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Abstract. We show that proving results such as BPP = P essentially
necessitate the construction of suitable pseudorandom generators (i.e.,
generators that suffice for such derandomization results). In particular,
the main incarnation of this equivalence refers to the standard notion of
uniform derandomization and to the corresponding pseudorandom gen-
erators (i.e., the standard uniform notion of “canonical derandomizers”).
This equivalence bypasses the question of which hardness assumptions
are required for establishing such derandomization results, which has
received considerable attention in the last decade or so (starting with
Impagliazzo and Wigderson [JCSS, 2001]).
We also identify a natural class of search problems that can be solved by
deterministic polynomial-time reductions to BPP. This result is instru-
mental to the construction of the aforementioned pseudorandom genera-
tors (based on the assumption BPP = P), which is actually a reduction
of the “construction problem” to BPP.

Caveat: Throughout the text, we abuse standard notation by letting
BPP,P etc denote classes of promise problems. We are aware of the
possibility that this choice may annoy some readers, but believe that
promise problem actually provide the most adequate formulation of nat-
ural decisional problems.1
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1 Introduction

We consider the question of whether results such as BPP = P necessitate the
construction of suitable pseudorandom generators, and conclude that the answer
is essentially positive. By suitable pseudorandom generators we mean generators
that, in particular, imply that BPP = P . Thus, in a sense, the pseudorandom
generators approach to the BPP-vs-P Question is complete; that is, if the ques-
tion can be resolved in the affirmative, then this answer follows from the existence
of suitable pseudorandom generators.

The foregoing equivalence bypasses the question of which hardness assump-
tions are required for establishing such derandomization results (i.e., BPP = P),

1 Actually, the common restriction of general studies of feasibility to decision problems
is merely a useful methodological simplification.
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which is a question that has received considerable attention in the last decade or
so (see, e.g., [16, 14, 18]). Indeed, the current work would have been obsolete if it
were the case that the known answers were tight in the sense that the hardness
assumptions required for derandomization would suffice for the construction of
the aforementioned pseudorandom generators.

1.1 What is meant by suitable pseudorandom generators?

The term pseudorandom generator is actually a general paradigm spanning
vastly different notions that range from general-purpose pseudorandom gener-
ator (a la Blum, Micali, and Yao [1, 26]) to special-purpose generators (e.g.,
pairwise-independence ones [2]). The common theme is that the generators are
deterministic devices that stretch short random seeds into longer sequences that
look random in some sense, and that their operation is relatively efficient. The
specific incarnations of this general paradigm differ with respect to the specific
formulation of the three aforementioned terms; that is, they differ with respect
to the requirements regarding (1) the amount of stretching, (2) the sense in
which the output “looks random” (i.e., the “pseudorandomness” property), and
(3) the complexity of the generation (or rather the stretching) process.

Recall that general-purpose pseudorandom generators operate in (some fixed)
polynomial-time while producing outputs that look random to any polynomial-
time observers. Thus, the observer is more powerful (i.e., runs for more time)
than the generator itself. One key observation of Nisan and Wigderson [19] is that
using such general-purpose pseudorandom generators is an over-kill when the
goal is to derandomize complexity classes such as BPP. In the latter case (i.e., for
derandomizing BPP) it suffices to have a generator that runs in exponential time
(i.e., time exponential in its seed’s length), since our deterministic emulation of
the resulting randomized algorithm is going to incur such a factor in its running-
time anyhow.2 This leads to the notion of a canonical derandomizer, which fools
observers of fixed complexity, while taking more time to produce such fooling
sequences.

Indeed, the aforementioned “suitable pseudorandom generators” are (various
(standard) forms of) canonical derandomizers. Our starting point is the non-
uniform notion of canonical derandomizers used by Nisan and Wigderson [19],
but since we aim at “completeness results” (as stated up-front), we seek uniform-
complexity versions of it. Three such versions are considered in our work, and
two are shown to be sufficient and necessary for suitable derandomizations of
BPP.

The last assertion raises the question of what is meant by a suitable de-
randomization of BPP. The first observation is that any reasonable notion of a
canonical derandomizer is also applicable to promise problems (as defined in [3]),

2 Recall that the resulting (randomized) algorithm uses the generator for producing
the randomness consumed by the original (randomized) algorithm, which it emulates,
and that our deterministic emulation consists of invoking the resulting (randomized)
algorithm on all possible random-pads.
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and so our entire discussion refers to BPP as a class of promise problems (rather
than a class of standard decision problems).3

The second observation is that standard uniform-complexity notions of canon-
ical derandomizers would not allow to place BPP in P , because rare instances
that are hard to find may not lead to a violation of the pseudorandomness guar-
antee. The known fix, used by Impagliazzo and Wigderson in [16], is to consider
“effective derandomization” in the sense that each problem Π ∈ BPP is ap-
proximated by some problem Π ′ ∈ P such that it is hard to find instances in
the symmetric difference of Π and Π ′. Our main result refers to this notion
(see Sections 4.2–4.3): Loosely speaking, it asserts that canonical derandomizers
(of exponential stretch) exist if and only if BPP is effectively in P . We stress
that this result refers to the standard notion of uniform derandomization and
to the corresponding canonical derandomizers (as in [16] and subsequent works
(e.g. [23])).

We also consider a seemingly novel notion of canonical derandomizers, which
is akin to notions of auxiliary-input one-way functions and pseudorandom gen-
erators considered by Vadhan [25]. Here the generator is given a target string
and the distribution that it produces need only be pseudorandom with respect
to efficient (uniform) observers that are given this very string as an auxiliary
input. We show that such canonical derandomizers (of exponential stretch) exist
if and only if BPP = P ; for details, see Section 4.4.

1.2 Techniques

Our starting point is the work of Goldreich and Wigderson [9], which studied
pseudorandomness with respect to (uniform) deterministic observers. In particu-
lar, they show how to construct, for every polynomial p, a generator of exponen-
tial stretch that works in time polynomial in its output and fools all deterministic
p-time tests of the next-bit type (a la [1]). They observe that an analogous con-
struction with respect to general tests (i.e., deterministic p-time distinguishers)
would yield some non-trivial derandomization results (e.g., any unary set in BPP
would be placed in P). Thus, they concluded that there is a fundamental gap
between probabilistic and deterministic polynomial-time observers.4

Our key observation is that the gap between probabilistic observers and de-
terministic ones essentially disappears if BPP = P . Actually, the gap disap-
peared with respect to certain ways of constructing pseudorandom generators,
and the construction of [9] can be shown to fall into this category. We actually

3 Indeed, as stated upfront, we believe that, in general, promise problem actually pro-
vide the most adequate formulation of natural decisional problems (cf. [8, Sec. 2.4.1]).
Furthermore, promise problems were considered in the study of derandomization
when converse results were in focus (cf. [14]). An added benefit of the use of classes
of promise problems is that BPP = P implies MA = NP.

4 In particular, they concluded that Yao’s result (by which fooling next-bit tests im-
plies pseudorandomness) may not hold in the (uniform) deterministic setting. In-
deed, recall that the next-bit tests derived (in Yao’s argument) from general tests
(i.e., distinguishers) are probabilistic.



104

prefer a more direct approach, which is more transparent and amenable to vari-
ations. Specifically, we consider a straightforward probabilistic polynomial-time
construction of a pseudorandom generator; that is, we observe that a random
function (with exponential stretch) enjoys the desired pseudorandomness prop-
erty, but of course the problem is that it cannot be constructed deterministically.

At this point, we define a search problem that consists of finding a suit-
able function (or rather its image), and observe that this problem is solvable in
probabilistic polynomial-time. Using the fact that the suitability of candidate
functions can be checked in probabilistic polynomial-time, we are able to de-
terministically reduce (in polynomial-time) this search problem to a (decisional)
problem in BPP. Finally, using the hypothesis (i.e., BPP = P), we obtain the
desired (deterministic) construction.

1.3 Additional results

The foregoing description alluded to the possibility that BPP = P (which refers
to promise problems of decisional nature) extends to search problems; that is,
that BPP = P implies that a certain class of probabilistic polynomial-time
solvable search problems can be emulated deterministically. This fact, which
is used in our construction of canonical derandomizers, is proven as part of our
study of “BPP-search problems” (and their relation to decisional BPP problems),
which seems of independent interest and importance. Other corollaries include
the conditional (on BPP = P) transformation of any probabilistic FPTAS into
a deterministic one, and ditto for any probabilistic polynomial-time method of
contructing and verifying objects of a predetermined property. (For details see
Section 3.)

Also begging are extensions of our study to general “stretch vs derandom-
ization time” trade-off (akin to the general “hardness vs randomness” trade-off)
and to the derandomization of classes such as AM. The first extension goes
through easily (see Section 5), whereas we were not able to pull off the second
(see Section 6).

1.4 Reflection

Recalling that canonical derandomizers run for more time than the distinguishers
that they are intended to fool, it is tempting to say that the existence of such
derandomizers may follow by diagonalization-type arguments. Specifically, for
every polynomial p, it should be possible to construct in (larger) polynomial
time, a set of (poly(n) many) strings Sn ⊂ {0, 1}n such that a string selected
uniformly in Sn is p(n)-time indistinguishable from a totally random n-bit string.

The problem with the foregoing prophecy is that it is not clear how to carry
out such a diagonalization. However, it was observed in a couple of related works
(i.e., [16, 9]) that a random choice will do. The problem, of course, is that we need
our construction to be deterministic; that is, a deterministic construction should
be able to achieve this “random looking” fooling effect. Furthermore, it is not
a priori clear that the hypothesis BPP = P may help us here, since BPP = P
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refers to decisional problems.5 Indeed, it seems that the interesting question of
determining the class of problems (e.g., search problems) that can be solved by
deterministic polynomial-time reductions to BPP was not addressed before. Still,
as stated above, we show that the aforemention “construction problem” belongs
to this class, and thus the hypothesis BPP = P allows us to derandomize the
foregoing arguement.

In any case, the point is that BPP = P enables the construction of the
aforementioned type of (suitable) pseudorandom generators; that is, the very
pseudorandom generators that imply BPP = P . Thus, our main result asserts
that these pseudorandom generators exist if and only if BPP = P , which in
our opinion is not a priori obvious. Furthermore, our proof uncovers a very
toight connection between the construction of such pseudorandom generators
and BPP = P . In particular, BPP = P yields a very simple construction of
such pseudorandom generators, which in turn can be as fulfillining the foregoing
(diagonalization) prophecy.

1.5 Related work

This work takes for granted the “hardness versus randomness” paradigm, pi-
oneered by Blum and Micali [1], and its application to the derandomization
of complexity classes such as BPP, as pioneered by Yao [26] and revised by
Nisan and Wigderson [19]. The latter work suggests that a suitable notion of
a pseudorandom generator – indeed, the aforementioned notion of a canonical
derandomizer – provides the “King’s (high)way” to derandomization of BPP.
This view was further supported by subsequent work such as [15, 16, 24], and the
current work seems to suggest that this King’s way is essentially the only way.

As stated up-front, this work does not address the question of which hard-
ness assumptions are required for establishing such derandomization results (i.e.,
BPP = P). Recall that this question has received considerable attention in the
last decade or so, starting with the aforementioned work of Impagliazzo and
Wigderson in [16], and culminating in the works of Impagliazzo, Kabanets, and
Wigderson [14, 18]. We refer the interested reader to [22, Sec. 1.1-1.3] for an
excellent (and quite updated) overview of this line of work.

5 For example, obviously, even if BPP = P , there exist no deterministic algorithms for
uniformly selecting a random solution to a search problem (or just tossing a coin).
Interestingly, while problems of uniform generation cannot be solved deterministi-
cally, the corresponding problems of approximating the number of solutions can be
solved deterministically (sometimes in polynomial-time, especially when assuming
BPP = P). This seems to contradict the celebrated equivalence between these two
types of problems [17] (cf. [8, §6.4.2.1]), except that the relevant direction of this
equivalence is established via probabilistic polynomial-time reductions (which are
inherently non-derandomizable). Going beyond the strict boundaries of complexity,
we note that BPP = P would not eliminate the essential role of randomness in
cryptography (e.g., in the context of zero-knowledge (cf. [7, Sec. 4.5.1]) and secure
encryption (cf. [10])).
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Actually, both the aforementioned works [16, 14] imply results that are in the
spirit of our main result, but these results refer to weak notions of derandom-
ization, and their proofs are fundamentally different. The work of Impagliazzo
and Wigderson [16] refers to the “effective infinitely often” containment of BPP
in SUBEXP , whereas the work of Impagliazzo, Kabanets, and Wigderson [14]
refers to the (standard) containment of BPP in NSUBEXP/nǫ. In both cases,
the derandomization hypotheses are shown to imply corresponding hardness re-
sults (i.e., functions in EXP that are not in BPP or functions in NEXP having
no polynomial size circuits, resp.), which in turn yield “correspondingly canon-
ical” derandomizers (i.e., canonical w.r.t effectively placing BPP in SUBEXP
infinitely often or placing BPP in NSUBEXP , resp.).6 Thus, in both cases,
the construction of these generators (based on the relevant derandomization hy-
pothesis) follows the “hardness versus randomness” paradigm (and, specifically,
the Nisan–Wigderson framework [19]). In contrast, our constructions bypass the
“hardness versus randomness” paradigm.

We also mention that the possibility of reversing the pseudorandomness-to-
derandomization transformation was studied by Fortnow [4]. In terms of his
work, our result indicates that in some sense Hypothesis III implies Hypothe-
sis II.

Finally, we mention that the relation between derandomizing probabilistic
search and decision classes was briefly mentioned by Reingold, Trevisan, and
Vadhan in the context of RL; see [21, Prop. 2.7].

1.6 Organization

The rather standard conventions used in this work are presented in Section 2.
In Section 3 we take a close look at “BPP search problems” and their relation
to BPP. The relation between derandomizations of BPP and various forms of
pseudorandom generators is studied in Section 4, and ramified in Section 5. A few
open problems that arise naturally from this work are discussed in Section 6.
The appendix presents two prior proofs of our main result, which may be of
interest.

2 Preliminaries

We assume a sufficiently strong model of computation (e.g., a 2-tape Turing
machine), which allows to do various simple operations very efficiently. Exact
complexity classes such as Dtime(t) and BPtime(t) refer to such a fixed model.
We shall say that a problem Π is in Dtime(t) (resp., in BPtime(t)) if there exists
a deterministic (resp., probabilistic) t-time algorithm that solves the problem on
all but finitely many inputs.

6 Note that in case of [16] the generators are pseudorandom only infinitely often,
whereas in the case of [14] the generators are computable in non-deterministic

polynomial-time (with short advice), In both cases, the generators have polynomial
strecth.
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We assume that all polynomials, time bounds, and stretch functions are
monotonically increasing functions from N to N, which means, in particular,
that they are injective. Furthermore, we assume that all these functions are
time-constructible (i.e., the mapping n 7→ f(n) can be computed in less than
f(n) steps).

Promise problems. We rely heavily on the formulation of promise problems (in-
troduced in [3]). We believe that, in general, the formulation of promise problems
is far more suitable for any discussion of feasibility results. The original formu-
lation of [3] refers to decision problems, but we shall also extend it to search
problem. In the original setting, a promise problem, denoted 〈P, Q〉, consists
of a promise (set), denoted P , and a question (set), denoted Q, such that the
problem 〈P, Q〉 is defined as given an instance x ∈ P , determine whether or not
x ∈ Q. That is, the solver is required to distinguish inputs in P ∩Q from inputs
in P \Q, and nothing is required in case the input is outside P . Indeed, an equiv-
alent formulation refers to two disjoint sets, denoted Πyes and Πno, of yes- and
no-instances, respectively. We shall actually prefer to present promise problems
in these terms; that is, as pairs (Πyes, Πno) of disjoint sets. Indeed, standard
decision problems appear as special cases in which Πyes ∪Πno = {0, 1}∗. In the
general case, inputs outside of Πyes ∪Πno are said to violate the promise.

Unless explicitly stated otherwise, all “decisional problems” discussed in this
work are actually promise problems, and P ,BPP etc denote the corresponding
classes of promise problems. For example, (Πyes, Πno) ∈ BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x ∈ Πyes it holds
that Pr[A(x)=1] ≥ 2/3, and for every x ∈ Πno it holds that Pr[A(x)=0] ≥ 2/3.

Standard notation. For a natural number n, we let [n]
def
= {1, 2, ..., n} and de-

note by Un a random variable that is uniformly distributed over {0, 1}n. When
referring to the probability that a uniformly distributed n-bit long string hits a
set S, we shall use notation such as Pr[Un∈S] or Prr∈{0,1}n [r∈S].

Negligible, noticeable, and overwhelmingly high probabilities. A function f :N→
[0, 1] is called negligible if is decreases faster than the reciprocal of any positive
polynomial (i.e., for every positive polynomial p and all sufficiently large n it
holds that f(n) < 1/p(n)). A function f : N→ [0, 1] is called noticeable if it is
lower bound by the reciprocal of some positive polynomial (i.e., for some positive
polynomial p and all sufficiently large n it holds that f(n) > 1/p(n)). We say
that the probability of an event is overwhelmingly high if the probability of the
complement event is negligible (in the relevant parameter).

3 Search Problems

Typically, search problems are captured by binary relations that determine the
set of valid instance-solution pairs. For a binary relation R ⊆ {0, 1}∗ × {0, 1}∗,
we denote by R(x)

def
= {y : (x, y)∈R} the set of valid solutions for the instance x,
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and by SR
def
= {x : R(x) 6= ∅} the set of instances having valid solutions. Solving

a search problem R means that given any x ∈ SR, we should find an element of
R(x) (whereas, possibly, we should indicate that no solution exists if x 6∈ SR).

3.1 The definition

The definition of “BPP search problems” is supposed to capture search problems
that can be solved efficiently, when random steps are allowed. Intuitively, we do
not expect randomization to make up for more than an exponential blow-up,
and so the naive formulation that merely asserts that solutions can be found
in probabilistic polynomial-time is not good enough. Consider, for example, the
relation R such that (x, y) ∈ R if |y| = |x| and for every i < |x| it holds that
Mi(x) 6= y, where Mi is the ith deterministic machine (in some fixed enumeration
of such machines). Then, the search problem R can be solved by a probabilistic
polynomial-time algorithm (which, on input x, outputs a uniformly distributed
|x|-bit long string), but cannot be solved by any deterministic algorithm (re-
gardless of its running time).

What is missing in the naive formulation is any reference to the “complexity”
of the solutions found by the solver, let alone to the complexity of the set of all
valid solutions. The first idea that comes to mind is to just postulate the latter;
that is, confine ourselves to the class of search problems for which valid instance-
solution pairs can be efficiently recognized (i.e., R, as a set of pairs, is in BPP).

Definition 3.1 (BPP search problems, first attempt): A BPP-search problem is
a binary relation R that satisfies the following two conditions.

1. Membership in R is decidable in probabilistic polynomial-time.
2. There exists a probabilistic polynomial-time algorithm A such that, for every

x ∈ SR, it holds that Pr[A(x) ∈ R(x)] ≥ 2/3.

We may assume, without loss of generality, that, for every x 6∈ SR, it holds that
Pr[A(x) = ⊥] ≥ 2/3. Note that Definition 3.1 is robust in the sense that it allows
for error reduction, which may not be the case if Condition 1 were to be avoided.
A special case in which Condition 1 holds is when R is an NP-witness relation;
in that case, the algorithm in Condition 1 is actually deterministic.

In view of our general interest in promise problems, and of the greater flexibil-
ity they offer, it makes sense to extend the treatment to promise problems. The
following generalization allows a promise set not only at the level of instances,
but also at the level of instance-solution pairs. Specifically, we consider disjoint
sets of valid and invalid instance-solution pairs, require this promise problem
to be efficiently decidable, and of course require that valid solutions be found
whenever they exist.

Definition 3.2 (BPP search problems, revisited): Let Ryes and Rno be two dis-
joint binary relations. We say that (Ryes, Rno) is a BPP-search problem if the
following two conditions hold.



109

1. The decisional problem represented by (Ryes, Rno) is solvable in probabilistic
polynomial-time; that is, there exists a probabilistic polynomial-time algo-
rithm V such that for every (x, y) ∈ Ryes it holds that Pr[V (x, y)=1] ≥ 2/3,
and for every (x, y) ∈ Rno it holds that Pr[V (x, y)=1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm A such that, for every
x ∈ SRyes

, it holds that Pr[A(x) ∈ Ryes(x)] ≥ 2/3, where Ryes(x) = {y :
(x, y)∈Ryes} and SRyes

= {x : Ryes(x) 6= ∅}.

We may assume, without loss of generality, that, for every x ∈ SRno
, it holds

that Pr[A(x) = ⊥] ≥ 2/3. Note that the algorithms postulated in Definition 3.2
allow to find valid solutions as well as distinguish valid solutions from invalid
ones (while guaranteeing nothing for solutions that are neither valid nor invalid).

The promise problem formulation (of Definition 3.2) captures many natural
“BPP search” problems that are hard to fit into the more strict formulation of
Definition 3.1. Typically, this can be done by narrowing the set of valid solutions
(and possibly extending the set of invalid solutions) such that the resulting
(decisional) promise problem becomes tractable. Consider for example, a search
problem R (as in Definition 3.1) for which the following stronger version of
Condition 2 holds.

(2’) There exists a noticeable function ntc :N→ [0, 1] such that, for every x ∈ SR

there exists y ∈ R(x) such that Pr[A(x) = y] > ntc(|x|), whereas for every
(x, y) 6∈ R it holds that Pr[A(x)=y] < ntc(|x|)/2.

Then, we can define R′
yes

= {(x, y) : Pr[A(x) = y] > ntc(|x|)} and R′
no

=
{(x, y) : Pr[A(x) = y] < ntc(|x|)/2}, and conclude that R′ = (R′

yes, R
′
no) is

a BPP-search problem (by using A also for Condition 1), which captures the
original problem just as well. Specifically, solving the search problem R is trivially
reducible to solving the search problem R′, whereas we can distinguish between
valid solutions to R′ (which are valid for R) and invalid solutions for R (which
are also invalid for R′). This is a special case of the following observation.

Observation 3.3 (companions) Let Π = (Ryes, Rno) and Π ′ = (R′
yes

, R′
no

) be
two search problems such that SR′

yes
= SRyes

and R′
no ⊇ ({0, 1}∗ × {0, 1}∗) \

Ryes. Then, solving the search problem (Ryes, Rno) is trivially reducible to solving
the search problem (R′

yes
, R′

no
), whereas deciding membership in (R′

yes
, Rno) is

trivially reducible to deciding membership in (R′
yes, R

′
no). We call Π ′ a companion

of Π, and note that in general this notion is not symmetric.7

The point of these reductions is that they allow using algorithms associated with
Π ′ for handling Π . Specifically, we can search solutions with respect to Π ′ and
test validity of solutions with respect to Π ′, while being guaranteed that nothing
was lost (since we still find valid solutions for any x ∈ SRyes

, any solution in

7 Indeed, if (Ryes, Rno) and (R′

yes, R
′

no) are companions of one another, then Rno =
({0, 1}∗×{0, 1}∗)\Ryes, which means that R′

no = Rno. It follows that R′

yes = Ryes,
which means that the two problems are identical.
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R′
yes

(x) ⊆ Ryes(x) is recognized by us as valid, and any candidate solution in
Rno(x) ⊆ R′

no(x) is rejected as invalid). Furthermore, candidate solutions that
are not valid with respect to Π are also rejected (since they are invalid w.r.t
Π ′); that is, if (x, y) 6∈ Ryes (although it needs not be in Rno), then (x, y) ∈ R′

no

(since R′
no ⊇ ({0, 1}∗ × {0, 1}∗) \Ryes).

The methodology alluded to above is demonstrated next in casting any prob-
abilistic fully polynomial-time approximation scheme (i.e., FPTAS, cf. [12]) as
a search-BPP problem. A (probabilistic) FPTAS for a quantity q :{0, 1}∗→R

+

is an algorithm that on input x and ǫ > 0 runs for poly(n/ǫ) steps and, with
probability at least 2/3, outputs a value in the interval [(1±ǫ) ·q(x)]. A straight-
forward casting of this approximation problem as a search problem refers to the

binary relation Q such that Q
def
= {(〈x, 1m〉, v)∈R

+ : |v − q(x)| ≤ q(x)/m}. In
general, however, this does not yield a BPP-search problem, since Q may not be
probabilistic polynomial-time recognizable. Instead, we consider the BPP-search
problem (Ryes, Rno) such that (〈x, 1m〉, v) ∈ Ryes if |v − q(x)| ≤ q(x)/3m and
(〈x, 1m〉, v) ∈ Rno if |v − q(x)| > q(x)/m. Indeed, on input 〈x, 1m〉 we find a
solution in Ryes(〈x, 1m〉) by invoking the FPTAS on input x and ǫ = 1/3m, and
deciding the validity of a pair (〈x, 1m〉, v) w.r.t (Ryes, Rno) is done by obtaining
a good approximation of q(x) (and deciding accordingly).8 (Indeed, (Ryes, Rno)
is a companion of (Q, Q), where Q = ({0, 1}∗ × {0, 1}∗) \Q.) Thus, we obtain.

Observation 3.4 (FPTAS as BPP-search problems): Let q : {0, 1}∗→R
+ and

suppose that there exists a probabilistic FPTAS for approximating q; that is,
suppose that there exists a probabilistic polynomial-time algorithm A such that
Pr[|A(x, 1m)− q(x)| ≤ q(x)/m] ≥ 2/3. Then, this approximation task is trivially
reducible to some search-BPP problem (i.e., the foregoing one). Furthermore, the
probabilistic time-complexity of the latter search problem is linearly related to the
probabilistic time-complexity of the original approximation problem. Moreover,
this search-BPP problem is a companion of the original approximation problem.

3.2 The reduction

One may expect that any BPP-search problem be deterministically reducible
to some BPP decision problem. Indeed, this holds for the restricted definition
of BPP-search problems as in Definition 3.1, but for the revised formulation of
Definition 3.2 we only present a weaker result. Specifically, for every BPP-search
problem (Ryes, Rno), there exists R ⊇ Ryes such that R ∩ Rno = ∅ and solving

8 That is, we invoke the FPTAS on input x and ǫ = 1/3m, obtain a value q′(x),
which with probability at least 2/3 is in (1 ± ǫ) · q(x), and accept if and only if
|v − q′(x)| ≤ 2q(x)/3m. Indeed, if v ∈ Ryes(〈x, 1m〉), then with probability at least
2/3 it holds that |v − q′(x)| ≤ |v − q(x)| + |q(x) − q′(x)| ≤ 2q(x)/3m, whereas if
v ∈ Rno(〈x, 1m〉), then with probability at least 2/3 it holds that |v − q′(x)| ≥
|v − q(x)| − |q(x) − q′(x)| > 2q(x)/3m.
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the search problem of R is deterministically reducible to some BPP decision
problem.9

Theorem 3.5 (reducing search to decision): For every BPP-search problem
(Ryes, Rno), there exists a binary relation R such that Ryes ⊆ R ⊆ ({0, 1}∗ ×
{0, 1}∗)\Rno and solving the search problem of R is deterministically reducible to
some decisional problem in BPP, denoted Π. Furthermore, the time-complexity
of the reduction is linear in the probabilistic time-complexity of finding solutions
for (Ryes, Rno), whereas the probabilistic time-complexity of Π is the product
of a quadratic polynomial and the probabilistic time-complexity of the decision
procedure guaranteed for (Ryes, Rno).

Applying Theorem 3.5 to a BPP-search problem (Ryes, Rno) that is a companion
of some search problem (Ψyes, Ψno), we obtain a deterministic reduction of solv-
ing the search problem (Ψyes, Ψno) to some promise problem in BPP, because
SΨyes

= SRyes
⊆ SR whereas R ⊆ ({0, 1}∗×{0, 1}∗)\Rno ⊆ Ψyes. The argument

in depicted in Figure 1.

Ψ Ψ
RR

YES

YES NO

NO

R

original problem

solved

companion

Fig. 1. The reduction applied to a companion of Ψ .

Proof: Let A and V be the two probabilistic polynomial-time algorithms as-
sociated (by Definition 3.2) with the BPP-search problem (Ryes, Rno), and let
tA and tV denote their (probabilistic) time-complexities. Specifically, A is the
solution-finding algorithm guaranteed by Condition 2, and V is the decision pro-
cedure guaranteed by Condition 1. Denote by A(x, r) the output of algorithm
A on input x and internal coins r ∈ {0, 1}tA(|x|), and let V ((x, y), ω) denote the
decision of V on input (x, y) when using coins ω ∈ {0, 1}tV (|x|+|y|). Now, define

R
def
=

{
(x, y) : Prω∈{0,1}tV (|x|+|y|) [V ((x, y), ω) = 1] ≥ 0.4

}

,
(1)

and note that Ryes ⊆ R and Rno ∩R = ∅.
We now consider an auxiliary algorithm A′′ such that A′′(x, r, ω)

def
= V ((x, A(x, r)), ω).

Note that, for every x and r such that (x, A(x, r)) ∈ Ryes, it holds that Prω[A′′(x, r, ω) =
1] ≥ 2/3, and thus, for every x ∈ SRyes

, it holds that Prr,ω[A′′(x, r, ω) = 1] ≥
4/9.

Given x, our strategy is to try to find r such that A(x, r) ∈ R(x), by de-
termining the bits of r one by one. We thus start with an empty prefix of r,

9 Indeed, in the special case of Definition 3.1 (where (Ryes, Rno) is a partition of the
set of all pairs), it holds that R = Ryes.
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denoted r′, and in each iteration we try to extend r′ by one bit. Assuming that
x ∈ SRyes

(which can be verified by a single BPP-query),10 we try to maintain
the invariant

Prr′′∈{0,1}m−|r′|,ω∈{0,1}ℓ [A′′(x, r′r′′, ω) = 1] ≥ 4

9
− |r

′|
25m ,

(2)

where m = tA(|x|) and ℓ = tV (|x| + m). Note that this invariant holds initially

(for the empty r′), and that if it holds for r′ ∈ {0, 1}m, then necessarily y
def
=

A(x, r) ∈ R(x) (since in this case Eq. (2) implies that Prω[V ((x, y), ω) = 1] ≥
4
9 − 0.04 > 0.4).

In view of the foregoing, we focus on the design of a single iteration. Our
strategy is to rely on an oracle for the promise problem ΠA′′ that consists of

yes-instances (x, 1m, r′) such that Prr′′,ω[A′′(x, r′r′′, ω) = 1] ≥ 4
9 −

|r′|−1
25m and

no-instances (x, 1m, r′) such that Prr′′,ω[A′′(x, r′r′′, ω) = 1] < 4
9 −

|r′|
25m , where

in both cases the probability is taken uniformly over r′′ ∈ {0, 1}m−|r′| (and
ω ∈ {0, 1}ℓ). The oracle ΠA′′ is clearly in BPP (e.g., consider a probabilistic
polynomial-time algorithm that on input (x, 1m, r′) estimates Prr′′,ω[A′′(x, r′r′′, ω) =
1] up to an additive term of 1/50m with error probability at most 1/3, by taking
a sample of O(m2) random pairs (r′′, ω)).

In each iteration, which starts with some prefix r′ that satisfies Eq. (2), we
make a single query to the oracle ΠA′′ ; specifically, we query ΠA′′ on (x, 1m, r′0).
If the oracle answers positively, then we extend the current prefix r′ with 0 (i.e.,
we set r′ ← r′0), and otherwise we set r′ ← r′1.

The point is that if Prr′′∈{0,1}m−|r′|,ω[A′′(x, r′r′′, ω) = 1] ≥ 4
9 −

|r′|
25m , then

there exists σ ∈ {0, 1} such that Prr′′′∈{0,1}m−|r′|−1,ω[A′′(x, r′σr′′′, ω) = 1] ≥
4
9 −

|r′|
25m = 4

9 −
|r′σ|−1

25m , which means that (x, 1m, r′σ) is a yes-instance. Thus,
if Π answers negatively to the query (x, 1m, r′0), then (x, 1m, r′0) cannot be a
yes-instance, which implies that (x, 1m, r′1) is a yes-instance, and the invariance
of Eq. (2) holds for the extended prefix r′1. On the other hand, if Π = ΠA′′

answers positively to the query (x, 1m, r′0), then (x, 1m, r′0) cannot be a no-
instance, and the invariance of Eq. (2) holds for the extended prefix r′0. We
conclude that each iteration of our reduction preserves the said invariance.

To verify the furthermore-part, we note that the reduction consists of tA(|x|)
iterations, where in each iteration a query is made to Π and some very simple
steps are taken. In particular, each query made is simply related to the previous
one (i.e., can be obtained from it in constant time), and so the entire reduction
has time complexity O(tA). The time complexity of Π on inputs of the form
y = (x, 1m, r′) is O(m2) ·O(tV (|x|+m)) = O(|y|2 · tV (|y|)). The theorem follows.

10 Note that we do not care what happens when x violates the promise, whereas dis-
tinguishing SRyes

from SRno
can be done in BPP (since Prr,ω[A′′(x, r, ω) = 1] is at

least 4/9 in the former case and at most 1/3 in the latter).
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Digest. The proof of Theorem 3.5 follows the strategy of reducing NP-search
problems to NP , except that more care is required in the process. This is re-
flected in the invariance stated in Eq. (2) as well as in the fact that we make an
essential use of promise problems (in the oracle).

Approximations. In light of the foregoing discussion (i.e., Observation 3.4), every
approximation problem that has a probabilistic FPTAS can be deterministically
reduced to BPP. Thus:

Corollary 3.6 (implication for FPTAS): If BPP = P, then every function that
has a probabilistic fully polynomial-time approximation scheme (FPTAS) also
has such a deterministic scheme. Furthermore, for every polynomial p, there
exists a polynomial p′ such that if the probabilistic scheme runs in time p, then
the deterministic one runs in time p′.

The furthermore part is proved by using the furthermore parts of Observation 3.3
and Theorem 3.5 as well as a completeness feature of BPtime(·). Specifically,
by combining the aforementioned reductions, we infer that the approximation
problem (which refers to instances of the form 〈x, 1m〉) is (deterministically) p1-
time reducible to a problem in BPtime(p2), where p1(n) = O(p(n)) and p2(n) =
O(n2 · p(n)). Next, we use the fact that BPtime(p2) has a complete problem,
where completeness holds under quadratic-time reductions (which prepend the
input by the original problem’s description and pad it with a quadratic number
of zeros).11 The point is that this complete problem only depends on p2, which
in turn is uniquely determined by p. The hypothesis (i.e., BPP = P) implies
that this BPtime(p2)-complete problem is in Dtime(p3) for some polynomial
p3, which is solely determined by p2, and the claim follows for p′ = p3◦p2

1. Indeed,
we have also established en passant the following result, which is of independent
interest.

Proposition 3.7 If BPP = P, then, for every polynomial p, there exists a
polynomial p′ such that BPtime(p) ⊆ Dtime(p′).

Indeed, by the Dtime Hierarchy Theorem, it follows that, if BPP = P , then, for
every polynomial p, there exists a polynomial p′′ such that Dtime(p′′) contains
problems that are not in BPtime(p).

Constructions of varying quality. While the foregoing discussion of approxi-
mation schemes is related to our previous proofs of the main result (see the
Appendix), the following discussion is more related to the current proof (as pre-
sented in Section 4.2). We consider general construction problems, which are de-
fined in terms of a quality function q :{0, 1}∗→ [0, 1], when for a given n we need
to construct an object y ∈ {0, 1}n such that q(y) = 1. Specifically, we consider

11 The quadratic padding of x allows p2(|x|) steps of M(x) to be emulated in time
eO(|M | · p2(|x|)), which is upper-bounded by p2((|M | + |x|)2), assuming that p2 is
(say) at least quadratic.
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such construction problems that can be solved in probabilistic polynomial-time
and have a FPTAS for evaluating the quality of candidate constructions. One
interesting special case corresponds to rigid construction problems in which the
function q is Boolean (i.e., candidate constructions have either value 0 or 1). In
this special case (e.g., generating an n-bit long prime) the requirement that q
has a FPTAS is replaced by requiring that the set q−1(1) is in BPP.

Proposition 3.8 (derandomizing some constructions): Consider a generalized

construction defined via a quality function q that has a FPTAS, and let Rq
def
=

{((1n, 1m), y) : y∈{0, 1}n ∧ q(y)>1− (1/m)}. Suppose that there exists a prob-
abilistic polynomial-time algorithm that solves the search problem of Rq. Then,
if BPP = P, then there exists a deterministic polynomial-time algorithm that
solves the search problem of Rq.

For example, if BPP = P , then n-bit long primes can be found in determin-
istic poly(n)-time. On the other hand, the treatment can be generalized to
constructions that need to satisfy some auxiliary specification, captured by an
auxiliary input x (e.g., on input a prime x = P find a quadratic non-residue

mod P ). In this formulation, Rq
def
= {((x, 1m), y) : q(x, y) > 1 − (1/m)}, where

q : {0, 1}∗×{0, 1}∗ → [0, 1] can also impose length restrictions on the desired
construct.

Proof: Consider the BPP-search problem (Πyes, Πno), where Πyes = {((1n, 1m), y) :
y ∈{0, 1}n ∧ q(y)> 1 − (1/2m)} and Πno = {((1n, 1m), y) : y ∈ {0, 1}n ∧ q(y)≤
1− (1/m)}. Note that (Πyes, Πno) is a companion of the search problem Rq, and
apply Theorem 3.5.

Corollary 3.9 (a few examples): If BPP = P, then there exist deterministic
polynomial-time algorithms for solving the following construction problems.

1. For any fixed c > 7/12, on input N , find a prime in the interval [N, N +N c].
2. On input a prime P and 1d, find an irreducible polynomial of degree d over

GF(P ).
Recall that finding a quadratic non-residue modulo P is a special case.12.

3. For any fixed ǫ > 0 and integer d > 2, on input 1n, find a d-regular n-vertex
graph with second eigenvalue having absolute value at most 2

√
d− 1 + ǫ.

The foregoing items are based on the density of the corresponding objects in a
natural (easily sampleable) set. Specifically, for Item 1 we rely on the density
of prime numbers in this interval [13], for Item 2 we rely on the density of
irreducible polynomials [6], and for Item 3 we rely on the density of “almost
Ramanujan” graphs [5].13 In all cases there exist deterministic polynomial-time
algorithms for recognizing the desired objects.

12 Since if X2 + bX + c is irreducible, then so is (X + (b/2))2 + (c − (b/2)2), and it
follows that (c − (b/2)2) is a non-residue

13 Recall that Ramanujan graphs are known to be constructable only for specific values
of d and of n.
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4 Canonical Derandomizers

In Section 4.1 we present and motivate the rather standard notion of a canoni-
cal derandomizer, which is the notion to which most of this work refers to. Our
main result, the reversing of the pseudorandomness-to-derandomization trans-
formation is presented in Section 4.2. One tightening, which allows to derive an
equivalence, is presented in Section 4.3, which again refers to a rather standard
notion (i.e., of “effectively placing BPP in P”). An alternative equivalence is
derived in Section 4.4, which refers to a (seemingly new) notion of a targeted
canonical derandomizer.

4.1 The definition

We start by reviewing the most standard definition of canonical derandomizers
(cf., e.g., [8, Sec. 8.3.1]). Recall that in order to “derandomize” a probabilistic
polynomial-time algorithm A, we first obtain a functionally equivalent algorithm
AG that uses a pseudorandom generator G in order to reduce the randomness-
complexity of A, and then take the majority vote on all possible executions of
AG (on the given input). That is, we scan all possible outcomes of the coin tosses
of AG(x), which means that the deterministic algorithm will run in time that
is exponential in the randomness complexity of AG. Thus, it suffices to have a
pseudorandom generator that can be evaluated in time that is exponential in its
seed length (and polynomial in its output length).

In the standard setting, algorithm AG has to maintain A’s input-output be-
havior on all (but finitely many) inputs, and so the pseudorandomness property
of G should hold with respect to distinguishers that receive non-uniform ad-
vice (which models a potentially exceptional input on which A(x) and AG(x)
are sufficiently different). Without loss of generality, we may assume that A’s
running-time is linearly related to its randomness complexity, and so the relevant
distinguishers may be confined to linear time. Similarly, for simplicity (and by
possibly padding the input x), we may assume that both complexities are lin-
ear in the input length, |x|. (Actually, for simplicity we shall assume that both
complexities just equal |x|, although some constant slackness seems essential.)
Finally, since we are going to scan all possible random-pads of AG and rule by
majority (and since A’s error probability is at most 1/3), it suffices to require
that for every x it holds that |Pr[A(x) = 1]− Pr[AG(x) = 1]| < 1/6. This leads
to the pseudorandomness requirement stated in the following definition.

Definition 4.1 (canonical derandomizers, standard version [8, Def, 8.14])14:
Let ℓ :N→N be a function such that ℓ(n) > n for all n. A canonical derandom-
izer of stretch ℓ is a deterministic algorithm G that satisfies the following two
conditions.

14 To streamline our exposition, we preferred to avoid the standard additional step of
replacing D(x, ·) by an arbitrary (non-uniform) Boolean circuit of quadratic size.
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(generation time): On input a k-bit long seed, G makes at most poly(2k · ℓ(k))
steps and outputs a string of length ℓ(k).

(pseudorandomness): For every (deterministic) linear-time algorithm D, all suf-
ficiently large k and all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x, G(Uk)) = 1] − Pr[D(x, Uℓ(k)) = 1] | <
1

6
. (3)

The algorithm D represents a potential distinguisher, which is given two ℓ(k)-bit
long strings as input, where the first string (i.e., x) represents a (non-uniform)
auxiliary input and the second string is sampled either from G(Uk) or from Uℓ(k).
When seeking to derandomize a linear-time algorithm A, the first string (i.e., x)
represents a potential main input for A, whereas the second string represents a
possible sequence of coin tosses of A (when invoked on a generic (primary) input
x of length ℓ(k)).

Towards a uniform-complexity variant. Seeking a uniform-complexity analogue
of Definition 4.1, the first thing that comes to mind is the following definition.

Definition 4.2 (canonical derandomizers, a uniform version): As Definition 4.1,
except that the original pseudorandomness condition is replaced by

(pseudorandomness, revised): For every (deterministic) linear-time algorithm D,
it is infeasible, given 1ℓ(k), to find a string x ∈ {0, 1}ℓ(k) such that Eq. (3)
does not hold. That is, for every probabilistic polynomial-time algorithm F
such that |F (1ℓ(k))| = ℓ(k), there exists a negligible function negl such that
if x← F (1ℓ(k)), then Eq. (3) holds with probability at least 1− negl(ℓ(k)).

When seeking to derandomize a probabilistic (linear-time) algorithm A, the aux-
iliary algorithm F represents an attempt to find a string x ∈ {0, 1}ℓ(k) on which
A(x) behaves differently depending on whether it is fed with random bits (i.e.,
Uℓ(k)) or with pseudorandom ones produced by G(Uk).

Note that if there exists a canonical derandomizer of exponential stretch (i.e.,
ℓ(k) = exp(Ω(k))), then BPP is “effectively” in P in the sense that for every
problem in BPP there exists a deterministic polynomial-time algorithm A such
that it is infeasible to find inputs on which A errs. We hoped to prove that
BPP = P implies the existence of such derandomizers, but do not quite prove
this. Instead, we prove a closely related assertion that refers to the following
revised notion of a canonical derandomizer, which is implicit in [16]. In this
definition, the finder F is incorporated in the distinguisher D, which in turn is
an arbitrary probabilistic algorithm that is allowed some fixed polynomial-time
(rather than being deterministic and linear-time).15 (In light of the central role of
this definition in the current work, we spell it out rather than use a modification
on Definition 4.1 (as done in Definition 4.2).)

15 Thus, Definition 4.2 and Definition 4.3 are incomparable (when the time bound
t is a fixed polynomial). On the one hand, Definition 4.3 seems weaker because
we effectively fix the polynomial time bound of F (which is incorporated in D).
On the other hand, Definition 4.3 seems stronger because D itself is allowed to
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Definition 4.3 (canonical derandomizers, a revised uniform version): Let ℓ, t ::
N→N be functions such that ℓ(n) > n for all n. A t-robust canonical derandom-
izer of stretch ℓ is a deterministic algorithm G that satisfies the following two
conditions.

(generation time (as in Definition 4.1)): On input a k-bit long seed, G makes at
most poly(2k · ℓ(k)) steps and outputs a string of length ℓ(k).

(pseudorandomness, revised again): For every probabilistic t-time algorithm D
and all sufficiently large k, it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | <
1

t(ℓ(k))
. (4)

Note that, on input an ℓ(k)-bit string, the algorithm D runs for at most
t(ℓ(k)) steps.

The pseudorandomness condition implies that, for every linear-time D′ and every
probabilistic t-time algorithm F (such that |F (1n)| = n for every n), it holds
that

|Pr[D′(F (1ℓ(k)), G(Uk)) = 1] − Pr[D′(F (1ℓ(k)), Uℓ(k)) = 1] | <
1

t(ℓ(k))
. (5)

Note that if, for every x, there exists a σ such that Pr[D′(x, U|x|) = σ] ≥ 1 −
(1/3t(|x|)) (as is the case when D′ arises from an “amplified” BPP decision
procedure), then the probability that F (1ℓ(k)) finds an instance x ∈ {0, 1}ℓ(k)

on which D′(x, G(Uk)) leans in the opposite direction (i.e., Pr[D′(x, U|x|) 6=
σ] ≥ 1/2) is smaller than 3/t(ℓ(k)). A more general (albeit quantatively weaker)
statement is proved next.

Proposition 4.4 (on the effect of canonical derandomizers): For t :N→N such
that t(n) > (n log n)3, let G be a t-robust canonical derandomizer of stretch ℓ.
Let A be a probabilistic linear-time algorithm, and let AG be as in the foregoing
discussions (i.e., AG(x, s) = A(x, G(s))). Then, for every probabilistic (t/2)-time
algorithm F and all sufficiently large k, the probability that F (1ℓ(k)) hits the set
∇A,G(k) \BA(k) is at most 40/t(ℓ(k))1/3, where

∇A,G(k)
def
=

{
x ∈ {0, 1}ℓ(k) : |Pr[AG(x, Uk) = 1] − Pr[A(x, Uℓ(k)) = 1] | >

1

3

}
(6)

BA(k)
def
=

{
x ∈ {0, 1}ℓ(k) :

1

t(ℓ(k))1/3
< Pr[A(x, Uℓ(k)) = 1] < 1− 1

t(ℓ(k))1/3

}

.

(7)

be probabilistic and run in time t (whereas in Definition 4.2 these privileges are
only allowed to F , which may be viewed as a preprocessing step). Indeed, if E
requires exponential size circuits, then there exist pseudorandom generators that
satisfy one definition but not the other: On the one hand, this assumption yields
the existence of a non-uniformly strong canonical pseudorandom generator (i.e.,
satisfying Definition 4.1) of exponential stretch [15] that is not p-robust (i.e., fails
Definition 4.3), for some sufficiently large polynomial p. On the other hand, the
assumption implies BPP = P , which leads to the opposite separation described at
the end of Section 4.2.
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That is, BA(·) denotes the set of inputs x on which A(x) = A(x, U|x|) is not
“almost determined” and ∇A,G(·) denotes the set of inputs x on which there is
a significant discrepancy between the distributions A(x) and AG(x).

The forgoing discussion refers to the special case in which BA(k) = ∅. In general,
if A is a decision procedure of negligible error probability (for some promise
problem),16 then AG is essentially as good as A, since it is hard to find an
instance x that matters (i.e., one on which A’s error probability is negligible) on
which AG errs (with probability greater than, say, 0.4). This leads to “effectively
good” derandomization of BPP. In particular, if G has exponential stretch, then
BPP is “effectively” in P .

Proof: Suppose towards the contradiction that there exist algorithms A and F
that violate the claim. For each σ ∈ {0, 1}, we consider the following probabilistic
t-time distinguisher, denoted Dσ. On input r (which is drawn from either Uℓ(k)

or G(Uk)), the distinguisher Dσ behaves as follows.

1. Obtains x← F (1|r|).

2. Approximates p(x)
def
= Pr[A(x, U|x|) = σ], obtaining an estimate, denoted

p̃(x), such that Pr[|p̃(x)− p(x)| ≤ t(|x|)−1/3] = 1− negl(|x|).
3. If p̃(x) < 1− 2t(|x|)−1/3, then Dσ halts with output 0.

4. Otherwise (i.e., p̃(x) ≥ 1−2t(|x|)−1/3), Dσ invokes A on (x, r), and outputs 1
if and only if A(x, r) = σ. (Indeed, the actual input r is only used in this
step.)

We stress that Dσ only approximate the value of p(x) = Pr[A(x, U|x|)=σ] (i.e., it
does not approximate the value of Pr[A(x, G(Uℓ−1(|x|))) = σ], which would have
required invoking G). Observe that Dσ runs for at most t(|r|) steps, because the

approximation of p(x) amounts to Õ(t(|r|)2/3) invocations of A(x), whereas each
invocation costs O(|r|) time (including the generation of truly random coins for
A).

Let qσ(k) denote the probability that, on an ℓ(k)-bit long input, algorithm
Dσ moves to the final (input dependent) step, and note that qσ(k) is independent
of the specific input r ∈ {0, 1}ℓ(k). Assuming that |p̃(x)− p(x)| ≤ t(|x|)−1/3 (for
the string x selected at the first step), if the algorithm moves to the final step,
then p(x) > 1−3t(|x|)−1/3. Similarly, if p(x) > 1−t(|x|)−1/3, then the algorithm
moves to the final step. Thus, the probability that Dσ(Uℓ(k))) outputs 1 is at

least (1 − negl(ℓ(k))) · qσ(k) · (1 − 3t(|x|)−1/3), which is greater than qσ(k) −
4t(|x|)−1/3. On the other hand, by the contradiction hypothesis, there exists a σ
such that with probability at least 20t(ℓ(k))−1/3, it holds that F (1ℓ(k)) hits the
set ∇A,G(k) ∩ Sσ,A(k), where

Sσ,A(k)
def
=

{
x ∈ {0, 1}ℓ(k) : Pr[A(x, Uℓ(k)) = σ] ≥ 1− 1

t(ℓ(k))1/3

}

.

(8)

16 That is, BA(·) contains only instances that violate the promise.
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In this case (i.e., when x ∈ ∇A,G(k)∩Sσ,A(k)) it holds that p(x) > 1− t(|x|)−1/3

(since x ∈ Sσ,A(k)) and Pr[A(x, G(Uℓ−1(|x|)))=σ] < 2/3 (since x ∈ ∇A,G(k) and

p(x) > 1− t(|x|)−1/3). It follows that the probability that Dσ(G(Uk)) outputs 1
is at most (qσ(k) − 20t(|x|)−1/3) · 1 + 20t(|x|)−1/3) · (2/3) + negl(ℓ(k)), which
is smaller than qσ(k) − 5t(|x|)−1/3. Thus, we derive a contradiction to the t-
robustness of G, and the claim follows.

4.2 The main result

Our main result is that BPP = P implies the existence of canonical deran-
domizers of exponential stretch (in the sense of Definition 4.3). We conclude
that seeking canonical derandomizers of exponential stretch is “complete” with
respect to placing BPP in P (at least in the “effective” sense captured by Propo-
sition 4.4).

Theorem 4.5 (on the completeness of canonical derandomization): If BPP =
P, then, for every polynomial p, there exists a p-robust canonical derandomizer
of exponential stretch.

The proof of Theorem 4.5 is inspired by the study of pseudorandomness with
respect to deterministic (uniform p-time) observers, which was carried out by
Goldreich and Wigderson [9]. Specifically, for every polynomial p, they presented
a polynomial-time construction of a sample space that fools any p-time determin-
istic next-bit test. They observed that an analogous construction with respect to
general (deterministic p-time) tests (i.e., distinguishers) would yield some non-
trivial derandomization results (e.g., any unary set in BPP would be placed in
P). Thus, they concluded that there is a fundamental gap between probabilistic
and deterministic polynomial-time observers. Our key observation is that this
gap may disappear if BPP = P . Specifically, the hypothesis BPP = P allows
us to derandomize a trivial “probabilistic polynomial-time construction” of a
canonical derandomizer.

Proof: Our starting point is the fact that, for some exponential function ℓ, with
very high probability, a random function G : {0, 1}k → {0, 1}ℓ(k) satisfies the
pseudorandomness requirement associated with 2p-robust canonical derandom-
izers. Furthermore, given the explicit description of any function G : {0, 1}k →
{0, 1}ℓ(k), we can efficiently distinguish between the case that G is 2p-robust and
the case that G is not p-robust.17 Thus, the construction of a suitable pseudoran-
dom generator is essentially a BPP-search problem. Next, applying Theorem 3.5,
we can deterministically reduce this construction problem to BPP. Finally, us-
ing the hypothesis BPP = P , we obtain a deterministic construction. Details
follow.
17 Formally, the asymptotic terminology of p-robustness is not adequate for discussing

finite functions mapping k-bit long strings to ℓ(k)-bit strings. However, as detailed
below, what we mean is distinguishing (in probabilistic polynomial-time) between
the case that G is “2p-robust” with respect to a given list of p-time machines and
the case that G is not “p-robust” with respect to this list.
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Let us fix an arbitrary polynomial p, and consider a suitable exponential
function ℓ (to be determined later). Our aim is to construct a sequence of map-
pings G : {0, 1}k→{0, 1}ℓ(k), for arbitrary k ∈ N, that meets the requirements
of a p-robust canonical derandomizer. It will be more convenient to construct a
sequence of sets S = ∪k∈NSℓ(k) such that Sn ⊆ {0, 1}n, and let G(i) be the ith

string in Sℓ(k), where i ∈ [2k] ≡ {0, 1}k. (Thus, the stretch function ℓ : N→N

satisfies ℓ(log2 |Sn|) = n, whereas we shall have |Sn| = poly(n), which implies
ℓ(O(log n)) = n and ℓ(k) = exp(Ω(k)).) The set Sn should be constructed in
poly(n)-time (so that G is computable in poly(2k·ℓ(k))-time), and the pseudoran-
domness requirement of G coincides with requiring that, for every probabilistic
p-time algorithm D, and all sufficiently large n, it holds that18

∣∣∣∣∣Pr[D(Un)=1]− 1

|Sn|
·

∑

s∈Sn

Pr[D(s)=1]

∣∣∣∣∣ <
1

p(n) .

(9)

Specifically, we consider an enumeration of (modified)19 probabilistic p-time ma-
chines, and focus on fooling (for each n) the p(n) first machines, where fooling
a machine D means that Eq. (9) is satisfied (w.r.t this D). Note that, with

overwhelmingly high probability, a random set Sn of size K = Õ(p(n)2) satisfies
Eq. (9) (w.r.t the p(n) first machines). Thus, the following search problem, de-

noted CON(p), is solvable in probabilistic Õ(p(n)2 · n)-time: On input 1n, find a
K-subset Sn of {0, 1}n such that Eq. (9) holds for each of the p(n) first machines.

Next, consider the following promise problem CC(p) (which is a companion
of CON(p)). The valid instance-solution pairs of CC(p) are pairs (1n, Sn) such that
for each of the first p(n) machines Eq. (9) holds with p(n) replaced by 2p(n), and
its invalid instance-solution pairs are pairs (1n, Sn) such that for at least one of
the first p(n) machines Eq. (9) does not hold. Note that CC(p) is a BPP-search
problem (as per Definition 3.2), and that it is indeed a companion of CON(p)

(as per Observation 3.3). Thus, by Theorem 3.5,20 solving the search problem
CON(p) is deterministically (polynomial-time) reducible to some promise problem
in BPP. Finally, using the hypothesis BPP = P , the theorem follows.

Observation 4.6 (on the exact complexity of the construction): Note that (by
Theorem 3.5) the foregoing reduction of CON(p) to BPP runs in time t(n) =

18 In [9, Thm. 2] the set Sn was only required to fool deterministic tests of the next-bit
type.

19 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

20 See also the discussion just following the statement of Theorem 3.5, which asserts
that if the search problem of a companion of Π is reducible to BPP then the same
holds for Π .
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Õ(p(n)2 · n), whereas the reduction is to a problem in quartic-time, because
the verification problem associated with CC(p) is in sub-quadratic probabilistic
time.21 Thus, assuming that probabilistic quartic-time is in Dtime(p4), for some
polynomial p4 (see Proposition 3.7), it follows that CON(p) ∈ Dtime(p′), where

p′(n) = p4(t(n)) = Õ((p4 ◦ p2)(n)).

Observation 4.7 (including the seed in the output sequence): The construction
of the generator G (or the set Sn) can be modified such that for every s ∈ {0, 1}k
the k-bit long prefix of G(s) equals s (i.e., the ith string in Sn starts with the
(log2 |Sn|)-bit long binary expansion of i).

A separation between Definition 4.2 and Definition 4.3: The p-robust canonical
derandomizer constructed in the foregoing proof (or rather a small variant of it)
does not satisfy the notion of a canonical derandomizer stated in Definition 4.2.
Indeed, in this case, a (deterministic) polynomial-time finder F , which runs for
more time than the foregoing generator, can find a string x that allows very fast
distinguishing. Details follow.

The variant that we refer to is different from the one used in the proof
of Theorem 4.5 only in the details of the underlying randomized construction.
Instead of selecting a random set of Õ(p(n)2) strings, we select m = O(p(n)3)
strings in a pairwise independent manner. (This somewhat bigger set suffices to
make the probabilistic argument used in the proof of Theorem 4.5 go through.)
Furthermore, we consider a specific way of generating such an m-long sequence
over {0, 1}n: For b = log2 m and t = n/b, we generate an m-long sequence by
selecting uniformly (r1, s1), ..., (rt, st) ∈ {0, 1}2b, and letting the ith string in the
m-long sequence be the concatenation of the t strings r1+i·s1,..., rt+i·st (where
the arithmetics is of GF(2b)). (In the actual determintic construction of Sn (and
G) a sutibale sequence ((r1, s1), ..., (rt, st)) ∈ {0, 1}2bt is found and fixed, and
the G(i) equals the concatenation of the t strings r1+i·s1,..., rt+i·st.) Referring
to this specific construction, we propose the following attack:

– The finder F determines the set Sn (just as the generator does). In particular,
F determines the elements r1, s1, r2, s2 used in its construction, finds α, β ∈
GF(2b) such that αs1 + βs2 = 0 and (α, β) 6= (0, 0), lets γ = α · r1 + β · r2,
and encodes (α, β, γ) in the 3b-bit long prefix of x.

– On input x (viewed as starting with the 3b-bit long prefix (α, β, γ) ∈ GF(2b)3)
and a tested n-bit long string that is viewed as a sequence (z1, ..., zt) ∈
GF(2b)t, the distinguisher D output 1 if and only if α · z1 + β · z2 = γ.

21 On input (1n, S) we need to compare the average performance of p(n) machines
on S versus their average performance on {0, 1}n, where each machine makes at

most p(n) steps. Recalling that |S| = K = eO(p(n)2), and that it suffices to get an
approximation of the performance on {0, 1}n up to an additive term of 1/2p(n),

we conclude that the entire task can be performed in time p(n) · eO(p(n)2) · p(n) <
(n + |S|n)2 (i.e., the number of machines times the number of experiments (which

is |S| + eO(p(n)2)) times the running time of one experiment).
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Note that D(x, G(Uk)) is identically 1 (because α · (r1 + i · s1) + β · (r2 + i · s2)
equals γ = α · r1 + β · r2 for every i ∈ [m]), whereas Pr[D(x, Uℓ(k)) = 1] = 2−b

(because a fixed non-zero linear combination of two random elements of GF(2b)
is uniformly distributed in GF(2b)).

Non-resilience to multiple samples. The foregoing example also demonstrates
the non-resilience of Definition 4.3 to multiple samples. Specifically, consider a

distinguisher D that obtains three samples, denoted (z
(1)
1 , ..., z

(1)
t ), (z

(2)
1 , ..., z

(2)
t ),

and (z
(3)
1 , ..., z

(3)
t ) (each viewed as a t-long sequence over GF(2b)), and outputs 1

if and only if (z
(1)
1 − z

(2)
1 ) · (z(2)

2 − z
(3)
2 ) = (z

(1)
2 − z

(2)
2 ) · (z(2)

1 − z
(3)
1 ). Then,

D(G(i1), G(i2), G(i3)) = 1 for every i1, i2, i3 ∈ [2k] (because G(i1)j − G(i2)j =
(i1 − i2) · sj and G(i2)j −G(i3)j = (i2 − i3) · sj for every j ∈ [t], which implies
that each of the two compared products equals (i1− i2)(i2 − i3) · s1s2), whereas

D(U
(1)
ℓ(k), U

(2)
ℓ(k), U

(3)
ℓ(k)) equals 1 with probability 2−b (because each of the two

compared products is uniformly distributed in GF(2b)).

4.3 A tedious tightening

Recall that we (kind of) showed that canonical derandomizers of exponential
stretch imply that BPP is “effectively” contained in P (in the sense detailed in
Definition 4.8), whereas BPP = P implies the existence of the former. In this
section we tighten this relationship by showing that the existence of canonical
derandomizers of exponential stretch also follows from the hypothesis that BPP
is “effectively” (rather than perfectly) contained in P .

Definition 4.8 (effective containment): Let C1 and C2 be two classes of promise
problems, and let t : N → N. We say that C1 is t-effectively contained in C2 if
for every Π ∈ C1 there exists Π ′ ∈ C2 such that for every probabilistic t-time
algorithm F and all sufficiently large n it holds that Pr[F (1n) ∈ ∇(Π, Π ′) ∩
{0, 1}n] < 1/t(n), where ∇(Π, Π ′) denotes the symmetric difference between

Π = (Πyes, Πno) and Π ′ = (Π ′
yes

, Π ′
no

) (i.e., ∇(Π, Π ′)
def
= ∇(Πyes, Π

′
yes

) ∪
∇(Πno, Π ′

no), where ∇(S, S′)
def
= (S \ S′) ∪ (S′ \ S)).

Theorem 4.9 The following two conditions are equivalent.

1. For every polynomial p, it holds that BPP is p-effectively contained in P.
2. For every polynomial p, there exists a p-robust canonical derandomizer of

exponential stretch.

Proof: We first prove that Condition 2 implies Condition 1. (Indeed, this
assertion was made several times in the foregoing discussions, and here we merely
detail its proof.)

Let Π = (Πyes, Πno) be an arbitrary problem in BPP, and consider the cor-
responding probabilistic linear-time algorithm A (of negligible error probability)
derived for a padded version of Π , denoted Ψ = (Ψyes, Ψno). Specifically, sup-
pose that for some polynomial p0, it holds that Ψyes = {x0p0(|x|)−|x| : x ∈ Πyes}
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and ditto for Ψno. Now, for any polynomial p, consider the promise problem
Ψ ′ = (Ψ ′

yes, Ψ
′
no) such that

Ψ ′
yes

def
= {x ∈ Ψyes : Pr[AG(x) = 1] > 0.6} (10)

Ψ ′
no

def
= {x ∈ Ψno : Pr[AG(x) = 1] < 0.4}, (11)

where AG is the algorithm obtained by combining A with a p-robust derandom-
izer G of exponential stretch ℓ (i.e., AG(x, s) = A(x, G(s)), where ℓ(|s|) = |x|).
Then, Proposition 4.4 implies that for every probabilistic p-time algorithm F
and all sufficiently large k, it holds that

Pr[F (1ℓ(k)) ∈ ∇(Ψ, Ψ ′) ∩ {0, 1}ℓ(k)] <
40

p(ℓ(k))1/3
,

(12)

because ∇(Ψ, Ψ ′)∩{0, 1}ℓ(k) is contained in ∇A,G(k)\BA(k), where ∇A,G(k) and
BA(k) are as in Eq. (6) and Eq. (7), respectively. Now, since G has exponential
stretch, it follows that the randomness complexity of AG is logarithmic (in its
input length). Thus, algorithm AG runs in polynomial-time, and we can also
fully derandomize it in polynomial-time (by invoking AG on all possible random
pads). Concluding that Ψ ′ ∈ P , we further infer that the same holds with respect
to the “unpadded version” of Ψ ′, denoted Π ′ = (Π ′

yes, Π
′
no); that is, we refer to

Π ′
yes

= {x : x0p0(|x|)−|x| ∈ Ψ ′
yes
} and ditto for Π ′

no
. Finally, since ∇(Π, Π ′) ∩

{0, 1}n equals {x : x0p0(|x|)−|x| ∈ ∇(Ψ, Ψ ′)∩ {0, 1}p0(n)}, it follows that for every
probabilistic p ◦ p0-time algorithm F and all sufficiently large n, it holds that

Pr[F (1n) ∈ ∇(Π, Π ′) ∩ {0, 1}n] < 40/p(p0(n))1/3. Noting that the same applies
to any Π ∈ BPP (and any polynomial p), we conclude that BPP is (p1/3/40)-
effectively contained in P , for every polynomial p. This completes the proof that
Condition 2 implies Condition 1.

We now turn to proving the converse (i.e., that Condition 1 implies Condi-
tion 2). The idea is to go through the proof of Theorem 4.5, while noting that
a failure of the resulting generator (which is supposed to be p-robust) yields
contradiction to the p′-effective containment of BPP in P , where p′ is a poly-
nomial that arises from the said proof. Specifically, note that the hypothesis
BPP = P is used in the proof of Theorem 4.5 to transform a probabilistic
construction into a deterministic one. This transformation is actually a (deter-
ministic) p3-time22 reduction (of the construction problem) to a fixed problem
Π in BPtime(pΠ) ⊆ BPP, where pΠ(m) = m4. We also note that all queries
made by the reduction have length Θ(2k · ℓ(k)) (see the proof of Theorem 3.5,

and recall that 2k = Õ(p(ℓ(k))2)). Thus, the reduction fails only if at least one of
the queries made by it is answered incorrectly by the problem in P that is used
to p′-effective place Π in P . Randomly guessing the the index of the (wrongly
answered) query (i ∈ [p(ℓ(k))3]), we may answer the prior (i − 1) queries by
using the fixed BPP algorithm for Π , and hit an n-bit long instance in the sym-
metric difference with probability at least (1/p(n)) · (1/p(n)3), where n = ℓ(k)

22 See Observation 4.6, and use eO(p(n)2 · n) ≪ p(n)3, which holds for all practical
purposes.
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(and the probability bound is due to the distinguishing gap of at least 1/p,
which arises from a wrongly answered query that is hit by our selection of i with
probability 1/p(n)3). For a sufficiently large polynomial p′, this contradicts the
hypothesis that BPP is p′-effectively contained in P . Specifically, on input 1n,
our probabilistic algorithm runs for time p(n)3 · pΠ(p(n)3) = p(n)15 and hits a
bad m-bit long string (on which the derandomization fails) with probability at

least 1/p(n)4, where m = Θ(Õ(p(n)2 · n)). Thus, setting p′(m) = m8 suffices.
(Formally, the claim follows by considering a modified algorithm that on input

1m invokes the foregoing algorithm on input 1m1/8

.)

Comment. The second part of the foregoing proof actually establishes that there
exists a fixed polynomial p′ such that if BPP is p′-effectively contained in P, then,
for every every polynomial p, there exists a p-robust canonical derandomizer of
exponential stretch. Thus, we obtain that BPP is p′-effectively contained in P
if and only if for every polynomial p BPP is p′-effectively contained in P . We
comment that this result can be proved directly by a padding argument.

4.4 A different tightening (targeted generators)

The use of uniform-complexity notions of canonical derandomizers does not seem
to allow deriving perfect derandomization (of the type BPP = P). As we saw,
the problem is that exceptional inputs (in the symmetric difference between the
original problem and the one solved deterministically) need to be found in order
to yield a violation of the pseudorandomness condition. An alternative approach
may let the generator depend on the input for which we wish to derandomize
the execution of the original probabilistic polynomial-time algorithm. This sug-
gests the following notion of a targeted canonical derandomizer, where both the
generator and the distinguisher are presented with the same auxiliary input (or
“target”).

Definition 4.10 (targeted canonical derandomizers): Let ℓ :N→N be a function
such that ℓ(n) > n for all n. A targeted canonical derandomizer of stretch ℓ is a
deterministic algorithm G that satisfies the following two conditions.

(generation time): On input a k-bit long seed and an ℓ(k)-bit long auxiliary in-
put, G makes at most poly(2k · ℓ(k)) steps and outputs a string of length
ℓ(k).

(pseudorandomness (targeted)): For every (deterministic) linear-time algorithm
D, all sufficiently large k and all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x, G(Uk, x)) = 1] − Pr[D(x, Uℓ(k)) = 1] | <
1

6
. (13)

Definition 4.10 is a special case of related definitions that have appeared in [25,
Sec. 2.4]. Specifically, Vadhan [25] studied auxiliary-input pseudorandom gener-
ators (of the general-purpose type [1, 26]), while offering a general treatment in
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which pseudorandomness needs to hold for an arbitrary set of targets (i.e., x ∈ I
for some set I ⊆ {0, 1}∗).23

The notion of a targeted canonical derandomizer is not as odd as it looks at
first glance. Indeed, the generator is far from being general-purpose (i.e., it is
tailored to a specific x), but this merely takes to (almost) the limit the insight of
Nisan and Wigderson regarding relaxations that are still useful towards deran-
domization [19]. Indeed, even if we were to fix the distinguisher D, constructing
a generator that just fools D(x, ·) is not straightforward, because we need to find
a suitable “fooling set” deterministically (in polynomial-time).

Theorem 4.11 (another equivalence): Targeted canonical derandomizers of ex-
ponential stretch exist if and only if BPP = P.

Proof: Using any targeted canonical derandomizer of exponential stretch we
obtain BPP = P , where the argument merely follows the one used in the context
of non-uniformly strong canonical derandomizers (i.e., canonical derandomizers
in the sense of Definition 4.1). Turning to the opposite direction, we observe that
the construction undertaken in the proof of Theorem 4.5 can be carried out with
respect to the given auxiliary-input. In particular, the fixed auxiliary-input is
merely passed among the various algorithms, and the argument remains intact.
The theorem follows.

Observation 4.12 (super-exponential stretch): In contrast to the situation with
respect to the prior notions of canonical derandomizers (of Definitions 4.1–4.3),24

targeted canonical derandomizer of super-exponential stretch may exist. Indeed,
they exists if and only if targeted canonical derandomizer of exponential stretch
exist. To see this note that the hypothesis BPP = P allows to carry out the proof
of Theorem 4.5 for any stretch function. Specifically, for any super-exponential
function ℓ, when constructing the set Sn ⊂ {0, 1}n it suffices to fool the first g(n)
(linear-time) machines, where g is any unbounded and non-decreasing function
and fooling means keeping the distinguishability gap below 1/6. Using a function
g such that g(n) ≤ poly(n) allows to construct Sn in poly(n)-time, whereas using

g such that g(n) < 0.5 ·exp(2 ·(1/6)2 ·2ℓ−1(n)) guarantees that log2 |Sn| ≤ ℓ−1(n),
and the claim follows.

23 His treatment vastly extends the original notion of auxiliary-input one-way functions
put forward in [20].

24 For Definitions 4.1 and 4.2 super-exponential stretch is impossible because we can
encode in x ∈ {0, 1}ℓ(k) the list of all (k +1)-bit long strings that do not appear as a
prefix of any string in {G(s) : s ∈ {0, 1}k}, which yields a linear-time distinguisher
of gap at least 1/2. In case of Definition 4.3, super-exponential stretch is impossible
because of a distinguisher that output 1 if and only if the tested string starts with
0k+1, and so has a distinguishing gap of at least 2−(k+1). Indeed, in both cases we
ruled out ℓ(k) ≥ 2k+1.
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4.5 Relating the various generators

It is syntactically clear that any non-uniformly strong canonical derandomizer
(as per Definition 4.1) satisfies both Definition 4.2 (the first uniform version of
canonical derandomizers) and Definition 4.10 (the targeted version of canonical
derandomizers). On the other hand, there are good reasons to believe that such
a canonical derandomizer is not necessarily a p-robust canonical derandomizer
(as per Definition 4.3, for some polynomial p).25 However, using Theorems 4.9
and 4.11, we observe that the existence of a generator that satisfies either Def-
inition 4.2 or Definition 4.10 implies, for every polynomial p, the existence of
p-robust canonical derandomizer (as per Definition 4.3).

Corollary 4.13 If there exists a targeted canonical derandomizer of exponen-
tial stretch, then for every polynomial p there exists a p-robust canonical de-
randomizer of exponential stretch. The same holds if the hypothesis refers to
Definition 4.2.

The various relations are depicted in Figure 2. A similar result can be proved
for other (polynomially closed) families of stretch functions, by using the results
of Section 5.

non-uniform

(Def. 4.1)

uniform (1st)

(Def. 4.2)

(Def. 4.3)

p-robust

targeted
BPP = P

BPP = P

effectively

(Def. 4.10)

Fig. 2. Relations among various notions of canonical derandomizers (of exponential
stretch). Solid arrows indicate syntactic implications (which hold for any generator),
whereas dashed arrows indicate existential implications.

Proof: The existence of a targeted canonical derandomizer of exponential
stretch implies that BPP = P (see Theorem 4.11), which in turn implies the

25 One such reason was noted in Footnote 15: If E requires exponential size circuits,
then such a “separator” exists.
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existence of a p-robust canonical derandomizer of exponential stretch (see Theo-
rem 4.5 or Theorem 4.9). Starting with a generator that satisfies Definition 4.2,
one can easily prove that, for every polynomial p′, it holds that BPP is p′-
effectively in P , where the proof is actually more direct than the corresponding
direction of Theorem 4.9. We are done by using the other direction of The-
orem 4.9 (i.e., the construction of p-robust canonical derandomizer based on
p′-effective containment of BPP in P).

5 Extension: the full “stretch vs time” trade-off

In this section we extend the ideas of the previous section to the study to gen-
eral “stretch vs derandomization time” trade-off (akin to the general “hardness
vs randomness” trade-off). That is, here the standard hardness vs randomness
trade-off takes the form of a trade-off between the stretch function of the canoni-
cal derandomizer and time complexity of the deterministic class containing BPP.
The robustness (resp., effectiveness) function will also be adapted accordingly.

Theorem 5.1 (Theorem 4.9, generalized): For every function t : N → N, the
following two conditions are equivalent.

1. For every two polynomials p0 and p, it holds that BPtime(p0) is (p ◦ t)-
effectively contained in Dtime(poly(p ◦ t ◦ p0)).

2. For every polynomial p, there exists a (p ◦ t)-robust canonical derandomizer

of stretch ℓp◦t :N→N such that ℓp◦t(k)
def
= (p◦t)−1(2Ω(k)) = t−1(p−1(2Ω(k))).

Furthermore, the hidden constants in the Ω and poly notation are independent
of the functions t, p and p0.

Indeed, Theorem 4.9 follows as a special case (when setting t(n) = n), whereas
for t(n) ≥ 2n both conditions hold trivially. Note that for t(n) = 2ǫn (resp.,
t(n) = 2nǫ

), we get ℓp◦t(k) = Ω(k/ǫ)) (resp., ℓp◦t(k) = Ω(k)1/ǫ).

Proof: We closely follow the proof of Theorem 4.9, while detailing only the
necessary modifications. Starting with the proof that Condition 2 implies Con-
dition 1, we let Π ∈ BPtime(p0), Ψ and A be as in the original proof. Now,
for any polynomial p, we consider the promise problem Ψ ′ = (Ψ ′

yes
, Ψ ′

no
) such

that Ψ ′
yes = {x ∈ Ψyes : Pr[AG(x) = 1] > 0.6} and Ψ ′

no = {x ∈ Ψno :
Pr[AG(x) = 1] < 0.4}, where AG is the algorithm obtained by combining A
with a (p ◦ t)-robust derandomizer G of stretch ℓp◦t. Then, Proposition 4.4 im-
plies that for every probabilistic (p ◦ t)-time algorithm F and all sufficiently
large k, it holds that Pr[F (1ℓ(k)) ∈ ∇(Ψ, Ψ ′) ∩ {0, 1}ℓ(k)] < 40/(p ◦ t)1/3(ℓ(k)).
Since G has stretch ℓp◦t, it follows that on input an n-bit string algorithm AG

uses ℓ−1
p◦t(n) = O(log(p ◦ t)(n)) many coins, and thus we can also fully de-

randomize it in time poly((p ◦ t)(n)). Thus, Ψ ′ ∈ Dtime(poly(p ◦ t)), and it
follows that Π ′ ∈ Dtime(poly(p ◦ t ◦ p0)), where Π ′ denotes the “unpadded
version” of Ψ ′. Concluding that Π is ((p ◦ t)1/3/40)-effectively contained in
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Dtime(poly(p ◦ t ◦ p0)), and that the same holds for any Π ∈ BPtime(p0) and
every polynomial p, we have established that Condition 2 implies Condition 1.

We now turn to proving the converse (i.e., that Condition 1 implies Con-
dition 2). Again, we merely go through the proof of Theorem 4.5, except that
here we construct a set Sn of size poly(p ◦ t)(n). Specifically, the discrepan-
cies we aim at are linearly related to 1/(p ◦ t)(n), and we can afford spending
time poly(p ◦ t)(n) in the construction. We shall indeed make use of this al-
lowance, since we can only rely on the (t′-effective) containment of BPtime(p0)
in Dtime(poly(p ◦ t ◦ p0)), where t′ = poly(p ◦ t) = poly(p) ◦ t. The rest of the
argument proceeds analogously to the proof of Theorem 4.9. We note that the
aforementioned hypothesis regarding BPtime(p0) is only used when determinis-
tically reducing (in time poly(p◦ t)) the construction of Sn to a fixed problem Π
in BPtime(p0), where p0(m) = m4 (as in the proof of Theorem 4.9). Thus, the
reduction fails only if at least one of the queries made by it is answered incor-

rectly by the problem in D def
= Dtime(poly(p ◦ t ◦ p0)) that is used to t′-effective

place Π in D. Randomly guessing the the index of the (wrongly answered) query,
we hit an m-bit long instance in the symmetric difference with probability at
least 1/poly(p(t(n))), where m = Ω(ℓ(k)), which contradicts the hypothesis that
BPtime(p0) is t′-effectively contained in D.26

6 Open Problems

We start by recalling the famous open problem regarding whether the a full
derandomization of standard decision problems implies the same for promise
problems. That is, assuming that any decision problem in BPP is in P , does it
follow that BPP = P? 27

One problem that arises from the current work refers to the relationship
between the two uniform definitions of canonical derandomizers (i.e., Defini-
tions 4.2 and 4.3). Recall (see Section 4.5) that the existence of generators (of
exponential stretch) that satisfy Definition 4.2 implies the existence of genera-
tors (of exponential stretch) that satisfy Definition 4.3, but the converse is not
clear.

Another open problem refers to the deriving of analogous results regarding
the derandomization ofAM (or AM∩coAM). Here the canonical derandomizer
should be computable in non-deterministic poly(2k · ℓ(k))-time, where computa-
tion by non-deterministic machines refers to the so called “single-value” model
(see, e.g., [22] or [8, Def. 5.13]). The problem in reversing the “pseudorandomness
to derandomization” connection refers to a tension between the distinguishers
used to argue about the derandomization versus our need to handle them in

26 Here, too, m = Θ( eO(p(t(n))2 · n) actually holds, and so it actually suffices to set
t′(m) = poly(m).

27 Formally, let D denote the set of all promise problems having a trivial promise; that
is, a promise problem (Πyes, Πno) is in D if Πyes∪Πno = {0, 1}∗. Then, the question
is whether BPP ∩ D = P ∩ D implies BPP = P .
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the construction of the canonical derandomizer. We would welcome any result,
even for a targeted version and even for derandomizing some subclass such as
AM∩ coAM or SZK.

Finally, we return to the question raised in passing in Section 1.4. Specifically,
we ask which search problems can be solved by deterministic polynomial-time re-
ductions to BPP. Denoting the class of such search problems by C, we note that
Theorem 3.5 implies that C contains all search problems that have a companion
that is a BPP-search problem. The converse holds in the special case that the
target of the reduction is a standard decision problem (and the reduced search
problem has a trivial promise at the instance level (see below)). Let us con-
sider the general case and see what happens. Suppose that the search problem
(Ryes, Rno) that is reducible in deterministic polynomial-time to Π ∈ BPP. De-
noting the oracle machine effecting the reduction by M , we consider the search
problem (R′

yes, R
′
no) such that (x, y) ∈ R′

yes if Mf (x) = y for some f that
is consistent with Π and (x, y) ∈ R′

no
otherwise.28 The correctness of the re-

duction implies that SR′
yes
⊇ SRyes

whereas R′
no ⊇ Rno, which means that if

SRyes
∪ SRno

= {0, 1}∗, then (R′
yes, R

′
no) is a companion of (Ryes, Rno). Now

if Π is a standard decision problem, then f is unique; hence, R′
yes

(x) is a sin-
gleton if x ∈ SR′

yes
and is empty otherwise (since SR′

no
= {0, 1}∗ \ SR′

yes
). In

this case membership of (x, y) in R′
yes

can be easily tested by checking whether
MΠ(x) = y. The same holds if the reduction is “smart” (i.e., avoids making
queries that violate the promise, cf. [11]),29 but in general it is not clear what
happens.
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Appendices: prior proofs of the main result (Theorem 4.5)

The current proof of Theorem 4.5 is the second simplification we found: It is
a third incarnation of the same underlying principles, but it hides the original
inspiration to our ideas, which are rooted in [9]. Since we do have written records
of these prior proofs, and since they may be of some interest, we decided to
include them in the current appendix.

Our starting point was the work of Goldreich and Wigderson [9], which
studied pseudorandomness with respect to (uniform) deterministic observers.
In particular, they show how to construct, for every polynomial p, a generator
of exponential stretch that works in time polynomial in its output and fools all
deterministic p-time tests of the next-bit type (a la [1]). They observe that an
analogous construction with respect to general (deterministic p-time) tests (or
distinguishers) would yield some non-trivial derandomization results (e.g., any
unary set in BPP would be placed in P). Thus, they conclude that Yao’s result30

asserting that fooling all efficient next-bit tests implies fooling all efficient dis-
tinguishers relies on the fact that the class of test includes probabilistic p-time
algorithms and not only deterministic ones.

Our key observation is that the gap between probabilistic next-bit tests and
deterministic ones essentially disappears if BPP = P . Actually, the gap disap-
pears if we generalize the notion of next-bit tests so to allow the (deterministic)
tester to output a guess of the probability that the next bit equals 1 (rather than
a guess for the actual value of the next bit), and consider the correlation between
the corresponding random variables. Indeed, assuming that BPP = P , allows to
deterministically emulate a probabilistic p-time next bit test by a (generalized)
deterministic p′-time next bit test, where p′ is a polynomial that depends only
on p. Plugging this into the construction of [9], which can be shown to fool also
(generalized) deterministic p′-time next bit test, we obtain the desired generator
(which produces ℓ-bit outputs in time poly(p′(ℓ))). A crucial point in the fore-
going argument is that the next-bit test does not need to invoke the generator,
which is not feasible because the generator runs for more time than the potential
tests.

The foregoing argument led to the first proof, which is presented in Ap-
pendix A.2. Subsequently we found a more direct approach, which is presented
in Appendix A.1. This approach is more transparent and amenable to variations
than the first one (but less so in comparison to the proof presented in Section 4.2).
Specifically, rather than working with (generalized) next-bit tests, we directly
work with (probabilistic p-time) distinguishers, and adapt the argument of [9] to
apply in this context. It turns out that in order for this to work, we only need
to approximate the probability that a fixed probabilistic p-time distinguishers
outputs 1 when presented with random (ℓ− i)-bit long extensions of some fixed
i-bit long strings, for i = 1, ..., ℓ. Assuming that BPP = P , allows to determin-
istically approximate these probabilities (again, in p′-time, where p′ = poly(p)),

30 Attributed to oral presentations of [26].
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and so we are done. Needless to say, the fact that such approximations suffices
is specific to (our adaptation of) the construction of [9].

A.1 An alternative proof of Theorem 4.5 (via derandomizing a
FPTAS)

The alternative proof of Theorem 4.5 proceeds by generalizing the main idea that
underlies the work of Goldreich and Wigderson [9], while using the hypothesis
(i.e., BPP = P) to extend its scope to probabilistic (rather than deterministic)
observers. Specifically, for every polynomial p, they presented a polynomial-
time construction of a sample space that fools any p-time deterministic next-bit
test. The construction is iterative, where in each iteration the next bit of each
string in the sample space is determined such that the resulting space fools all
relevant next-bit tests. Here we consider any (p-time) probabilistic distinguisher,
and seek to determine the next bit so that the probability that this distinguisher
output 1 (on a random extension of the current sample space) is approximately
maintained. Towards this end, we need to approximate the probability that
a fixed p-time probabilistic algorithm outputs 1 on a random extension of the
current prefix. Our key observation is that, due to the hypothesis that BPP = P ,
this quantity can be approximated in deterministic polynomial-time. The use of
this hypothesis is far from being surprising, since (as noted before) the conclusion
of Theorem 4.5 implies that, in some “effective” sense, BPP does equal P .

Proof: We follow the general outline of the proof of [9, Thm. 2], while comment-
ing (mostly in footnotes) about the points of deviation. Let us fix an arbitrary
polynomial p, and consider a suitable exponential function ℓ (to be determined
later). Our aim is to construct a sequence of mappings G : {0, 1}k→{0, 1}ℓ(k),
for arbitrary k ∈ N, that meets the requirements of a p-robust canonical de-
randomizer. However, it will be more convenient to construct a sequence of sets
S = ∪k∈NSℓ(k) such that Sn ⊆ {0, 1}n, and let G(i) be the ith string in Sℓ(k),

where i ∈ [2k] ≡ {0, 1}k. (Thus, the function ℓ :N→N satisfies ℓ(log2 |Sn|) = n,
whereas we shall have |Sn| = poly(n).) The set Sn should be constructed in
poly(n)-time (so that G is computable in poly(2k · ℓ(k))-time), and the pseudo-
randomness requirement of G coincides with requiring that, for every probabilis-
tic p-time algorithm D, and all sufficiently large n, it holds that31

∣∣∣∣∣Pr[D(Un)=1]− 1

|Sn|
·

∑

s∈Sn

Pr[D(s)=1]

∣∣∣∣∣ <
1

p(n) .

(14)

Specifically, we consider an enumeration of (modified)32 probabilistic machines
running within time p(n) on input of length n, and focus on fooling the m =

31 In [9, Thm. 2] the set Sn was only required to fool deterministic tests of the next-bit
type.

32 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
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m(n) < p(n) first machines in the sense of Eq. (14). Let ǫ = 1/p(n), and M be
a generic machines that we wish to fool.

We construct Sn in (roughly) n iterations, such that in iteration i we con-
struct Sn,i ⊆ {0, 1}i. We start with Sn,k = {0, 1}k, where k = 2 log2(2nm/ǫ),
and let K = 2k. In the i+1st iteration, we consider the function fM : [K]→ [0, 1]
representing the probability that M outputs 1 on a random extension of each of
the K strings in Sn,i; that is, fM (j) = Pr[M(x(j)Un−i)=1], where x(j) is the jth

string in Sn,i ⊆ {0, 1}i. (The function fM represents M ’s average output on all
possible (n− i)-bit long extensions of all strings in Sn,i.)

33 Our aim is to find a
vector u ∈ {0, 1}K such that, for each machine M (among the first m machines),
it holds that the average value of Pr[M(x(j)u[j]Un−i−1)=1] is ǫ/n-close to the
average value of fM (j); that is,

∣∣∣∣∣∣
1

K

∑

j∈[K]

Pr[M(x(j)u[j]Un−i−1)=1]− 1

K
·

∑

j∈[K]

fM (j)

∣∣∣∣∣∣
<

ǫ

n .
(15)

Once such a vector u is found, we extend Sn,i into Sn,i+1 in the natural manner;
that is,

Sn,i+1
def
= {x(j)u[j] : where x(j) is the jth string in Sn,i} ⊂ {0, 1}i+1. (16)

It follows that Sn
def
= Sn,n satisfies Eq. (14), because, for each of the aforemen-

tioned M ’s and for each i ∈ [n− k, n− 1], it holds that

∣∣∣∣∣∣
1

|Sn,i|
·

∑

s∈Sn,i

Pr[M(s)=1]− 1

|Sn,i+1|
·

∑

s∈Sn,i+1

Pr[M(s)=1]

∣∣∣∣∣∣
<

ǫ

n
(17)

since the terms in the l.h.s are represented by the function fM defined at the ith

iteration, whereas the terms in the r.h.s correspond to the function fM defined
in the next iteration.

It remains to specify how a suitable vector u ∈ {0, 1}K is found, in each
iteration. This is done by using a pairwise independent sample space for strings
of length K, while recalling that such spaces can be constructed in poly(K)-time
(cf., e.g., [2]). Two issues arise:

1. Showing that such a sample space must always contain a suitable vec-
tor u ∈ {0, 1}K; that is, a vector u ∈ {0, 1}K satisfies Eq. (15). This is

given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.

33 In contrast, in [9], the function fM (which is denoted vM there) represented M ’s
attempt to guess the i + 1st bit of a string in Sn, based on the i-bit long prefix of
that string. Furthermore, since in [9] the machine M is deterministic, the function
fM (there) can be constructed by invoking M on K different i-bit strings.
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quite an immediate consequence of the fact that, when defining qM,j(σ)
def
=

Pr[M(x(j)σUn−i−1)=1], we can write Eq. (15) as

∣∣∣∣∣∣
1

K

∑

j∈[K]

qM,j(u[j])− 1

K
·

∑

j∈[K]

∑

σ∈{0,1}

qM,j(σ)

2

∣∣∣∣∣∣
<

ǫ

n .
(18)

Indeed, when u is selected from a pairwise-independent sample space of
{0, 1}K, Eq. (18) holds with probability at least 1− (1/((ǫ/n)2K)), and the
claim follows whenever (ǫ/n)2K > m.
Actually, we shall use the fact that, with probability at least 1−(1/((ǫ/2n)2K)),
a modified version of Eq. (18) holds, where in the modification the upper
bound ǫ/n is replaced by the (tighter) upper bound ǫ/2n.

2. Showing that we can distinguish in deterministic polynomial-time whether a
given vector u ∈ {0, 1}K satisfies the aforementioned tighter form of Eq. (18)
or violates Eq. (15).
This issue hardly arose in [9], since there fM (j) referred to the output of a
deterministic machine on fixed string (i.e., the jth string in Sn,i). But here
fM (j) refers to the expected output of a probabilistic machine on a random
extension of a fixed string. Nevertheless, fM (j) can be approximated to
within an additive term of ǫ/4n by a simple probabilistic algorithm that
merely invokes M sufficiently many (i.e., O(n/ǫ)2) times on such random
extensions, and ditto for qM,j(·). Now, using the hypothesis BPP = P and
applying Corollary 3.6,34 we conclude that qM,j(·) can be approximated well-
enough (i.e., up to an additive term of ǫ/4n) by a deterministic polynomial-
time algorithm. Formally, the approximation problem is defined for inputs of
the form (M, 1n, x), where M and n are as above and x is a string of length
at most n (i.e., in our application, x = x(j)σ ∈ {0, 1}i+1, where x(j) is the
jth string in Sn,i).

Thus, in each iteration we can find a vector u as desired, an consequently we
construct the desired set Sn in time that is polynomial in n. The theorem follows.

Comment: The generator constructed in the foregoing proof does not satisfy
the notion of a canonical derandomizer stated in Definition 4.2. Indeed, in this
case, a (deterministic) polynomial-time finder F , which runs for more time than
the foregoing generator, can find a string x that allows very fast distinguishing.
Details follow.

Referring to the foregoing construction of a pseudorandom generator G, we
show how to find in polynomial-time a string x ∈ {0, 1}ℓ(k) such that (x, G(Uk))
and (x, Uℓ(k)) are easy to tell apart. Actually, we refer to a specific implemen-
tation of the construction; that is, to a specific implementation of the pairwise

34 Formally, there is a problem here since we do not have a FPTAS for the quantities
qM,j(·) ∈ [0, 1], but we do have a FPTAS for the quantities 1 + qM,j(·) ∈ [1, 2] and
this suffices here.
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independence sample space, where the aspect we rely on is that this sample space
is a vector space of low dimension.

Recall that the set Sn, which is the support of G(Uk) (for n = ℓ(k)), is
constructed by concatenating n vectors, where each vector is an 2k-bit long
sequence taken from a pairwise independence sample space. Specifically, consider
the sample space generated by strings of length k+1 such that the jth coordinate
of the vector generated by r1 · · · rk+1 ∈ {0, 1}k+1 equals

∑k+1
h=1 jhrh, where jh is

the hth bit in the (k +1)-bit long binary expansion of j ∈ [2k]. Thus, each of the
vectors used in the construction of Sn reside in the very same (k+1)-dimensional
vector space.

Then, the finder F can just construct Sn (as done by G), and record the
sequence uk+1, ..., un of vectors taken in each of the n− k iterations (or rather
their succinct representation). In fact, it suffices to record the indices of a sub-
sequence, of length d ≤ k +2, that sums-up to the all zero vector; that is, record
(i1, ..., id) such that the sum of the vectors taken in iterations i1, ..., id equals

the all-zero vector (i.e.,
∑d

h=1 uih
= 0). Now, F just records such a sequence in

a prefix of x, and the distinguisher D just outputs the XOR value of the bits
that appear in these positions. Clearly, D(x, z) = 0 for every z ∈ Sn, whereas
Pr[D(x, Uℓ) = 0] = 1/2.

A.2 Another alternative proof of Theorem 4.5 (via next-bit tests)

The alternative proof of Theorem 4.5 follows by combining two results: The first
is an unconditional result that asserts a generator that passes the next-bit test
with respect to deterministic observers, and the second is a conditional determin-
istic analogue of the fact that next-bit unpredictability implies pseudorandom-
ness. The first result is a technical generalization of [9, Thm. 2] (see Theorem A.2
below), whereas the second result uses the hypothesis that BPP = P . The use
of this hypothesis should not come at a surprise, since as noted before the con-
clusion of Theorem 4.5 implies that in some “effective” sense BPP does equal
P . (Thus, as observed in [9], an unconditional implication of the foregoing type,
would yield an unconditional derandomization of BPP.)

Next-bit unpredictability, generalized. Let us first present a natural generalization
of the notion of next-bit unpredictability, which is pivotal to our argument.
Recall that the standard notion refers to the probability of guessing the next
bit in a sequence, when given its prefix. That is, in the standard formulation,
the predictor outputs a bit, and the question is whether this bit matches the
actual next bit. Now, consider a generalization in which the predictor output its
estimate of the probability that the next bit is 1, and normalizing the “payoff”
accordingly. That is, the generalized predictor outputs a probability p ∈ [0, 1],
and gets payoff 2p− 1 if the outcome (of the next bit) is 1 and payoff 1− 2p if
the outcome is 0. (In general, the payoff is (1− 2p) · (−1)σ, where σ denotes the
outcome of the next bit.) Note that such a generalization allows the capture the
intuitive case that the predictor wishes to pass on the guess, collect no potential
gain but also suffer from no potential loss.
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In the context of probabilistic algorithms, nothing is gained by this general-
ization, because a a probabilistic predictor may maintain the expected payoff by
replacing the output p ∈ [0, 1] with a biased coin toss (i.e., a random Boolean
value that is biased with probability p towards 1).35 But this generalization
seems more powerful in the context of deterministic predictors, and we shall
thus refer to it.

It will be more convenient to replace prediction probabilities with correlation,
as we have already done implicitly above. Thus, the predictors will output a value
in v ∈ [−1, +1] (rather than in [0, 1]) and collect the payoff v · (−1)σ, where σ
denotes the outcome of the next bit. Thus, v corresponds to 1−2p in the forgoing
discussion, and v · (−1)σ corresponds to the correlation of v with (−1)σ.

Definition A.1 (next bit unpredictability, generalized): For ℓ : N→ N, let G :
{0, 1}∗ → {0, 1}∗ be such that for every s ∈ {0, 1}∗ it holds that |G(s)| = ℓ(|s|).
– For ǫ : N → [0, 1], we say that A : N× {0, 1}∗ → [−1, +1] has correlation at

most ǫ with the next bit of G if for all sufficiently large k and all i < ℓ(k), it
holds that

E[A(1ℓ(k), x1, ..., xi) · (−1)xi+1] ≤ ǫ(ℓ(k)), (19)

where (x1, ..., xℓ(k))← G(s) for a uniformly selected s ∈ {0, 1}k.
We will often omit 1ℓ(k) from the list of inputs to A.

– We say that G is next-bit unpredictable by a class of algorithms A with respect
to an advantage ǫ if every algorithm in A has correlation at most ǫ with the
next bit of G.
We say that G is next-bit t-unpredictable if G is next-bit unpredictable with
respect to advantage 1/t by the class of deterministic t-time algorithms that
have output in [−1, +1].

By a straightforward extension of the ideas of [9], we obtain the following un-
conditional result.

Theorem A.2 ([9, Thm. 2], generalized): For every polynomial p, there exist
an exponential function ℓ and a deterministic algorithm G that satisfies the first
condition of Definition 4.3 such that G is next-bit p-unpredictable.

The original result was stated in terms of predicting probabilities, and corre-
sponds to the special case in which the algorithm’s output is always in {−1, +1}
(where, in this case, E[A(x1, ..., xi)·(−1)xi+1 ] equals 2·Pr[A(x1, ..., xi)=(−1)xi+1 ]−
1). The original proof extends in a straightforward manner; see Appendix A.3.

The following result presents a conditional transformation from next-bit un-
predictability (by deterministic algorithms) to pseudorandomness (which holds
with respect to probabilistic algorithms). This transformation relies on the fact
that the hypothesis BPP = P allows for derandomizing potential probabilis-
tic next-bit predictors, which are obtained (in the usual way) from potential
distinguishers.

35 That is, the expected payoff with respect to a random variable ζ ∈ {0, 1} is main-
tained, because the original payoff is E[(1 − 2p) · (−1)ζ ], whereas the payoff of the
resulting Boolean predictor is p · E[(−1)ζ+1] + (1 − p) · E[(−1)ζ ].
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Theorem A.3 (next-bit unpredictability implies pseudorandomness): If BPP =
P, then, for every polynomial p, there exists a polynomial p′ such that the fol-
lowing holds: If G satisfies the first condition of Definition 4.3 and is next-bit
p′-unpredictable, then G is a p-robust canonical derandomizer.

Indeed, an unconditioned (but weaker) version of Theorem A.3 (i.e., one that
does not assume BPP = P (but considers only quadratic-time deterministic
distinguishers)) was discussed in [9], and was observed to imply some deran-
domization (albeit weaker than the one stated in Proposition 4.4, since [9] could
not allow probabilistic distinguishers in Definition 4.3). Goldreich and Wigderson
saw this implication as evidence to the unlikeliness of proving such a version [9].
Our point, however, is that the assumption BPP = P does allow to prove that
next-bit unpredictability implies pseudorandomness (in an adequate sense (i.e.,
as in Definition 4.3)).

Proof: Suppose towards the contradiction that G is not pseudorandom in
the sense of Definition 4.3. That is, there exists a probabilistic p-time distin-
guisher with a distinguishing gap of δ(k) that for infinitely many k is larger
than 1/p(ℓ(k)). Applying the standard transformation from distinguishing to
predicting (cf., e.g., [7, Sec. 3.3.5]), we obtain a probabilistic p-time predictor
A that outputs a binary value (say in {−1, 1}) and has a correlation of at least

ǫ(k)
def
= δ(k)/ℓ(k) in guessing the next bit of G (wrt a prefix of some length).36

More precisely, for infinitely many k, there exists i < ℓ(k), such that

E[A(1ℓ(k), x1, ..., xi) · (−1)xi+1] ≥ ǫ(k), (20)

where (x1, ..., xℓ(k))← G(s) for a uniformly selected s ∈ {0, 1}k.
Next, we consider a probabilistic FPTAS for approximating the quantity

q such that q(1ℓ(k), x)
def
= E[A(1ℓ(k), x)]. Note that q : {0, 1}i → [−1, 1] has the

same correlation that A has with the i+1st bit of G, because for every x and every
random variable ζ ∈ {0, 1} it holds that E[q(x) · (−1)ζ] = E[A(x) · (−1)ζ ]. Thus,
our aim is to obtain a deterministic FPTAS for q, which we do by noting that the
existence a probabilistic FPTAS is straightforward, and invoking Corollary 3.6.
Details follow.

A probabilistic FPTAS for q is obtained by invoking A for O(ℓ/ǫ2) times
and outputting the average value. 37 This yields an algorithm A′ with output
in [−1, +1] such that for every x it holds that Pr[A′(x) = q(x) ± ǫ/4] > 2/3.
At this point we invoke Corollary 3.6 (or rather its furthermore part), and ob-
tain a deterministic algorithm A′′ that satisfies A′(x) = q(x) ± ǫ/2 for every x.
Furthermore, A′′ has polynomial running time, where the polynomial p′ only
depends on the polynomial p (since p determines the running time of A as well

36 As stressed in [9], the resulting predictor is probabilistic even if we start with a
deterministic distinguisher.

37 Actually, this does not yield a FPTAS, but rather an approximation up to an additive
term of ǫ/2, We can present this as a FPTAS for the value of q + 2 ∈ [1, 3], and so
proceed via the FPTAS formalism.
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as ǫ). Note that for every x and every random variable ζ ∈ {0, 1} it holds that
E[A′′(x) · (−1)ζ] > E[q(x) · (−1)ζ ]− ǫ/2, which implies that A′′ has correlation
at least ǫ(k)/2 with the next-bit of G(Uk) for infinitely many k. Since the entire
argument can be applied to any p-time distinguisher, yielding a p′-time predic-
tor of correlation greater than 1/p′ (for the same p′, which only depends on
p), we derive a contradiction to the p′-unpredictability hypothesis. The theorem
follows.

Comment: The generator constructed in the foregoing proof does not satisfy
the notion of a canonical derandomizer stated in Definition 4.2. Indeed, in this
case, a probabilistic polynomial-time finder F , which runs for more time than
the foregoing generator, can find a string x that allows very fast distinguishing.
The details are as at the end of Appendix A.2.

A.3 Proof of Theorem A.2

It will be more convenient to restate Theorem A.2 it terms of {−1, 1}. Thus, the
generator outputs sequences over {−1, 1} rather than sequences over {0, 1}. Also,
it will be convenient to consider constructing the support of the generator, and
assuming that it just outputs a strong that is uniformly distributed in its support.
Since we are interested in generators of exponential stretch, these (support) sets
have size that is polynomial in the length of the strings in them, since the seed
length is logarithmic in these set sizes. Specifically, we refer to sets of the form
S = ∪n∈NSn, where Sn ⊂ {−1, 1}n, and say that such a set is polynomial-time
constructible if there exists a polynomial-time algorithm that on input 1n outputs
the list of all sequences in Sn.

Theorem A.4 (Theorem A.2, restated): For every polynomial p, there exists a
polynomial-time constructible set S = ∪n∈NSn such that, for every deterministic
algorithm A of running-time p and output in [−1, +1], and for all sufficiently
large n and all i < n, it holds that E[A(x1, ..., xi) · xi+1] ≤ 1/p(n), where x =
(x1, ..., xn) is uniformly selected in Sn.

The following text was essentially reproduced from [9], while introducing the
necessary adaptations (which are quite minor).

Proof: Consider an enumeration of (modified)38 deterministic machines run-
ning within time p(n) on input of length n, and suppose that we wish to fool
the m = m(n) < p(n) first machines in the sense that we wish to upper bound

38 Recall that one cannot effectively enumerate all machines that run within some
given time bound. Yet, one can enumerate all machines, and modify each machine
in the enumeration such that the running-time of the modified machine respects the
given time bound, while maintaining the functionality of the original machines in
the case that the original machine respects the time bound. This is done by simply
incorporating a time-out mechanism.
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its correlation with the next bit better than ǫ, where ǫ = 1/p(n). Let M be one
of the machines we wish to fool.

We construct Sn in (roughly) n iterations, such that in iteration i we con-
struct Sn,i ⊆ {−1, 1}i. We start with Sn,k = {−1, 1}k, where k = 2 log2(m/ǫ),
and let K = 2k. In the i + 1st iteration, we consider the vector vM ∈ [−1, +1]K

representing the output of M on each of the K possible i-bit long strings; that is,
vM [j] = M(x(j)), where x(j) is the jth string in Sn,i ⊆ {−1, 1}i. (This represents
M ’s attempt to correlate its output with the i + 1st bit of a string uniformly
selected in Sn, based on the i-bit long prefix of that string.) Our aim is to find
a vector u ∈ {−1, 1}K that has low correlation with all the vM ’s. Once such a
vector u is found, we extend Sn,i into Sn,i+1 in the natural manner; that is,

Sn,i+1
def
= {x(j)u[j] : where x(j) is the jth string in Sn,i} ⊂ {−1, 1}i+1. (21)

It follows that Sn
def
= Sn,n satisfies the small correlation requirement; that is, for

each of the above M ’s and for each i < n, the correlation of M(x1 · · ·xi) with
xi+1, when x is uniformly selected in Sn, is at most ǫ.

It remains to specify how a suitable vector u ∈ {−1, 1}K is found, in each
iteration. This is done by using a pairwise independent sample space for strings
of length K, while recalling that such spaces can be constructed in poly(K)-time
(cf. [2]). Thus, it suffices to show that such a sample space must always contain
a suitable vector u ∈ {−1, 1}K. This is quite an immediate consequence of the
following claim.

Claim: Let v ∈ [−1, +1]K be arbitrary, and u be a sequence of K uniformly-
distributed pairwise-independent elements of {−1, 1}. Then, the probability that
the correlation between u and v is greater than ǫ (i.e.,

∑
i uivi > ǫK) is strictly

less than 1
ǫ2K .

Proof: For each j ∈ [K], we define a random variable ηj ∈ [−1, +1] such that

ηj
def
= v[j] · u[j]. Since v is fixed and u is a sequence of K uniformly-distributed

pairwise-independent bits, it follows that the ηj ’s are pairwise-independent and
E(ηj) = 0 for each j ∈ [K]. Using Chebyshev’s Inequality, we have

Pr





∣∣∣∣∣∣

∑

j∈[K]

ηj

∣∣∣∣∣∣
≥ ǫ ·K



 ≤
Var(

∑
j ηj)

(ǫK)2

=
1

ǫ2K

and the claim follows. ⊓⊔
Since ǫ2K > m, it follows that the aforementioned sample space contains a
vector u that has correlation at most ǫ with each of the m vectors representing
the m machines (i.e., the vectors vM ’s). Thus, we construct the desired set Sn

in time polynomial in n, and the theorem follows.


