme obtained by sampling
the secret key from D rather than from S, is KDM(n)-secure.

We show that E [GU , `] is entropy-κ KDM(1)-secure for κ ≥ logL+ω(log k) (note that the scheme
is clearly projective).

Lemma 4.8.5. Let D be a distribution on {0, 1}` with H∞(D) ≥ κ, let ED[GU , `] denote the
encryption scheme that samples the secret key from D rather than U({0, 1}`).

Let A be a KDM(1)-adversary for ED[GU , `] that makes at most t queries, then there exists an
adversary B such that

KDM(1)Adv[A] ≤ t(2`+ 1) · SGAdv[B] +
√
L · 2−κ +O(t`/T ) .

Proof. The proof is identical to that of Theorem 4.8.3. The only difference is in the transitions
from hybrid H1 to H2 and from hybrid H3 to H4 (which are the same transition in reverse order).
The difference here is that now when we invoke Lemma 4.3.2, we have |X| = 2κ rather than 2`.
The result immediately follows.

The following corollary combines the above lemma with [BGK11, Theorem 1.1]. A set of
functions H = {h1, . . . , h` : hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) =
(h1(x)‖ · · · ‖h`(x)) is injective (the operator ‖ represents string concatenation).

Corollary 4.8.6. Consider E [GU , `] and let κ be polynomial in the security parameter such that
κ ≥ logL + ω(log k). Then for any entropy preserving set H = {h1, . . . , h` : hi : {0, 1}κ → {0, 1}}



102 Chapter 4: Circular Security and Leakage Resilience from Subgroup Indistinguishability

of efficiently computable functions with polynomial cardinality (in the security parameter), there
exists a KDM(1)-secure scheme under the SG-assumption w.r.t. the class of functions

F =
{
f(x) = β ·

∏
i∈[`]

α
hi(x)
i : (α, β) ∈ GM

` ×GM

}
.

Completeness Theorem for KDM Security. The completeness theorem in [App11, Proposi-
tion 4.9] in conjunction with Theorem 4.8.3 (or Theorem 4.8.4 if KDM(n) is wanted), immediately
implies the following corollary. (A more complicated proof, that appeared in an earlier version of
this work, uses [BHHI10, Theorem 4.1].)

Corollary 4.8.7. Based on the SG assumption, for any polynomial p there exists a KDM(1)-secure
encryption scheme w.r.t. all functions computable by circuits of size p(k) (where k is the security
parameter).

4.8.5 Leakage Resilience

We prove that the scheme E [GU , `] is resilient to a leakage of up of λ = `− log(ML)−ω(log k) bits.
The result is formally stated below, for overview see Section 4.7.3.

Theorem 4.8.8. Let A be a λ-leakage adversary for E [GU , `]. Then there exists an adversary B
such that

LeakλAdv[A] ≤ 8` · SGAdv[B] +
√
ML · 2λ−` +O(`/T ) .

Proof. We prove by a series of hybrids (experiments). Each experiment represents a process with
a single binary value (one can think of 1 as a “success” in the experiment).

• Hybrid H0. This hybrid describes the following experiment: a challenger flips a coin b
$←

{0, 1} and plays the λ-leakage game with A. It returns 1 if and only if b′ = b, where b′ is the
value returned by A. By definition∣∣∣Pr[H0 = 1]− 1

2

∣∣∣ =
LeakλAdv[A]

2
.

• Hybrid H1. We change the encryption algorithm. In this hybrid, the challenger encrypts a
message m by first computing c = gr, and then using s to produce c0 = mb ·

∏
i∈[`] c

−si
i . The

ciphertext distribution does not change and hence Pr[H1 = 1] = Pr[H0 = 1].

• Hybrid H2. Again we change the encryption. This time the challenger samples σ
$← GM

`

and uses c = σ · gr instead of c = gr. Note that the difference between H1 and H2 is exactly
a 1-round adaptive `-vector game, and thus by Lemma 4.8.1, there exists an adversary B such
that

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` · SGAdv[B] +O(`/T ) .



4.8. Constructions and Proofs for General Subgroup Indistinguishability Assumptions 103

• Hybrid H3. We notice that in H2, the distribution of c0 is

c0 = mb ·
∏
i∈[`]

σ−sii ·
( ∏
i∈[`]

g−sii

)r
.

In hybrid H3 we change this distribution. The challenger samples u
$← GM and sets

c0 = mb · u−1 ·
( ∏
i∈[`]

g−sii

)r
.

To analyze this hybrid, we recall that
∏
i∈[`] g

−si
i ∈ GL, and use Lemma 4.3.4 and Lemma 4.3.3

to conclude that for any value of g it holds that(
σ,
∏
i∈[`]

σsii ,
∏
i∈[`]

g−sii , f(s)
)

and
(
σ, u,

∏
i∈[`]

g−sii , f(s)
)

are 1
2 ·
√
LM · 2λ−`-close.

It follows that

|Pr[H3 = 1]− Pr[H2 = 1]| ≤ 1

2
·
√
LM · 2λ−` .

• Hybrid H4. We further change c0 and now set it to be

c0 = u ·
( ∏
i∈[`]

g−sii

)r
.

Since u is uniform, it is distributed identically to mb ·u−1 and thus Pr[H4 = 1] = Pr[H3 = 1].
In H4, however, the ciphertext distribution is independent of b. Therefore Pr[H4 = 1] = 1

2 .

Combining all of the above, the result follows.

4.8.6 Auxiliary-Input Security

We present the general result, showing the auxiliary-input security of E [GU , `], following the same
line of proof as in Section 4.7.4. The main difference is that we use a generalized Goldreich-
Levin theorem (Theorem 4.3.6) instead of the classic Theorem 4.3.5. Since the parameters of the
generalized version are slightly worse, this leads to slightly worse parameters in the auxiliary input
security.

The following lemma establishes weak auxiliary-input security.

Lemma 4.8.9. Let ε(`) = M−ω(log `) and let f : {0, 1}` → {0, 1}∗ be any ε-weakly uninvertible
function (more precisely, family of functions). Let A be an f -auxiliary input adversary for E [GU , `].
Then there exists an adversary B such that

Auxweak
f Adv[A] ≤ 8` · SGAdv[B] +O(`/T ) + negl(k) .
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We remark that when M is polynomial, as in the case of the QR-based scheme described in
Section 4.7.4, it is sufficient to require that ε is negligible, and thus any function that is weakly
uninvertible in polynomial time meets the requirement.

The proof (below) follows the same steps as the proof of Theorem 4.8.8. The only change is
that we use the (generalized) Goldreich-Levin theorem instead of the leftover hash lemma.

Proof. We use the exact same hybrids as in the proof of Theorem 4.8.8 (with the exception that
f is now an ε-weakly uninvertible function rather than a length bounded one). The exact same
arguments imply that ∣∣∣Pr[H0 = 1]− 1

2

∣∣∣ =
AuxfAdv[A]

2
Pr[H1 = 1] = Pr[H0 = 1]

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` · SGAdv[B] +O(`/T )

Pr[H4 = 1] = Pr[H3 = 1]

Pr[H4 = 1] =
1

2
.

Therefore, it remains to prove a bound on |Pr[H3 = 1]− Pr[H2 = 1]|. Assume towards contradiction
that there exists a polynomial t(k) such that |Pr[H3 = 1]− Pr[H2 = 1]| ≥ 1/t(k).

Consider the function f ′ : {0, 1}` → {0, 1}∗ defined as follows: f ′(s) uses sk = s as a secret key
for E [GU , `] and computes a corresponding pk. It then computes y ← f(sk, pk) and outputs (y, pk).
Since f is ε-weak uninvertible, it follows that for any adversary C, Pr[C(f ′(s)) = s] < ε, where the
probability is over s and over the coin-tosses of f ′ and C.

We notice that the hybrids H2 and H3 can be represented as an efficient (randomized) func-
tion of the distributions (f ′(s), τ , 〈τ , s〉) and (f ′(s), τ , v) respectively, where (τ , v) are the discrete
logarithms of (σ, u), respectively. Namely σi = hτi and u = hv. Note that {τi}, v are uniform in
ZM . Our assumption implies, therefore, that these distributions are distinguishable with advantage
1/t(k). In this case, it follows from Theorem 4.3.6 that there exists a C whose running time is at most
poly(`, t(k)) = poly(k), such that Pr[C(f ′(s)) = s] ≥ t(k) ·M−(1+log(8`t2(k)))/8 = M−O(log k) > ε.
We reached a contradiction and the claim, therefore, follows.

An immediate corollary (see also [DGK+10, Lemma 4]) enables us to state that E [GU , `] is
(M−ω(log `)/L)-auxiliary input secure. Note that in order for such functions to exist, it must be
that ` ≥ logL+(logM)·ω(log k), since any function on {0, 1}` is trivially invertible with probability
at least 2−`.

Corollary 4.8.10. Let ε(`) = M−ω(log `)

L and let f be any ε-uninvertible function (more precisely,
family of functions). Let A be an f -auxiliary input adversary for E [GU , `]. Then there exists an
adversary B such that

AuxfAdv[A] ≤ 8` · SGAdv[B] +O(`/T ) + negl(k) .

Proof. Recall that the public key of E [GU , `] is (g0 =
∏
g−sii ,g). Since g does not depend on the

secret key, it can be treated as a public parameter of the scheme and not as a part of the public
key. Since g0 ∈ GL, then any ε-uninvertible function is also (εL)-weakly uninvertible. The result
follows.
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We can derive the following corollary, which is a restatement of Corollary 4.7.8.

Corollary 4.8.11. Assuming that a subgroup indistinguishability assumption holds, then for any
constant δ > 0 there exists a 2−`

δ
-auxiliary input secure encryption scheme.

Proof. This follows immediately from Corollary 4.8.10 by using E [GU , (log T ·ω(log k))1/δ]. (Recall
that T is our upper bound on (ML).)

4.8.7 Using Our Scheme with Non-Binary Secret Keys

In all constructions so far in this chapter, the secret keys were always a uniform binary vector.
Indeed, this distribution is simple and makes the proofs go through more easily. However, in some
cases, using secret keys that come from a larger domain can be useful. Specifically, the parameter `
that governs the efficiency of our scheme is chosen in many cases so that the secret key has sufficient
entropy. Using distributions over larger domains, we can get the same entropy using smaller values
of `, and hence improve the efficiency of our scheme. The correctness of our schemes is trivially
preserved even for non-binary secret keys, as we mentioned in the relevant sections. In this section,
we show under which conditions security is preserved.

We consider the generic scheme from Section 4.8.1 with one change: The secret key vector s
will now be sampled from a distribution S over Z`. All other parameters of the scheme remain
unchanged. We denote this generalized scheme by E [GU , `,S]. Again, correctness does not depend
on the secret key distribution at all, and will hold for any S.

Let us now go over the various security notions and see how they are affected by this change.
We note that no change to the adaptive vector game is required.

CPA Security. Looking at the proof of Theorem 4.8.2, we see that the secret key distribution
only comes into play in hybrids H1, H3, where we change the distribution of g0 from

∏
i g
−si
i to

uniform and vice versa. We used the fact that if s is binary, then indistinguishability follows from
the leftover hash lemma. Let us distill the exact property we need for the proof to go through.

Definition 4.8.1 (hashing groups). Let G be a multiplicative commutative group, let ` ∈ N and let

S be a distribution supported on Z`. We say that G ε-hashes S, for ε ≥ 0, if letting g1, . . . , g`
$← G

and s
$← S, it holds that the distribution

(
g1, . . . , g`,

∏
i∈[`] g

si
i

)
is ε-uniform in G`+1.

If S is the uniform distribution over {0, 1}`, as we had before, then by Lemma 2.2.1 it holds

that GL ε-hashes S, for ε =
√

L
2`+2 .

Indeed, all we need in order to obtain CPA security with secret key distribution S, is a guarantee
that GL hashes S. This is formalized in the following theorem

Theorem 4.8.12. Consider the scheme E [GU , `,S] such that GL ε-hashes S, then letting A be a
CPA-adversary for E [GU , `,S], there exists an adversary B such that

CPAAdv[A] ≤ 4(`+ 1) · SGAdv[B] + 2ε+O(`/T ) .
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And CPA security follows so long as ε is negligible.

One way to prove the hashing property is using the leftover hash lemma: if
∏
i g
si
i is (almost)

2-universal over the support of S, and is sufficiently shrinking, then the hashing property follows.
For example, if GL is of prime order (or if its order is a product of large primes), then (almost)
2-universality will hold for any S

In fact, the hashing property can be proven using weaker tools than the leftover hash lemma,
since we only require hashing w.r.t. the specific distribution S, and not all high-entropy distri-
butions. Such instantiation is used in [MTY11] to show a scheme that is secure under the DCR
assumption with ` = 1 and a proper key distribution S.

KDM-Security. From the proof of Theorem 4.8.3, it is apparent that the requirement of S in this
case is identical to the case of CPA security. Hybrids H2, H4 in this proof are identical to hybrids
H1, H3 of Theorem 4.8.2. A similar theorem, therefore, follows.

Theorem 4.8.13. Consider the scheme E [GU , `,S] such that GL ε-hashes S, then letting A be a

KDM
(1)
Faff

-adversary for E [GU , `,S] that makes at most t queries, there exists an adversary B such
that

KDM
(1)
Faff

Adv[A] ≤ 4t(2`+ 1) · SGAdv[B] + 2ε+O(t`/T ) .

And KDM security follows so long as ε is negligible.

An extension of the above for the case of KDM(n) is possible, in the same spirit, but is more
complicated.

As a final remark, we warn that while KDM security is well defined for any key distribution over
Z`, the class of affine functions might not be very meaningful on some distributions. For example,
using our QR-based scheme with keys in Z`, we get KDM security w.r.t. the class of affine functions
over the least significant bits of the elements of s.

Leakage Resilience. Let us carefully examine now the proof of Theorem 4.8.8. Again we see
that the role of the secret key distribution is confined to hybrid H3. Now one needs to prove that(

g,σ,
∏
i

σsii ,
∏

g−sii , f(s)
)

and
(
g,σ, h0, g0, f(s)

)
are statistically close, where h0 is uniform in GM , and g0 is uniform in GL. In other words, we
need the property that the group GU (not GL as before) hashes S, even given the leakage value:

Definition 4.8.2 (hashing with leakage). Let G be a multiplicative commutative group, let ` ∈ N
and let S be a distribution supported on Z`. Let ε ≥ 0, λ ≥ 0. We say that G ε-hashes S with

λ-leakage if letting g1, . . . , g`, g0
$← G and s

$← S and letting f : Z` → {0, 1}λ be any function, it
holds that the distributions(

g1, . . . , g`,
∏
i∈[`]

gsii , f(s)
)

and
(
g1, . . . , g`, g0, f(s)

)
,

are ε-close.
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We again note that if S is the uniform distribution on {0, 1}`, then Lemma 4.3.3 implies that

GU ε-hashes S with λ leakage, for ε =
(

1
2

√
M ·L
2`−λ

)
.

Plugging the above into the proof of Theorem 4.8.8 will imply the following.

Theorem 4.8.14. Consider the scheme E [GU , `,S] such that GU ε-hashes S with λ-leakage, then
letting A be a λ-leakage adversary for E [GU , `,S], there exists an adversary B such that

LeakλAdv[A] ≤ 8` · SGAdv[B] + 2ε+O(`/T ) .

As in the previous case, if one can prove the 2-universality of both
∏
i σ

si
i and

∏
i g
si
i , then

Definition 4.8.2 will follow. Unlike the previous case, however, we now require that hashing works
w.r.t. a family of distributions (corresponding to all possible leakage functions) and we do not know
of a simpler way to achieve this property.

Auxiliary-Input Security. We can similarly isolate the property that is required in the proof
of Lemma 4.8.9, and obtain a more general statement for any S. This property is a computational
analogue of Definition 4.8.2. Due to the added complication, we choose not to go into detail on
this property.
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Chapter 5

Discussion and Open Problems

We presented a number of theoretical solutions aimed at facing the challenges of the new cloud
computation era. We showed how to construct better fully homomorphic encryption schemes, how
to protect against continual memory leakage and how to achieve circular security. Of course, this
work is not the end of the story, and many questions still await an answer.

Efficiency. Recalling that our schemes need to run in real-time on very weak platforms, the issue
of efficiency becomes crucial to whether they can be used in practice.

For fully homomorphic encryption, previous candidates had fairly reasonable encryption and
decryption running times, but key generation and homomorphic evaluation were far from practi-
cal. In our construction, the key generation becomes more efficient, but homomorphic evaluation
remains very exhausting: while encryption and decryption are performed with the smaller param-
eters k, p, homomorphic evaluation is performed with n, q. In addition, the use of bootstrapping
significantly slows down performance. While this is somewhat improved in [BGV11], we are still
orders of magnitude far from practical, even considering the fact that homomorphic evaluation is
potentially performed by a very powerful server.

Improving the efficiency of the homomorphic evaluation (perhaps by replacing bootstrapping
with a more efficient procedure) is thus a very intriguing open problem in the field.

More efficient constructions for continual leakage resilient and circular secure encryption are
also a goal for additional research. Specifically since all known leakage resilient schemes (including
ours), achieve high leakage rate at the cost of “blowing up” the parameters and decreasing efficiency.

Achieving all properties simultaneously. In this thesis, we presented three schemes, each
having some desirable property. The ultimate goal, however, is one scheme that simultaneously
has all properties. Specifically, finding a fully homomorphic encryption scheme that is also leakage
resilient (even in a non-continual sense) is an interesting open problem. We remark that our third
contribution is both circular secure and bounded memory leakage resilient (this also holds for
previous works based on different assumptions).

Diversity in assumptions. Diversifying the assumptions for circular security was a main mo-
tivations for Chapter 4, as well as a number of other works. However, for fully homomorphic
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encryption and for continual memory leakage, we do not have this diversity.
For fully homomorphic encryption, our contribution improved the state of affairs by showing

that the primitive can be based on the hardness of short-vector problems in arbitrary lattices.
However, there is no known constructions based on assumptions such as discrete logarithm or
factoring. This calls for additional research.

A similar situation exists for continual memory leakage, where all known constructions are
based on variants of the linear assumption in bilinear groups. Finding constructions under new
assumptions is called for in this case as well.

Addressing additional challenges of the cloud era. We show in this thesis how to achieve
public-key encryption with desirable properties. However, many of the challenges in this new era
are not in the domain of encryption. For example, how to verify that the cloud indeed perform the
prescribed operation (this is known as “the delegation problem”), how to maintain data integrity
and how to properly authenticate in this setting. These questions are raising a lot of interest in
recent years and a lot of progress has been made. Still many problems are still open.

Fully homomorphic encryption without circular security assumption. We explained that
all known candidate fully homomorphic encryption schemes require explicitly making a circular
security assumption in order to keep the size of the evaluation key independent of the depth of
the evaluated circuit. Removing this undesired feature is a central open problem in the research of
fully homomorphic encryption.

Validity of the continual memory leakage model. The continual memory leakage model is
another step in the effort to theoretically model generic side channel attacks. However, this model
is also not free of assumptions: It assumes that perfect erasure is possible and that the bit length
of the leakage at every time period can be bounded. Whether these assumptions are realistic and
whether there exist schemes that are secure in a more general model is a direction for further
research.

Circular secure encryption for any function. We want our schemes to be secure with regards
to encrypting arbitrary functions of the secret key. However, based on a standard assumption, we
do not know of any scheme that has this property. Coming up with such scheme is an interesting
open problem. We remark that in the works of [BHHI10, App11] it is shown that such fully
circular secure scheme is equivalent (under some definition) to circular-secure fully homomorphic
encryption.

Is circular security universal? In the current state of knowledge, we cannot rule out the
possibility that any semantically secure scheme that encrypts messages in a bit-by-bit manner is
also circular secure. Finding a counter-example or proving this claim is a fundamental open problem
in the field.
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Appendix

Other Research Projects

A Parallel Repetition Theorem for Leakage Resilience [BK11]

A leakage resilient encryption scheme is one which stays secure even against an attacker that obtains
a bounded amount of side information on the secret key (say λ bits of “leakage”). A fundamental
question is whether parallel repetition amplifies leakage resilience. Namely, if we secret share our
message, and encrypt the shares under two independent keys, will the resulting scheme be resilient
to 2λ bits of leakage?

Surprisingly, Lewko and Waters (FOCS 2010) showed that this is false. They gave an example
of a public-key encryption scheme that is resilient to λ bits of leakage, and yet its 2-repetition is
not resilient to even (1 + ε)λ bits of leakage. In their counter-example, the repeated schemes share
secretly generated public parameters.

In this work, we show that under a reasonable strengthening of the definition of leakage resilience
(one that captures known proof techniques for achieving non-trivial leakage resilience), parallel
repetition does in fact amplify leakage. In particular, if fresh public parameters are used for each
copy of the Lewko-Waters scheme, then their negative result does not hold, and leakage is amplified
by parallel repetition.

More generally, we show that given t schemes that are resilient to λ1, . . . , λt bits of leakage,
respectfully, their direct product is resilient to

∑
(λi−1) bits. We present our amplification theorem

in a general framework that applies other cryptographic primitives as well.

Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent
Messages [BV11a]

We present a somewhat homomorphic encryption scheme that is both very simple to describe
and analyze, and whose security (quantumly) reduces to the worst-case hardness of problems on
ideal lattices. We then transform it into a fully homomorphic encryption scheme using standard
“squashing” and “bootstrapping” techniques introduced by Gentry (STOC 2009).

One of the obstacles in going from “somewhat” to full homomorphism is the requirement that
the somewhat homomorphic scheme be circular secure. Namely, the scheme can be used to securely
encrypt its own secret key. For all known somewhat homomorphic encryption schemes, this require-
ment was not known to be achievable under any cryptographic assumption, and had to be explicitly
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assumed. We take a step forward towards removing this additional assumption by proving that our
scheme is in fact secure when encrypting polynomial functions of the secret key.

Our scheme is based on the ring learning with errors (RLWE) assumption that was recently
introduced by Lyubashevsky, Peikert and Regev (Eurocrypt 2010). The RLWE assumption is
reducible to worst-case problems on ideal lattices, and allows us to completely abstract out the
lattice interpretation, resulting in an extremely simple scheme. For example, our secret key is s,
and our public key is (a, b = as+ 2e), where s, a, e are all degree (n− 1) integer polynomials whose
coefficients are independently drawn from easy to sample distributions.

Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input
Setting [BS11]

Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO ’07),
provides an alternative to randomized public-key encryption in various scenarios where the latter
exhibits inherent drawbacks. A deterministic encryption algorithm, however, cannot satisfy any
meaningful notion of security when the plaintext is distributed over a small set. Bellare et al.
addressed this difficulty by requiring semantic security to hold only when the plaintext has high
min-entropy from the adversary’s point of view.

In many applications, however, an adversary may obtain auxiliary information that is related
to the plaintext. Specifically, when deterministic encryption is used as a building block of a larger
system, it is rather likely that plaintexts do not have high min-entropy from the adversary’s point of
view. In such cases, the framework of Bellare et al. might fall short from providing robust security
guarantees.

We formalize a framework for studying the security of deterministic public-key encryption
schemes with respect to auxiliary inputs. Given the trivial requirement that the plaintext should
not be efficiently recoverable from the auxiliary input, we focus on hard-to-invert auxiliary inputs.
Within this framework, we propose two schemes: the first is based on the decisional Diffie-Hellman
(and, more generally, on the d-linear) assumption, and the second is based on a rather general class
of subgroup indistinguishability assumptions (including, in particular, quadratic residuosity and
Paillier’s composite residuosity). Our schemes are secure with respect to any auxiliary input that is
subexponentially hard to invert (assuming the standard hardness of the underlying computational
assumptions). In addition, our first scheme is secure even in the multi-user setting, where related
plaintexts may be encrypted under multiple public keys. Constructing a scheme that is secure in
the multi-user setting (even without considering auxiliary inputs) was identified by Bellare et al.
as an important open problem.

Limits on the Power of Zero-Knowledge Proofs in Cryptographic Construc-
tions [BKSY11]

For more than 20 years, black-box impossibility results have been used to argue the infeasibility
of constructing certain cryptographic primitives (e.g., key agreement) from others (e.g., one-way
functions). A widely recognized limitation of such impossibility results, however, is that they
say nothing about the usefulness of (known) nonblack-box techniques. This state of affairs is
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unsatisfying as we would at least like to rule out constructions using the set of techniques we have
at our disposal.

With this motivation in mind, we suggest a new framework for black-box constructions that
encompasses constructions with a nonblack-box flavor, specifically, those that rely on zero-knowledge
proofs relative to some oracle. We show that our framework is powerful enough to capture the Naor-
Yung/Sahai paradigm for building a (shielding) CCA-secure public-key encryption scheme from a
CPA-secure one, something ruled out by a prior black-box separation result. On the other hand,
we show that several of the known black-box impossibility results still hold even in a setting that
allows for zero-knowledge proofs.

Black-Box Circular-Secure Encryption Beyond Affine Functions [BGK11]

We show how to achieve public-key encryption schemes that can securely encrypt nonlinear func-
tions of their own secret key. Specifically, we show that for any constant d ∈ N, there exists
a public-key encryption scheme that can securely encrypt any function f of its own secret key,
assuming f can be expressed as a polynomial of total degree d. Such a scheme is said to be key-
dependent message (KDM) secure w.r.t. degree-d polynomials. We also show that for any constants
c, e, there exists a public-key encryption scheme that is KDM secure w.r.t. all Turing machines with
description size c log λ and running time λe, where λ is the security parameter. The security of such
public-key schemes can be based either on the standard decision Diffie-Hellman (DDH) assumption
or on the learning with errors (LWE) assumption (with certain parameter settings).

In the case of functions that can be expressed as degree-d polynomials, we show that the
resulting schemes are also secure with respect to key cycles of any length. Specifically, for any
polynomial number n of key pairs, our schemes can securely encrypt a degree-d polynomial whose
variables are the collection of coordinates of all n secret keys. Prior to this work, it was not known
how to achieve this for nonlinear functions.

Our key idea is a general transformation that amplifies KDM security. The transformation
takes an encryption scheme that is KDM secure w.r.t. some functions even when the secret keys
are weak (i.e. chosen from an arbitrary distribution with entropy k), and outputs a scheme that
is KDM secure w.r.t. a richer class of functions. The resulting scheme may no longer be secure
with weak keys. Thus, in some sense, this transformation converts security with weak keys into
amplified KDM security.

A Framework for Efficient Signatures, Ring Signatures and Identity Based En-
cryption in the Standard Model [BK10]

In this work, we present a generic framework for constructing efficient signature schemes, ring
signature schemes, and identity based encryption schemes, all in the standard model (without
relying on random oracles).

We start by abstracting the recent work of Hohenberger and Waters (Crypto 2009), and specif-
ically their “prefix method”. We show a transformation taking a signature scheme with a very
weak security guarantee (a notion that we call a-priori-message unforgeability under static chosen
message attack) and producing a fully secure signature scheme (i.e., existentially unforgeable under
adaptive chosen message attack). Our transformation uses the notion of chameleon hash functions,
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defined by Krawczyk and Rabin (NDSS 2000) and the “prefix method”. Constructing such weakly
secure schemes seems to be significantly easier than constructing fully secure ones, and we present
simple constructions based on the RSA assumption, the short integer solution (SIS) assumption,
and the computational Diffie-Hellman (CDH) assumption over bilinear groups.

Next, we observe that this general transformation also applies to the regime of ring signatures.
Using this observation, we construct new (provably secure) ring signature schemes: one is based
on the short integer solution (SIS) assumption, and the other is based on the CDH assumption
over bilinear groups. As a building block for these constructions, we define a primitive that we call
ring trapdoor functions. We show that ring trapdoor functions imply ring signatures under a weak
definition, which enables us to apply our transformation to achieve full security.

Finally, we show a connection between ring signatures and identity based encryption (IBE)
schemes. Using this connection, and using our new constructions of ring signature schemes, we
obtain two IBE schemes: The first is based on the learning with error (LWE) assumption, and
is similar to recently introduced LWE-based IBE schemes; The second is based on the d-linear
assumption over bilinear groups.

Hedged Public-Key Encryption: How to Protect Against Bad Randomness
[BBN+09]

Public-key encryption schemes rely for their IND-CPA security on per-message fresh randomness.
In practice, randomness may be of poor quality for a variety of reasons, leading to failure of the
schemes. Expecting the systems to improve is unrealistic. What we show in this paper is that
we can, instead, improve the cryptography to offset the lack of possible randomness. We provide
public-key encryption schemes that achieve IND-CPA security when the randomness they use is of
high quality, but, when the latter is not the case, rather than breaking completely, they achieve a
weaker but still useful notion of security that we call IND-CDA. This hedged public-key encryption
provides the best possible security guarantees in the face of bad randomness. We provide simple
RO-based ways to make in-practice IND-CPA schemes hedge secure with minimal software changes.
We also provide non-RO model schemes relying on lossy trapdoor functions (LTDFs) and techniques
from deterministic encryption. They achieve adaptive security by establishing and exploiting the
anonymity of LTDFs which we believe is of independent interest.

Distributed Discovery of Large Near-Cliques [BPS09a, BPS09b]

Given an undirected graph and 0 ≤ ε ≤ 1, a set of nodes is called ε-near clique if all but an ε
fraction of the pairs of nodes in the set have a link between them. In this paper we present a fast
synchronous network algorithm that uses small messages and finds a near-clique. Specifically, we
present a constant-time algorithm that finds, with constant probability of success, a linear size ε-
near clique if there exists an ε3-near clique of linear size in the graph. The algorithm uses messages
of O(log n) bits. The failure probability can be reduced to n−Ω(1) in O(log n) time factor, and the
algorithm also works if the graph contains a clique of size Ω(n/ logα log n) for some α ∈ (0, 1). Our
approach is based on a new idea of adapting property testing algorithms to the distributed setting.
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From Absolute Distinguishability to Positive Distinguishability [BG09]

We study methods of converting algorithms that distinguish pairs of distributions with a gap that
has an absolute value that is noticeable into corresponding algorithms in which the gap is always
positive. Our focus is on designing algorithms that, in addition to the tested string, obtain a fixed
number of samples from each distribution. Needless to say, such algorithms can not provide a very
reliable guess for the sign of the original distinguishability gap, still we show that even guesses that
are noticeably better than random are useful in this setting.

Weak Verifiable Random Functions [BGRV09]

Verifiable random functions (VRFs), introduced by Micali, Rabin and Vadhan, are pseudorandom
functions in which the owner of the seed produces a public-key that constitutes a commitment to
all values of the function. The owner can then produce, for any input x, a proof that the function
has been evaluated correctly on x, preserving pseudorandomness for all other inputs. No public-key
(even a falsely generated one) should allow for proving more than one value per input.

VRFs are both a natural and a useful primitive, and previous works have suggested a variety
of constructions and applications. Still, there are many open questions in the study of VRFs,
especially their relation to more widely studied cryptographic primitives and constructing them
from a wide variety of cryptographic assumptions.

In this work we define a natural relaxation of VRFs that we call weak verifiable random func-
tions, where pseudorandomness is required to hold only for randomly selected inputs. We conduct
a study of weak VRFs, focusing on applications, constructions, and their relationship to other
cryptographic primitives. We show:

• Constructions. We present constructions of weak VRFs based on a variety of assumptions,
including general assumptions such as (enhanced) trapdoor permutations, as well as construc-
tions based on specific number-theoretic assumptions such as the Diffie-Hellman assumption
in bilinear groups.

• Separations. Verifiable random functions (both weak and standard) cannot be constructed
from one-way permutations in a black-box manner. This constitutes the first result separating
(standard) VRFs from any cryptographic primitive.

• Applications. Weak VRFs capture the essence of constructing non-interactive zero-knowledge
proofs for all NP languages.


