
Average Case Complexity, Revisited

Oded Goldreich

Abstract. More than two decades elapsed since Levin set forth a theory
of average-case complexity. In this survey we present the basic aspects
of this theory as well as some of the main results regarding it. The
current presentation deviates from our old “Notes on Levin’s Theory of
Average-Case Complexity” (ECCC, TR97-058, 1997) in several aspects.
In particular:

– We currently view average-case complexity as referring to the per-
formance on “average” (or rather typical) instances, and not as the
average performance on random instances. (Thus, it may be more
justified to refer to this theory by the name typical-case complexity,
but we retain the name average-case for historical reasons.)

– We include a treatment of search problems, and a presentation of
the reduction of “NP with sampleable distributions” to “NP with
P-computable distributions” (due to Impagliazzo and Levin, 31st

FOCS, 1990).

– We include Livne’s result (ECCC, TR06-122, 2006) by which all nat-
ural NPC-problems have average-case complete versions. This result
seems to shed doubt on the association of P-computable distribu-
tions with natural distributions.

Keywords: Average-Case Complexity.

This text has been revised based on [6, Sec. 10.2].

1 Introduction

In light of the apparent infeasibility of solving numerous useful computational
problems, it is natural to ask whether these problems can be relaxed such that
the relaxation is both useful and allows for feasible solving procedures. We stress
two aspects about the foregoing question: on one hand, the relaxation should
be sufficiently good for the intended applications; but, on the other hand, it
should be significantly different from the original formulation of the problem so
to escape the infeasibility of the latter. We note that whether a relaxation is
adequate for an intended application depends on the application, and thus much
of the material in this chapter is less robust (or generic) than the treatment of
the non-relaxed computational problems.

One commonly considered type of relaxation refers to the computational
problems themselves; that is, for each problem instance we extend the set of
admissible solutions. In the context of search problems this means settling for

102

solutions that have a value that is “sufficiently close” to the value of the opti-
mal solution (with respect to some value function). Needless to say, the specific
meaning of ‘sufficiently close’ is part of the definition of the relaxed problem.
In the context of decision problems this means that for some instances both
answers are considered valid; specifically, we shall consider promise problems in
which the no-instances are “far” from the yes-instances in some adequate sense
(which is part of the definition of the relaxed problem).

In this survey, we consider a different type of relaxation. We do not relax the
computational problems themselves, but rather the notion of solving them effi-
ciently. Specifcally, this type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead, the behav-
ior of the solver is analyzed with respect to a predetermined input distribution
(or a class of such distributions), and bad behavior may occur with negligible
probability where the probability is taken over this input distribution. That is,
we replace worst-case analysis by average-case (or rather typical-case) analysis.
Needless to say, a major component in this approach is limiting the class of
distributions in a way that, on one hand, allows for various types of natural
distributions and, on the other hand, prevents the collapse of the corresponding
notion of average-case hardness to the standard notion of worst-case hardness.

1.1 The basic mindframe of average-case complexity

The common approach of complexity theory is termed worst-case complexity,
because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That
is, computational problems were defined as referring to a set of instances and
performance guarantees were required to hold for each instance in this set. In
contrast, average-case complexity allows ignoring a negligible measure of the
possible instances, where the identity of the ignored instances is determined by
the analysis of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by
the problem’s statement). It is just that they are viewed as exceptional when
claiming that a specific algorithm solve the problem; that is, these exceptional
instances are determined by the analysis of that algorithm. Needless to say, these
exceptional instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Most importantly, a distribution on
the set of admissible instances has to be specified. In fact, we shall consider a new
type of computational problems, each consisting of a standard computational
problem coupled with a probability distribution on instances. Consequently, the
question of which distributions should be considered in a theory of average-case

103

complexity arises. This question and numerous other definitional issues will be
addressed in Section 2.1.

Before proceeding, let us spell out the rather straightforward motivation
to the study of the average-case complexity of computational problems: It is
that, in real-life applications, one may be perfectly happy with an algorithm
that solves the problem fast on almost all instances that arise in the relevant
application. That is, one may be willing to tolerate error provided that it occurs
with negligible probability, where the probability is taken over the distribution of
instances encountered in the application. The study of average-case complexity is
aimed at exploring the possible benefit of such a relaxation, distinguishing cases
in which a benefit exists from cases in which it does not exist. A key aspect in
such a study is a good modeling of the type of distributions (of instances) that
are encountered in natural algorithmic applications.

Let us consider the foregoing motivation from a slightly different perspec-
tive: The conjecture that P 6= NP (or rather NP 6⊆ BPP) only asserts that
intractability is a feature of some instances of some problems in NP . These
intractable instances may be very rare and pathological. The theory of average-
case complexity addresses the question of whether intractability can also be
a feature of “typical” instances (i.e., whether intractable instances may occur
with noticeable probability with respect to some simple distributions). Needless
to say, the meaningfulness of the latter question depends on restricting the class
of distributions such that only simple (rather than pathological) distributions
are allowed. We shall consider two such classes of distributions (see Section 2.1
and Section 3.2, respectively) and show that if intractability occurs with respect
to the wider class then it occurs also with respect to the more restricted class
(see Theorem 14).

An average-case version of the P 6= NP question. Indeed, a fundamental ques-
tion that arises is whether every natural computational problem can be solved
efficiently when restricting attention to typical instances? The conjecture that
underlies this section is that, for a well-motivated choice of definitions, the an-
swer is negative; that is, our conjecture is that the “distributional version” of NP
is not contained in the average-case (or typical-case) version of P. This means
that some NP problems are not merely hard in the worst-case, but are rather
“typically hard” (i.e., hard on typical instances drawn from some simple dis-
tribution). This suggests that hard instances may occur in natural algorithmic
applications (and not only in cryptographic (or other “adversarial”) applications
that are design on purpose to produce hard instances).1

1 We highlight two differences between the current context (of natural algorithmic ap-
plications) and the context of cryptography. Firstly, in the current context and when
referring to problems that are typically hard, the simplicity of the underlying input
distribution is of great concern: the simpler this distribution, the more appealing the
hardness assertion becomes. This concern is irrelevant in the context of cryptogra-
phy. On the other hand (see, e.g., [5]), cryptographic applications require the ability
to efficiently generate hard instances together with corresponding solutions.

104

The foregoing conjecture motivates the development of an average-case ana-
logue of NP-completeness, which will be presented in this survey. In particular,
this (average-case) theory identifies distributional problems that are “typically
hard” provided that distributional problems that are “typically hard” exist at all.
If one believes the foregoing conjecture then, for such complete (distributional)
problems, one should not seek algorithms that solve these problems efficiently
on typical instances.

1.2 Organization

A significant part of our exposition is devoted to the definitional issues that arise
when developing a general theory of average-case complexity. These issues are
discussed in Section 2.1. In Section 2.2 we prove the existence of distributional
problems that are “NP-complete” in the corresponding average-case complexity
sense. Furthermore, we show how to obtain such a distributional version for any
natural NP-complete decision problem. In Section 2.3 we extend the treatment
to randomized algorithms. Additional ramifications are presented in Section 3.

2 The Basic Theory

In this section we provide a basic treatment of the theory of average-case com-
plexity, while postponing important ramifications to Section 3. The basic treat-
ment consists of the preferred definitional choices for the main concepts as well
as the identification of complete problems for a natural class of average-case
computational problems.

2.1 Definitional issues

The theory of average-case complexity is more subtle than may appear at first
thought. In addition to the generic conceptual difficulty involved in defining
relaxations, difficulties arise from the “interface” between standard probabilistic
analysis and the conventions of complexity theory. This is most striking in the
definition of the class of feasible average-case computations. Referring to the
theory of worst-case complexity as a guideline, we shall address the following
aspects of the analogous theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems, which
are standard computational problems coupled with distributions on the rel-
evant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-
case analogue of classes such as P , we shall reject the first definition that
comes to mind (i.e., the naive notion of “average polynomial-time”), briefly
discuss several related alternatives, and adopt one of them for the main
treatment.

105

3. Identifying the class of interesting (distributional) problems. Seeking an average-
case analogue of the class NP , we shall avoid both the extreme of allowing
arbitrary distributions (which collapses average-case hardness to worst-case
hardness) and the opposite extreme of confining the treatment to a single
distribution such as the uniform distribution.

4. Developing an adequate notion of reduction among (distributional) problems.
As in the theory of worst-case complexity, this notion should preserve feasible
solveability (in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Step 1: Defining distributional problems. Focusing on decision problems,
we define distributional problems as pairs consisting of a decision problem and a
probability ensemble.2 For simplicity, here a probability ensemble {Xn}n∈N is a se-
quence of random variables such that Xn ranges over {0, 1}n. Thus, (S, {Xn}n∈N)
is the distributional problem consisting of the problem of deciding membership
in the set S with respect to the probability ensemble {Xn}n∈N. (The treatment
of search problem is similar; see Section 3.1.) We denote the uniform probability
ensemble by U = {Un}n∈N; that is, Un is uniform over {0, 1}n.

Step 2: Identifying the class of feasible problems. The first idea that
comes to mind is defining the problem (S, {Xn}n∈N) as feasible (on the average)
if there exists an algorithm A that solves S such that the average running time
of A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial p
such that E[tA(Xn)] ≤ p(n), where tA(x) denotes the running-time of A on input
x). The problem with this definition is that it is very sensitive to the model of
computation and is not closed under algorithmic composition. Both deficiencies
are a consequence of the fact that tA may be polynomial on the average with
respect to {Xn}n∈N but t2A may fail to be so (e.g., consider tA(x′x′′) = 2|x

′| if
x′ = x′′ and tA(x′x′′) = |x′x′′|2 otherwise, coupled with the uniform distribution
over {0, 1}n). We conclude that the average running-time of algorithms is not
a robust notion. We also doubt the soundness of the appeal of this notion, and
view the typical running time of algorithms (as defined next) as a more natural
notion. Thus, we shall consider an algorithm as feasible if its running-time is
typically polynomial.3

2 We mention that even this choice is not evident. Specifically, Levin [10] (see discus-
sion in [4]) advocates the use of a single probability distribution defined over the
set of all strings. His argument is that this makes the theory less representation-
dependent. At the time we were convinced of his argument (see [4]), but currently
we feel that the representation-dependent effects discussed in [4] are legitimate. Fur-
thermore, the alternative formulation of [10, 4] comes across as unnatural and tends
to confuse some readers.

3 An alternative choice, taken by Levin [10] (see discussion in [4]), is considering as
feasible (w.r.t X = {Xn}n∈N) any algorithm that runs in time that is polynomial
in a function that is linear on the average (w.r.t X); that is, requiring that there

106

We say that A is typically polynomial-time on X = {Xn}n∈N if there exists a
polynomial p such that the probability that A runs more that p(n) steps on Xn

is negligible (i.e., for every polynomial q and all sufficiently large n it holds that
Pr[tA(Xn) > p(n)] < 1/q(n)). The question is what is required in the “untypical”
cases, and two possible definitions follow.

1. The simpler option is saying that (S, {Xn}n∈N) is (typically) feasible if there
exists an algorithm A that solves S such that A is typically polynomial-time
on X = {Xn}n∈N. This effectively requires A to correctly solve S on each
instance, which is more than was required in the motivational discussion.
(Indeed, if the underlying motivation is ignoring rare cases, then we should
ignore them altogether rather than ignoring them in a partial manner (i.e.,
only ignore their affect on the running-time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X)
is (typically) feasible if there exists an algorithm A such that A typically
solves S on X in polynomial-time; that is, there exists a polynomial p such
that the probability that on input Xn algorithm A either errs or runs more
that p(n) steps is negligible. This formulation totally ignores the untypical
instances. Indeed, in this case we may assume, without loss of generality,
that A always runs in polynomial-time, but we shall not do so here (in order
to facilitate viewing the first option as a special case of the current option).

We stress that both alternatives actually define typical feasibility and not average-
case feasibility. To illustrate the difference between the two options, consider the
distributional problem of deciding whether a uniformly selected (n-vertex) graph
is 3-colorable. Intuitively, this problem is “typically trivial” (with respect to the
uniform distribution),4 because the algorithm may always say no and be wrong
with exponentially vanishing probability. Indeed, this trivial algorithm is ad-
missible by the second approach, but not by the first approach. In light of the
foregoing discussions, we adopt the second approach.

Definition 1 (the class tpcP): We say that A typically solves (S, {Xn}n∈N) in
polynomial-time if there exists a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p(n) steps is negligible.5 We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial-time.

exists a polynomial p and a function ℓ : {0, 1}∗ → N such that t(x) ≤ p(ℓ(x)) for
every x and E[ℓ(Xn)] = O(n). This definition is robust (i.e., it does not suffer from
the aforementioned deficiencies) and is arguably as “natural” as the naive definition
(i.e., E[tA(Xn)] ≤ poly(n)).

4 In contrast, testing whether a given graph is 3-colorable seems “typically hard” for
other distributions (see, e.g., Theorem 7). Needless to say, in the latter distributions
both yes-instances and no-instances appear with noticeable probability.

5 Recall that a function µ : N → N is negligible if for every positive polynomial q and
all sufficiently large n it holds that µ(n) < 1/q(n). We say that A errs on x if A(x)
differs from the indicator value of the predicate x ∈ S.

107

Clearly, for every S ∈ P and every probability ensemble X , it holds that (S, X) ∈
tpcP. However, tpcP contains also distributional problems (S, X) with S 6∈ P
(albeit this assertion refers to unnatural distributional versions of problems not
in P). The big question, which underlies the theory of average-case complexity,
is whether all natural distributional versions of NP are in tpcP . Thus, we turn
to identify such versions.

Step 3: Identifying the class of interesting problems. Seeking to iden-
tify reasonable distributional versions of NP , we note that two extreme choices
should be avoided. On the one hand, we must limit the class of admissible dis-
tributions so as to prevent the collapse of average-case hardness to worst-case
hardness (by a selection of a pathological distribution that resides on the “worst
case” instances). On the other hand, we should allow for various types of natural
distributions rather than confining attention merely to the uniform distribution.6

Recall that our aim is addressing all possible input distributions that may occur
in applications, and thus there is no justification for confining attention to the
uniform distribution. Still, arguably, the distributions occuring in applications
are “relatively simple” and so we seek to identify a class of simple distributions.
One such notion (of simple distributions) underlies the following definition, while
a more liberal notion will be presented in Section 3.2.

Definition 2 (the class distNP): We say that a probability ensemble X =
{Xn}n∈N is simple if there exists a polynomial time algorithm that, on any input
x ∈ {0, 1}∗, outputs Pr[X|x| ≤ x], where the inequality refers to the standard
lexicographic order of strings. We denote by distNP the class of distributional
problems consisting of decision problems in NP coupled with simple probability
ensembles.

Note that the uniform probability ensemble is simple, but so are many other
“simple” probability ensembles. Actually, it makes sense to relax the definition
such that the algorithm is only required to output an approximation of Pr[X|x| ≤

x], say, to within a factor of 1 ± 2−2|x|. We note that Definition 2 interprets
simplicity in computational terms; specifically, as the feasibility of answering
very basic questions regarding the probability distribution (i.e., determining the
probability mass assigned to a single (n-bit long) string and even to an interval
of such strings).

Doudts regarding Definition 2. We admit that the identification of simple distri-
butions as the class of interesting distribution is significantly more questionable
than any other identification advocated in this book. Nevertheless, we believe
that we were fully justified in rejecting both the aforementioned extremes (i.e.,

6 Confining attention to the uniform distribution seems misguided by the naive belief
according to which this distribution is the only one relevant to applications. In
contrast, we believe that, for most natural applications, the uniform distribution
over instances is not relevant at all.

108

of either allowing all distributions or allowing only the uniform distribution).
Yet, the reader may wonder whether or not we have struck the right balance be-
tween “generality” and “simplicity” (in the intuitive sense). One specific concern
is that we might have restricted the class of distributions too much. We briefly
address this concern next.

A more intuitive and very robust class of distributions, which seems to con-
tain all distributions that may occur in applications, is the class of polynomial-
time sampleable probability ensembles (treated in Section 3.2). Fortunately, the
combination of the results presented in Section 2.2 and Section 3.2 seems to
retrospectively endorse the choice underlying Definition 2. Specifically, we note
that enlarging the class of distributions weakens the conjecture that the corre-
sponding class of distributional NP problems contains infeasible problems. On
the other hand, the conclusion that a specific distributional problem is not fea-
sible becomes more appealing when the problem belongs to a smaller class that
corresponds to a restricted definition of admissible distributions. Now, the com-
bined results of Section 2.2 and Section 3.2 assert that a conjecture that refers
to the larger class of polynomial-time sampleable ensembles implies a conclusion
that refers to a (very) simple probability ensemble (which resides in the smaller
class). Thus, the current setting in which both the conjecture and the conclusion
refer to simple probability ensembles may be viewed as just an intermediate step.

Does distNP contain only feasible problems? Indeed, the big question in the
current context is whether distNP is contained in tpcP . A positive answer (es-
pecially if extended to sampleable ensembles) would deem the P-vs-NP Question
to be of little practical significant. However, our daily experience as well as much
research effort indicate that some NP problems are not merely hard in the worst-
case, but rather “typically hard”. This leads to the conjecture that distNP is
not contained in tpcP .

Needless to say, the latter conjecture implies P 6= NP , and thus we should
not expect to see a proof of it. In particular, we should not expect to see a proof
that some specific problem in distNP is not in tpcP. What we may hope to
see is “distNP-complete” problems; that is, problems in distNP that are not in
tpcP unless the entire class distNP is contained in tpcP . An adequate notion
of a reduction is used towards formulating this possibility.

Step 4: Defining reductions among (distributional) problems. Intu-
itively, such reductions must preserve average-case feasibility. Thus, in addition
to the standard conditions (i.e., that the reduction be efficiently computable and
yield a correct result), we require that the reduction “respects” the probability
distribution of the corresponding distributional problems. Specifically, the re-
duction should not map very likely instances of the first (“starting”) problem to
rare instances of the second (“target”) problem. Otherwise, having a typically
polynomial-time algorithm for the second distributional problem does not nec-
essarily yield such an algorithm for the first distributional problem. Following
is the adequate analogue of a Cook reduction (i.e., general polynomial-time re-

109

duction), and the analogue of a Karp-reduction (many-to-one reduction) can be
easily derived as a special case.7

Definition 3 (reductions among distributional problems): We say that the or-
acle machine M reduces the distributional problem (S, X) to the distributional
problem (T, Y) if the following three conditions hold.

1. Efficiency: The machine M runs in polynomial-time.8

2. Validity: For every x ∈ {0, 1}∗, it holds that MT (x) = 1 if an only if x ∈ S,
where MT (x) denotes the output of the oracle machine M on input x and
access to an oracle for T .

3. Domination:9 The probability that, on input Xn and oracle access to T , ma-
chine M makes the query y is upper-bounded by poly(|y|) ·Pr[Y|y| = y]. That
is, there exists a polynomial p such that, for every y ∈ {0, 1}∗ and every
n ∈ N, it holds that

Pr[Q(Xn) ∋ y] ≤ p(|y|) · Pr[Y|y| = y], (1)

where Q(x) denotes the set of queries made by M on input x and oracle
access to T .
In addition, we require that the reduction does not make too short queries;
that is, there exists a polynomial p′ such that if y ∈ Q(x) then p′(|y|) ≥ |x|.

In this case we say that the distributional problem (S, X) is reducible to the
distributional problem (T, Y).

The l.h.s. of Eq. (1) refers to the probability that, on input distributed as Xn,
the reduction makes the query y. This probability is required not to exceed
the probability that y occurs in the distribution Y|y| by more than a polynomial
factor in |y|. In this case we say that the l.h.s. of Eq. (1) is dominated by Pr[Y|y| =
y].

Indeed, the domination condition is the only aspect of Definition 3 that
extends beyond the worst-case treatment of reductions and refers to the distri-
butional setting. The domination condition does not insist that the distribution
induced by Q(X) equals Y , but rather allows some slackness that, in turn, is
bounded so to guarantee preservation of typical feasibility. 10

7 See Footnote 9. We mention that the special case of many-to-one reductions, which
suffices for the distNP-completeness results (e.g., Theorem 5).

8 In fact, one may relax the requirement and only require that M is typically
polynomial-time with respect to X. The validity condition may also be relaxed sim-
ilarly.

9 Let us spell out the meaning of Eq. (1) in the special case of many-to-one reductions
(i.e., MT (x) = 1 if and only if f(x) ∈ T , where f is a polynomial-time computable
function): in this case Pr[Q(Xn) ∋ y] is replaced by Pr[f(Xn) = y]. That is, Eq. (1)
simplifies to Pr[f(Xn) = y] ≤ p(|y|) · Pr[Y|y| = y]. Indeed, this condition holds
vacuously for any y that is not in the image of f .

10 We stress that the notion of domination is incomparable to the notion of statistical
(resp., computational) indistinguishability. On one hand, domination is a local re-

110

Proposition 4 (typical feasibility is preserved by reduction): Suppose that the
distributional problem (S, X) is reducible to the distributional problem (T, Y),
and that (T, Y) ∈ tpcP. Then, (S, X) ∈ tpcP.

Proof Sketch: Let M , Q, p, and p′ be as in Definition 3, and suppose that A
is an algorithm that typically solves (T, Y) in polynomial-time. Let B denote
the set of instances on which A errs (or runs more than polynomial time), and

Bm
def
= B ∩ {0, 1}m. By the domination condition, for every n, it holds that

Pr[MA(Xn) errs] ≤ Pr[Q(Xn) ∩ B 6= ∅]

≤
∑

m:p′(m)≥n

∑

y∈Bm

Pr[Q(Xn) ∋ y]

≤
∑

m:p′(m)≥n

∑

y∈Bm

p(m) · Pr[Ym = y]

≤
∑

m:p′(m)≥n

p(m) · Pr[Ym ∈ Bm]

where the second (resp., third) inequality uses the additional (resp., main) guar-
antee in the domination condition. It follows that the probability that MA errs
on Xn is negligible (as a function of n).

Perspective. We note that the reducibility arguments that are extensively used
in cryptopgraphy (see, e.g., [5, Chap. 2]) are actually reductions in the spirit of
Definition 3 (except that they refer to different types of computational tasks).

2.2 Complete problems

Recall that our conjecture is that distNP is not contained in tpcP , which in turn
strengthens the conjecture P 6= NP (making infeasibility a typical phenomenon
rather than a worst-case one). Having no hope of proving that distNP is not
contained in tpcP , we turn to the study of complete problems with respect
to that conjecture. Specifically, we say that a distributional problem (S, X) is
distNP-complete if (S, X) ∈ distNP and every (S′, X ′) ∈ distNP is reducible
to (S, X) (under Definition 3).

Distributional Bounded Halting. Recall that it is quite easy to prove the
mere existence of NP-complete problems and that many natural problems are

quirement (i.e., it compares the two distribution on a point-by-point basis), whereas
indistinguishability is a global requirement (which allows rare exceptions). On the
other hand, domination does not require approximately equal values, but rather a
ratio that is bounded in one direction. Indeed, domination is not symmetric. We
comment that a more relaxed notion of domination that allows rare violations (as
in Footnote 8) suffices for the preservation of typical feasibility.

111

NP-complete. In contrast, in the current context, establishing completeness re-
sults is quite hard. This should not be surprising in light of the restricted type
of reductions allowed in the current context. The restriction (captured by the
domination condition) requires that “typical” instances of one problem should
not be mapped to “untypical” instances of the other problem. In contrast, it is
fair to say that standard Karp-reductions (used in establishing NP-completeness
results) map “typical” instances of one problem to somewhat “bizarre” instances
of the second problem. Thus, the current section may be viewed as a study of
reductions that do not commit this sin.11

Theorem 5 (distNP-completeness): distNP contains a distributional problem
(T, Y) such that each distributional problem in distNP is reducible (per Defini-
tion 3) to (T, Y). Furthermore, the reductions are via many-to-one mappings.

Proof: We start by introducing such a (distributional) problem, which is a
natural distributional version of the “universal decision problem”, denoted Su,
and often referred to as Bounded Halting. Specifically, we define Su such that
the instance 〈M, x, 1t〉 is in Su if there exists y ∈ ∪i≤t{0, 1}i such that ma-
chine M accepts the input pair (x, y) within t steps. We couple Su with the
“quasi-uniform” probability ensemble U ′ that assigns to the instance 〈M, x, 1t〉
a probability mass proportional to 2−(|M|+|x|). Specifically, for every 〈M, x, 1t〉
it holds that

Pr[U ′
n = 〈M, x, 1t〉] =

2−(|M|+|x|)

(

n
2

) (2)

where n
def
= |〈M, x, 1t〉|

def
= |M | + |x| + t. Note that, under a suitable natural

encoding, the ensemble U ′ is indeed simple.12

The reader can easily verify that the generic reduction used when reducing
any set in NP to Su (see the proof of [6, Thm. 2.19]), fails to reduce distNP
to (Su, U

′). Specifically, in some cases (see next paragraph), these reductions do
not satisfy the domination condition. Indeed, the difficulty is that we have to
reduce all distNP problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., (Su, U

′)). In contrast,
considering the distributions induced by the aforementioned reductions, we end
up with many distributional versions of Su, and furthermore the corresponding
distributions are very different (and are not necessarily dominated by a single
distribution).

11 The latter assertion is somewhat controversial. While this assertion seems totally
justified with respect to the proof of Theorem 5, opinions regarding the proof of
Theorem 7 may differ.

12 For example, we may encode 〈M, x, 1t〉, where M = σ1 · · ·σk ∈ {0, 1}k and x =
τ1 · · · τℓ ∈ {0, 1}ℓ, by the string σ1σ1 · · ·σkσk01τ1τ1 · · · τℓτℓ01

t. Then
`

n

2

´

· Pr[U ′
n ≤

〈M, x, 1t〉] equals (i|M|,|x|,t − 1) + 2−|M| · |{M ′∈{0, 1}|M| : M ′ < M}|+ 2−(|M|+|x|) ·

|{x′∈{0, 1}|x| : x′ ≤ x}|, where ik,ℓ,t is the ranking of {k, k + ℓ} among all 2-subsets
of [k + ℓ + t].

112

Let us take a closer look at the aforementioned generic reduction (of S to Su),
when applied to an arbitrary (S, X) ∈ distNP . This reduction maps an instance
x to a triple (MS , x, 1pS(|x|)), where MS is a machine verifying membership in
S (while using adequate NP-witnesses) and pS is an adequate polynomial. The
problem is that x may have relatively large probability mass (i.e., it may be that
Pr[X|x|=x] ≫ 2−|x|) while (MS , x, 1pS(|x|)) has “uniform” probability mass (i.e.,

〈MS , x, 1pS(|x|)〉 has probability mass smaller than 2−|x| in U ′). This violates the
domination condition, and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution. This means that the encoding
should shrink strings that have relatively large probability mass under the origi-
nal distribution. Specifically, this encoding will map x (taken from the ensemble
{Xn}n∈N) to a codeword x′ of length that is upper-bounded by the logarithm of
1/Pr[X|x|=x], ensuring that Pr[X|x|=x] = O(2−|x′|). Accordingly, the reduction

will map x to a triple (MS,X , x′, 1p′(|x|)), where |x′| < O(1)+log2(1/Pr[X|x|=x])
and MS,X is an algorithm that (given x′ and x) first verifies that x′ is a proper
encoding of x and next applies the standard verification (i.e., MS) of the problem
S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency,
validity, and domination). Thus, instead of forcing the structure of the original
distribution X on the target distribution U ′, the reduction will incorporate the
structure of X in the reduced instance. A key ingredient in making this possible
is the fact that X is simple (as per Definition 2).

With the foregoing motivation in mind, we now turn to the actual proof;
that is, proving that any (S, X) ∈ distNP is reducible to (Su, U

′). The following
technical lemma is the basis of the reduction. In this lemma as well as in the
sequel, it will be convenient to consider the (accumulative) distribution function

of the probability ensemble X . That is, we consider µ(x)
def
= Pr[X|x| ≤ x], and

note that µ : {0, 1}∗ → [0, 1] is polynomial-time computable (because X satisfies
Definition 2).

Coding Lemma:13 Let µ : {0, 1}∗ → [0, 1] be a polynomial-time computable
function that is monotonically non-decreasing over {0, 1}n for every n (i.e.,
µ(x′) ≤ µ(x′′) for any x′ < x′′ ∈ {0, 1}|x

′|). For x ∈ {0, 1}n \ {0n}, let x − 1 de-
note the string preceding x in the lexicographic order of n-bit long strings. Then
there exist an encoding function Cµ that satisfies the following three conditions.

1. Compression: For every x it holds that |Cµ(x)| ≤ 1+min{|x|, log2(1/µ′(x))},

where µ′(x)
def
= µ(x) − µ(x − 1) if x 6∈ {0}∗ and µ′(0n)

def
= µ(0n) otherwise.

2. Efficient Encoding: The function Cµ is computable in polynomial-time.

13 The lemma actually refers to {0, 1}n, for any fixed value of n, but the efficiency
condition is stated more easily when allowing n to vary (and using the standard
asymptotic analysis of algorithms). Actually, the lemma is somewhat easier to state
and establish for polynomial-time computable functions that are monotonically non-
decreasing over {0, 1}∗ (rather than over {0, 1}n); see [4, Sec. 3].

113

3. Unique Decoding: For every n ∈ N, when restricted to {0, 1}n, the function
Cµ is one-to-one (i.e., if Cµ(x) = Cµ(x′) and |x| = |x′| then x = x′).

Proof: The function Cµ is defined as follows. If µ′(x) ≤ 2−|x| then Cµ(x) = 0x
(i.e., in this case x serves as its own encoding). Otherwise (i.e., µ′(x) > 2−|x|)
then Cµ(x) = 1z, where z is chosen such that |z| ≤ log2(1/µ′(x)) and the
mapping of n-bit strings to their encoding is one-to-one. Loosely speaking, z
is selected to equal the shortest binary expansion of a number in the interval
(µ(x) − µ′(x), µ(x)]. Bearing in mind that this interval has length µ′(x) and
that the different intervals are disjoint, we obtain the desired encoding. Details
follows.

We focus on the case that µ′(x) > 2−|x|, and detail the way that z is selected
(for the encoding Cµ(x) = 1z). If x > 0|x| and µ(x) < 1, then we let z be
the longest common prefix of the binary expansions of µ(x − 1) and µ(x); for
example, if µ(1010) = 0.10010 and µ(1011) = 0.10101111 then Cµ(1011) = 1z
with z = 10. Thus, in this case 0.z1 is in the interval (µ(x − 1), µ(x)] (i.e.,
µ(x − 1) < 0.z1 ≤ µ(x)). For x = 0|x|, we let z be the longest common prefix
of the binary expansions of 0 and µ(x) and again 0.z1 is in the relevant interval
(i.e., (0, µ(x)]). Finally, for x such that µ(x) = 1 and µ(x−1) < 1, we let z be the
longest common prefix of the binary expansions of µ(x−1) and 1−2−|x|−1, and
again 0.z1 is in (µ(x − 1), µ(x)] (because µ′(x) > 2−|x| and µ(x − 1) < µ(x) = 1
imply that µ(x − 1) < 1 − 2−|x| < µ(x)). Note that if µ(x) = µ(x − 1) = 1 then
µ′(x) = 0 < 2−|x|.

We now verify that the foregoing Cµ satisfies the conditions of the lemma.
We start with the compression condition. Clearly, if µ′(x) ≤ 2−|x| then |Cµ(x)| =
1 + |x| ≤ 1 + log2(1/µ′(x)). On the other hand, suppose that µ′(x) > 2−|x| and
let us focus on the sub-case that x > 0|x| and µ(x) < 1. Let z = z1 · · · zℓ be
the longest common prefix of the binary expansions of µ(x− 1) and µ(x). Then,
µ(x − 1) = 0.z0u and µ(x) = 0.z1v, where u, v ∈ {0, 1}∗. We infer that

µ′(x) = µ(x) − µ(x − 1) ≤

ℓ
∑

i=1

2−izi +

poly(|x|)
∑

i=ℓ+1

2−i

 −
ℓ

∑

i=1

2−izi < 2−|z|,

and |z| < log2(1/µ′(x)) ≤ |x| follows. Thus, |Cµ(x)| ≤ 1+min(|x|, log2(1/µ′(x)))
holds in both cases. Clearly, Cµ can be computed in polynomial-time by comput-
ing µ(x − 1) and µ(x). Finally, note that Cµ satisfies the unique decoding con-
dition, by separately considering the two aforementioned cases (i.e., Cµ(x) = 0x
and Cµ(x) = 1z). Specifically, in the second case (i.e., Cµ(x) = 1z), use the fact
that µ(x − 1) < 0.z1 ≤ µ(x).

In order to obtain an encoding that is one-to-one when applied to strings
of different lengths, we augment Cµ in the obvious manner; that is, we consider

C′
µ(x)

def
= (|x|, Cµ(x)), which may be implemented as C′

µ(x) = σ1σ1 · · ·σℓσℓ01Cµ(x)
where σ1 · · ·σℓ is the binary expansion of |x|. Note that |C′

µ(x)| = O(log |x|) +
|Cµ(x)| and that C′

µ is one-to-one (over {0, 1}∗).

114

The machine associated with (S, X). Let µ be the accumulative probability func-
tion associated with the probability ensemble X , and MS be the polynomial-time
machine that verifies membership in S while using adequate NP-witnesses (i.e.,
x ∈ S if and only if there exists y ∈ {0, 1}poly(|x|) such that M(x, y) = 1). Using
the encoding function C′

µ, we introduce an algorithm MS,µ with the intension
of reducing the distributional problem (S, X) to (Su, U

′) such that all instances
(of S) are mapped to triples in which the first element equals MS,µ. Machine
MS,µ is given an alleged encoding (under C′

µ) of an instance to S along with an
alleged proof that the corresponding instance is in S, and verifies these claims in
the obvious manner. That is, on input x′ and 〈x, y〉, machine MS,µ first verifies
that x′ = C′

µ(x), and next verifiers that x ∈ S by running MS(x, y). Thus, MS,µ

verifies membership in the set S′ = {C′
µ(x) : x ∈ S}, while using proofs of the

form 〈x, y〉 such that MS(x, y) = 1 (for the instance C′
µ(x)).14

The reduction. We maps an instance x (of S) to the triple (MS,µ, C′
µ(x), 1p(|x|)),

where p(n)
def
= pS(n) + pC(n) such that pS is a polynomial representing the

running-time of MS and pC is a polynomial representing the running-time of
the encoding algorithm.

Analyzing the reduction. Our goal is proving that the foregoing mapping con-
stitutes a reduction of (S, X) to (Su, U

′). We verify the corresponding three
requirements (of Definition 3).

1. Using the fact that C′
µ is polynomial-time computable (and noting that p

is a polynomial), it follows that the foregoing mapping can be computed in
polynomial-time.

2. Recall that, on input (x′, 〈x, y〉), machine MS,µ accepts if and only if x′ =
C′

µ(x) and MS accepts (x, y) within pS(|x|) steps. Using the fact that C′
µ(x)

uniquely determines x, it follows that x ∈ S if and only if C′
µ(x) ∈ S′,

which in turn holds if and only if there exists a string y such that MS,µ

accepts (C′
µ(x), 〈x, y〉) in at most p(|x|) steps. Thus, x ∈ S if and only if

(MS,µ, C′
µ(x), 1p(|x|)) ∈ Su, and the validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation x → C′

µ(x) is one-to-
one). Next, we note that it suffices to consider instances of Su that have
a preimage under the foregoing mapping (since instances with no preimage
trivially satisfy the domination condition). Each of these instances (i.e., each
image of this mapping) is a triple with the first element equal to MS,µ and
the second element being an encoding under C′

µ. By the definition of U ′, for

every such image 〈MS,µ, C′
µ(x), 1p(|x|)〉 ∈ {0, 1}n, it holds that

Pr[U ′
n = 〈MS,µ, C′

µ(x), 1p(|x|)〉] =

(

n

2

)−1

· 2−(|MS,µ|+|C′

µ(x)|)

> c · n−2 · 2−(|Cµ(x)|+O(log |x|)),

14 Note that |y| = poly(|x|), but |x| = poly(|C′
µ(x)|) does not necessarily hold (and so

S′ is not necessarily in NP). As we shall see, the latter point is immaterial.

115

where c = 2−|MS,µ|−1 is a constant depending only on S and µ (i.e., on
the distributional problem (S, X)). Thus, for some positive polynomial q, we
have

Pr[U ′
n = 〈MS,µ, C′

µ(x), 1p(|x|)〉] > 2−|Cµ(x)|/q(n). (3)

By virtue of the compression condition (of the Coding Lemma), we have
2−|Cµ(x)| ≥ 2−1−min(|x|,log

2
(1/µ′(x))). It follows that

2−|Cµ(x)| ≥ Pr[X|x| = x]/2. (4)

Recalling that x is the only preimage that is mapped to 〈MS,µ, C′
µ(x), 1p(|x|)〉

and combining Eq. (3)& (4), we establish the domination condition.

The theorem follows.

Reflections: The proof of Theorem 5 highlights the fact that the reduction used
in establishing the NP-completeness of Su does not introduce much structure in
the reduced instances (i.e., does not reduce the original problem to a “highly
structured special case” of the target problem). Put in other words, unlike more
advanced worst-case reductions, this reduction does not map “random” (i.e.,
uniformly distributed) instances to highly structured instances (which occur with
negligible probability under the uniform distribution). Thus, the reduction used
in establishing the NP-completeness of Su suffices for reducing any distributional
problem in distNP to a distributional problem consisting of Su coupled with
some simple probability ensemble. 15

However, Theorem 5 states more than the latter assertion. That is, it states
that any distributional problem in distNP is reducible to the same distributional
version of Su. Indeed, the effort involved in proving Theorem 5 was due to the
need for mapping instances taken from any simple probability ensemble (which
may not be the uniform ensemble) to instances distributed in a manner that
is dominated by a single probability ensemble (i.e., the quasi-uniform ensemble
U ′).

Other distNP-complete problems. Once we have established the existence
of one distNP-complete problem, we may establish the distNP-completeness
of other problems (in distNP) by reducing some distNP-complete problem to
them (and relying on the transitivity of reductions).16 Thus, the difficulties en-
countered in the proof of Theorem 5 are no longer relevant. Unfortunately, a
seemingly more severe difficulty arises: almost all known reductions in the theory
of NP-completeness work by introducing much structure in the reduced instances
(i.e., they actually reduce to highly structured special cases). Furthermore, this
structure is too complex in the sense that the distribution of reduced instances

15 Note that this cannot be said of most known Karp-reductions, which do map random
instances to highly structured ones.

16 When establishing the transitivity of reductions, it is again essential to use the
additional guarantee in the domination condition. Compare Proposition 4.

116

does not seem simple (in the sense of Definition 2). Actually, as demonstrated
next, the problem is not the existence of a structure in the reduced instances but
rather the complexity of this structure. In particular, if the aforementioned re-
duction is “monotone” and “length regular” then the distribution of the reduced
instances is simple enough (i.e., is simple in the sense of Definition 2):

Proposition 6 (sufficient condition for distNP-completeness): Suppose that f
is a Karp-reduction of the set S to the set T such that, for every x′, x′′ ∈ {0, 1}∗,
the following two conditions hold:

1. (f is monotone): If x′ < x′′ then f(x′) < f(x′′), where the inequalities refer
to the standard lexicographic order of strings.17

2. (f is length-regular): |x′| = |x′′| if and only if |f(x′)| = |f(x′′)|.

Then, if there exists an ensemble X such that (S, X) is distNP-complete, then
there exists an ensemble Y such that (T, Y) is distNP-complete.

Proof Sketch: Note that the monotonicity of f implies that f is one-to-one
and that for every x it holds that f(x) ≥ x. Furthermore, as shown next, f
is polynomial-time invertible. Intuitively, the fact that f is both monotone and
polynomial-time computable implies that a preimage can be found by a binary
search. Specifically, given y = f(x), we search for x by iteratively halving the
interval of potential solutions, which is initialized to [0, y] (since x ≤ f(x)). Note
that if this search is invoked on a string y that is not in the image of f , then it
terminates while detecting this fact.

Relying on the fact that f is one-to-one (and length-regular), we define the
probability ensemble Y ={Yn}n∈N such that for every x it holds that Pr[Y|f(x)|=
f(x)] = Pr[X|x| = x]. Specifically, letting ℓ(m) = |f(1m)| and noting that ℓ is
one-to-one and monotonically non-decreasing, we define

Pr[Y|y|=y] =

Pr[X|x|=x] if x = f−1(y)

0 if ∃m s.t. y ∈ {0, 1}ℓ(m) \ {f(x) : x∈{0, 1}m}
2−|y| otherwise (i.e., if |y| 6∈ {ℓ(m) : m∈N})18.

Clearly, (S, X) is reducible to (T, Y) (via the Karp-reduction f , which, due to
our construction of Y , also satisfies the domination condition). Thus, using the
hypothesis that distNP is reducible to (S, X) and the transitivity of reductions,
it follows that every problem in distNP is reducible to (T, Y). The key obser-
vation, to be established next, is that Y is a simple probability ensemble, and it
follows that (T, Y) is in distNP .

Loosely speaking, the simplicity of Y follows by combining the simplicity of
X and the properties of f (i.e., the fact that f is monotone, length-regular, and

17 In particular, if |z′| < |z′′| then z′ < z′′. Recall that for |z′| = |z′′| it holds that
z′ < z′′ if and only if there exists w, u′, u′′ ∈ {0, 1}∗ such that z′ = w0u′ and
z′′ = w1u′′.

18 Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed
at guaranteeing a “simple” distribution on n-bit strings (also in this case).

117

polynomial-time invertible). The monotonicity and length-regularity of f implies
that Pr[Y|f(x)| ≤ f(x)] = Pr[X|x| ≤ x]. More generally, for any y ∈ {0, 1}ℓ(m), it
holds that Pr[Yℓ(m) ≤ y] = Pr[Xm ≤ x], where x is the lexicographicly largest
string such that f(x) ≤ y (and, indeed, if |x| < m then Pr[Yℓ(m)≤y] = Pr[Xm≤
x] = 0).19 Note that this x can be found in polynomial-time by the inverting
algorithm sketched in the first paragraph of the proof. Thus, we may compute
Pr[Y|y| ≤ y] by finding the adequate x and computing Pr[X|x| ≤ x]. Using the
hypothesis that X is simple, it follows that Y is simple (and the proposition
follows).

On the existence of adequate Karp-reductions. Proposition 6 implies that a suf-
ficient condition for the distNP-completeness of a distributional version of a
(NP-complete) set T is the existence of an adequate Karp-reduction from the
set Su to the set T ; that is, this Karp-reduction should be monotone and length-
regular. While the length-regularity condition seems easy to impose (by using
adequate padding), the monotonicity condition seems more problematic. Fortu-
nately, it turns out that the monotonicity condition can also be imposed by using
adequate padding (or rather an adequate “marking” – see [6, Exer. 2.30] and [6,
Exer. 10.21]. We highlight the fact that the existence of an adequate padding
(or “marking”) is a property of the set T itself, and mention that all popular
NP-complete sets satisfy it. Observing that any Karp-reduction to a “monoton-
ically markable” set T can be transformed into a Karp-reduction (to T) that
is monotone and length-regular, we conclude that any natural NP-complete de-
cision problem can be coupled with a simple probability ensemble such that the
resulting distributional problem is distNP-complete. As a concrete illustration
of this thesis, we state the corresponding (formal) result for the twenty-one NP-
complete problems treated in Karp’s paper on NP-completeness [9].

Theorem 7 (a modest version of a general thesis): For each of the twenty-one
NP-complete problems treated in [9] there exists a simple probability ensemble
such that the combined distributional problem is distNP-complete.

The said list of problems includes SAT, Clique, and 3-Colorability.

2.3 Probabilistic versions

The definitions in Section 2.1 can be extended so to account for randomized
computations. For example, extending Definition 1, we have:

Definition 8 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f , and a time-bound function t : N → N, we say that the string x is
t-bad for A with respect to f if with probability exceeding 1/3, on input x, either
A(x) 6= f(x) or A runs more that t(|x|) steps. We say that A typically solves

19 We also note that the case in which |y| is not in the image of ℓ can be easily detected
and taken care off accordingly.

118

(S, {Xn}n∈N) in probabilistic polynomial-time if there exists a polynomial p such
that the probability that Xn is p-bad for A with respect to the characteristic
function of S is negligible. We denote by tpcBPP the class of distributional
problems that are typically solvable in probabilistic polynomial-time.

The definition of reductions can be similarly extended. This means that in Def-
inition 3, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) are
random variables rather than fixed objects. Furthermore, validity is required to
hold (for every input) only with probability 2/3, where the probability space
refers only to the internal coin tosses of the reduction. Randomized reductions
are closed under composition and preserve typical feasibility.

Randomized reductions allow the presentation of a distNP-complete prob-
lem that refers to the (perfectly) uniform ensemble. Recall that Theorem 5
establishes the distNP-completeness of (Su, U

′), where U ′ is a quasi-uniform
ensemble (i.e., Pr[U ′

n = 〈M, x, 1t〉] = 2−(|M|+|x|)/
(

n
2

)

, where n = |〈M, x, 1t〉|).
We first note that (Su, U

′) can be randomly reduced to (S′
u
, U ′′), where S′

u
=

{〈M, x, z〉 : 〈M, x, 1|z|〉 ∈ Su} and Pr[U ′′
n = 〈M, x, z〉] = 2−(|M|+|x|+|z|)/

(

n
2

)

for every 〈M, x, z〉 ∈ {0, 1}n. The randomized reduction consists of mapping
〈M, x, 1t〉 to 〈M, x, z〉, where z is uniformly selected in {0, 1}t. Recalling that
U = {Un}n∈N denotes the uniform probability ensemble (i.e., Un is uniformly
distributed on strings of length n) and using a suitable encoding we get.

Proposition 9 (distNP-completeness w.r.t the uniform distribition): There ex-
ists S ∈ NP such that every (S′, X ′) ∈ distNP is randomly reducible to (S, U).

Proof Sketch: By the forgoing discussion, every (S′, X ′) ∈ distNP is randomly
reducible to (S′

u
, U ′′), where the reduction goes through (Su, U

′). Thus, we focus
on reducing (S′

u
, U ′′) to (S′′

u
, U), where S′′

u
∈ NP is defined as follows. The

string binℓ(|u|) ·binℓ(|v|) ·u ·v ·w is in S′′
u

if and only if 〈u, v, w〉 ∈ S′
u

and ℓ =
⌈log2 |uvw|⌉ + 1, where binℓ(i) denotes the ℓ-bit long binary encoding of the
integer i ∈ [2ℓ−1] (i.e., the encoding is padded with zeros to a total length of ℓ).
The reduction maps 〈M, x, z〉 to the string binℓ(|x|) ·binℓ(|M |) ·M ·x ·z, where
ℓ = ⌈log2(|M | + |x| + |z|)⌉+1. Noting that this reduction satisfies all conditions
of Definition 3, the proposition follows.

3 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 2
is the choice to focus on simple probability ensembles, which in turn restricts
“distributional versions of NP” to the class distNP (Definition 2). As indicated
Section 2.1, this restriction raises two opposite concerns (i.e., that distNP is ei-
ther too wide or too narrow).20 Here we address the concern that the class of sim-
ple probability ensembles is too restricted, and consequently that the conjecture

20 On one hand, if the definition of distNP were too liberal, then membership in
distNP would mean less than one may desire. On the other hand, if distNP were
too restricted, then the conjecture that distNP contains hard problems would have
been very questionable.

119

distNP 6⊆ tpcBPP is too strong (which would mean that distNP-completeness
is a weak evidence for typical-case hardness). An appealing extension of the class
of simple probability ensembles is presented in Section 3.2, yielding an corre-
sponding extension of distNP , and it is shown that if this extension of distNP
is not contained in tpcBPP, then distNP itself is not contained in tpcBPP.
Consequently, distNP-complete problems enjoy the benefit of both being in the
more restricted class (i.e., distNP) and being hard as long as some problems in
the extended class is hard.

A different extension appears in Section 3.1, where we extend the treatment
from decision problems to search problems. This extension is motivated by the
realization that search problem are actually of greater importance to real-life
applications (see, e.g., discussions in [6, Sec. 2.1.1]) and hence a theory motivated
by real-life applications must address such problems, as we do next.

Prerequisites: For the technical development of Section 3.1, we assume famil-
iarity with the notion of unique solution and results regarding it (see, e.g., [6,
Sec. 6.2.3]). For the technical development of Section 3.2, we assume familiar-
ity with hashing functions (see, e.g., [6, Apdx. D.2]). In addition, the technical
development of Section 3.2 relies on Section 3.1.

3.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least
as important as decision problems. Thus, an average-case treatment of search
problems is indeed called for. We first present distributional versions of the search
problem classes PF and PC (which correspond to P and NP, resp.),21 following
the underlying principles of the definitions of tpcP and distNP .

Definition 10 (the classes tpcPF and distPC): We consider only polynomially
bounded search problems; that is, binary relations R ⊆ {0, 1}∗×{0, 1}∗ such that
for some polynomial q it holds that (x, y) ∈ R implies |y| ≤ q(|x|). We use the

notation R(x)
def
= {y : (x, y)∈R} and SR

def
= {x : R(x) 6= ∅}.

– A distributional search problem consists of a polynomially bounded search
problem coupled with a probability ensemble.

– The class tpcPF consists of all distributional search problems that are typ-
ically solvable in polynomial-time. That is, (R, {Xn}n∈N) ∈ tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on

21 Specifically PF (standing for Polynomial-time Find) is the class of efficiently solvable
search problems; that is, R ∈ PF if there exists a polynomial-time algorithm that

on input x replies with y ∈ R(x)
def
= {z : (x, z) ∈ R} (and with ⊥ if R(x) = ∅).

The class PC (standing for Polynomial-time Check) is the class of search problems
having efficiently checkable solutions; that is, the search problem of a polynomially
bounded relation R ⊆ {0, 1}∗ × {0, 1}∗ is in PC if there exists a polynomial time
algorithm A such that, for every x and y, it holds that A(x, y) = 1 if and only if
(x, y) ∈ R. For more deatils, see [6, Sec. 2.1.1].

120

input Xn algorithm A either errs or runs more that p(n) steps is negligible,
where A errs on x ∈ SR if A(x) 6∈ R(x) and errs on x 6∈ SR if A(x) 6= ⊥.

– A distributional search problem (R, X) is in distPC if R ∈ PC and X is
simple (as in Definition 2).

Likewise, the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomial-time (cf., Definition 8). The
definitions of reductions among distributional problems, presented in the context
of decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of dis-
tributional search problems “reduces” to the study of distributional decision
problems.

Theorem 11 (reducing search to decision): distPC ⊆ tpcBPPF if and only if
distNP ⊆ tpcBPP. Furthermore, every problem in distNP is reducible to some
problem in distPC, and every problem in distPC is randomly reducible to some
problem in distNP.

Proof Sketch: The furthermore part is analogous to the actual contents of
the proof that the devision and search versions of the P-vs-NP question are
equivalent (see, e.g., [6, Thm. 2.6] and [6, Thm. 2.16]). Indeed the standard
reduction of NP to PC extends to the current context. Specifically, for any
S ∈ NP , we consider a relation R ∈ PC such that S = {x : R(x) 6= ∅}, and
note that, for any probability ensemble X , the identity transformation reduces
(S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the standard re-
duction of PC to NP , one reduces the search problem of R ∈ PC to deciding

membership in S′
R

def
= {〈x, y′〉 : ∃y′′ s.t. (x, y′y′′) ∈ R} ∈ NP . The difficulty

encountered here is that, on input x, this reduction makes queries of the form
〈x, y′〉, where y′ is a prefix of some string in R(x). These queries may induce a
distribution that is not dominated by any simple distribution. Thus, we seek an
alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions;
that is, for every x it holds that |R(x)| ≤ 1. In this case we may easily reduce
the search problem of R ∈ PC to deciding membership in S′′

R ∈ NP , where
〈x, i, σ〉 ∈ S′′

R if and only if R(x) contains a string in which the ith bit equals σ.
Specifically, on input x, the reduction issues the queries 〈x, i, σ〉, where i ∈ [ℓ]
(with ℓ = poly(|x|)) and σ ∈ {0, 1}, which allows for determining the single
string in the set R(x) ⊆ {0, 1}ℓ (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X) ∈ distPC (having unique solutions)
to (S′′

R, X ′′) ∈ distNP , where X ′′ equally distributes the probability mass of x
(under X) to all the tuples 〈x, i, σ〉; that is, for every i ∈ [ℓ] and σ ∈ {0, 1}, it
holds that Pr[X ′′

|〈x,i,σ〉| = 〈x, i, σ〉] equals Pr[X|x| = x]/2ℓ.
Unfortunately, in the general case, R may not have unique solutions. Never-

theless, applying the main idea that underlies the reduction of NP to “unique-
NP” (cf. [6, Thm. 6.29]), this difficulty can be overcome. We first note that the

121

foregoing mapping of instances of the distributional problem (R, X) ∈ distPC
to instances of (S′′

R, X ′′) ∈ distNP satisfies the efficiency and domination condi-
tions even in the case that R does not have unique solutions. What may possibly
fail (in the general case) is the validity condition (i.e., if |R(x)| > 1 then we may
fail to recover any element of R(x)).

Recall that the core of the reduction of NP to unique-NP is a randomized
mapping of instances x (of any R ∈ PC) to triples of the form (x, m, h) such
that m is uniformly distributed in [ℓ] and h is uniformly distributed in a family
of hashing function Hm

ℓ , where ℓ = poly(|x|) and Hm
ℓ is a family of pairwise

indepence hashing functions. Furthermore, if R(x) 6= ∅ then, with probability
Ω(1/ℓ) over the choices of m ∈ [ℓ] and h ∈ Hm

ℓ , there exists a unique y ∈ R(x)

such that h(y) = 0m. Defining R′(x, m, h)
def
= {y ∈ R(x) : h(y) = 0m}, this

yields a randomized reduction of the search problem of R to the search problem
of R′ such that with noticeable probability22 the reduction maps instances that
have solutions to instances having a unique solution. Furthermore, this reduction
can be used to reduce any (R, X) ∈ distPC to (R′, X ′) ∈ distPC, where X ′

distributes the probability mass of x (under X) to all the triples (x, m, h) such
that for every m ∈ [ℓ] and h ∈ Hm

ℓ it holds that Pr[X ′
|(x,m,h)| = (x, m, h)] equals

Pr[X|x| = x]/(ℓ·|Hm
ℓ |). (Note that with a suitable encoding, X ′ is indeed simple.)

The theorem follows by combining the two aforementioned reductions. That
is, we first apply the randomized reduction of (R, X) to (R′, X ′), and next re-
duce the resulting instance to an instance of the corresponding decision problem
(S′′

R′ , X ′′), where X ′′ is obtained by modifying X ′ (rather than X). The combined
randomized mapping satisfies the efficiency and domination conditions, and is
valid with noticeable probability. The error probability can be made negligible
by straightforward amplification.

3.2 Simple versus sampleable distributions

Recall that the definition of simple probability ensembles (underlying Defini-
tion 2) requires that the accumulating distribution function is polynomial-time
computable. Recall that µ : {0, 1}∗ → [0, 1] is called the accumulating distribu-
tion function of X = {Xn}n∈N if for every n ∈ N and x ∈ {0, 1}n it holds that

µ(x)
def
= Pr[Xn ≤ x], where the inequality refers to the standard lexicographic

order of n-bit strings.
As argued in Section 2.1, the requirement that the accumulating distribution

function is polynomial-time computable imposes severe restrictions on the set
of admissible ensembles. Furthermore, it seems that these simple ensembles are
indeed “simple” in some intuitive sense, and that they represent a reasonable
(alas disputable) model of distributions that may occur in practice. Still, in light

22 Recall that the probability of an event is said to be noticeable (in a relevant param-
eter) if it is greater than the reciprocal of some positive polynomial. In the context
of randomized reductions, the relevant parameter is the length of the input to the
reduction.

122

of the fear that this model is too restrictive (and consequently that distNP-
hardness is weak evidence for typical-case hardness), we seek a maximalistic
model of distributions that may occur in practice. Such a model is provided by
the notion of polynomial-time sampleable ensembles (underlying Definition 12).
Our maximality thesis is based on the belief that the real world should be mod-
eled as a feasible randomized process (rather than as an arbitrary process). This
belief implies that all objects encountered in the world may be viewed as samples
generated by a feasible randomized process.

Definition 12 (sampleable ensembles and the class sampNP): We say that
a probability ensemble X = {Xn}n∈N is (polynomial-time) sampleable if there
exists a probabilistic polynomial-time algorithm A such that for every x ∈ {0, 1}∗

it holds that Pr[A(1|x|) = x] = Pr[X|x| = x]. We denote by sampNP the class
of distributional problems consisting of decision problems in NP coupled with
sampleable probability ensembles.

We first note that all simple probability ensembles are indeed sampleable, and
thus distNP ⊆ sampNP . On the other hand, there exist sampleable probability
ensembles that do not seem simple (and so it seems that distNP ⊂ sampNP).

Extending the scope of distributional problems (from distNP to sampNP)
facilitates the presentation of complete distributional problems. We first note
that it is easy to prove that every natural NP-complete problem has a distri-
butional version in sampNP that is distNP-hard. Furthermore, it is possible
to prove that all natural NP-complete problem have distributional versions that
are sampNP-complete. (In both cases, “natural” means that the corresponding
Karp-reductions do not shrink the input, which is a weaker condition than the
one in Proposition 6.)

Theorem 13 (sampNP-completeness): Suppose that S ∈ NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the in-
put. Then, there exists a polynomial-time sampleable ensemble X such that any
problem in sampNP is reducible to (S, X)

The proof of Theorem 13 is based on the observation that there exists a polynomial-
time sampleable ensemble that dominates all polynomial-time sampleable ensem-
bles. The existence of this ensemble is based on the notion of a universal (sam-
pling) machine.

Theorem 13 establishes a rich theory of sampNP-completeness, but does not
relate this theory to the previously presented theory of distNP-completeness
(see Figure 1). This is essentially done in the next theorem, which asserts that
the existence of typically hard problems in sampNP implies their existence in
distNP .

Theorem 14 (sampNP-completeness versus distNP-completeness): If sampNP
is not contained in tpcBPP then distNP is not contained in tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are
equivalent. That is, if some “sampleable distribution” versions of NP are not

123

distNP

sampNP

tpcBPP

sampNP-complete [Thm 13]

distNP-complete [Thms 5 and 7]

Fig. 1. Two types of average-case completeness

typically feasible then some “simple distribution” versions of NP are not typically
feasible. In particular, if sampNP-complete problems are not in tpcBPP then
distNP-complete problems are not in tpcBPP.

The foregoing assertions would all follow if sampNP were (randomly) re-
ducible to distNP (i.e., if every problem in sampNP were reducible (under a
randomized version of Definition 3) to some problem in distNP); but, unfor-
tunately, we do not know whether such reductions exist. Yet, underlying the
proof of Theorem 14 is a more liberal notion of a reduction among distributional
problems.

Proof Sketch: We shall prove that if distNP is contained in tpcBPP then the
same holds for sampNP (i.e., sampNP is contained in tpcBPP). Relying on
Theorem 11 and an analogous result for the sampleable classes, it suffices to show
that if distPC is contained in tpcBPPF, then the sampleable version of distPC,
denoted sampPC, is contained in tpcBPPF. This will be shown by showing that,
under a relaxed notion of a randomized reduction, every problem in sampPC is
reduced to some problem in distPC. Loosely speaking, this relaxed notion (of a
randomized reduction) only requires that the validity and domination conditions
(of Definition 3 (when adapted to randomized reductions)) hold with respect to
a noticeable fraction of the probability space of the reduction.23 We start by
formulating this notion, when referring to distributional search problems.

Definition: A relaxed reduction of the distributional problem (R, X) to the dis-
tributional problem (T, Y) is a probabilistic polynomial-time oracle machine M
that satisfies the following conditions with respect to a family of sets {Ωx ⊆
{0, 1}m(|x|) : x∈{0, 1}∗}, where m(|x|) = poly(|x|) denotes an upper-bound on
the number of the internal coin tosses of M on input x:

23 We warn that the existence of such a relaxed reduction between two specific dis-
tributional problems does not necessarily imply the existence of a corresponding
(standard average-case) reduction. Specifically, although standard validity can be
guaranteed (for problems in PC) by repeated invocations of the reduction, such a
process will not redeem the violation of the standard domination condition.

124

Density (of Ωx): There exists a noticeable function ρ : N → [0, 1] (i.e., ρ(n) >
1/poly(n)) such that, for every x ∈ {0, 1}∗, it holds that |Ωx| ≥ ρ(|x|)·2m(|x|).

Validity (with respect to Ωx): For every r ∈ Ωx the reduction yields a correct
answer; that is, MT (x, r) ∈ R(x) if R(x) 6= ∅ and MT (x, r) = ⊥ otherwise,
where MT (x, r) denotes the execution of M on input x, internal coins r, and
oracle access to T .

Domination (with respect to Ωx): There exists a positive polynomial p such that,
for every y ∈ {0, 1}∗ and every n ∈ N, it holds that

Pr[Q′(Xn) ∋ y] ≤ p(|y|) · Pr[Y|y| = y], (5)

where Q′(x) is a random variable, defined over the set Ωx, representing the
set of queries made by M on input x, coins in Ωx, and oracle access to T .
That is, Q′(x) is defined by uniformly selecting r ∈ Ωx and considering the
set of queries made by M on input x, internal coins r, and oracle access to
T . (In addition, as in Definition 3, we also require that the reduction does
not make too short queries.)

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R ∈ PC, if there exists a relaxed reduction of (R, X) to
(T, Y) and (T, Y) is in tpcBPPF then (R, X) is in tpcBPPF. The key obser-
vation is that the analysis may discard the case that, on input x, the reduction
selects coins not in Ωx. Indeed, the queries made in that case may be untypical
and the answers received may be wrong, but this is immaterial. What matter is
that, on input x, with noticeable probability the reduction selects coins in Ωx,
and produces “typical with respect to Y ” queries (by virtue of the relaxed dom-
ination condition). Such typical queries are answered correctly by the algorithm
that typically solves (T, Y), and if x has a solution then these answers yield a
correct solution to x (by virtue of the relaxed validity condition). Thus, if x
has a solution then with noticeable probability the reduction outputs a correct
solution. On the other hand, the reduction never outputs a wrong solution (even
when using coins not in Ωx), because incorrect solutions are detected by relying
on R ∈ PC.

Our goal is presenting, for every (R, X) ∈ sampPC, a relaxed reduction of
(R, X) to a related problem (R′, X ′) ∈ distPC. (We use the standard notation
X = {Xn}n∈N and X ′ = {X ′

n}n∈N.)

An oversimplified case: For starters, suppose that Xn is uniformly distributed
on some set Sn ⊆ {0, 1}n and that there is a polynomial-time computable and
invertible mapping µ of Sn to {0, 1}ℓ(n), where ℓ(n) = log2 |Sn|. Then, mapping
x to 1|x|−ℓ(|x|)0µ(x), we obtain a reduction of (R, X) to (R′, X ′), where X ′

n+1

is uniform over {1n−ℓ(n)0v : v ∈ {0, 1}ℓ(n)} and R′(1n−ℓ(n)0v) = R(µ−1(v)) (or,
equivalently, R(x) = R′(1|x|−ℓ(|x|)0µ(x))). Note that X ′ is a simple ensemble
and R′ ∈ PC; hence, (R′, X ′) ∈ distPC. Also note that the foregoing mapping is
indeed a valid reduction (i.e., it satisfies the efficiency, validity, and domination
conditions). Thus, (R, X) is reduced to a problem in distPC (and indeed the
relaxation was not used here).

125

A simple but more instructive case: Next, we drop the assumption that there
is a polynomial-time computable and invertible mapping µ of Sn to {0, 1}ℓ(n),
but maintain the assumption that Xn is uniform on some set Sn ⊆ {0, 1}n

and assume that |Sn| = 2ℓ(n) is easily computable (from n). In this case, we
may map x ∈ {0, 1}n to its image under a suitable randomly chosen hashing
function h, which in particular maps n-bit strings to ℓ(n)-bit strings. That is,
we randomly map x to (h, 1n−ℓ(n)0h(x)), where h is uniformly selected in a set

H
ℓ(n)
n of suitable hash functions (i.e., pairwise independent ones). This calls for

redefining R′ such that R′(h, 1n−ℓ(n)0v) corresponds to the preimages of v under
h that are in Sn. Assuming that h is a 1-1 mapping of Sn to {0, 1}ℓ(n), we may
define R′(h, 1n−ℓ(n)0v) = R(x) such that x is the unique string satisfying x ∈ Sn

and h(x) = v, where the condition x ∈ Sn may be verified by providing the
internal coins of the sampling procedure that generate x. Denoting the sampling
procedure of X by S, and letting S(1n, r) denote the output of S on input 1n

and internal coins r, we actually redefine R′ as

R′(h, 1n−ℓ(n)0v) = {〈r, y〉 : h(S(1n, r))=v ∧ y∈R(S(1n, r))}. (6)

We note that 〈r, y〉 ∈ R′(h, 1|x|−ℓ(|x|)0h(x)) yields a desired solution y ∈ R(x)
if S(1|x|, r) = x, but otherwise “all bets are off” (since y will be a solution for
S(1|x|, r) 6= x). Now, although typically h will not be a 1-1 mapping of Sn to
{0, 1}ℓ(n), it is the case that for each x ∈ Sn, with constant probability over the
choice of h, it holds that h(x) has a unique preimage in Sn under h. In this
case 〈r, y〉 ∈ R′(h, 1|x|−ℓ(|x|)0h(x)) implies S(1|x|, r) = x (which, in turn, implies
y ∈ R(x)). We claim that the randomized mapping of x to (h, 1n−ℓ(n)0h(x)),

where h is uniformly selected in H
ℓ(|x|)
|x| , yields a relaxed reduction of (R, X)

to (R′, X ′), where X ′
n′ is uniform over H

ℓ(n)
n × {1n−ℓ(n)0v : v ∈ {0, 1}ℓ(n)}.

Needless to say, the claim refers to the reduction that (on input x, makes the
query (h, 1n−ℓ(n)0h(x)), and) returns y if the oracle answer equals 〈r, y〉 and
y ∈ R(x).

The claim is proved by considering the set Ωx of choices of h ∈ H
ℓ(|x|)
|x|

for which x ∈ Sn is the only preimage of h(x) under h that resides in Sn

(i.e., |{x′ ∈ Sn : h(x′) = h(x)}| = 1). In this case (i.e., h ∈ Ωx) it holds that
〈r, y〉 ∈ R′(h, 1|x|−ℓ(|x|)0h(x)) implies that S(1|x|, r) = x and y ∈ R(x), and the
(relaxed) validity condition follows. The (relaxed) domination condition follows
by noting that Pr[Xn =x] ≈ 2−ℓ(|x|), that x is mapped to (h, 1|x|−ℓ(|x|)0h(x)) with

probability 1/|H
ℓ(|x|)
|x| |, and that x is the only preimage of (h, 1|x|−ℓ(|x|)0h(x)) un-

der the mapping (among x′ ∈ Sn such that Ωx′ ∋ h).
Before going any further, let us highlight the importance of hashing Xn to

ℓ(n)-bit strings. On one hand, this mapping is “sufficiently” one-to-one, and
thus (with constant probability) the solution provided for the hashed instance
(i.e., h(x)) yield a solution for the original instance (i.e., x). This guarantees the
validity of the reduction. On the other hand, for a typical h, the mapping of Xn

to h(Xn) covers the relevant range almost uniformly. This guarantees that the
reduction satisfies the domination condition. Note that these two phenomena

126

impose conflicting requirements that are both met at the correct value of ℓ; that
is, the one-to-one condition requires ℓ(n) ≥ log2 |Sn|, whereas an almost uniform
cover requires ℓ(n) ≤ log2 |Sn|. Also note that ℓ(n) = log2(1/Pr[Xn = x]) for
every x in the support of Xn; the latter quantity will be in our focus in the
general case.

The general case: Finally, we get rid of the assumption that Xn is uniformly
distributed over some subset of {0, 1}n. All that we know is that there exists
a probabilistic polynomial-time (“sampling”) algorithm S such that S(1n) is
distributed identically to Xn. In this (general) case, we map instances of (R, X)
according to their probability mass such that x is mapped to an instance (of R′)
that consists of (h, h(x)) and additional information, where h is a random hash
function mapping n-bit long strings to ℓx-bit long strings such that

ℓx
def
= ⌈log2(1/Pr[X|x|=x])⌉. (7)

Since (in the general case) there may be more than 2ℓx strings in the support
of Xn, we need to augment the reduced instance in order to ensure that it is
uniquely associated with x. The basic idea is augmenting the mapping of x to
(h, h(x)) with additional information that restricts Xn to strings that occur with
probability at least 2−ℓx . Indeed, when Xn is restricted in this way, the value of
h(Xn) uniquely determines Xn.

Let q(n) denote the randomness complexity of S and S(1n, r) denote the out-
put of S on input 1n and internal coin tosses r ∈ {0, 1}q(n). Then, we randomly
map x to (h, h(x), h′, v′), where h : {0, 1}|x| → {0, 1}ℓx and h′ : {0, 1}q(|x|) →
{0, 1}q(|x|)−ℓx are random hash functions and v′ ∈ {0, 1}q(|x|)−ℓx is uniformly
distributed. The instance (h, v, h′, v′) of the redefined search problem R′ has
solutions that consists of pairs 〈r, y〉 such that h(S(1n, r)) = v ∧ h′(r) = v′

and y ∈ R(S(1n, r)). As we shall see, this augmentation guarantees that, with
constant probability (over the choice of h, h′, v′), the solutions to the reduced
instance (h, h(x), h′, v′) correspond to the solutions to the original instance x.

The foregoing description assumes that, on input x, we can efficiently deter-
mine ℓx, which is an assumption that cannot be justified. Instead, we select ℓ
uniformly in {0, 1, ..., q(|x|)}, and so with noticeable probability we do select the
correct value (i.e., Pr[ℓ = ℓx] = 1/(q(|x|)+1) = 1/poly(|x|)). For clarity, we make
n and ℓ explicit in the reduced instance. Thus, we randomly map x ∈ {0, 1}n to

(1n, 1ℓ, h, h(x), h′, v′) ∈ {0, 1}n′

, where ℓ ∈ {0, 1, ..., q(n)}, h ∈ Hℓ
n, h′ ∈ H

q(n)−ℓ
q(n) ,

and v′ ∈ {0, 1}q(n)−ℓ are uniformly distributed in the corresponding sets.24 This
mapping will be used to reduce (R, X) to (R′, X ′), where R′ and X ′ = {X ′

n′}n′∈N

are redefined (yet again). Specifically, we let

R′(1n, 1ℓ, h, v, h′, v′) = {〈r, y〉 : h(S(1n, r))=v∧h′(r)=v′∧y∈R(S(1n, r))} (8)

24 As in other places, a suitable encoding will be used such that the reduction
maps strings of the same length to strings of the same length (i.e., n-bit string
are mapped to n′-bit strings, for n′ = poly(n)). For example, we may encode
〈1n, 1ℓ, h, h(x), h′, v′〉 as 1n01ℓ01q(n)−ℓ0〈h〉〈h(x)〉〈h′〉〈v′〉, where each 〈w〉 denotes an
encoding of w by a string of length (n′ − (n + q(n) + 3))/4.

127

and X ′
n′ assigns equal probability to each Xn′,ℓ (for ℓ ∈ {0, 1, ..., n}), where each

Xn′,ℓ is isomorphic to the uniform distribution over Hℓ
n × {0, 1}ℓ × H

q(n)−ℓ
q(n) ×

{0, 1}q(n)−ℓ. Note that indeed (R′, X ′) ∈ distPC.

The foregoing randomized mapping is analyzed by considering the correct
choice for ℓ; that is, on input x, we focus on the choice ℓ = ℓx. Under this
conditioning (as we shall show), with constant probability over the choice of h, h′

and v′, the instance x is the only value in the support of Xn that is mapped to
(1n, 1ℓx , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} 6= ∅. It
follows that (for such h, h′ and v′) any solution 〈r, y〉 ∈ R′(1n, 1ℓx , h, h(x), h′, v′)
satisfies S(1n, r) = x and thus y ∈ R(x), which means that the (relaxed) validity
condition is satisfied. The (relaxed) domination condition is satisfied too, because
(conditioned on ℓ = ℓx and for such h, h′, v′) the probability that Xn is mapped to
(1n, 1ℓx , h, h(x), h′, v′) approximately equals Pr[X ′

n′,ℓx
=(1n, 1ℓx , h, h(x), h′, v′)].

We now turn to analyze the probability, over the choice of h, h′ and v′,
that the instance x is the only value in the support of Xn that is mapped to
(1n, 1ℓx , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} 6= ∅.
Firstly, we note that |{r : S(1n, r) = x}| ≥ 2q(n)−ℓx , and thus, with constant

probability over the choice of h′ ∈ H
q(n)−ℓx

q(n) and v′ ∈ {0, 1}q(n)−ℓx, there exists r

that satisfies S(1n, r) = x and h′(r) = v′. Furthermore, with constant probability

over the choice of h′ ∈ H
q(n)−ℓx

q(n) and v′ ∈ {0, 1}q(n)−ℓx, it also holds that there

are at most O(2ℓx) strings r such that h′(r) = v′. Fixing such h′ and v′, we
let Sh′,v′ = {S(1n, r) : h′(r) = v′} and we note that, with constant probability
over the choice of h ∈ Hℓx

n , it holds that x is the only string in Sh′,v′ that is
mapped to h(x) under h. Thus, with constant probability over the choice of h, h′

and v′, the instance x is the only value in the support of Xn that is mapped
to (1n, 1ℓx , h, h(x), h′, v′) and satisfies {r : h(S(1n, r)) = h(x) ∧ h′(r) = v′} 6= ∅.
The theorem follows.

Reflection: Theorem 14 implies that if sampNP is not contained in tpcBPP
then every distNP-complete problem is not in tpcBPP. This means that the
hardness of some distributional problems that refer to sampleable distributions
implies the hardness of some distributional problems that refer to simple dis-
tributions. Furthermore, by Proposition 9, this implies the hardness of distri-
butional problems that refer to the uniform distribution. Thus, hardness with
respect to some distribution in an utmost wide class (which arguably captures
all distributions that may occur in practice) implies hardness with respect to a
single simple distribution (which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way functions
(see, e.g., [5, Chap. 2]) implies the existence of problems in sampPC that are not
in tpcBPPF (which in turn implies the existence of such problems in distPC).
Specifically, for a length-preserving one-way function f , consider the distribu-

128

tional search problem (Rf , {f(Un)}n∈N), where Rf = {(f(r), r) : r ∈ {0, 1}∗}.25

On the other hand, it is not known whether the existence of a problem in
sampPC\tpcBPPF implies the existence of one-way functions. In particular, the
existence of a problem (R, X) in sampPC \ tpcBPPF represents the feasibility
of generating hard instances for the search problem R, whereas the existence of
one-way function represents the feasibility of generating instance-solution pairs
such that the instances are hard to solve. Indeed, the gap refers to whether or
not hard instances can be efficiently generated together with corresponding solu-
tions. Our world view is thus depicted in Figure 2, where lower levels indicate
seemingly weaker assumptions.

P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Fig. 2. Worst-case vs average-case assumptions

Bibliographic Notes

The theory of average-case complexity was initiated by Levin [10], who in par-
ticular proved Theorem 5. In light of the laconic nature of the original text [10],
we refer the interested reader to a survey [4], which provides a more detailed
exposition of the definitions suggested by Levin as well as a discussion of the
considerations underlying these suggestions.

As noted in Section 2.1, the current text uses a variant of the original defi-
nitions. In particular, our definition of “typical-case feasibility” differs from the
original definition of “average-case feasibility” in totally discarding exceptional
instances and in even allowing the algorithm to fail on them (and not merely
run for an excessive amount of time). The alternative definition was suggested
by several researchers, and appears as a special case of the general treatment
provided in [2].

Turning to Section 2.2, we note that while the existence of distNP-complete
problems (cf. Theorem 5) was established in Levin’s original paper [10], the exis-

25 Note that the distribution f(Un) is uniform in the special case that f is a permutation
over {0, 1}n.

129

tence of distNP-complete versions of all natural NP-complete decision problems
(cf. Theorem 7) was established more than two decades later in [11].

Section 3 is based on [1, 8]. Specifically, Theorem 11 (or rather the reduction
of search to decision) is due to [1] and so is the introduction of the class sampNP .
A version of Theorem 14 was proven in [8], and our proof follows their ideas,
which in turn are closely related to the ideas underlying the construction of
pseudorandom generators based on any one-way function [7].

Recall that we know of the existence of problems in distNP that are hard
provided sampNP contains hard problems. However, these distributional prob-
lems do not seem very natural (i.e., they either refer to somewhat generic decision
problems such as Su or to somewhat contrived probability ensembles (cf. The-
orem 7)). The presentation of distNP-complete problems that combine a more
natural decision problem (like SAT or Clique) with a more natural probability
ensemble is an open problem.

A natural question at this point is what have we gained by relaxing the
requirements. In the context of average-case complexity, the negative side seems
more prevailing (at least in the sense of being more systematic). In particular,
assuming the existence of one-way functions, every natural NP-complete problem
has a distributional version that is (typical-case) hard, where this version refers
to a sampleable ensemble (and, in fact, even to a simple ensemble). Furthermore,
in this case, some problems in NP have hard distributional versions that refer
to the uniform distribution.

References

1. S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average
Case Complexity. Journal of Computer and System Science, Vol. 44 (2), pages
193–219, 1992.

2. A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends

in Theoretical Computer Science, Vol. 2 (1), 2006.
3. S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACM Sym-

posium on the Theory of Computing, pages 151–158, 1971.
4. O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. This volume.

See also ECCC, TR97-058, Dec. 1997.
5. O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University

Press, 2001.
6. O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge

University Press, 2008.
7. J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator

from any One-way Function. SICOMP, Volume 28, Number 4, pages 1364–1396,
1999. Combines papers of Impagliazzo et al. (21st STOC, 1989) and H̊astad (22nd

STOC, 1990).
8. R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP Instances

than Picking Uniformly at Random. In 31st IEEE Symposium on Foundations of

Computer Science, pages 812–821, 1990.
9. R.M. Karp. Reducibility among Combinatorial Problems. In Complexity of Com-

puter Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages
85–103, 1972.

130

10. L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing,
Vol. 15, pages 285–286, 1986.

11. N. Livne. All Natural NPC Problems Have Average-Case Complete Versions.
ECCC, TR06-122, 2006.

