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Genome-wide measurement of RNA secondary
structure in yeast
Michael Kertesz1*{, Yue Wan2*, Elad Mazor1, John L. Rinn3, Robert C. Nutter4, Howard Y. Chang2 & Eran Segal1,5

The structures of RNA molecules are often important for their
function and regulation1–6, yet there are no experimental techniques
for genome-scale measurement of RNA structure. Here we describe
a novel strategy termed parallel analysis of RNA structure (PARS),
which is based on deep sequencing fragments of RNAs that were
treated with structure-specific enzymes, thus providing simul-
taneous in vitro profiling of the secondary structure of thousands
of RNA species at single nucleotide resolution. We apply PARS to
profile the secondary structure of the messenger RNAs (mRNAs) of
the budding yeast Saccharomyces cerevisiae and obtain structural
profiles for over 3,000 distinct transcripts. Analysis of these profiles
reveals several RNA structural properties of yeast transcripts,
including the existence of more secondary structure over coding
regions compared with untranslated regions, a three-nucleotide
periodicity of secondary structure across coding regions and an
anti-correlation between the efficiency with which an mRNA is
translated and the structure over its translation start site. PARS is
readily applicable to other organisms and to profiling RNA struc-
ture in diverse conditions, thus enabling studies of the dynamics of
secondary structure at a genomic scale.

Existing experimental methods for measuring RNA structure can
only probe a single RNA structure per experiment and are typically
limited in the length of the probed RNA (Supplementary Note 1). To
measure structural properties of many different RNAs simultaneously,
we extracted polyadenylated transcripts from yeast growing in the log
phase, renatured the transcripts in vitro and treated the resulting pool
with RNase V1 and, separately, with S1 nuclease. RNase V1 preferen-
tially cleaves phosphodiester bonds 39 of double-stranded RNA,
whereas S1 nuclease preferentially cleaves 39 of single-stranded
RNA7. Thus data from these two complementary enzymes should
allow us to measure the degree to which each nucleotide was in a
single- or double-stranded conformation (Fig. 1). We chose renatura-
tion and enzymatic cleavage conditions under which the cleavage reac-
tions occur with single-hit kinetics (Supplementary Fig. 1a, b) and
where intramolecular, but not intermolecular, RNA–RNA interac-
tions are dominant (Supplementary Fig. 1c, d). As a control, we also
added two short RNA domains from HOTAIR, a human non-coding
RNA8, and from the structurally known Tetrahymena group I intron
ribozyme9.

We devised a ligation method specifically to ligate V1- and S1-
cleaved RNA to adaptors, and converted them into complementary
DNA (cDNA) libraries suitable for deep sequencing (Supplementary
Fig. 2). As both enzymes leave a 59 phosphate at the cleavage point
and because only 59 phosphoryl-terminated RNAs are capable of
ligating to our adaptors, we enrich for V1- and S1-cleaved fragments
and select against random fragmentation and degradation products

that typically have 59 hydroxyl (Supplementary Fig. 3). Thus each
observed cleavage site provides evidence that the cut nucleotide was
in a double-stranded (for V1-treated samples) or single-stranded (for
S1-treated samples) conformation. As a quantitative measure at nuc-
leotide resolution representing the degree to which a nucleotide was
in a double- or single-stranded conformation, we took the log ratio
between the number of sequence reads obtained for each nucleotide
in the V1 and S1 experiments. A higher (lower) log ratio, or PARS
score, thus denotes a higher (lower) probability for a nucleotide to be
in a double-stranded conformation.

We performed four independent V1 experiments and three inde-
pendent S1 experiments, which were highly reproducible across
replicates (correlation 5 0.60–0.93, Supplementary Table 1), result-
ing in over 85 million sequence reads that map to the yeast genome,
of which approximately 97% mapped to annotated transcripts
(Supplementary Table 2). At an average nucleotide coverage above
1.0, we obtained structural information for over 3,000 yeast tran-
scripts (Supplementary Table 3 and Supplementary Fig. 4a), covering
in total over 4.2 million transcribed bases, which is approximately
100-fold more than all published RNA footprints to date.

We used several tests to check for biases in our method. We found
that RNase cleavage, adaptor ligation and cDNA conversion do not
introduce significant sequence biases (Supplementary Fig. 5), that
our protocol has a very small bias towards particular regions along
the transcript (Supplementary Fig. 6) and that we capture RNA frag-
ments in proportion to their abundance in the initial pool (Sup-
plementary Fig. 4b, c). We also confirmed that signals generated by
RNase V1 are highly distinct from those generated by S1 nuclease.
Global inspection across all transcripts revealed that approximately
7% of the V1 and S1 peaks are shared (Methods, Supplementary
Table 4 and Supplementary Fig. 7). These joint peaks could be the
result of experimental noise introduced by non-specific enzymatic
activity, but could also correspond to dynamic RNA regions or tran-
scripts that fold into more than one stable conformation.

To test whether PARS accurately measures RNA structures, we first
confirmed that its signals are similar to those obtained with traditional
footprinting. To this end, we performed ten separate footprinting
experiments with either RNase V1 or S1 nuclease, on two domains
from the Tetrahymena ribozyme, two domains from the human
HOTAIR non-coding RNA, which we doped into our samples, and
two domains of endogenous yeast mRNAs. In all cases, we found high
agreement between our PARS signals and footprinting (correla-
tions 5 0.40–0.97; Fig. 2 and Supplementary Figs 8–10). Notably,
owing to length limitations of footprinting, we had to select short
domains from each of the above transcripts, transcribe them in vitro
and then apply footprinting. Thus footprinting may be inaccurate,
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because lacking long-range interactions, the excised fragment could
fold differently when taken out of context. In contrast, PARS can
probe RNAs in their full-length context.

Next, we compared PARS with reported structures of yeast coding
and non-coding RNAs, and found that it correctly reproduces the
known secondary structure of three structured RNA domains of
ASH1 (ref. 10), of a structural element in URE2 mRNA11 and of
the glutamate transfer RNA (Fig. 2e, f and Supplementary Figs 11
and 12). This suggests that PARS can provide structural information
of transcripts in their full-length context and endogenous abundance
from within a complex RNA pool. Taken together, our analyses
demonstrate that PARS recapitulates results obtained by low-
throughput methods with high accuracy, and has advantages over
existing methods, stemming from its ability to probe structures of
long RNAs.

As another independent validation of PARS, we compared it with
computational predictions of RNA structure, by applying the Vienna
package12 to the 3,000 transcripts that we analysed. We found a sig-
nificant correspondence between these predictions and our PARS
scores, whereby nucleotides with high (low) double-stranded PARS
score had a significantly higher (lower) average predicted pairing
probability (P , 102200; Fig. 3a and Supplementary Fig. 13).
Despite this significant global correspondence, there are large differ-
ences between PARS and predictions, in part owing to noise in our
approach but also because of known inaccuracies of folding algo-
rithms. We thus suggest that genome-wide PARS data can be used
to constrain folding algorithms and improve their accuracy, as previ-
ously shown for specific RNAs13,14 (Supplementary Fig. 15).

We used the obtained structural profiles to investigate five global
properties of yeast transcripts. First, examining the average PARS
score across the coding regions and untranslated regions (UTRs),
we found that coding regions exhibit significantly more pairing than
59 and 39 UTRs (P , 10230 and P , 10250, respectively; Fig. 3c).

Notably, the start and stop codons each exhibit local minima of
PARS scores, indicating reduced tendency for double-stranded con-
formation and increased accessibility. These findings agree with pre-
vious computational predictions for mouse and human genes15. The
evolutionary conservation of this global organization of mRNA
secondary structure suggests that it may have functional importance.
An overall unstructured background in UTRs may allow functional
elements to stand out and, conversely, highly paired domains along
coding regions may protect against ectopic translation initiation, or
regulate ribosome translocation and protein folding, as recently
postulated13.

Second, aligning our measured transcripts about their start codon
and applying a discrete Fourier transform analysis to the average
PARS signal, we detected a periodic structure signal across coding
regions with a cycle of three nucleotides, such that, on average, the
first nucleotide of each codon is least structured and the second
nucleotide is most structured. Notably, this periodic signal is only
found in coding regions and not in UTRs (Fig. 3b), and the degree of
three-nucleotide periodicity in transcripts is significantly associated
with ribosome density in vivo16 (Supplementary Fig. 14), suggesting
that this periodicity may directly or indirectly facilitate translation.

Third, we tested whether there is a correlation between mRNA
structure around the translation start site and translation efficiency.
Such a relation has long been hypothesized17 and recently shown for
one reporter protein in E. coli18. We found a small but significant anti-
correlation between PARS scores at the region located approximately
10 base pairs (bp) upstream of the translation start site and ribosome
density throughout the transcript16, a proxy for translational efficiency
(correlation 5 20.1, P , 1024; Fig. 4a). Intriguingly, the 210-bp
region corresponds to the 59 position of the first ribosome on yeast
mRNAs16. To examine this relation in more detail, we applied k-means
clustering (k 5 4) to the PARS structural profile of the 640 bp sur-
rounding the translation start site. Notably, genes from clusters 3 and
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Figure 1 | Measuring structural properties of RNA by deep sequencing.
a, RNA molecules are cleaved by RNase V1, which cuts 39 of double-stranded
RNA, leaving a 59 phosphate (59P). One such cut is illustrated by a red arrow.
After random fragmentation, V1-generated fragments are specifically
captured and subjected to deep sequencing. Each aligned sequence provides
structural evidence about a single base. The marked red square illustrates the
evidence obtained from one mapped sequence (red). Additional evidence
(grey boxes) is collected by mapping more sequences (grey horizontal bars).

A large number of reads aligned to the same base indicates that the base is
cleaved many times by RNase V1 and is thus more likely to be in double-
stranded conformation. b, Same as a, but the RNA sample is treated with S1
nuclease, which cuts 39 of single-stranded RNA. Collected reads in this case
suggest that the base was unpaired in the original RNA structure. c, By
combining the data extracted from the two complementary experiments
a and b, we obtain a nucleotide-resolution score representing the likelihood
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4 exhibit significantly less structure in their 59 UTR than in the begin-
ning of their coding region, as well as a higher ribosome density
(Fig. 4b). Overall, these results provide the first genome-wide experi-
mental validation for the suggestion that mRNA secondary structure
around the start codon may reduce translational efficiency17, although
the low correlation we found implies that, in vivo, translational effi-
ciency is determined by additional factors.

Fourth, we asked whether genes with shared biological functions or
cytotopic localizations19 tend to have similar PARS scores, indicative
of similar degrees of secondary structures. We found a rich picture of
biological coordination (Supplementary Fig. 16 and Supplementary

Table 5), including increased RNA structure, especially in coding
regions, in transcripts whose encoded proteins localize to distinct
cellular domains or participate in distinct metabolic pathways. We
also found that mRNAs with the least secondary structure in their 59
UTR and coding sequences encode subunits of the ribosome.

Finally, we examined the PARS score of transcripts predicted to
encode a signal peptide, because a recent study showed that RNA
sequences encoding the signal sequence (termed the signal sequence
coding region (SSCR)) of secretory proteins function as RNA ele-
ments that promote RNA nuclear export20. We found that the 59
UTR region and approximately first 30 coding nucleotides of signal
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Figure 2 | PARS correctly recapitulates results of RNA footprinting and
known structures. a, The PARS signal obtained for bases 50–110 of the yeast
gene CCW12 using the double-stranded cutter RNase V1 (red bars) or the
single-stranded cutter S1 nuclease (green bars) accurately matches the
signals obtained by traditional footprinting of that same transcript domain
(black lines). The PARS signal is shown as the number of sequence reads that
mapped to each nucleotide; footprinting results are obtained by semi-
automated quantification of the RNase lanes shown in b. The red arrows
indicate RNase V1 cleavages, the green arrows indicate S1 nuclease cleavages
as shown in the gel (b). b, Gel analysis of RNase V1 (lanes 5, 6) and S1
nuclease (lanes 3, 4) probing of CCW12. Additionally, RNase T1 ladder

(lanes 2, 8), alkaline hydrolysis (lanes 1, 9) and no RNase treatment (lane 7)
are shown. c, The PARS signal obtained for bases 50–120 of the yeast gene
RPL41A matches the signals obtained by traditional footprinting. d, RNase
V1 (lanes 5, 6) and S1 nuclease (lanes 7, 8) probing of RPL41A, RNase T1
ladder (lane 2), alkaline hydrolysis (lanes 1, 9) and no RNase treatment (lane
4). e, f, Raw number of reads obtained using RNase V1 (red bars) or S1
nuclease (green bars) and the resulting PARS score (blue bars) along one
inspected domain of ASH1 (e) and URE2 (f). Also shown are the known
structures of the inspected domains with nucleotides colour-coded
according to their computed PARS score. The Pearson correlations (R)
between PARS and traditional footprinting are indicated.
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efficiency. a, Sliding window analysis of local PARS score and ribosome
density16. The significance (P value) of the anti-correlation between average
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shown. b, Left, k-means clustering of PARS scores across the 640-bp
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4. c, Tendency for less RNA structure in the first 30 bases of open reading
frames encoding predicted secretory proteins. Although structure typically
builds up immediately upon entry to the coding sequence, genes predicted to
code for secretory proteins retain low structure in approximately the first 30
bases of the coding sequence, consistent with a dual function of SSCRs in
both protein coding and targeting of the mRNA20. The figure shows average
relative PARS scores (Methods) across a 30-bp sliding window for the 499
genes coding for secretory proteins (blue), the remaining 2,501 genes (green)
and the mean and standard deviation obtained from 1,000 shuffle
experiments in which sets of 499 genes were randomly selected (grey).
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peptide transcripts have a lower PARS signal, indicating increased
single-stranded propensity compared with other transcripts
(P , 10211; Fig. 4c). Because RNA sequences encoding the signal
sequence typically reside in the beginning of the coding region, these
results suggest that specific secondary RNA structure around gene
starts may assist in the cytotopic localization of mRNAs and their
resulting proteins. More generally, we suggest that PARS can be used
both to generate and test hypotheses of signals of secondary structure
that may characterize and have functional importance for classes of
mRNAs.

In summary, we introduced PARS, the first high-throughput
approach for genome-wide experimental measurement of RNA struc-
tural properties, and showed that it recovers structural profiles with
high accuracy and at nucleotide resolution. Like most existing methods,
one limitation of PARS is that it maps RNA structures in vitro, and its
reported structures may thus differ significantly from the in vivo con-
formations. This may be addressed in the future by using reagents that
can probe RNA structure in living cells7, but it will require new methods
to adapt to deep sequencing. Overall, PARS transforms the field of RNA
structure probing into the realm of high-throughput, genome-wide
analysis and should prove useful both in determining the structure of
entire transcriptomes of other organisms and in systematically mea-
suring the effects of diverse conditions on RNA structure. Probing RNA
structure in the presence of different ligands, proteins or in different
physical or chemical conditions may provide further insights into how
RNA structures control gene activity.

METHODS SUMMARY
Sample preparation. Total RNA was extracted from yeast grown at 30 uC to
exponential phase in yeast peptone dextrose (YPD) medium by using hot acid
phenol. Poly(A)1 RNA was obtained by purifying it twice using the Poly(A)
Purist Kit. Supplementary Fig. 2 shows the PARS protocol.
Sequencing library construction. RNA was folded and probed for structure
using 0.01 U RNase V1 (Ambion), or 1,000 U of S1 nuclease (Fermentas), in a
100-ml reaction volume. A modified version (see Supplementary Methods) of the
SOLiD Small RNA Expression Kit was used to convert fragments into a sequencing
library.
SOLiD sequencing and mapping. cDNA libraries were amplified onto beads
and subjected to emulsion PCR, according to the standard protocol described in
the SOLiD Library Preparation Guide. Obtained sequences were truncated to
35 bp, and required to map uniquely to either the yeast genome or transcrip-
tome, allowing up to one mismatch and no insertions or deletions.
Computing the PARS score. The PARS score is defined as the log2 of the ratio
between the number of times the nucleotide immediately downstream of the
inspected nucleotide was observed as the first base when treated with RNase V1
and the number of times it was observed in the S1 nuclease treated sample. To
account for differences in overall sequencing depth between the V1- and S1-
treated samples, the number of reads for each nucleotide is normalized before the
computation of the ratio.
Periodicity. Periodicity was analysed by applying a discrete Fourier transform to
the average PARS score collected from the following genomic features: the last
100 bases of the 59 UTR, the first 200 bases of the coding sequence and the 100
first bases of the 39 UTR.
Online resources. Nucleotide-resolution raw reads and PARS scores for the
3,000 genes included in our analysis can be visualized and downloaded at
http://genie.weizmann.ac.il/pubs/PARS10 or using the PARS iPhone App.
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