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a trivial construct, each of these works applies an ingeniously designed
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relatively moderate manner. The four works we refer to are
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1 Introduction

Speude bradeos.1

The title of this essay employs more non-technical terms than one is accustomed
to encounter in the title of a technical survey, let alone that some are rarely used
in a technical context. Indeed, this is an unusual survey, written in an attempt
to communicate a feeling that cannot be placed on sound grounds. The feeling
is that there is a common theme among the works to be reviewed here, and
that this common theme is intriguing and may lead to yet additional important
discoveries. We hope that also readers that disagree with the foregoing feeling
may benefit from the perspective offered by lumping the said works together and
highlighting a common theme.

1 This Ancient Greek proverb, reading hasten slowly, is attributed to Augustus; see
C. Suetonius Tranquillus, D. Octavius Caesar Augustus, paragraph XXV. The in-
tention seems to be a calling for action that is marked by determination and thor-
oughness, which characterizes the “moderate revolution” of Rome under Augustus.
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We are going to review four celebrated works, each either resolving a central
open problem or providing an alternative proof for such a central result. The
common theme that we highlight is the (utmost abstract) attitude of these works
towards solving the problem that they address. Rather than trying to solve the
problem by one strong blow, each of these works goes through a long sequence
of iterations, gradually transforming the original problem into a trivial one. (At
times, it is more convenient to view the process as proceeding in the opposite
direction; that is, gradually transforming a solution to the trivial problem into a
solution to the original problem.) Anyhow, each step in this process is relatively
simple (in comparison to an attempt to solve the original problem at one shot),
and it is the multitude of iterated steps that does the job. Let us try to clarify
the foregoing description by providing a bird’s eye view of each of these works.

1.1 A bird’s eye view of the four works

Following are very high level outlines of the aforementioned works. At this point
we avoid almost all details (including crucial ones), and refrain from describing
the context of these works (i.e., the history of the problems that they address).
Instead, we focus on the iterative processes eluded to above. More detailed de-
scriptions as well as comments about the history of the problems are to be found
in corresponding sections of this essay.

Approximating the permanent of non-negative matrices. The probabilistic polynomial-
time approximation algorithm of Jerrum, Sinclair, and Vigoda [18] is based on
the following observation: Knowing (approximately) certain parameters of a non-
negative matrix M allows to approximate the same parameters for a matrix M ′,
provided that M and M ′ are sufficiently similar. Specifically, M and M ′ may
differ only on a single entry, and the ratio of the corresponding values must be
sufficiently close to one. Needless to say, the actual observation (is not generic
but rather) refers to specific parameters of the matrix, which include its perma-
nent. Thus, given a matrix M for which we need to approximate the permanent,
we consider a sequence of matrices M0, ..., Mt ≈ M such that M0 is the all 1’s
matrix (for which it is easy to evaluate the said parameters), and each Mi+1 is
obtained from Mi by reducing some adequate entry by a factor sufficiently close
to one. This process of (polynomially many) gradual changes, allows to trans-
form the dummy matrix M0 into a matrix Mt that is very close to M (and hence
has a permanent that is very close to the permanent of M). Thus, approximately
obtaining the parameters of Mt allows to approximate the permanent of M .

The iterative (Zig-Zag) construction of expander graphs. The construction of
constant-degree expander graphs by Reingold, Vadhan, and Wigderson [26] pro-
ceeds in iterations. Its starting point is a very good expander G of constant size,
which may be found by exhaustive search. The construction of a large expander
graph proceeds in iterations, where in the ith iteration the current graph Gi and
the fixed graph G are combined (via a so-called Zig-Zag product) to obtain the
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larger graph Gi+1. The combination step guarantees that the expansion prop-
erty of Gi+1 is at least as good as the expansion of Gi, while Gi+1 maintains
the degree of Gi and is a constant times larger than Gi. The process is initiated
with G1 = G2, and terminates when we obtain a graph of approximately the
desired size (which requires a logarithmic number of iterations). Thus, the last
graph is a constant-degree expander of the desired size.

The log-space algorithm for undirected connectivity. The aim of Reingold’s al-
gorithm [25] is to (deterministically) traverse an arbitrary graph using logarith-
mic amount of space. Its starting point is the fact that any expander is easy
to traverse in deterministic logarithmic-space, and thus the algorithm gradu-
ally transforms any graph into an expander, while maintaining the ability to
map a traversal of the latter into a traversal of the former. Thus, the algorithm
traverses a virtual graph, which being an expander is easy to traverse in deter-
ministic logarithmic-space, and maps the virtual traversal of the virtual graph
to a real traversal of the actual input graph. The virtual graph is constructed
in (logarithmically many) iterations, where in each iteration the graph becomes
easier to traverse. Specifically, in each iteration the expansion property of the
graph improves by a constant factor, while the graph itself only grows by a
constant factor, and each iteration can be performed (or rather emulated) in
constant space. Since each graph has some noticeable expansion (i.e., expansion
inversely related to the size of the graph), after logarithmically many steps this
process yields a good expander (i.e., constant expansion).

The alternative proof of the PCP Theorem. Dinur’s novel approach [12] to the
proof of the PCP Theorem is based on gradually improving the performance of
PCP-like systems. The starting point is a trivial PCP-like system that detects
error with very small but noticeable probability. Each iterative step increases the
detection probability of the system by a constant factor, while incurring only a
small overhead in other parameters (i.e., the randomness complexity increases
by a constant term). Thus, the PCP Theorem (asserting constant detection
probability for NP) is obtained after logarithmically many such iterative steps.
Indeed, the heart of this approach is the detection amplification step, which
may be viewed as simple only in comparison to the original proof of the PCP
Theorem.

1.2 An attempt to articulate the thesis

The current subsection will contain an attempt to articulate the thesis that
there is a common theme among these works. Readers who do not care about
philosophical discussions (and other attempts to say what cannot be said) are
encouraged to skip this subsection. In order to emphasize the subjective nature
of this section, it is written in first person singular.

I will start by saying a few works about bravery and moderation. I consider
as brave the attempt to resolved famous open problems or provide alternative
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proofs for central celebrated results.2 To try a totally different approach is also
brave, and so is realizing one’s limitations and trying a moderate approach:
Rather than trying to resolve the problem in a single blow, one wisely designs a
clever scheme that gradually progresses towards the desired goal. Indeed, this is
the victory of moderation.

Getting to the main thesis of this essay (i.e., the existence of a common
theme among the reviewed works), I believe that I have already supported a
minimalistic interpretation of this thesis by the foregoing bird’s eye view of
the four works. That is, there is an obvious similarity among these bird’s eye
views. However, some researchers may claim (and indeed have claimed) that this
similarity extends also to numerous other works and to various other types of
iterative procedures. This is the claim I wish to oppose here: I believe that the
type of iterative input-modification process that underlies the aforementioned
works is essentially novel and amounts to a new algorithmic paradigm.

Let me first give a voice to the skeptic. For example, Amnon Ta-Shma, play-
ing the Devil’s advocate, claims that many standard iterative procedures (e.g.,
repeated squaring) may be viewed as “iteratively modifying the input” (rather
than iteratively computing an auxiliary function of it, as I view it). Indeed, the
separation line between input-modification and arbitrary computation is highly
subjective, and I don’t believe that one can rigorously define it. Nevertheless,
rejecting Wittgenstein’s advice [29, §7], I will try to speak about it.

My claim is that (with the exception of the iterative expander construction
of [26]) the reviewed works do not output the modified input, but rather a
function of it, and they modify the input in order to ease the computation of
the said function. That is, whereas the goal was to compute a function of the
original input, they compute a function of the final modified input, and obtain
the originally desired value (of the function evaluated at the original input) by a
process that relies on the relatively simplicity of the intermediate modifications.
The line that I wish to draw is between iteratively producing modified inputs
(while maintaining a relation between the corresponding outputs) and iteratively
producing better refinements of the desired output while keeping the original input
intact. Indeed, I identify the latter with standard iterative processes (and the
former with the common theme of the four reviewed works).

My view is that in each of these works, the input itself undergoes a gradual
transformation in order to ease some later process. This is obvious in the case
of approximating the permanent [18] and in the case of traversing a graph in

2 Consider the problems addressed by the four reviewed works: The problem of ap-
proximating the permanent was open since Valiant’s seminal work [28] and has
received considerable attention since Broder’s celebrated work [11]. Constructions of
expander graphs were the focus of much research since the 1970’s, and were typically
based on non-elementary mathematics (cf. [21, 16, 20]). The existence of determin-
istic log-space algorithms for undirected connectivity has been in the focus of our
community since the publication of the celebrated randomized log-space algorithm
of Aleliunas et. al. [1]. The PCP Theorem, proved in the early 1990’s [5, 6], is closely
related (via [14, 5]) to the study of approximation problems (which dates to the early
1970’s).
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log-space [25], but it is also true with respect to the other two cases: In Dinur’s
proof [12] of the PCP Theorem the actual iterative process consists of a sequence
of Karp-reductions (which ends with a modified instance that has a simple PCP
system), and in the iterative construction of expanders [26] the size of the desired
expander increases gradually. In contrast, in typical proofs by induction, it is the
problem itself that gets modified, whereas standard iterative procedures refer
to sub-problems that relate to auxiliary constructs. Indeed, the separation line
between the iterative construction of expanders and standard iterative analysis
is the thinnest, but the similarity between it and the results of Reingold [25] and
Dinur [12] may appeal to the skeptic.

I wish to stress that the aforementioned iterative process that gradually trans-
forms the input is marked by the relative simplicity of each iteration, especially in
comparison to the full-fledged task being undertaken. In the case of Reingold’s
log-space algorithm [25], each iteration needs to be implemented in constant
amount of space, which is indeed a good indication to its simplicity. In the case
of the approximation of the permanent [18], each iteration is performed by a
modification of a known algorithm (i.e., of [17]). In the iterative construction
of expanders [26], a graph powering and a new type of graph product are used
and analyzed, where the analysis is simple in comparison to either of [21, 16,
20]. Lastly, in Dinur’s proof [12] of the PCP Theorem, each iteration is admit-
tedly quite complex, but not when compared to the original proof of the PCP
Theorem [6, 5].

The similarity among the iterated Zig-Zag construction of [26], the log-space
algorithm for undirected connectivity of [25], and the new approach to the PCP
Theorem of [12] has been noted by many researchers (see, e.g., [25, 12] them-
selves). However, I think that the noted similarity was more technical in nature,
and was based on the role of expanders and “Zig-Zag like” operations in these
works. In contrast, my emphasis is on the sequence of gradual modifications, and
thus I view the permanent approximator of [18] just as close in spirit to these
works. In fact, as is hinted in the foregoing discussion, I view [25, 12] as closer
in spirit to [18] than to [26].

2 Approximating the permanent of non-negative matrices

The permanent of a n-by-n matrix (ai,j) is the sum, taken over all permutations
π : [n] → [n], of

∏n

i=1 ai,π(i). Although defined very similarly to the determinant
(i.e., just missing the minus sign in half of the terms), the permanent seems
to have a totally different complexity than the determinant. In particular, in
a seminal work [28], Valiant showed that the permanent is #P-complete; that
is, counting the number of solutions to any NP-problem is polynomial-time re-
ducible to computing the permanent of 0-1 matrices, which in turn counts the
number of perfect matchings in the corresponding bipartite graph. Furthermore,
the reduction of NP-counting problems to the permanent of integer matrices
preserves the (exact) number of solutions (when normalized by an easy to com-
pute factor), and hence approximating the permanent of such matrices seems



206

infeasible (because it will imply P = NP). It was noted that the same does
not hold for 0-1 matrices (or even non-negative matrices). In fact, Broder’s cel-
ebrated work [11] introduced an approach having the potential to yield efficient
algorithms for approximating the permanent of non-negative matrices. Fifteen
years later, this potential was fulfilled by Jerrum, Sinclair, and Vigoda, in a
work [18] to be reviewed here.

The algorithm of Jerrum, Sinclair, and Vigoda [18] follows the general paradigm
of Broder’s work (which was followed by all subsequent works in the area): The
approach is based on the relation between approximating the ratio of the num-
bers of perfect and nearly perfect matchings of a graph and sampling uniformly
a perfect or nearly perfect matching of a graph, where a nearly perfect matching

is a matching that leave unmatched a single pair of vertices. In order to perform
the aforementioned sampling, one sets-up a huge Markov Chain with states cor-
responding to the set of perfect and nearly perfect matchings of the graph. The
transition probability of the Markov Chain maps each perfect matching to a
nearly perfect matching obtained by omitting a uniformly selected edge (in the
perfect matching). The transition from a nearly perfect matching that misses the
vertex pair (u, v) is determined by selecting a random vertex z, adding (u, v) to
the matching if z ∈ {u, v} and (u, v) is an edge of the graph, and adding (u, z) to
the matching and omitting (x, z) from it if z /∈ {u, v} and (u, z) is an edge of the
graph. By suitable modification, the stationary distribution of the chain equals
the uniform distribution over the set of perfect and nearly perfect matchings of
the graph. The stationary distribution of the chain is approximately sampled
by starting from an arbitrary state (e.g., any perfect matching) and taking a
sufficiently long walk on the chain.

This approach depends on the mixing time of the chain (i.e., the number of
steps needed to get approximately close to its stationary distribution), which in
turn is linearly related to the ratio of the numbers of nearly perfect and perfect
matchings in the underlying graph (see [17]). (We mention that the later ratio
also determines the complexity of the reduction from approximating this ratio
to sampling the stationary distribution of the chain.) When the latter ratio is
polynomial, this approach yields a polynomial-time algorithms, but it is easy to
see that there are graphs for which the said ratio is exponential.

One key observation of [18] is that the latter problem can be fixed by intro-
ducing auxiliary weights that when applied (as normalizing factors) to all nearly
perfect matchings yield a situation in which the set of perfect matchings has
approximately the same probability mass (under the stationary distribution) as
the set of nearly perfect matchings. Specifically, for each pair (u, v), we consider
a weight w(u, v) such that the probability mass assigned to perfect matchings
approximately equals w(u, v) times the probability mass assigned to nearly per-
fect matchings that leaves the vertices u and v unmatched. Needless to say, in
order to determine the suitable weights, one needs to know the corresponding
ratios, which seems to lead to a vicious cycle.

Here is where the main idea of [18] kicks in: Knowing the approximate sizes
of the sets of perfect and nearly perfect matchings in a graph G allows to effi-
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ciently approximate these parameters for a related graph G′ that is closed to G,
by running the Markov Chain that corresponds to G′ under weights as deter-
mined for G. This observation is the basis of the iterative process outlined in
the Introduction: We start with a trivial graph G0 for which the said quantities
are easy to determine, and consider a sequence of graphs G1, ..., Gt such that
Gi+1 is sufficiently close to Gi, and Gt is sufficiently close to the input graph.
We approximate the said quantities for Gi+1 using the estimated quantities for
Gi, and finally obtain an approximation of the number of perfect matchings in
the input graph.

The algorithm actually works with weighted graphs, where the weight of a
matching is the product of the weights of the edges in the matching. We start
with G0 that is a complete graph (i.e., all edges are present, each at weight 1),
and let Gi+1 be a graph obtained from Gi by reducing the weight of one of the
non-edges of the input graph by a factor of ρ = 9/8. Using such a sequence,

for t = Õ(n3), we can obtain a graph Gt in which the edges of the input graph
have weight 1 while non-edges of the input graph have weight lower than 1/(n!).
Approximating the total weight of the weighted perfect matchings in Gt provides
the desired approximation to the input graph.

Digest. The algorithm of Jerrum, Sinclair, and Vigoda [18] proceeds in itera-
tions, using a sequence of weighted graphs G0, ..., Gt such that G0 is the complete
(unweighted) graph, Gi+1 is a sufficiently close approximation of Gi, and Gt is
a sufficiently close approximation to the input graph. We start knowing the
numbers of perfect and nearly perfect matchings in G0 (which is easily deter-
mined by the number of vertices). In the ith iteration, using approximations for
the numbers of perfect and nearly perfect matchings in Gi, we compute such
approximations for Gi+1. These approximations are obtained by running an ad-
equate Markov Chain (which refers to Gi+1), and the fact that we only have
(approximations for) the quantities of Gi merely effects the mixing time of the
chain (in a non-significant way). Thus, gradually transforming a dummy graph
G0 into the input graph, we obtain approximations to relevant parameters of all
the graphs, where the approximated parameters of Gi allow us to obtain the ap-
proximated parameters of Gi+1, and the approximated parameters of Gt include
an approximation of the number of perfect matchings in the input graph.

Comment. We mention that a different iterative process related to the approxi-
mation of the permanent was previously studied in [19]. In that work, an input
matrix is transformed to an approximately Doubly Stochastic (aDS) matrix, by
iteratively applying row and column scaling operations, whereas for any aDS
n-by-n matrix the permanent is at least Ω(exp(−n)) and at most 1.

3 The iterative (Zig-Zag) construction of expander
graphs

By expander graphs (or expanders) of degree d and eigenvalue bound λ < d, we
mean an infinite family of d-regular graphs, {Gn}n∈S (S ⊆ N), such that Gn
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is a d-regular graph with n vertices and the absolute value of all eigenvalues,
except the biggest one, of the adjacency matrix of Gn is upper-bounded by λ.
This algebraic definition is related to the combinatorial definition of expansion
in which it is required that any (not too big) set of vertices in the graph must
have a relatively large set of strict neighbors (i.e., is “expanding”); see [3] and [2].
It is often more convenient to refer to the relative eigenvalue bound defined as
λ/d.

We are interested in explicit constructions of expander graphs, where the
minimal notion of explicitness requires that the graph be constructed in time
that is polynomial in its size (i.e., there exists a polynomial time algorithm that,
on input 1n, outputs Gn).3 A stronger notion of explicitness requires that there
exists a polynomial-time algorithm that on input n (in binary), a vertex v ∈ Gn

and an index i ∈ [d]
def
= {1, ..., d}, returns the ith neighbor of v. Many explicit

constructions of expanders were given, starting in [21] (where S is the set of all
quadratic integers), and culminating in the optimal construction of [20] (where
λ = 2

√
d − 1 and S is somewhat complex). These constructions are quite simple

to present, but their analysis is based on non-elementary results from various
branches of mathematics. In contrast, the following construction of Reingold,
Vadhan, and Wigderson [26] is based on an iterative process, and its analysis is
based on a relatively simple algebraic fact regarding the eigenvalues of matrices.

The starting point of the construction (i.e., the base of the iterative process)
is a very good expander G of constant size, which may be found by an exhaustive
search. The construction of a large expander graph proceeds in iterations, where
in the ith iteration the graphs Gi and G are combined to obtain the larger graph
Gi+1. The combination step guarantees that the expansion property of Gi+1 is
at least as good as the expansion of Gi, while Gi+1 maintains the degree of Gi

and is a constant times larger than Gi. The process is initiated with G1 = G2

and terminates when we obtain a graph Gt of approximately the desired size
(which requires a logarithmic number of iterations).

The heart of the combination step is a new type of “graph product” called
Zig-Zag product. This operation is applicable to any pair of graphs G = ([D], E)
and G′ = ([N ], E′), provided that G′ (which is typically larger than G) is D-
regular. For simplicity, we assume that G is d-regular (where typically d ≪ D).
The Zig-Zag product of G′ and G, denoted G′©z G, is defined as a graph with
vertex set [N ] × [D] and an edge set that includes an edge between 〈u, i〉 ∈
[N ] × [D] and 〈v, j〉 if and only if (i, k), (ℓ, j) ∈ E and the kth edge incident at
u equals the ℓth edge incident at v.

It will be convenient to represent graphs like G′ by their edge rotation func-

tion4, denoted R′ : [N ] × [D] → [N ] × [D], such that R′(u, i) = (v, j) if (u, v) is
the ith edge incident at u as well as the jth edge incident at v. That is, applying

3 We also require that the set S for which Gn’s exist is sufficiently “tractable”: say,
that given any n ∈ N one may efficiently find s ∈ S so that n ≤ s < 2n.

4 In [26] (and [25]) these functions are called rotation maps. As these functions are
actually involutions (i.e., R(R(x)) = x for every x ∈ [N ]×[D]), one may prefer terms
as “edge rotation permutations” or “edge rotation involutions”.



209

R′ to (u, i) “rotates” the ith edge incident at vertex u, yielding its representation
from its other endpoint view (i.e., as the jth edge incident at vertex v, assuming
R′(u, i) = (v, j)). For simplicity, we assume that G is edge-colorable with d col-
ors, which in turn yields a natural edge rotation function (i.e., R(i, α) = (j, α)
if the edge (i, j) is colored α). We will denote by Eα(i) the vertex reached from
i ∈ [D] by following the edge colored α (i.e., Eα(i) = j iff R(i, α) = (j, α)). The
Zig-Zag product of G′ and G, denoted G′©z G, is then defined as a graph with the
vertex set [N ] × [D] and the edge rotation function

(〈u, i〉, 〈α, β〉) 7→ (〈v, j〉, 〈β, α〉) if R′(u, Eα(i)) = (v, Eβ(j)). (1)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of ver-

tex 〈u, i〉 ∈ [N ] × [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge)
if R(u, Eα(i)) = (v, Eβ(j)). (Pictorially, based on the G′©z G-label 〈α, β〉, we
take a G-step from 〈u, i〉 to 〈u, Eα(i)〉, then viewing 〈u, Eα(i)〉 ≡ (u, Eα(i))

as an edge of G′ we rotate it to obtain (v, j′)
def
= R′(u, Eα(i)), and finally

take a G-step from 〈v, j′〉 to 〈v, Eβ(j′)〉, while defining j = Eβ(j′) and using
j′ = Eβ(Eβ(j′)) = Eβ(j).)

Clearly, the graph G′©z G is d2-regular and has D · N vertices. The key
fact, proved in [26], is that the relative eigenvalue of the zig-zag produce is
upper-bounded by the sum of the relative eigenvalues of the two graphs (i.e.,
λ(G′©z G) ≤ λ(G′) + λ(G), where λ(·) denotes the relative eigenvalue of the
relevant graph).5

The iterated expander construction uses the aforementioned zig-zag product
as well as graph squaring. Specifically, the construction starts with a d-regular
graph G = ([D], E) such that D = d4 and λ(G) < 1/4. Letting G1 = G2 =
([D], E2), the construction proceeds in iterations such that Gi+1 = G2

i©z G for
i = 1, 2, ..., t − 1. That is, in each iteration, the current graph is first squared
and then composed with the fixed graph G via the zig-zag product. This process
maintains the following two invariants:

1. The graph Gi is d2-regular and has Di vertices.
This holds for G1 = G2 (since G is d-regular with D vertices), and is main-
tained for the other Gi’s because a zig-zag product (of a D-regular N ′-vertex
graph) with a d-regular (D-vertex) graph yields a d2-regular graph (with
D · N ′ vertices).

2. The relative eigenvalue of Gi is smaller than one half.
Here we use the fact that λ(G2

i−1©z G) ≤ λ(G2
i−1) + λ(G), which in turn

equals λ(Gi−1)
2 + λ(G) < (1/2)2 + 1/4. (Note that graph squaring is used

to reduce the relative eigenvalue of Gi before allowing its moderate increase
by the zig-zag product with G.)

To ensure that we can construct Gi, we should show that we can actually con-
struct the edge rotation function that correspond to its edge set. This boils down

5 In fact, the upper-bound proved in [26] is stronger. In particular, it also implies that
1 − λ(G′©z G) ≥ (1 − λ(G)2) · (1 − λ(G′))/2.
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to showing that, given the edge rotation function of Gi−1, we can compute the
edge rotation function of G2

i−1 as well as of its zig-zag product with G. Note
that this computation amounts to two recursive calls to computations regarding
Gi−1 (and two computations that correspond to the constant graph G). But
since the recursion is logarithmic in the size of the final graph, the time spend
in the recursive computation is polynomial in the size of the final graph. This
suffices for the minimal notion of explicitness, but not for the stronger one.

To achieve a strongly explicit construction, we slightly modify the iterative
construction. Rather than letting Gi+1 = G2

i©z G, we let Gi+1 = (Gi ×Gi)
2©z G,

where G′ ×G′ denotes the tensor product of G′ with itself (i.e., if G′ = (V ′, E′)
then G′×G′ = (V ′×V ′, E′′), where E′′ = {(〈u1, u2〉, 〈v1, v2〉) : (u1, v1), (u2, v2)∈
E′} with an edge rotation function R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈j1, j2〉)
where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2)). (We still use G1 = G2.)
Using the fact that tensor product preserves the relative eigenvalue and us-
ing a d-regular graph G = ([D], E) with D = d8, we note that the modified

Gi = (Gi−1 × Gi−1)
2©z G is a d2-regular graph with (D2i−1−1)2 · D = D2i−1

vertices, and λ(Gi) < 1/2 (because λ((Gi−1 × Gi−1)
2©z G) ≤ λ(Gi−1)

2 + λ(G)).
Computing the neighbor of a vertex in Gi boils down to a constant number of
such computations regarding Gi−1, but due to the tensor product operation the
depth of the recursion is only double-logarithmic in the size of the final graph
(and hence logarithmic in the length of the description of vertices in it).

Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is to
reduce the degree, and the increase in the size of the graph is merely a side-effect
(which is actually undesired in Section 4). In both cases, graph squaring is used
in order to compensate for the modest increase in the relative eigenvalue caused
by the zig-zag product. In retrospect, the second construction is the “correct”
one, because it decouples three different effects, and uses a natural operation
to obtain each of them: Increasing the size of the graph is obtained by tensor
product of graphs (which in turn increases the degree), a degree reduction is
obtained by the zig-zag product (which in turn increases the relative eigenvalue),
and graph squaring is used in order to reduce the relative eigenvalue.

A second theme. In continuation to the previous comment, we note that the
successive application of several operations, each improving a different parameter
(while not harming too much the others), reappears in the works of Reingold [25]
and Dinur [12]. This theme has also appeared before in several other works
(including [6, 5, 13]).6

6 We are aware of half a dozen of other works, but guess that they are many more.
We choose to cite here only works that were placed in the reference list for other
reasons. Indeed, this second theme appears very clearly in PCP constructions (e.g.,
first optimizing randomness at the expense of number of queries and then reducing
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4 The log-space algorithm for undirected connectivity

For more than two decades, undirected connectivity was one of the most appeal-
ing examples of the computational power of randomness. Whereas every graph
can be efficiently traversed by a deterministic algorithm, the classical (deter-
ministic) linear-time algorithms (e.g., BFS and DFS) require an extensive use of
(extra) memory (i.e., space linear in the size of the graph). On the other hand,
in 1979 Aleliunas et. al. [1] showed that, with high probability, a random walk of
polynomial length visits all vertices (in the corresponding connected component).
Thus, the randomized algorithm requires a minimal amount of auxiliary mem-
ory (i.e., logarithmic in the size of the graph). In the early 1990’s, Nisan [22, 23]
showed that any graph can be traversed in polynomial-time and poly-logarithmic
space, but despite more than a decade of research attempts (see, e.g., [4]), a
significant gap remained between the space complexity of randomized and de-
terministic polynomial-time algorithms for this natural and ubiquitous problem.
This gap was recently closed by Reingold, in a work [25] reviewed next.

Reingold presented a deterministic polynomial-time algorithm that traverses
any graph while using a logarithmic amount of auxiliary memory. His algorithm
is based on a novel approach that departs from previous attempts, which tried
to derandomize the random-walk algorithm. Instead, Reingold’s algorithm tra-
verses a virtual graph, which (being an expander) is easy to traverse (in deter-
ministic logarithmic-space), and maps the virtual traversal of the virtual graph
to a real traversal of the actual input graph. The virtual graph is constructed
in (logarithmically many) iterations, where in each iteration the graph becomes
easier to traverse. Specifically, in each iteration, each connected component of
the graph becomes closer to a constant-degree expander in the sense that (the
graph has constant degree and) the gap between its relative eigenvalue and 1
doubles.7 Hence, after logarithmically many iterations, each connected compo-
nent becomes a constant-degree expander, and thus has logarithmic diameter.
Such a graph is easy to traverse deterministically using logarithmic space (e.g.,
by scanning all paths of logarithmic length going out of a given vertex, while
noting that each such path can be represented by a binary string of logarithmic
length).

The key point is to maintain the connected components of the graph while
making each of them closer to an expander. Towards this goal, Reingold applies a
variant of the iterated zig-zag construction (presented in Section 3), starting with
the input graph, and iteratively composing the current graph with a constant-
size expander. Details follow.

For adequate positive integers d and c, we first transform the actual input
graph into a d2-regular graph (e.g., by replacing each vertex v with a (multi-
edge) cycle Cv and using each vertex on Cv to take care of an edge incident
to v). Denoting the resulting graph by G1 = (V1, E1), we go through a loga-

the latter at the expense of a bigger alphabet (not to mention the very elaborate
combination in [13])).

7 See Section 3 for definition of expander and its relative eigenvalue.
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rithmic number of iterations letting Gi+1 = Gc
i©z G for i = 1, ..., t − 1, where

G is a fixed d-regular graph with d2c vertices. Thus, Gi is a d2-regular graph
with d2c·i · |V1| vertices, and 1 − λ(Gi) > max(2(1 − λ(Gi−1)), 1/6), where the
latter upper-bound on λ(Gi) relies on a result of [26] (see Footnote 5). We
infer that 1 − λ(Gi) > max(2i · (1 − λ(G1)), 1/6), and using the fact that
λ(G1) < 1 − (1/poly(|V1|)), which holds for any connected and non-bipartite
graph, it follows that λ(Gt) < 5/6 for t = O(log |V1|). (Indeed, it is instructive
to assume throughout the analysis that (the original input and thus) G1 is con-
nected, and to guaranteed that it is non-bipartite (e.g., by adding self-loops).)

One detail of crucial importance is the ability to transform G1 into Gt via a
log-space computation. It is easy to see that the transformation of Gi to Gi+1

can be performed in constant-space (with an extra pointer), but the standard
composition lemma for space-bounded complexity incurs a logarithmic space
overhead per each composition (and thus cannot be applied here). Still, tak-
ing a closer look at the transformation of Gi to Gi+1, one may note that it is
highly structured and supports a stronger composition result that incurs only a
constant space overhead per composition. An alternative implementation, out-
lined in [25], is obtained by unraveling the composition. The details of these
alternative implementations are beyond the scope of the current essay.8

A minor variant. It is simpler to present a direct implementation of a minor
variant of the foregoing process. Specifically, rather than using the zig-zag prod-
uct G′©z G (of Section 3), one may use the replacement product G′©r G defined as
follows for a D-regular graph G′ = (V ′, E′) and a d-regular graph G = ([D], E):9

The resulting 2d-regular graph has vertex set V ′ × [D] and the following edge
rotation function (which actually induces an edge coloring)

(〈u, i〉, 〈0, α〉) 7→ (〈u, Eα(i)〉, 〈0, α〉)
and

(〈u, i〉, 〈1, α〉) 7→ (R′(u, i), (1, α)),
(2)

where Eα is as in Section 3. That is, every 〈u, i〉 ∈ V ′ × [D] has d incident edges
that correspond to the edges incident at i in G, and d parallel copies of the ith

edge of u in G′. It can be shown that, in the relevant range of parameters, the

8 We cannot refrain from saying that we prefer an implementation based on compo-
sition, and provide a few hints regarding such an implementation (detailed in [15,
Sec. 5.2.4]). Firstly, we suggest to consider the task of computing the neighbor of
a given vertex in Gi, where the original graph is viewed as an oracle and the ac-
tual input is the aforementioned vertex. This computation can be performed by a
constant-space oracle machine provided that its queries are answered by a similar
machine regarding Gi−1. Second, the overhead involved in standard composition can
be avoided by using a model of “shared memory for procedural calls” and noting
that the aforementioned reduction requires only constant-space in addition to the
log-space shared memory. The key point is that the latter need only be charged once.

9 Since this product yields a 2d-regular graph, in the context of the log-space algorithm
one should set D = (2d)c (rather than D = d2c).
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replacement product effect the eigenvalues in a way that is similar to the affect
of the zig-zag product (because the two resulting graphs are sufficiently related).

Another variant. A more significant variant on the construction was subse-
quently presented in [27]. As a basic composition, they utilize a derandomized

graph squaring of a large D-regular graph G′ = (V ′, E′) using a d-regular (ex-
pander) graph G = ([D], E): Unlike the previous composition operations, the
resulting graph, which is a subgraph of the square of G′, has V ′ itself as the
vertex set but the (vertex) degree of the resulting graph is larger than that of
G′. Specifically, the edge rotation function is

(u, 〈i, α〉) 7→ (v, 〈j, α〉) if R′(u, i) = (w, k) and R′(w, Eα(k)) = (v, j). (3)

where Eα is as in Section 3. That is, the edge set contains a subset of the edges
of the standard graph square, where this subset corresponds to the edges of the
small (expander) graph G. It can be shown that the derandomized graph squar-
ing effect the eigenvalues in a way that is similar to the combination of squaring
and zig-zag product, but the problem is that the (vertex) degree does not remain
constant through the iterated procedure. Nevertheless, two alternatives ways of
obtaining a log-space algorithm are known, one of which is presented in [27].

5 The alternative proof of the PCP Theorem

The PCP Theorem [5, 6] is one of the most influential and impressive results of
complexity theory. Proven in the early 1990’s, the theorem asserts that member-
ship in any NP-set can be verified, with constant error probability (say 1%), by
a verifier that probes a polynomially long (redundant) proof at a constant num-
ber of randomly selected locations. The PCP Theorem led to a breakthrough
in the study of the complexity of combinatorial approximation problems (see,
e.g., [14, 5]). Its original proof is very complex and involves the composition of
two highly non-trivial proof systems, each minimizing a different parameter of
the PCP system (i.e., proof length and number of probed locations). An alter-
native approach to the proof of the PCP Theorem was recently presented by
Dinur [12], and is reviewed below. In addition to yielding a simpler proof of the
PCP Theorem, Dinur’s approach resolves an important open problem regarding
PCP systems (i.e., constructing a PCP system having proofs of almost-linear
rather than polynomial length).

The original proof of the PCP Theorem focuses on the construction of two
PCP systems that are highly non-trivial and interesting by themselves, and
combines them in a natural manner. Loosely speaking, this combination (via
proof composition) preserves the good features of each of the two systems; that
is, it yields a PCP system that inherits the (logarithmic) randomness complexity
of one system and the (constant) query complexity of the other. In contrast,
Dinur’s approach is focused at the “amplification” of PCP systems, via a gradual
process of logarithmically many steps. It start from a trivial “PCP” system that
rejects false assertions with probability inversely proportional to their length,
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and double the rejection probability in each step. In each step, the constant
query complexity is preserved and the length of the PCP oracle is increased only
by a constant factor. Thus, the process gradually transforms a very weak PCP
system into a remarkable PCP system as postulated in the PCP Theorem.

In order to describe the aforementioned process we need to redefine PCP
systems so to allow arbitrary soundness error. In fact, for technical reasons it is
more convenient to describe the process as an iterated reduction of a “constraint
satisfaction” problem to itself. Specifically, we refer to systems of 2-variable
constraints, which are readily represented by (labeled) graphs.

Definition 5.1 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated
with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
the fraction of unsatisfied constraints under the best possible assignment; that is,

vlt(G, Φ) = min
α:V →Σ

{|{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|/|E|} (4)

For various functions t : N → [0, 1], we will consider the promise problem
gapCSPΣ

t , having instances as above, such that the yes-instances are fully satis-
fiable instances (i.e., vlt = 0) and the no-instances are pairs (G, Φ) satisfying
vlt(G, Φ) > t(|G|), where |G| denotes the number of edges in G.

Note that 3SAT (and thus any other set in NP) is reducible to gapCSP
{1,...,7}
t for

t(m) = 1/m. Our goal is to reduce 3SAT (or rather gapCSP
{1,...,7}
t ) to gapCSPΣ

c ,
for some fixed finite Σ and constant c > 0. The PCP Theorem follows by showing
a simple PCP system for gapCSPΣ

c (e.g., consider an alleged proof that encodes
an assignment α : V → Σ, and a verifier that inspects the values of a uniformly
selected constraint). The desired reduction is obtained by iteratively applying
the following reduction logarithmically many times.

Lemma 5.2 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time reduction of gapCSPΣ to itself such
that the following conditions hold with respect to the mapping of any instance
(G, Φ) to the instance (G′, Φ′).

1. If vlt(G, Φ) = 0, then vlt(G′, Φ′) = 0.
2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).
3. |G′| = O(|G|).

Proof outline: The reduction consists of three steps. We first apply a pre-
processing step that makes the underlying graph suitable for further analysis.
The value of vlt may decrease during this step by a constant factor. The heart
of the reduction is the second step in which we may increase vlt by any desired
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constant factor. The latter step also increases the alphabet Σ, and thus a post-
processing step is employed to regain the original alphabet (by using any inner
PCP systems; e.g., the Hadamard-based one presented in [5]). Details follow.

We first note that the aforementioned Σ and c, as well as the auxiliary
parameters d and t, are fixed constants that will be determined to satisfy various
conditions that arise in the course of our argument.

We start with the pre-processing step. Our aim in this step is to reduce the
input (G, Φ) of gapCSPΣ to an instance (G1, Φ1) such that G1 is a d-regular
expander graph. Furthermore, each vertex in G1 will have at least d/2 self-
loops, |G1| = O(|G|), and vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple:
Essentially, the original vertices are replaced by expanders of size proportional
to their degree, and a big (dummy) expander is superimposed on the resulting
graph.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. This is done by reducing the instance (G1, Φ2)

of gapCSPΣ to an instance (G2, Φ2) of gapCSPΣ′

such that Σ′ = Σdt

. Specifically,
the vertex set of G2 is identical to the vertex set of G1, and each t-edge long
path in G1 is replaced by a corresponding edge in G2, which is thus a dt-regular
graph. The constraints in Φ2 are the natural ones, viewing each element of Σ′

as a Σ-labeling of the (“distance ≤ t”) neighborhood of a vertex, and checking
that two such labelings are consistent and satisfy Φ1. That is, suppose that there
is a path of length at most t in G1 going from vertex u to vertex v and passing
through vertex w. Then, there is an edge in G2 between vertices u and v, and the
constraint associated with it mandates that the entries corresponding to vertex
w in the Σ′-labeling of vertices u and v are identical. In addition, if the G1-edge
(w, w′) is on a path of length at most t starting at v, then the corresponding
edge in G2 is associated with a constraint that enforces the constraint that is
associated to (w, w′) in Φ1.

Clearly, if vlt(G1, Φ1) = 0, then vlt(G2, Φ2) = 0. The interesting fact is
that the fraction of violated constraints increases by a factor of Ω(

√
t); that is,

vlt(G2, Φ2) ≥ min(Ω(
√

t ·vlt(G1, Φ1)), c). The intuition is that any Σ′-labeling
to the vertices of G2 must either be consistent with some Σ-labeling of G1 or
violate many edges in G2 (due to the equality conditions that were inserted to all
new constraints). Focusing on the first case and relying on the hypothesis that
G1 is an expander, it follows that the set of violated edge-constraints (of Φ1) with
respect to the aforementioned Σ-labeling causes many more edge-constraints of
Φ2 to be violated. The point is that a set F of edges of G1 is likely to appear
on a min(Ω(t) · |F |/|G1|, Ω(1)) fraction of the edges of G2 (i.e., t-paths of G1).
(Note that the claim is obvious if G1 were a complete graph, but it also holds
for an expander.)10

For a suitable choice of the constant t, the factor of Ω(
√

t) gained in the
second step, makes up for the constant factor lost in the first step (as well
as the constant factor to be lost in the last step), while leaving us with a net

10 We also note that due to a technical difficulty it is easier to establish the claimed
bound of Ω(

√
t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).
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amplification by a constant factor. However, we obtained an instance of gapCSPΣ′

rather than an instance of gapCSPΣ , where Σ′ = Σdt

. The purpose of the last
step is to reduce the latter instance to an instance of gapCSPΣ . This is done by
viewing the instance of gapCSPΣ′

as a (weak) PCP system and composing it with
an inner-verifier, using the proof composition paradigm (of [9, 13], which in turn
follow [6]). We stress that the inner-verifier used here needs only handle instances
of constant size (i.e., having description length O(dt log |Σ|)), and so the one

presented in [5] (or [8]) will do. The resulting PCP-system uses randomness r
def
=

log2 |G2|+(dt log |Σ|)2 and a constant number of binary queries, and has rejection
probability Ω(vlt(G2, Φ2)), which is independent of the choice of the constant t.
For Σ = {0, 1}O(1), we obtain an instance of gapCSPΣ that has a Ω(vlt(G2, Φ2))
fraction of violated constraints. Furthermore, the size of the resulting instance is
O(2r) = O(|G2|), because d and t are constants. This completes the description
of the last step as well as the proof of the entire lemma. ⊓⊔

Application to short PCPs. Recall that the PCP Theorem asserts that member-
ship in any NP-set can be verified, with constant error probability, by a verifier
that probes a polynomially long (redundant) proof at a constant number of
randomly selected locations. Denoting by N the length of the standard proof,
the length of the redundant proof was reduced in [9] to exp((log N)ǫ) · N , for
any ǫ > 0. An open problem, explicitly posed in [9], is whether the length of
the redundant proof can be reduced to poly(log N) · N . Building on prior work
of [10], this seemingly difficult open problem was resolved by Dinur [12]: Specifi-
cally, viewing the system of [10] (which makes poly(log N) queries into a proof of
length poly(log N)·N) as a PCP system with rejection probability 1/poly(log N),
Dinur applies the foregoing amplification step for a double-logarithmic number
of times, thus deriving the desired PCP system.
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