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Abstract. The interplay of randomness and computation is at the heart
of modern Cryptography and plays a fundamental role in the design of
algorithms and in the study of computation at large. Specifically, this
interplay is pivotal to several intriguing notions of probabilistic proof
systems (e.g., interactive proofs, zero-knowledge proofs, and probabilis-
tically checkable proofs), is the focal of the computational approach to
randomness, and is essential for some types of sub-linear time algorithms
(e.g., property testers). This essay provides a brief outline of these con-
nections.
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Preface. This essay was originally intended to a wide audience of scholars, who
may not have any background in computer science. While theoretical computer
scientists may find much of the introduction (esp., Sections 1.2 and 1.3) unneces-
sary, we avoided the temptation to revise and/or omit this part. Our hope is that
this part of the text may demonstrate to theoretical computer scientists how one
can go about in exposing the field to outsiders. We believe that the rest of this
essay may be of more direct interest to many theoretical computer scientists: It
contains brief overviews of the theory of pseudorandomness (Section 2), three
types of probabilistic proof systems (Section 3), the theoretical foundations of
Cryptography (Section 4), and property testing (Section 5). These overviews
focus on the clarification of the main issues, while trying to avoid any technical
details. Here too, we retained the original style, which attempts to accommodate
outsiders, in order to demonstrate to experts the feasibility of communicating
the contents of these areas to outsiders.

1 Introduction

While it is safe to assume that any living adult is aware of the revolutionary
impact of the computing technology on our society, we fear that few readers
have a sense of the theory of computation. This contrast is not so surprising,
because people seem so overwhelmed by the wonders of this technology that they
do not get to wonder about the theory underlying it. Furthermore, people tend to
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think of computing in the concrete terms in which they have lastly encountered it
rather than in general terms. Consequently, the fascinating intellectual contents
of the theory of computation is rarely understood by non-specialists.

One goal of this essay is making a tiny contribution towards a possible change
in this sour state of affairs, by discussing one aspect of the theory of computation:
Its connection to randomness.

1.1 On the relation between computation and randomness

Our guess is that the suggestion that there is a connection between computation
and randomness may meet the skepticism of some readers, because computation
seems the ultimate manifestation of determinism.

To address this skepticism, we suggest considering what happens when a
deterministic machine (or any deterministic process) is fed with a random input
or just with an input that looks random. Indeed, one contribution of the theory
of computation (further discussed in Section 2) is a definition of “objects that
look random” (a notion which makes sense even if the real world is actually
deterministic).

Still one may wonder whether we can obtain or generate objects that look
random. For example, can we toss a coin (in the sense that one cannot feasibly
predict the answer before seeing it)? Assuming a positive answer, we may also
assume that unpredictable values can be obtained by other mechanical and/or
electrical processes, which suggest that computers can also obtain such values.
The question then is what benefit can be achieved by using such random (or
unpredictable) values.

A major application of random (or unpredictable) values is to the area of
Cryptography (see Section 4). In fact, the very notion of a secret refers to such a
random (or unpredictable) value. Furthermore, various natural security concerns
(e.g., private communication) can be met by employing procedures that make
essential use of such secrets and/or random values.

Another major application of random (or unpredictable) values is to vari-
ous sampling procedures. In Section 5, we consider a wider perspective on such
procedures, viewing them as a special type of super fast procedures called prop-
erty testers. Such a procedure cannot afford to scan the entire input, but rather
probes few (randomly) selected locations in it and, based on these few values,
attempts to make a meaningful assertion regarding the entire input. Indeed, we
assume that the reader is aware of the fact that random sampling allows to ap-
proximate the fraction of the population that votes for a particular candidate.
Our point is that other global properties of the input, which are not merely
averages of various types, can also be approximated by sampling.

Lastly, we mention that randomized verification procedures yield fascinat-
ing types of probabilistic proof systems, which are discussed in Section 3. In
particular, such proof systems demonstrate the advantage of interaction (over
one-directional communication) and the possibility of decoupling proving from
learning (i.e., the possibility of proving an assertion without yielding anything
beyond its validity). Other forms of probabilistic proof systems allow for super
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fast verification (based on probing few locations in a redundant proof, indeed as
in the aforementioned sublinear-time algorithms).

Before discussing the foregoing applications of randomness in greater length,
we provide a somewhat wider perspective on the theory of computation as well
as present some of its central conventions. We will also clarify what randomness
means in that theory (and in this article).

1.2 A wider perspective on the theory of computation

The theory of computation aims at understanding general properties of com-
putation be it natural, man-made, or imaginary. Most importantly, it aims to
understand the nature of efficient computation. We demonstrate these issues by
briefly considering a few typical questions.

A key question is which functions can be efficiently computed? For example,
it is (relatively) easy to multiply integers, but it seems hard to take the product
and factor it into its prime components. In general, it seems that there are one-
way computations, or put differently one-way functions: Such functions are easy
to evaluate but hard to invert (even in an average-case sense). But do one-way
functions really exist? It is widely believed that the answer is positive, and this
question is related to other fundamental questions.

A related question is that of the comparable difficulty of solving problems
versus verifying the correctness of solutions. Indeed our daily experience is that
it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely
a coincidence or does it represent a fundamental fact of life (or a property of
the world)? Could you imagine a world in which solving any problem is not
significantly harder than checking a solution to it? Would the term “solving a
problem” not lose its meaning in such a hypothetical (and impossible in our
opinion) world? The denial of the plausibility of such a hypothetical world (in
which “solving” is not harder than “checking”) is what the celebrated “P dif-
ferent from NP” conjecture means, where P represents tasks that are efficiently
solvable and NP represents tasks for which solutions can be efficiently checked
for correctness.

The theory of computation is also concerned with finding the most efficient
methods for solving specific problems. To demonstrate this line of research we
mention that the simple (and standard) method for multiplying numbers that is
taught in elementary school is not the most efficient one possible. Multiplying
two n-digit long numbers by this method requires n? single-digit multiplications
(and a similar number of single-digit additions). In contrast, consider writing
these numbers as 10™/2 - a/ + a” and 10™/2 - ¥ 4 b", where o/, a”,V/,b" are n/2-
digit long numbers, and note that

(102 .’ +a") x (10M2 b + ") =10" - P, + 10"/2 . (P, — P, — P3) + Ps
where Py =a' x ¥V, Po = (a’ +a”) x (' +b"), and Ps =a" x V".

Thus, multiplying two n-digit long numbers requires only three (rather than four)
multiplications of n/2-digit long numbers (and a constant number of additions
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of n/2-digit long numbers and “shifts” of n-digit long numbers (indicated by -)).
Letting M (n) denote the complexity of multiplying two n-digit long numbers,
we obtain M(n) < 3-M(n/2)+ c-n, where ¢ is some constant (independent of
n), which solves to M (n) < ¢ - 382" = ¢/ . pl°223 < n1-6 (for some constant ).
We mention that this is not the best known algorithm; the latter runs in time
poly(logn) - n.

The theory of computation provides a new viewpoint on old phenomena.
We have already mentioned the computational approaches to randomness (see
Section 2) and to proofs, interaction, knowledge, and learning (see Section 3).
Additional natural concepts given an appealing computational interpretations
include the importance of representation, the notion of explicitness, and the
possibility that approximation is easier than optimization (see Section 5). Let
us say a few words about representation and explicitness.

The foregoing examples hint to the importance of representation, because in
all these computational problems the solution is implicit in the problem’s state-
ment. That is, the problem contains all necessary information, and one merely
needs to process this information in order to supply the answer.! Thus, the the-
ory of computation is concerned with the manipulation of information, and its
transformation from one representation (in which the information is given) to
another representation (which is the one desired). Indeed, a solution to a com-
putational problem is merely a different representation of the information given;
that is, a representation in which the answer is explicit rather than implicit.
For example, the answer to the question of whether or not a given system of
quadratic equations has an integer solution is implicit in the system itself (but
the task is to make the answer explicit). Thus, the theory of computation clarifies
a central issue regarding representation; that is, the distinction between what is
explicit and what is implicit in a representation. Furthermore, it also suggests a
quantification of the level of non-explicitness.

1.3 Important conventions for the theory of computation

In light of the foregoing discussion it is important to specify the representation
used in computational problems. Actually, a computational problem refer to an
infinite set of finite objects, called the problem’s instances, and specifies the desired
solution for each instance. For example, the instances of the multiplication
problem are pairs of natural numbers, and the desired solution is the correspond-
ing product. Objects are represented by finite binary sequences, called strings.?
For a natural number n, we denote by {0,1}" the set of all strings of length n,

! In contrast, in other disciplines, solving a problem may also require gathering in-
formation that is not available in the problem’s statement. This information may
either be available from auxiliary (past) records or be obtained by conducting new
experiments.

2 Indeed, in the foregoing example, we used the daily representation of numbers as
sequences of decimal digits, but in the theory of computation natural numbers are
typically represented by their binary expansion.
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hereafter referred to as n-bit strings. The set of all strings is denoted {0, 1}*; that
is, {0,1}* = U,en{0, 1}

We have already mentioned the notion of an algorithm, which is central to
the theory of computation and means an automated procedure designed to solve
some computational task. A rigorous definition requires specifying a reasonable
model of computation, but the specifics of this model are not important for
the current essay. We focus on efficient algorithms, which are commonly defined
as making a number of steps that is polynomial in the length of their input.3
Indeed, asymptotic analysis (or rather a functional treatment of the running
time of algorithms in terms of the length of their input) is a central convention
in the theory of computation.*

Typically, our notion of efficient algorithms will include also probabilistic
(polynomial-time) algorithms; that is, algorithms that can “toss coins” (i.e.,
make random choices). For each reasonable model of computation, probabilistic
(or randomized) algorithms are defined as standard algorithm augmented with
the ability to choose uniformly among a finite number (say two) of predetermined
possibilities. That is, at each computation step, such an algorithm makes a move
that is chosen uniformly among two predetermined possibilities.

1.4 Randomness in the context of computation

Throughout the entire essay we will refer only to discrete probability distribu-
tions. The support of such distributions will be associated with a set of strings,
typically of the same length.

For the purpose of asymptotic analysis, we will often consider probability en-
sembles, which are sequences of distributions that are indexed either by integers
or by strings. For example, throughout the essay, we let {U,}, cy denote the
uniform ensemble, where U,, is uniform over the set of strings of length n; that
is, Prou, [2 =] equals 27" if @ € {0,1}" and equals 0 otherwise. More gen-
erally, we will typically consider probability ensembles, denoted {D,,},en (or
{Ds}scs, where S C {0,1}*), where there exists some function ¢ : N—N such
that Pr..p, [2€{0,1}™] =1 (resp., Pr..p.[2€{0,1}*(] = 1, where n denotes
the length of s). Furthermore, typically, ¢ will be a polynomial.

One important case of probability ensembles is that of ensembles that repre-
sent the output of randomized processes (e.g., randomized algorithms). Letting
A(z) denote the output of the probabilistic (or randomized) algorithm A on in-
put =, we may consider the probability ensemble {A(z)} e (0,1}« Indeed, if A is

3 In Section 5 we consider even faster algorithms, which make (significantly) less steps
than the length of their input, but such algorithms can only provide approximate
solutions.

4 We stress, however, that asymptotic (or functional) treatment is not essential to this
theory, but rather provides a convenient framework. One may develop the entire
theory in terms of inputs of fixed lengths and concrete bounds on the number of
steps taken by corresponding algorithms. However, such an alternative treatment is
more cumbersome.
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a probabilistic polynomial-time algorithm then A(zx) is distributed over strings
of length that is bounded by a polynomial in the length of x.

On the other hand, we say that a probability ensemble {D,}n,en (resp.,
{Ds}secs) is efficiently sampleable if there exists a probabilistic polynomial-time
algorithm A such that for every n € N it holds that A(1") = D,, (resp., for
every s € S it holds that A(s) = D,). That is, algorithm A makes a number of
steps that is polynomial in n, and produces a sample distributed according to
D, (resp., Dy, where n denotes the length of s).

We will often talk of “random bits” and mean values selected uniformly and
independently in {0,1}. In particular, randomized algorithms may be viewed
as deterministic algorithms that are given an adequate number of random bits
as an auxiliary input. This means that rather than viewing these algorithms as
making random choices, we view them as determining these choices according
to a sequence of random bits that is generated by some outside process.

1.5 The rest of this essay

In the rest of this essay we briefly review the theory of pseudorandomness (Sec-
tion 2), three types of probabilistic proof systems (Section 3), the theoretical
foundations of Cryptography (Section 4), and property testing (Section 5). Need-
less to say, these overviews are the tip of an iceberg, and the interested reader
will be referred to related texts for further information. In general, the most
relevant text is [6] (see also [9]), which provides more extensive overviews of the
first three areas.

In addition, we recommend textbooks such as [10,23,27] for background
on the aspects of the theory of computation that are most relevant for the
current essay. We note that randomized algorithms and procedures are valuable
also in settings not discussed in the current essay (e.g., for polynomial-time
computations as well as in the context of distributed and parallel computation).
The interested reader is referred to [22].

An apology. Our feeling is that in an essay written for a general readership it
makes no sense to provide the standard scholarly citations. The most valuable
references for such readers are relevant textbooks and expository articles, written
with the intension of communicating to non-experts. On the other hand, the
general reader may be interested in having some sense of the history of the field,
and thus references to few pioneering works seem adequate. We are aware that in
trying to accommodate the non-experts, we may annoy the experts, and hence
the current apology to all experts who made an indispensable contribution to
the development of these areas and who’s work was victim to our referencing
policy.

2 Pseudorandomness

Indistinguishable things are identical.’?



407

G.W. Leibniz (1646-1714)

A fresh view at the question of randomness has been taken in the theory of
computation: It has been postulated that a distribution is pseudorandom if it
cannot be told apart from the uniform distribution by any efficient procedure.
The paradigm, originally associating efficient procedures with polynomial-time
algorithms, has been applied also with respect to a variety of limited classes of
such distinguishing procedures.

At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources
of randomness) is irrelevant. What matters is how the world looks to us and
to various computationally bounded devices. That is, if some phenomenon looks
random then we may just treat it as if it were random. Likewise, if we can gen-
erate sequences that cannot be told apart from the uniform distribution by any
efficient procedure, then we can use these sequences in any efficient randomized
application instead of the ideal random bits that are postulated in the design of
this application.

2.1 A wider context and an illustration

The second half of this century has witnessed the development of three theories
of randomness, a notion which has been puzzling thinkers for ages. The first the-
ory (cf., [4]), initiated by Shannon, is rooted in probability theory and is focused
at distributions that are not perfectly random (i.e., are not uniform over a set of
strings of adequate length). Shannon’s Information Theory characterizes perfect
randomness as the extreme case in which the information contents is maximized
(i.e., the strings contain no redundancy at all). Thus, perfect randomness is as-
sociated with a unique distribution: the uniform one. In particular, by definition,
one cannot (deterministically) generate such perfect random strings from shorter
random seeds.

The second theory (cf., [20]), initiated by Solomonov, Kolmogorov, and Chaitin,
is rooted in computability theory and specifically in the notion of a universal
language (equiv., universal machine or computing device). It measures the com-
plexity of objects in terms of the shortest program (for a fixed universal machine)
that generates the object. Like Shannon’s theory, Kolmogorov Complexity is
quantitative and perfect random objects appear as an extreme case. However,
in this approach one may say that a single object, rather than a distribution
over objects, is perfectly random. Still, Kolmogorov’s approach is inherently in-
tractable (i.e., Kolmogorov Complexity is uncomputable), and — by definition —
one cannot (deterministically) generate strings of high Kolmogorov Complexity
from short random seeds.

5 This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexam-
ples to this principle are conceivable but will not occur in real life because God is
much too benevolent. We thus believe that he would have agreed to the theme of this
section, which asserts that indistinguishable things should be considered as identical.
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The third theory, initiated by Blum, Goldwasser, Micali and Yao [16, 3, 28],
is rooted in the notion of efficient computations and is the focus of this sec-
tion. This approach is explicitly aimed at providing a notion of randomness that
nevertheless allows for an efficient generation of random strings from shorter
random seeds. The heart of this approach is the suggestion to view objects as
equal if they cannot be told apart by any efficient procedure. Consequently, a
distribution that cannot be efficiently distinguished from the uniform distribu-
tion will be considered as being random (or rather called pseudorandom). Thus,
randomness is not an “inherent” property of objects (or distributions) but is
rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them, Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by the
knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on
the motion and thus we believe that also in this case Bob wins with
probability 1/2.

The third alternative is similar to the second, except that Bob has at
his disposal sophisticated equipment capable of providing accurate in-
formation on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly con-
nected to a powerful computer programmed to solve the motion equa-
tions and output a prediction. It is conceivable that in such a case Bob
can substantially improve his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. Thus, a natural concept of pseudorandom-
ness arises: a distribution is pseudorandom if no efficient procedure can distin-
guish it from the uniform distribution, where efficient procedures are associated
with (probabilistic) polynomial-time algorithms. This notion of pseudorandom-
ness is indeed the most fundamental one, and the current section is focused on
it.0
6 We mention that weaker notions of pseudorandomness arise as well; they refer to
indistinguishability by weaker procedures such as space-bounded algorithms (see [6,
Sec. 3.5] or [9, Sec. 8.4]), constant-depth circuits, etc. Stretching this approach even
further one may consider algorithms that are designed on purpose so not to dis-
tinguish even weaker forms of “pseudorandom” sequences from random ones (such
algorithms arise naturally when trying to convert some natural randomized algo-
rithm into deterministic ones; see [6, Sec. 3.6] or [9, Sec. 8.5]).



409

The foregoing discussion has focused at one aspect of the pseudorandom-
ness question: the resources or type of the observer (or potential distinguisher).
Another important aspect is whether such pseudorandom sequences can be gen-
erated from much shorter ones, and at what cost (i.e., at what computational
effort). A natural approach is that the generation process has to be at least as
efficient as the distinguisher (equiv., that the distinguisher is allowed at least
as much resources as the generator). Coupled with the aforementioned strong
notion of pseudorandomness, this yields the archetypical notion of pseudoran-
dom generators — these operating in polynomial-time and producing sequences
that are indistinguishable from uniform ones by any polynomial-time observer.
Such (general-purpose) pseudorandom generators enable reducing the random-
ness complexity of any efficient application, and are thus of great relevance to
randomized algorithms and Cryptography (see Sections 2.5 and 4). Indeed, these
general-purpose pseudorandom generators will be the focus of the current sec-
tion.” Further discussion of the conceptual contents of this approach is provided
in Section 2.6.

2.2 The notion of pseudorandom generators

Loosely speaking, a pseudorandom generator is an efficient program (or algo-
rithm) that stretches short random strings into long pseudorandom sequences.
We stress that the generator itself is deterministic and that the randomness in-
volved in the generation process is captured by its input. We emphasize three
fundamental aspects in the notion of a pseudorandom generator:

1. Efficiency. The generator has to be efficient. Since we associate efficient com-

putations with polynomial-time ones, we postulate that the generator has to
be implementable by a deterministic polynomial-time algorithm.
This algorithm takes as input a string, called its seed. The seed captures a
bounded amount of randomness used by a device that “generates pseudo-
random sequences.” The formulation views any such device as consisting of
a deterministic procedure applied to a random seed.

2. Stretching. The generator is required to stretch its input seed to a longer
output sequence. Specifically, it stretches n-bit long seeds into ¢(n)-bit long
outputs, where ¢(n) > n. The function ¢ is called the stretching measure (or
stretching function) of the generator.

7 We mention that there are important reasons for considering also an alternative
that seems less natural; that is, allowing the pseudorandom generator to use more
resources (e.g., time or space) than the observer it tries to fool. This alternative is
natural in the context of derandomization (i.e., converting randomized algorithms
to deterministic ones), where the crucial step is replacing the “random source” of
a fixed algorithm by a pseudorandom source, which in turn can be deterministi-
cally emulated based on a much shorter random source. For further clarification and
demonstration of the usefulness of this approach the interested reader is referred
to [6, Sec. 3.4&3.5] (or [9, Chap. 8)]).
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3. Pseudorandomness. The generator’s output has to look random to any effi-
cient observer. That is, any efficient procedure should fail to distinguish the
output of a generator (on a random seed) from a truly random bit-sequence
of the same length. The formulation of the last sentence refers to a gen-
eral notion of computational indistinguishability that is the heart of the entire
approach.

To demonstrate the foregoing, consider the following suggestion for a pseudo-
random generator. The seed consists of a pair of 500-bit integers, denoted = and
N, and a million-bit long output is obtained by repeatedly squaring the current
x modulo N and emitting the least significant bit of each intermediate result
(ie., let ; «+ 22 ; mod N, for i = 1,...,10% and output by, ba, ..., bygs, where

o def » and b; is the least significant bit of x;). This process may be general-

ized to seeds of length n (here we used n = 1000) and outputs of length ¢(n)
(here £(1000) = 10%). Such a process certainly satisfies Items (1) and (2) above,
whereas the question whether Ttem (3) holds is debatable (once a rigorous defi-
nition is provided). As a special case of Theorem 2.6 (which follows), we mention
that, under the assumption that it is difficult to factor large integers, a slight
variant of the foregoing process is indeed a pseudorandom generator.

Computational indistinguishability. Intuitively, two objects are called compu-
tationally indistinguishable if no efficient procedure can tell them apart. Here
the objects are (fixed) probability distributions (or rather ensembles), and the
observer is given a sample drawn from one of the two distributions and is asked
to tell from which distribution it was taken (e.g., it is asked to say “1” if the
sample is taken from the first distribution). Following the asymptotic framework
(see Sections 1.3 and 1.4), the foregoing discussion is formalized as follows.

Definition 2.1 (computational indistinguishability [16, 28]). Two probability en-
sembles, {Xntnen and {Yy }nen, are called computationally indistinguishable if for
any probabilistic polynomial-time algorithm A, any positive polynomial p, and all
sufficiently large n

Procx, [A(z) = 1] = Pryy, [A(y) =1]| < ——. (1)

The probability is taken over X, (resp., Y,) as well as over the internal coin
tosses of algorithm A.

Algorithm A, which is called a potential distinguisher, is given a sample (which
is drawn either from X,, or from Y;,) and its output is viewed as an attempt to
tell whether this sample was drawn from X,, or from Y,,. Eq. (1) requires that
such an attempt is bound to fail; that is, the outcome 1 (possibly representing
a verdict that the sample was drawn from X,,) is essentially as likely to occur
when the sample is drawn from X,, as when it is drawn from Y,.

A few comments are in order. Firstly, the distinguisher (i.e., A) is allowed to
be probabilistic. This makes the requirement only stronger, and seems essential
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to the technical development of our approach. Secondly, we view events occur-
ing with probability that is upper bounded by the reciprocal of polynomials as
negligible (e.g., 2-V7™ ig negligible as a function of n). This is well-coupled with
our notion of efficiency (i.e., polynomial-time computations): an event that oc-
curs with negligible probability (as a function of a parameter n), will also occur
with negligible probability if the experiment is repeated for poly(n)-many times.
Thirdly, for efficiently sampleable ensembles, computational indistinguishabil-
ity is preserved also when providing the distinguisher with polynomially many
samples (of the tested distribution). Lastly we note that computational indis-
tinguishability is a coarsening of statistical indistinguishability; that is, waiving
the computational restriction on the distinguisher is equivalent to requiring that
the variation distance between X,, and Y;, (i.e., >, |Xn(2) — Y, (2)]) is negligible
(in n).

An important case in which computational indistinguishability is strictly
more liberal than statistical indistinguishability arises from the notion of a pseu-
dorandom generator.

Definition 2.2 (pseudorandom generators [3,28]). A deterministic polynomial-
time algorithm G is called a pseudorandom generator if there exists a stretching
function, £: N—N (i.e., £(n) > n), such that the following two probability en-
sembles, denoted {Gp}nen and { Ry }nen, are computationally indistinguishable.

1. Distribution Gy, is defined as the output of G on a uniformly selected seed
in {0,1}".
2. Distribution R,, is defined as the uniform distribution on {0, 1},

Note that G, = G(U,), whereas R,, = Uj,). Requiring that these two en-
sembles are computationally indistinguishable means that, for any probabilistic
polynomial-time algorithm A, the detected (by A) difference between G,, and
R,,, denoted

da(n)

Pronu, [A(G(5)) = 1] = Pryeu,, [A(r) = 1]

is negligible (i.e., da(n) vanishes faster than the reciprocal of any polynomial).
Thus, pseudorandom generators are efficient (i.e., polynomial-time) deterministic
programs that expand short randomly selected seeds into longer pseudorandom
bit sequences, where the latter are defined as computationally indistinguishable
from truly random bit-sequences. It follows that any efficient randomized algo-
rithm maintains its performance when its internal coin tosses are substituted by
a sequence generated by a pseudorandom generator. That is:

Construction 2.3 (typical application of pseudorandom generators). Let A be
a probabilistic polynomial-time algorithm, and p(n) denote an upper bound on
the number of coins that A tosses on n-bit inputs (e.g., p(n) = n?). Let A(z,r)
denote the output of A on input x and coin tossing sequence r € {0, 1}”("), where
n denotes the length of x. Let G be a pseudorandom generator with stretching
function £:N—N (e.g., (k) = k5). Then Ag is a randomized algorithm that on
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input x € {0,1}"™, proceeds as follows. It sets k = k(n) to be the smallest integer
such that £(k) > p(n) (e.g., k> > n?), uniformly selects s € {0,1}*, and outputs
A(x,r), where r is the p(|x|)-bit long prefiz of G(s).

Thus, using A¢g instead of A, the number of random bits used by the algorithm
is reduced from p to £=' o p (e.g., from n? to k(n) = n?/°), while it is infeasible
to find inputs (i.e., 2’s) on which the noticeable behavior of Ag is different from
the one of A. That is, we save randomness while maintaining performance (see
Section 2.5).

Amplifying the stretch function. Pseudorandom generators as in Definition 2.2
are only required to stretch their input a bit; for example, stretching n-bit long
inputs to (n + 1)-bit long outputs will do. Clearly, generators with such moder-
ate stretch functions are of little use in practice. In contrast, we want to have
pseudorandom generators with an arbitrary long stretch function. By the effi-
ciency requirement, the stretch function can be at most polynomial. It turns out
that pseudorandom generators with the smallest possible stretch function can
be used to construct pseudorandom generators with any desirable polynomial
stretch function. That is:

Theorem 2.4 [7, Sec. 3.3.2]. Let G be a pseudorandom generator with stretch
function £(n) = n + 1, and ¢’ be any positive polynomial such that ¢'(n) >
n + 1. Then there erists a pseudorandom generator with stretch function £'.
Furthermore, the construction of the latter consists of invoking G for £ times.

Thus, when talking about the existence of pseudorandom generators, we may
ignore the specific stretch function.

2.3 How to Construct Pseudorandom Generators

The known constructions of pseudorandomness generators are based on one-way
functions. Loosely speaking, a polynomial-time computable function is called one-
way if any efficient algorithm can invert it only with negligible success probabil-
ity. For simplicity, we consider only length-preserving one-way functions.

Definition 2.5 (one-way function). A one-way function, f, is a polynomial-time
computable function such that for every probabilistic polynomial-time algorithm
A’, every positive polynomial p(-), and all sufficiently large n

o 1
Pro~u, [A'(f(x)ef~ (f(2)] < p(n)’

where f~1(y) = {z: f(z)=y}.

It is widely believed that one-way functions exists. Popular candidates for one-
way functions are based on the conjectured intractability of integer factorization,
the discrete logarithm problem, and decoding of random linear code. Assuming
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that integer factorization is indeed infeasible, one can prove that a minor modi-
fication of the construction outlined at the beginning of Section 2.2 constitutes a
pseudorandom generator. More generally, it turns out that pseudorandom gen-
erators can be constructed based on any one-way function.

Theorem 2.6 (existence of pseudorandom generators [18]). Pseudorandom gen-
erators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators implies the existence of

one-way functions, consider a pseudorandom generator G with stretch function

£(n) = 2n. For z,y € {0,1}", define f(x,y) &ef G(x), so that f is polynomial-

time computable (and length-preserving). It must be that f is one-way, or else
one can distinguish G(U,,) from Us,, by trying to invert and checking the result:
Inverting f on its range distribution refers to the distribution G(U,,), whereas the
probability that Us, has inverse under f is negligible. The interesting direction
is the construction of pseudorandom generators based on any one-way function.
A treatment of some natural special cases is provided in [7, Sec. 3.4-3.5].

2.4 Pseudorandom Functions

Pseudorandom generators allow one to efficiently generate long pseudorandom
sequences from short random seeds (e.g., using n random bits, we can efficiently
generate a pseudorandom bit-sequence of length n?). Pseudorandom functions
(defined below) are even more powerful: they allow efficient direct access to a
huge pseudorandom sequence (which is infeasible to scan bit-by-bit). For exam-
ple, based on n random bits, we define a sequence of length 2" such that we
can efficiently retrieve any desired bit in this sequence while the retrieved bits
look random. In other words, pseudorandom functions can replace truly ran-
dom functions in any efficient application (e.g., most notably in Cryptography).
That is, pseudorandom functions are indistinguishable from random functions
by any efficient procedure that may obtain the function values at arguments of
its choice. Such procedures are called oracle machines, and if M is such machine
and f is a function, then M7 (z) denotes the computation of M on input 2 when
M’s queries are answered by the function f (i.e., during its computation, M gen-
erates special strings called queries such that in response to the query ¢ machine
M is given the value f(q)).

Definition 2.7 (pseudorandom functions [13]). A pseudorandom function (en-
semble), with length parameters {p, fr :N—N, is a collection of functions { Fy, }nen,
where

Fn dZEf {f? ) {0) 1}8[’(”’) - {07 1}611(")}56{0’1}71,
satisfying

— (efficient evaluation). There exists an efficient (deterministic) algorithm that
when given a seed, s, and an €p(n)-bit argument, x, returns the fr(n)-bit
long value fs(x), where n denotes the length of s.

(Thus, the seed s is an “effective description” of the function fs.)
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— (pseudorandomness). For every probabilistic polynomial-time oracle machine
M, every positive polynomial p, and all sufficiently large n

1

Prowp, [M7<(1") = 1] — Pr g, [MP(1") = 1] | < o)

where Ry, denotes the uniform distribution over all functions mapping {0, 1}eD(”)
to {0,1}fr(),

Suppose, for simplicity, that £p(n) = n and £g(n) = 1. Then a function uniformly
selected among 2" functions (of a pseudorandom ensemble) presents an input-
output behavior indistinguishable in poly(n)-time from the one of a function
selected at random among all the 22" Boolean functions. Contrast this with a
distribution over 2™ sequences, produced by a pseudorandom generator applied
to a random n-bit seed, which is computationally indistinguishable from the
uniform distribution over {0, 1}P°¥(") (which has a support of size 2P°¥(")), Still
pseudorandom functions can be constructed from any pseudorandom generator.

Theorem 2.8 (how to construct pseudorandom functions [13]). Let G be a pseu-
dorandom generator with stretching function £(n) = 2n. For s € {0,1}", let
Go(s) (resp., G1(s)) denote the first (resp., last) n bits in G(s), and let
def
Gopevoz01(8) = Go, (- Gy (Goy (8)) ).
That is, Gz(s) is computed by successive applications of either Gy or Gy to the

current n-bit long string, where the decision which of the two mappings to apply

is determined by the corresponding bit of x. Let fs(x) ef G.(s) and consider the

function ensemble {Fy,}nen, where F, = {fs:{0,1}" — {0,1}"};cq0,13n. Then
this ensemble is pseudorandom (with length parameters ¢p(n) = fg(n) = n).

The foregoing construction can be easily adapted to any (polynomially-bounded)
length parameters {p, fg:N—N.

2.5 The Applicability of Pseudorandom Generators

Randomness is playing an increasingly important role in computation: it is fre-
quently used in the design of sequential, parallel, and distributed algorithms
(see [22]), and is of course central to Cryptography. Whereas it is convenient
to design such algorithms making free use of randomness, it is also desirable to
minimize the use of randomness in real implementations since generating per-
fectly random bits via special hardware is quite expensive. Thus, pseudorandom
generators (as in Definition 2.2) are a key ingredient in an “algorithmic tool-
box”: they provide an automatic compiler of programs written with free use of
randomness into programs that make an economical use of randomness.
Indeed, “pseudo-random number generators” have appeared with the first
computers. However, typical implementations use generators that are not pseu-
dorandom according to Definition 2.2. Instead, at best, these generators are
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shown to pass some ad-hoc statistical test. We warn that the fact that a “pseudo-
random number generator” passes some statistical tests does not mean that it
will pass a new test and that it is good for a future (untested) application. Fur-
thermore, the approach of subjecting the generator to some ad-hoc tests fails
to provide general results of the type stated above (i.e., of the form “for all
practical purposes using the output of the generator is as good as using truly
unbiased coin tosses”). In contrast, the approach encompassed in Definition 2.2
aims at such generality, and in fact is tailored to obtain it: the notion of compu-
tational indistinguishability, which underlines Definition 2.2, covers all possible
efficient applications postulating that for all of them pseudorandom sequences
are as good as truly random ones.

Pseudorandom generators and functions are of key importance in Cryptog-
raphy. In particular, they are typically used to establish private-key encryption
and authentication schemes. For further discussion see Section 4.

2.6 The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of pseudorandom generators as de-
fined above.

Behavioristic versus ontological. Our definition of pseudorandom generators
is based on the notion of computational indistinguishability. The behavioris-
tic nature of the latter notion is best demonstrated by confronting it with
the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string is
Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to
the phenomenon described by the string. A Kolmogorov-random string is thus a
string that does not have a substantially simpler (i.e., shorter) explanation than
itself. Considering the simplest explanation of a phenomenon may be viewed as
an ontological approach. In contrast, considering the effect of phenomena (on
an observer), as underlying the definition of pseudorandomness, is a behavior-
istic approach. Furthermore, there exist probability distributions that are not
uniform (and are not even statistically close to a uniform distribution) but nev-
ertheless are indistinguishable from a uniform distribution by any efficient pro-
cedure. Thus, distributions that are ontologically very different are considered
equivalent by the behavioristic point of view taken in the Definition 2.1.

A relativistic view of randomness. Pseudorandomness is defined in terms of its
observer: It is a distribution that cannot be told apart from a uniform distri-
bution by any efficient (i.e., polynomial-time) observer. However, pseudorandom
sequences may be distinguished from random ones by infinitely powerful comput-
ers (not at our disposal!). Furthermore, a machine that runs in exponential-time
can distinguish the output of a pseudorandom generator from a uniformly se-
lected string of the same length (e.g., just by trying all possible seeds). Thus,
pseudorandomness is subjective, dependent on the abilities of the observer.
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Randomness and computational difficulty. Pseudorandomness and computational
difficulty play dual roles: The definition of pseudorandomness relies on the fact
that placing computational restrictions on the observer gives rise to distributions
that are not uniform and still cannot be distinguished from uniform. Further-
more, the known constructions of pseudorandom generators relies on conjectures
regarding computational difficulty (e.g., the existence of one-way functions), and
this is inevitable: the existence of pseudorandom generators implies the existence
of one-way functions.

Randomness and Predictability. The connection between pseudorandomness and
unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions of pseudorandom generators (see [7, Sec. 3.3.5&3.5]). We
wish to highlight the intuitive appeal of this connection.

2.7 Suggestions for further reading

A detailed textbook presentation of the material that is reviewed in this section
is provided in [7, Chap. 3]. For a wider perspective, which treats this material
as a special case of a general paradigm, the interested reader is referred to [6,
Chap. 3] (or [9, Chap. 8]).

3 Probabilistic Proof Systems

The glory attributed to the creativity involved in finding proofs, makes us for-
get that it is the less glorified procedure of verification which gives proofs their
value. Philosophically speaking, proofs are secondary to the verification proce-
dure; whereas technically speaking, proof systems are defined in terms of their
verification procedures.

The notion of a verification procedure assumes the notion of computation
and furthermore the notion of efficient computation. This implicit assumption
is made explicit in the following definition in which efficient computation is
associated with deterministic polynomial-time algorithms.

Definition 3.1 (NP-proof systems): Let S C {0,1}* and v : {0,1}* x {0,1}* —
{0,1} be a function such that x € S if and only if there exists a w € {0,1}* that
satisfies v(x,w) = 1. If v is computable in time bounded by a polynomial in the

length of its first argument then we say v defines an NP-proof system for S and
that S is an NP-set. The class of NP-sets is denoted N'P.

Indeed, v represents a verification procedure for claims of membership in a set
S, and a string w satisfying v(z,w) = 1 is a proof that = belongs to .S, whereas
x ¢ S has no such proofs. For example, consider the set of systems of quadratic
equations that have integer solutions, which is a well-known NP-set. Clearly, any
integer solution v to such a system @ constitutes an “NP-proof” for the assertion
the system () has an integer solution (the verification procedure consists
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of substituting the variables of @ by the values provided in ¥ and computing the
value of the resulting arithmetic expressions).

We seize the opportunity to note that the celebrated “P different from NP”
conjecture asserts that NP-proof systems are useful in the sense that there are
assertions for which obtaining a proof helps to verify the correctness of the as-
sertion.® This conforms with our daily experience by which reading a proof eases
the verification of an assertion.

The formulation of NP-proofs restricts the “effective” length of proofs to be
polynomial in length of the corresponding assertions (since the running-time of
the verification procedure is restricted to be polynomial in the length of the as-
sertion). However, longer proofs may be allowed by padding the assertion with
sufficiently many blank symbols. So it seems that NP gives a satisfactory for-
mulation of proof systems (with efficient verification procedures). This is indeed
the case if one associates efficient procedures with deterministic polynomial-time
algorithms. However, we can gain a lot if we are willing to take a somewhat non-
traditional step and allow probabilistic verification procedures. In particular:

— Randomized and interactive verification procedures, giving rise to interactive
proof systems, seem much more powerful than their deterministic counter-
parts (see Section 3.1).

— Such randomized procedures allow the introduction of zero-knowledge proofs,
which are of great conceptual and practical interest (see Section 3.2).

— NP-proofs can be efficiently transformed into a (redundant) form (called a
probabilistically checkable proof) that offers a trade-off between the number
of bit-locations examined in the NP-proof and the confidence in its validity
(see Section 3.3).

In all these types of probabilistic proof systems, explicit bounds are imposed
on the computational resources of the verification procedure, which in turn is
personified by the notion of a verifier. Furthermore, in all these proof systems,
the verifier is allowed to toss coins and rule by statistical evidence. Thus, all
these proof systems carry a probability of error; yet, this probability is explicitly
bounded and, furthermore, can be reduced by successive application of the proof
system.

Clarifications. Like the definition of NP-proof systems, the abovementioned
types of probabilistic proof systems refer to proving membership in predeter-
mined sets of strings. That is, the assertions are all of the form “the string x
is in a set S”, where S is a fixed infinite set and x is a variable input. The
definition of an interactive proof system makes explicit reference to a prover,

8 NP represents sets of assertions that can be efficiently verified with the help of
adequate proofs, whereas P represents sets of assertions that can be efficiently verified
from scratch (i.e., without proofs). Thus, “P different from NP” asserts the existence
of assertions that are harder to prove than to be convinced of their correctness when
presented with a proof. This means that the notion of a proof is meaningful (i.e.,
that proofs do help when trying to be convinced of the correctness of assertions).



418

which is only implicit in the definition of an NP-proof system (where the prover
is the unmentioned entity providing the proof). We note that, as a first approx-
imation, we are not concerned with the complexity of the prover or the proving
task. Our main focus is on the complexity of verification. This is consistent with
the intuitive notion of a proof, which refers to the validity of the proof and not
to how it was obtained.

3.1 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computa-
tions, it is only natural to associate the notion of efficient computation with
probabilistic and interactive polynomial-time computations. This leads naturally
to the notion of an interactive proof system in which the verification procedure
is interactive and randomized, rather than being non-interactive and determin-
istic. Thus, a “proof” in this context is not a fixed and static object but rather
a randomized (dynamic) process in which the verifier interacts with the prover.
Intuitively, one may think of this interaction as consisting of “tricky” questions
asked by the verifier, to which the prover has to reply “convincingly”. The above
discussion, as well as the following definition, makes explicit reference to a prover,
whereas a prover is only implicit in the traditional definitions of proof systems
(e.g., NP-proofs).

Loosely speaking, an interactive proof is a game between a computationally
bounded verifier and a computationally unbounded prover whose goal is to con-
vince the verifier of the validity of some assertion. Specifically, the verifier is
probabilistic polynomial-time. It is required that if the assertion holds then the
verifier always accepts (i.e., when interacting with an appropriate prover strat-
egy). On the other hand, if the assertion is false then the verifier must reject
with probability at least %, no matter what strategy is being employed by the
prover.

Definition 3.2 (Interactive Proofs — IP [17]): An interactive proof system for a
set S is a two-party game, between a verifier executing a probabilistic polynomial-
time strategy (denoted V') and a prover which ezecutes a computationally un-
bounded strategy (denoted P), satisfying

— Completeness: For every x € S the verifier V always accepts after interacting
with the prover P on common input x.

— Soundness: For every x € S and every possible strateqy P*, the verifier V
rejects with probability at least %, after interacting with P* on common input
x.

The class of sets having interactive proof systems is denoted by IP.

Recall that the error probability in the soundness condition can be reduced by
successive application of the proof system. To clarify the definition and illustrate
the power of the underlying concept, we consider the following story.
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One day on the Olympus, bright-eyed Athena claimed that Nectar poured
out of the new silver-coated jars tastes less good than Nectar poured out
of the older gold-decorated jars. Mighty Zeus, who was forced to intro-
duce the new jars by the practically oriented Hera, was annoyed at the
claim. He ordered that Athena be served one hundred glasses of Nec-
tar, each poured at random either from an old jar or from a new one,
and that she tell the source of the drink in each glass. To everybody’s
surprise, wise Athena correctly identified the source of each serving, to
which the Father of the Gods responded “my child, you are either right
or extremely lucky.” Since all gods knew that being lucky was not one of
the attributes of Pallas-Athena, they all concluded that the impeccable
goddess was right in her claim.

Note that the proof system underlying this story establishes the dissimilarity of
two objects. This idea can be used to provide an interactive proof system for
the set of “pairs of non-isomorphic graphs” [15], which informally refer to the
dissimilarity of two given objects.? Indeed, typically, proving similarity between
objects is easy, because one can present a mapping (of one object to the other)
that demonstrates this similarity. In contrast, proving dissimilarity seems harder,
because in general there seems to be no succinct proof of dissimilarity. More
generally, it is typically easy to prove the existence of an easily verifiable structure
in the given object by merely presenting this structure, but proving the non-
existence of such a structure seems hard.

Formally speaking, proving the existence of an easily verifiable structure cor-
responds to NP-proof systems. The forgoing discussion suggests that interactive
proof systems can be used to demonstrate the non-existence of such structures.
Specifically, the set of pairs of non-isomorphic graphs is not known to have an
NP-proof system, and does have an interactive proof system. In general, interac-
tive proof systems can be used to prove the non-existence of any easily verifiable
structure; that is, for every S € NP, the set {0,1}*\ S has an interactive proof
system (i.e., the class coNP is contained in ZP). We stress that it is widely

believed that coN'P % {{0,1}*\ S : S€ AP} is not contained in N'P. For ex-

ample, the set of systems of quadratic equations that have no integer solutions
has an interactive proof system, but is believed not to have an NP-proof system.
Furthermore, the class of sets having interactive proof systems coincides with
the class PSPACE containing all sets for which membership is decidable by an
algorithm that uses a polynomial amount of work-space.

Theorem 3.3 [21,27]: TP = PSPACE.

We mention that NPUcoNP C PSPACE and that it is widely believed that NP
contain “little” of PSP.ACE. Thus, interactive proofs seem to be more powerful

% A graph G = (V, E) consists of a finite set of vertices V and a finite set of edges
E, where each edge is an unordered pair of vertices. Two graphs, G1=(V1, E1) and
G2 =(Va, E3), are called isomorphic if there exists a 1-1 and onto mapping ¢: Vi — V2
such that {u,v} € F; if and only if {¢(u), p(v)} € E1.
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than NP-proofs. This conforms with our daily experience by which interaction
facilitates the verification of assertions. As we shall argue next, randomness
(and the error probability in the soundness condition) play a key role in this
phenomenon.

Interactive proof systems extend NP-proof systems in allowing extensive in-
teraction as well as randomization (and ruling based on statistical evidence). As
hinted, extensive interaction by itself does not provide any gain (over NP-proof
systems). The reason being that the prover can predict the verifier’s part of the
interaction and thus it suffices to let the prover send the full transcript of the
interaction and let the verifier check that the interaction is indeed valid.'® The
moral is that there is no point to interact with predictable parties that are also
computationally weaker. This moral represents the prover’s point of view (with
respect to deterministic verifiers). Certainly, from the verifier’s point of view
it is beneficial to interact with the prover, since the latter is computationally
stronger.

We mention that the power of interactive proof systems remains unchanged
under several natural variants. In particular, it turns out that, in this context,
asking clever questions is not more powerful than asking totally random ques-
tions. The reason being that a powerful prover may assist the verifier, which
may thus refrain from trying to be clever and focus on checking (by using only
random questions) that the help extended to it is indeed valid. Also, the power
of interactive proof systems remains unchanged when allowing two-sided error
probability (i.e., allowing bounded error probability also in the completeness
condition). Recall that, in contrast, one-sided error probability (i.e., error prob-
ability in the soundness condition) is essential to the power of interactive proofs.

3.2 Zero-Knowledge Proof Systems

Standard proofs are believed to yield knowledge and not merely establish the
validity of the assertion being proven. Indeed, it is commonly believed that
(good) proofs provide a deeper understanding of the theorem being proved. At
the technical level, assuming that NP-proof are useful at all (i.e., assuming that
P # N'P), an NP-proof of membership in some sets S € NP\ P yields something
(i.e., the NP-proof itself) that is typically hard to find (even when assuming that
the input is in S). For example, an integer solution to a system of quadratic
equations constitutes an NP-proof that this system has an integer solution, but
it yields information (i.e., the solution) that is infeasible to find (when given an
arbitrary system of quadratic equations that has an integer solution). In contrast
to such NP-proofs, which seem to yield a lot of knowledge, zero-knowledge proofs
yield no knowledge at all; that is, the latter exhibit an extreme contrast between
being convincing (of the validity of a statement) and teaching something on top
of the validity of the statement.

10 In case the verifier is not deterministic, the transcript sent by the prover may not
match the outcome of the verifier coin tosses.
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Loosely speaking, zero-knowledge proofs are interactive proofs that yield
nothing beyond the validity of the assertion. These proofs, introduced in [17],
are fascinating and extremely useful constructs. Their fascinating nature is due
to their seemingly contradictory definition: zero-knowledge proofs are both con-
vincing and yet yield nothing beyond the validity of the assertion being proven.
Their applicability in the domain of Cryptography is vast; they are typically
used to force malicious parties to behave according to a predetermined proto-
col. In addition to their direct applicability in Cryptography, zero-knowledge
proofs serve as a good bench-mark for the study of various problems regarding
cryptographic protocols.

Zero-knowledge is a property of some interactive proof systems, or more
accurately of some prover strategies. Specifically, it is the property of yielding
nothing beyond the validity of the assertion; that is, a verifier obtaining a zero-
knowledge proof only gains conviction in the validity of the assertion. This is
formulated by saying that anything that can be feasibly obtained from a zero-
knowledge proof is also feasibly computable from the (valid) assertion itself.
Details follow.

The formulation of the zero-knowledge condition refers to two types of prob-
ability ensembles, where each ensemble associates a distribution to each valid
assertion. The first ensemble represents the output distribution of the verifier
after interacting with the specified prover strategy P, where the verifier is not
necessarily employing the specified strategy (i.e., V') but rather any efficient
strategy. The second ensemble represents the output distribution of some prob-
abilistic polynomial-time algorithm (which does not interact with anyone). The
basic paradigm of zero-knowledge asserts that for every ensemble of the first
type there exist a “similar” ensemble of the second type. The specific variants
differ by the interpretation given to the notion of similarity. The most strict in-
terpretation, leading to perfect zero-knowledge, is that similarity means equality.

Definition 3.4 (perfect zero-knowledge, a simplified version'!): A prover strat-
eqy, P, is said to be perfect zero-knowledge over a set S if for every probabilistic
polynomial-time verifier strategy, V*, there exists a probabilistic polynomial-time
algorithm, M*, such that for every x € S it holds that (P, V*)(x) = M*(z), where
(P,V*)(x) denote the distribution that represents the output of verifier V* after
interacting with the prover P on common input x.'?

A somewhat more relaxed interpretation of similarity, leading to almost-perfect
zero-knowledge, is that similarity means statistical closeness (i.e., negligible dif-
ference between the ensembles). The most liberal interpretation, leading to the
standard usage of the term zero-knowledge, is that similarity means computa-
tional indistinguishability (i.e., failure of any efficient procedure to tell the two

' The actual definition allows for a rare event (which occurs with negligible probability)
in which M™ halts with no output, and the output of M™ is considered condition on
this event not occuring.

12 As usual, M*(z) denotes a distribution representing the output of algorithm M* on
input x.
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ensembles apart). The actual definition is obtained from Definition 2.1, by con-
sidering ensembles indexed by strings and providing the distinguisher with the
relevant index. That is, the probability ensembles, {Y;}rcs and {Z;}zcs, are
indistinguishable by an algorithm A if

dan) & _max {Iprob(A(e. ¥;)=1) - Pr(A(w. Z:) =1}

is a negligible function.'®> The ensembles {Yy}ses and {Z,}zes are computation-
ally indistinguishable if they are indistinguishable by every probabilistic polynomial-
time algorithm.

The foregoing discussion refers to simplified versions of the actual defini-
tions. Specifically, in order to guarantee that zero-knowledge is preserved under
sequential composition it is necessary to slightly augment the definitions. For
details see [7, Sec. 4.3.3-4.3.4].

The Power of Zero-Knowledge. We consider the set of 3-colorable graphs, where
a graph'? G = (V, E) is said to be 3-colorable if there exists a function 7:V —
{1,2,3} (called a $-coloring) such that w(v) # w(u) for every {u,v} € E. It is
easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring
of G, but this NP-proof is not a zero-knowledge proof (unless P = N'P). In fact,
assuming P # NP, graph 3-colorability has no zero-knowledge NP-proofs, but
as we shall see it has zero-knowledge interactive proofs. We first describe these
proof systems using (abstract) “boxes” in which information can be hidden and
later revealed. Such “boxes” can be implemented using one-way functions.

Construction 3.5 (Zero-knowledge proof of 3-colorability [15]): On common
input, G=(V, E), The following steps are repeated |V |- |E| times.

— Prover’s first step: Let v be a 3-coloring of G. The prover selects a random
permutation, m, over {1,2,3}, and sets ¢p(v) def w(¥(v)), for each v € V.
Hence, the prover forms a random relabeling of the 3-coloring 1. The prover
sends the verifier a sequence of |V locked and mon-transparent boxes such
that the v" box contains the value ¢(v).

— Verifier’s first step: The verifier uniformly selects an edge {u,v} € E, and
sends it to the prover. Intuitively, the verifier asks to inspect the colors of
vertices u and v.

— Prover’s second step: The prover sends to the verifier the keys to bozes u
and v.

— Verifier’s second step: The verifier opens boxes u and v, and checks whether
or not they contain two different elements in {1,2,3}.

The verifier accepts if and only if all checks turn out positive.

131 SN {0,1}" = () then we define da(n) = 0.
14 See Footnote 9.
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The foregoing verifier strategy is easily implemented in probabilistic polynomial-
time. The same holds with respect to the prover’s strategy, provided it is given
a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-colorable
then the prover can cause the verifier to accept with probability 1. On the other
hand, if the input graph is not 3-colorable then any contents put in the boxes
must be invalid on at least one edge, and consequently each time the foregoing
steps are repeated the verifier rejects with probability at least ﬁ Repeating

these steps ¢ -|F| times has the effect of reducing the soundness error probability

o | E|
L\
11— — ~e
( IEI) ‘

The zero-knowledge property follows easily, in this abstract setting, because one
can simulate the real interaction by placing a random pair of different colors in
the boxes indicated by the verifier. This indeed demonstrates that the verifier
learns nothing from the interaction (since it expects to see a random pair of dif-
ferent colors and indeed this is what it sees). We stress that this simple argument
is not possible in the digital implementation because the boxes are not totally
unaffected by their contents (but are rather affected, yet in an indistinguishable
manner).

As stated, in order to obtain a real interactive proof, the (abstract or physical)
“boxes” need to be implemented digitally. This can be done using an adequately
defined “commitment scheme” (see [7, Sec. 4.4.1]). Loosely speaking, such a
scheme is a two phase game between a sender and a receiver so that after the first
phase the sender is “committed” to a value and yet, at this stage, it is infeasible
for the receiver to find out the committed value. The committed value will be
revealed to the receiver in the second phase and it is guaranteed that the sender
cannot reveal a value other than the one committed. Such commitment schemes
can be implemented assuming the existence of one-way functions. Thus, the
existence of one-way functions implies a zero-knowledge proofs for 3-colorability.
In fact, one gets zero-knowledge proofs for any NP-set.

Theorem 3.6 [15]: Assuming the existence of one-way functions, any NP-proof
can be efficiently transformed into a zero-knowledge interactive proof. That is,
the prover strategy in the zero-knowledge interactive proof can be implemented
in probabilistic polynomial-time provided that it is given an adequate NP-proof
as auziliary input.

Theorem 3.6 has a dramatic effect on the design of cryptographic protocols (cf.,
[7,8]). In a different vein and for the sake of elegance, we mention that, using
further ideas and under the same assumption, any set having an interactive proof
system also has a zero-knowledge interactive proof system.

The Role of Randomness. Again, randomness is essential to all the aforemen-
tioned results. Namely, zero-knowledge proof systems in which either the verifier
or the prover is deterministic exist only for sets in BPP, where BPP is the class
of sets for which membership is decidable by some probabilistic polynomial-time
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algorithm. Note that such sets have trivial zero-knowledge proofs in which the
prover sends nothing and the verifier just test the validity of the assertion by
itself. Thus, randomness is essential to the usefulness of zero-knowledge proofs.

3.3 Probabilistically Checkable Proof Systems

We now return to the non-interactive mode in which the verifier receives a (al-
leged) written proof. But our focus is on probabilistic verifiers that are capable
of evaluating the validity of the assertion by examining few (randomly selected)
locations in the alleged proof. Thus, the alleged proof is a string, as in the case
of a traditional proof system, but we are interested in probabilistic verification
procedures that access only few locations in the proof, and yet are able to make
a meaningful probabilistic verdict regarding the validity of the alleged proof.
Specifically, the verification procedure should accept any valid proof (with prob-
ability 1), but rejects with probability at least 1/2 any alleged proof for a false
assertion.

The main complexity measure associated with probabilistically checkable
proof (PCP) systems is indeed their query complexity (i.e., the number of bits
accessed in the alleged proof). Another complexity measure of natural concern
is the length of the proofs being employed, which in turn is related to the ran-
domness complexity of the system. The randomness complexity of PCPs plays
a key role in numerous applications (e.g., in composing PCP systems as well as
when applying PCP systems to derive non-approximability results), and thus we
specify this parameter rather than the proof length.

Loosely speaking, a probabilistically checkable proof system consists of a
probabilistic polynomial-time verifier having access to an oracle that represents
an alleged proof (in redundant form). Typically, the verifier accesses only few
of the oracle bits, and these bit positions are determined by the outcome of the
verifier’s coin tosses. As in the case of interactive proof systems, it is required
that if the assertion holds then the verifier always accepts (i.e., when given
access to an adequate oracle); whereas, if the assertion is false then the verifier
must reject with probability at least %, no matter which oracle is used. The
basic definition of the PCP setting is given in Item (1) of Definition 3.7. Yet,
the complexity measures introduced in Item (2) are of key importance for the
subsequent discussions.

Definition 3.7 (Probabilistically Checkable Proofs — PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine (called verifier), denoted V', satisfying
— Completeness: For every x € S there exists an oracle w, so that V, on
iput x and access to m,, always accepts x.
— Soundness: For every x € S and every oracle w, machine V, on input x
and access to w, rejects x with probability at least %
2. Letr and q be integer functions. The complexity class PCP(r(-),q()) consists
of sets having a probabilistically checkable proof system in which the verifier,
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on any input of length n, makes at most r(n) coin tosses and at most g(n) or-
acle queries, where each query is answered by a single bit. For sets of integer

functions, R and Q, we let PCP(R, Q) equal Urer,qe@PCP(r(-),q(+)).

We stress that the oracle 7, in a PCP system constitutes a proof in the standard
mathematical sense. Yet, this oracle has the extra property of enabling a lazy
verifier, to toss coins, take its chances and “assess” the validity of the proof
without reading all of it (but rather by reading a tiny portion of it).

Letting poly denote the set of all polynomials, one may verify that PCP(0, poly) =
NP. Letting log denote the set of all logarithmic functions (i.e., £ € log if
there exists a constant b such that ¢(n) < log,n for all sufficiently large n),
one may also verify that PCP(log,poly) C NP (because the relevant oracles
are of polynomial length). It follows that, for every constant ¢, it holds that
PCP(log,c) C N'P. This upper bound turned out to be tight, but proving this
is much more difficult (to say the least). The following result is a culmination of
a sequence of great works (see [6, Sec. 2.6.2] for a detailed account).

Theorem 3.8 [2,1]: There exists a constant ¢ such that NP C PCP(log,c).

Thus, probabilistically checkable proofs in which the verifier tosses only loga-
rithmically many coins and makes only a constant number of queries exist for
every set in the complexity class N'P. (Essentially, this constant is three.) Fur-
thermore, NP-proofs can be efficiently transformed into NP-proofs that offer a
trade-off between the portion of the proof being read and the confidence it of-
fers. Specifically, if the verifier is willing to tolerate an error probability of € then
it suffices to let it examine c - logy(1/€) bits of the (transformed) NP-proof.!5
These bit locations need to be selected at random. We mention that the length
of the redundant NP-proofs that provide the aforementioned trade-off can be
made almost linear in the length of the standard NP-proofs.

PCP and the study of approxzimation. Following [5] and [1], the characterization
of NP in terms of probabilistically checkable proofs has played a central role
in developments concerning the study of approximation problems. For details,
see [19, Chap. 10]. We merely mention that Theorem 3.8 implies that, assuming
P # NP, there exists a constant § < 1 such that given a system of quadratic
equations it is infeasible to distinguish the case in which the system has an integer
solution from the case that any assignment of integers satisfies at most a ¢
fraction of the equations.

The Role of Randomness. The foregoing results rely on the randomness of the
verifier and are not possible for deterministic verifiers. Furthermore, PCP(0, Llog) =

P.

15 In fact, ¢ can be made arbitrarily close to one, when € is small enough.
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3.4 Suggestions for further reading

More detailed overviews of the three types of probabilistically proof systems can
be found in [6, Chap. 2] (or [9, Chap. 9]). A detailed textbook treatment of
zero-knowledge is provided in [7, Chap. 4].

4 Cryptography

In this section we focus on the role of randomness in Cryptography. As stated
at the beginning of the introduction, the very notion of a secret, which is cen-
tral to Cryptography, refers to randomness in the sense of unpredictability (i.e.,
unpredictability of the secret by other parties). Furthermore, the use of random-
ized algorithms and/or strategies is essential for achieving almost any security
goal. We start with the concrete example of providing secret and authenticated
communication, and end with a wider perspective.

4.1 Secret and authenticated communication

The problem of providing secret communication over insecure media is the tra-
ditional and most basic problem of Cryptography. The setting of this problem
consists of two parties communicating through a channel that is possibly tapped
by an adversary. The parties wish to exchange information with each other, but
keep the “wire-tapper” as ignorant as possible regarding the contents of this
information. The canonical solution to the above problem is obtained by the use
of encryption schemes.

Loosely speaking, an encryption scheme is a protocol allowing these parties to
communicate secretly with each other. Typically, the encryption scheme consists
of a pair of algorithms. One algorithm, called encryption, is applied by the sender
(i.e., the party sending a message), while the other algorithm, called decryption,
is applied by the receiver. Hence, in order to send a message, the sender first
applies the encryption algorithm to the message, and sends the result, called the
ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e.,
the receiver) applies the decryption algorithm to it, and retrieves the original
message (called the plaintext).

In order for the foregoing scheme to provide secret communication, the com-
municating parties (at least the receiver) must know something that is not known
to the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext ex-
actly as done by the receiver.) This extra knowledge may take the form of the
decryption algorithm itself, or some parameters and/or auxiliary inputs used by
the decryption algorithm. We call this extra knowledge the decryption-key. Note
that, without loss of generality, we may assume that the decryption algorithm
is known to the wire-tapper, and that the decryption algorithm operates on
two inputs: a ciphertext and a decryption-key. (The encryption algorithm also
takes two inputs: a corresponding encryption-key and a plaintext.) We stress
that the existence of a decryption-key, not known to the wire-tapper, is merely
a necessary condition for secret communication.
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The point we wish to make is that the decryption-key must be generated
by a randomized algorithm. Suppose, in contrary, that the decryption-key is
a predetermined function of publicly available data (i.e., the key is generated
by employing an efficient deterministic algorithm to this data). Then, the wire-
tapper can just obtain the key in exactly the same manner (i.e., invoking the
same algorithm on the said data). We stress that saying that the wire-tapper
does not know which algorithm to employ or does not have the data on which
the algorithm is employed just shifts the problem elsewhere; that is, the ques-
tion remains as to how do the legitimate parties select this algorithm and/or
the data to which it is applied? Again, deterministically selecting these objects
based on publicly available data will not do. At some point, the legitimate par-
ties must obtain some object that is unpredictable by the wire-tapper, and such
unpredictability refers to randomness (or pseudorandomness).

However, the role of randomness in allowing for secret communication is
not confined to the generation of secret keys. To see why this is the case, we
need to understand what is “secrecy” (i.e., to properly define what is meant
by this intuitive term). Loosely speaking, we say that an encryption scheme
is secure if it is infeasible for the wire-tapper to obtain from the ciphertexts
any additional information about the corresponding plaintexts. In other words,
whatever can be efficiently computed based on the ciphertexts can be efficiently
computed from scratch (or rather from the a priori known data). Now, assuming
that the encryption algorithm is deterministic, encrypting the same plaintext
twice (using the same encryption-key) results in two identical ciphertexts, which
are easily distinguishable from any pair of different ciphertexts resulting from
the encryption of two different plaintexts. This problem does not arise when
employing a randomized encryption algorithm (as presented next).

As hinted, an encryption scheme must specify also a method for selecting
keys. In the following encryption scheme, the key is a uniformly selected n-bit
string, denoted s. The parties use this key to determine a pseudorandom function
fs (as in Definition 2.7). A plaintext = € {0, 1}" is encrypted (using the key s) by
uniformly selecting r € {0,1}" and producing the ciphertext (r, fs(r) ®x), where
a @ B denotes the bit-by-bit exclusive-or of the strings a and 3. A ciphertext
(r,y) is decrypted (using the key s) by computing fs(r) @ y. The security of this
scheme follows from the security of an imaginary (ideal) scheme in which f; is
replaced by a totally random function F' : {0,1}" — {0,1}".

Public-key encryption schemes. The foregoing description corresponds to the so
called model of a private-key encryption scheme, and requires the communicat-
ing parties to agree beforehand on a corresponding pair of encryption/decryption
keys. This need is removed in public-key encryption schemes, envisioned by Diffie
and Hellman (and materialized by the RSA scheme of Rivest, Shamir, and Adle-
man). In a public-key encryption scheme, the encryption-key can be publicized
without harming the security of the plaintexts encrypted using it, allowing any-
body to send encrypted messages to Party X by using the encryption-key pub-
licized by Party X. But in such a case, the need for randomized encryption is
even more clear. Indeed, if a deterministic encryption algorithm is employed and
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the wire-tapper knows the encryption-key, then it can identity of the plaintext
in the case that the number of possibilities is small. In contrast, using a ran-
domized encryption algorithm, the encryption of plaintext yes under a known
encryption-key may be computationally indistinguishable from the encryption
of the plaintext no under the say encryption-key. For further discussion of the
security and construction of encryption schemes, the interested reader is referred
to [8, Chap. 5].

Authenticated communication. Message authentication is a task related to the
setting considered for private-key encryption schemes. Again, there are two des-
ignated parties that wish to communicate over an insecure channel. This time,
we consider an active adversary that is monitoring the channel and may alter
the messages sent on it. The parties communicating through this insecure chan-
nel wish to authenticate the messages they send such that their counterpart can
tell an original message (sent by the sender) from a modified one (i.e., modified
by the adversary). Loosely speaking, a scheme for message authentication should
satisfy the following:

— each of the communicating parties can efficiently produce an authentication
tag to any message of its choice;

— each of the communicating parties can efficiently verify whether a given
string is an authentication tag of a given message; but

— it is infeasible for an external adversary (i.e., a party other than the com-
municating parties) to produce authentication tags to messages not sent by
the communicating parties.

Again, such a scheme consists of a randomized algorithm for selecting keys as
well as algorithms for tagging messages and verifying the validity of tags. In
the following message authentication scheme, a uniformly chosen n-bit key, s,
is used for specifying a pseudorandom function (as in Definition 2.7). Using the
key s, a plaintext € {0,1}" is authenticated by the tag fs(z), and verification
of (z,y) with respect to the key s amounts to checking whether y equals f,(x).
For further discussion of message authentication schemes and the related notion
of signature schemes, the interested reader is referred to [8, Chap. 6].

4.2 A wider perspective

Modern Cryptography is concerned with the construction of information sys-
tems that are robust against malicious attempts to make these systems deviate
from their prescribed functionality. The prescribed functionality may be the pri-
vate and authenticated communication of information through the Internet, the
holding of incoercible and secret electronic voting, or conducting any “fault-
resilient” multi-party computation. Indeed, the scope of modern Cryptography
is very broad, and it stands in contrast to “classical” Cryptography (which has
focused on the single problem of enabling secret communication over insecure
communication media).
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The design of cryptographic systems is a very difficult task. One cannot
rely on intuitions regarding the “typical” state of the environment in which
the system operates. For sure, the adversary attacking the system will try to
manipulate the environment into “untypical” states. Nor can one be content
with counter-measures designed to withstand specific attacks, since the adversary
(which acts after the design of the system is completed) will try to attack the
schemes in ways that are different from the ones the designer had envisioned. The
validity of the above assertions seems self-evident, still some people hope that in
practice ignoring these tautologies will not result in actual damage. Experience
shows that these hopes rarely come true; cryptographic schemes based on make-
believe are broken, typically sooner than later.

In view of the foregoing, we believe that it makes little sense to make as-
sumptions regarding the specific strategy that the adversary may use. The only
assumptions that can be justified refer to the computational abilities of the ad-
versary. Furthermore, the design of cryptographic systems has to be based on
firm foundations; whereas ad-hoc approaches and heuristics are a very dangerous
way to go. A heuristic may make sense when the designer has a very good idea
regarding the environment in which a scheme is to operate, yet a cryptographic
scheme has to operate in a maliciously selected environment which typically
transcends the designer’s view.

The foundations of Cryptography are the paradigms, approaches and tech-
niques used to conceptualize, define and provide solutions to natural “security
concerns”. For a presentation of these foundations, the interested reader is re-
ferred to [7,8]. Here we merely note that randomness plays a central role in each
definition and technique presented there. In almost every case, the inputs of the
legitimate parties are assumed to be unpredictable by the adversary, and the
task is performing some manipulation (of the inputs) while preserving or cre-
ating some unpredictability. In all cases, this is obtained by using randomized
algorithms.

Suggestions for further reading. As stated above, a (comprehensive) exposition
of the foundations of modern Cryptography can be found in the two-volume
work [7,8].

5 Property Testing

For starters, let us consider a well-known example in which fast approximations
are possible and useful. Suppose that some cost function is defined over a huge
data-set, and that one wants to approximate the average cost of an element in

the set. To be more specific, let p : S — [0,1] be a cost function, and suppose
we want to estimate & Lef ﬁ > ecs t(e). Then, for some constant ¢, uniformly

(and independently) selecting m def o em2 log,(1/9) sample points, s1, ..., S, in
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S we obtain with probability at least 1 — § an estimate of @ within +e:

%;u(&) -7

We stress the fact that the number of samples only depends on the desired level
of approzimation (and is independent of the size of S). In this section we discuss
analogous phenomena that occur with respect to objectives that are beyond
gathering statistics of individual values. We focus on more complex features of
a data-set; specifically, relations among pairs of elements rather than values of
single elements. Such binary relations are captured by graphs (as defined in
Footnote 9); that is, a symmetric binary relation R C S x S is represented by a
graph G = (5, R), where the elements of S are called vertices and the elements of
R are called edges. Each edge consists of a pair of vertices, called its end-points.
One natural computational question regarding graphs is whether or not they
are bi-partite; that is, whether there exists a partition of S into two subsets Sy
and Sy such that each edge has one end-point in S7 and the other endpoint in
Ss. For example, the graph consisting of a cycle of four vertices is bi-partite,
whereas a triangle is not bi-partite. We mention that there exists an efficient
algorithm that given a graph G determines whether or not G is bi-partite. Need-
less to say, this algorithm must inspect all edges of G, whereas we seek sub-linear
time algorithms (i.e., algorithms operating in time smaller than the size of the
input). In particular, sub-linear time algorithms cannot afford reading the entire
input graph. Instead, these algorithm can inspect portions of the input graph by
querying for the existence of specific edges (i.e., query whether there is an edge
between a specific pair of vertices). It turns out that, by making a number of
queries that is independent of the size of the graph, one may obtain meaningful
information regarding its “distance” to being bi-partite. Specifically:

Prsl,...,smGS [

>E‘| < 9.

Theorem 5.1 [14]: There exists a randomized algorithm that, on input a pa-
rameter € and access to a graph G = (S, R), makes poly(1/e) queries to G and
satisfies the following two conditions:

1. If G is bi-partite, then the algorithm accepts with probability 1.

2. If any partition of S into two subsets Sy and Sz has at least |S|? edges with
both end-points in the same S;, then the algorithm rejects with probability at
least 99%.

The algorithm underlying Theorem 5.1 uniformly selects m = poly(1/e) vertices,
and checks whether the induced graph is bi-partite; that is, for a sample of
vertices vy, ..., Um, it checks whether there exists a partition of {vy,..., v} into
two subsets V4 and V4 such that for every i € {1,2} and every u,v € V; it holds
that (u,v) € R.

We stress that the said algorithm does not solve the question of whether or
not the graph is bi-partite, but rather a relaxed (or approximated) version of
this question in which one needs to distinguish graphs that are bi-partite from
graphs that a very far from being bi-partite. This phenomenon is analogous to
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the case of approximating the average value of p : S — [0,1]. Also, as in the
case of approximating the average value of p : .S — [0,1], it is essential that
the approximation algorithm be randomized. A similar phenomena occurs with
respect to several other natural properties of graphs, but is not generic. That is,
there exist graph properties for which even inspecting a constant fraction of the
graph does not allow for an approximate decision regarding satisfiability of the
property. For details, the interested reader is directed to [12,24].

We note that the notion of approximation underlying Theorem 5.1 refers to
disregarding £|S|? edges, where |S|? is the maximum possible number of edges
over S. This notion of approximation is appealing in the case that R is dense (i.e.,
contains a constant fraction of all possible edges). Going to the other extreme,
we may consider the case that R contains only a linear (in |S|) number of edge,
or even the case that each vertex participates only in a constant number of edges.
In this case, we may want to distinguish the case that the graph is bi-partite from
the case that any partition of S into two subsets S and Ss has at least €|S| edges
with both end-points in the same S;. It turns out that this problem can be solved
by an algorithm that makes poly((log|S|)/e) - \/]S| queries (to the incidence
lists of the graph), and that these many queries are essentially necessary. We
note that this sub-linear time algorithm operates by inspecting a graph induced
by poly((log |S])/e) - \/|S] vertices that are selected by taking many (relatively
short) random walks from few randomly selected starting vertices. For details,
the interested reader is directed to [12, Sec. 3.2].

The aforementioned type of approximation is known by the name property
testing, and was initiated and developed in [25,14]. One archetypical problem,
which played a central role in the construction of PCP systems (see Section 3.3),
is distinguishing low-degree polynomials from functions that are far from any
such polynomial. Specifically, let F' be a finite field and m, d be integers. Given
access to a function f : F — F, we wish to make few queries and distinguish
the case that f is am m-variate polynomial of total degree d from the case it
disagrees with any such polynomial on at least 1% of the domain. It turns out
that making poly(d) random (but dependent) queries to f suffices for making a
decision that is correct with high probability.

In general, property testing problems refer to objects that are represented
by functions, where these functions determine both the type of queries that can
be made to the objects and the distance between objects. The tester is required
to accept functions that have some predetermined property (i.e., reside in some
predetermined set) and reject any function that is “far” from the set of functions
having the property. Distances between functions are defined as the fraction of
the domain on which the functions disagree, and the threshold determining what
is considered far is presented as a proximity parameter, which is explicitly given
to the tester. Thus, property testing is a relaxation of standard decision problems
(and it focuses on algorithms that can only read parts of the input).

Definition 5.2 (property testers) Let IT be a class of functions defined over
the domain D. A tester for a property IT is a probabilistic oracle machine T that
satisfies the following two conditions:
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1. The tester accepts each f € IT with probability at least 2/3; that is, for every
f € II (and every ¢ > 0), it holds that Pr[T/(g) = 1] > 2/3, where T/ (¢)
denotes the decision of T' (on input ) when given oracle access to f.

2. Given e > 0 and oracle access to any f that is e-far from I, the tester rejects
with probability at least 2/3; that is, for every e > 0, if f : D — {0,1}* is
e-far from I, then Pr[T¥(g)=0] > 2/3, where f is e-far from IT if, for every
g € 11, it holds that |[{e € D : f(e) # g(e)}| > - |D|.

If the tester accepts every function in II with probability 1, then we say that it
has one-sided error; that is, T has one-sided error if for every f € Il and every
e > 0, it holds that Pr[T7(e)=1] = 1.

Definition 5.2 does not specify the query complexity of the tester, and indeed
an oracle machine that queries the entire domain of the function qualifies as a
tester (with zero error probability...). Needless to say, we are interested in testers
that have significantly lower query complexity. Indeed, Theorem 5.1 asserts the
existence of a (one-sided error) tester of complexity poly(1/e) for the set of
bi-partite graphs, where graphs are represented by their adjacency matrices.

On the importance of representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).
This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natu-
ral representations: the adjacency matrix representation and the incidence lists
representation; for details see [12].

Suggestions for further reading. A brief introduction to property testing can
be found in [11]. For a more comprehensive treatment, the interested reader is
directed to [24]. For the special case of testing graph properties, the interested
reader is directed to [12].
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