
Another Motivation for Reducing the

Randomness Complexity of Algorithms

Oded Goldreich

Abstract. We observe that the randomness-complexity of an algorithm
effects the time-complexity of implementing a version of it that utilizes
a weak source of randomness (through a randomness-extractor). This
provides an additional motivation for the study of the randomness com-
plexity of randomized algorithms. We note that this motivation applies
especially in the case that derandomization is prohibitingly costly.

Keywords: andomness Complexity, Weak Sources of Randomness, Ran-
domness Extractors, Pseudorandom Generators, Sampling, Property Test-
ing.

This article was completed in Nov. 2006, and appeared on the author’s webpage.

1 Introduction: The Standard Motivations

The randomness-complexity of a randomized algorithm is a natural complex-
ity measure associated with such algorithms. Furthermore, randomness is a
“real” resource, and so trying to minimize the use of it falls within the stan-
dard paradigms of algorithmic design.

In addition to the aforementioned generic motivation (which was highlighted
in [2]), there is a more concrete motivation (which was highlighted in [16]): If
we manage to reduce the randomness-complexity to become sufficiently low,
then this opens the door to a relatively efficient derandomization. Specifically,
a randomized algorithm having time-complexity t and randomness-complexity r
yields a functionally equivalent deterministic algorithm of time-complexity 2r · t.

2 The Main Message: Another Motivation

In this article we highlight another concrete motivation for the study of the
randomness-complexity of randomized algorithms. We refer to the effect of the
randomness-complexity on the overhead involved in implementing the algorithm
when using only weak sources of randomness (rather than perfect ones). Specifi-
cally, we refer to the paradigm of implementing randomized algorithms by using a
single sample from such a weak source, and trying all possible seeds to a suitable
randomness extractor (see next). We will show that the overhead created by this
method is determined by the randomness-complexity of the original algorithm.



2

Randomness extractors. Recall that a randomness extractor is a function E :
{0, 1}n × {0, 1}s → {0, 1}r that uses an s-bit long random seed in order to
transform an n-bit long (outcome of a) weak source of randomness into an r-
bit long string that is almost uniformly distributed in {0, 1}r. Specifically, we
consider arbitrary weak sources that are restricted (only) in the sense that,
for a parameter k, no string appears as the source outcome with probability
that exceeds 2−k. Such sources are called (n, k)-sources (and k is called the min-

entropy). Now, E is called a (k, ǫ)-extractor if for any (n, k)-source X it holds that
E(X, Us) is ǫ-close to Ur, where Um denotes the uniform distribution over m-bit
strings (and the term ‘close’ refers to the statistical distance between the two
distributions). For further details about (k, ǫ)-extractors, the interested reader
is referred to Shaltiel’s survey [13].

Next we recall the standard paradigm of implementing randomized algo-
rithms while using a source of weak randomness. Suppose that the algorithm A
has time-complexity t and randomness-complexity r ≤ t. Recall that, typically,
the analysis of algorithm A refers to what happens when A obtains its random-
ness from a perfect random source (i.e., for each possible input α, we consider the
behavior of A(α, Ur), where A(α, ω) denotes the output of A on input α when
given randomness ω). Now, suppose that we have at our disposal only a weak
source of randomness; specifically, a (n, k)-source for n ≫ k ≫ r (e.g., n = 10k
and k = 2r). Then, using a (k, ǫ)-extractor E : {0, 1}n × {0, 1}s → {0, 1}r,
we can transform the n-bit long outcome of this source into 2s strings, each of
length r, and use the resulting 2s strings (which are “random on the average”)
in 2s corresponding invocations of the algorithm A. That is, upon obtaining the
outcome x ∈ {0, 1}n from the source, we invoke the algorithm A for 2s times
such that in the ith invocation we provide A with randomness E(x, i). The re-
sults of these 2s invocations are processed in the natural manner. For example,
if A is a decision procedure, then we output the majority vote obtained in the
2s invocations (i.e., when given the input α, we output the majority vote of the
sequence 〈A(α, E(x, i))〉i=1,...,2s).1

The analysis of the foregoing implementation is based on the fact that “on
the average” the 2s strings extracted from the source approximate a perfect r-bit
long source (i.e., a random setting of the s-bit seed yields an almost uniformly
distributed r-bit string). In the case of decision procedures this means that if A
has error probability p and X is a (n, k)-source, then the number of values in
〈E(X, i)〉i=1,...,2s that fail A(α, ·) is at most (p + ǫ) · 2s, where the expectation
is taken over the distribution of X . It follows that the implementation (which
rules by majority) errs with probability at most 2(p + ǫ). This means that we
should start with p < 1/4. (A similar analysis can be applied to the randomized
search procedures discussed in Footnote 1.)

1 For search problems in NP, we output any valid solution that is obtained in the
relevant 2s invocations. For general search problems (i.e., outside NP), some extra
condition regarding the original randomized algorithm is required (e.g., either that
it never outputs a wrong solution or that it outputs some specific correct solution
with probability that exceeds 1/2 by a noticeable amount).



3

The cost of the use of a weak source of randomness. Let us consider the cost of
the foregoing implementation. We assume, for simplicity, that the running-time
of the randomness extractor is dominated by the running-time of A. Then, algo-
rithm A can be implemented using a weak source, while incurring an overhead
factor of 2s. Recalling that s > log2 n (see [13]) and that n > k > r, it follows
that the aforementioned overhead is at least linear in r. On the other hand, if
s = (1 + o(1)) log2 n and n = O(r) (resp., s = O(log n) and n = poly(r)) then
the aforementioned overhead is in fact linear in r (resp., polynomial in r). This
establishes our claim that the time-complexity of implementing randomized al-
gorithms when using weak sources is related to the randomness-complexity of
these algorithms. Let us take a closer look at this relationship.

A focus on two common setting of n w.r.t r. We shall consider two types of
(n, k)-sources, which are most appealing. Indeed, these type of sources have
received a lot of attention in the literature. Furthermore, it suffices to set the
deviation parameter of the extractor (i.e., ǫ) to a small constant (e.g., ǫ = 1/10
will do). Recall that r denotes the number of bits that we need to extract for
such a source (in order to feed it to our algorithm). The two cases we consider
are:

1. Linearly related n, k and r; that is, for some constants c > c′ > 1, it holds
that n = c · r and k = c′ · r. In other words, we refer to sources having a
constant rate of min-entropy.
In this case, efficient randomness extractors that use s = log n+O(log log n) =
log2 Õ(n) are known (cf. [15, 13]). Using these extractors, we obtain an im-
plementation of A (using such weak sources) with overhead factor Õ(r).

2. Polynomially related n, k and r; that is, for some c > c′ > 1, it holds that
n = rc and k = rc′ . In other words, we refer to a source having min-entropy
that is polynomially related to its length.
In this case, efficient randomness extractors that use s = log Õ(n) = c log2 Õ(r)
are known (cf. [14, 13]). Using these extractors, we obtain an implementation
of A (using such weak sources) with overhead factor Õ(rc).

In both cases, the overhead factor is approximately linear in the length of the
source’s outcome (which, in turn, is linearly or polynomially related to r).

We wish to stress that the implementation paradigm considered above is
most relevant in the case that a full derandomization (incurring an overhead
factor of 2r) is prohibitingly costly. Two settings in which this is inherently the
case are considered next.

3 Two Settings: Sampling and Property Testing

Derandomization is not a viable option in the setting of sampling and property
testing, and thus these settings provide a good demonstration of the importance
of the new motivation. We start with the setting of sampling, although the more
dramatic results are obtained in the context of property testing, which may be
viewed as a generalization of the context of sampling.



4

3.1 Sampling

In many settings repeated sampling is used to estimate the average of a huge
set of values. Namely, given a “value” function ν : {0, 1}n → R, one wishes

to approximate ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x) without having to inspect the value

of ν at each point of the domain. The obvious thing to do is sampling the
domain at random, and obtaining an approximation to ν̄ by taking the average
of the values of ν on the sample points. It is essential to have the range of ν
be bounded (or else no reasonable approximation is possible). For simplicity, we
adopt the convention of having [0, 1] be the range of ν, and the problem for other
(predetermined) ranges can be treated analogously. Our notion of approximation
depends on two parameters: accuracy (denoted ǫ) and error probability (denoted
δ). We wish to have an algorithm that, with probability at least 1−δ, gets within
ǫ of the correct value. That is, a sampler is a randomized oracle machine that
on input parameters n, ǫ, δ and oracle access to any function ν : {0, 1}n→ [0, 1],
outputs, with probability at least 1 − δ, a value that is at most ǫ away from

ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x).

We are interested in “the complexity of sampling” quantified as a function
of the parameters n, ǫ and δ. Specifically, we will consider three complexity
measures: The sample-complexity (i.e., the number of oracle queries made by the
sampler); the randomness-complexity (i.e., the length of the random seed used
by the sampler); and the computational-complexity (i.e., the running-time of the
sampler). We say that a sampler is efficient if its running-time is polynomial in
the total length of its queries (i.e., polynomial in both its sample-complexity and
in n). It is easy to see that a deterministic sampler must have sample-complexity
close to 2n, and thus derandomization is not an option here.

While efficient samplers that have optimal (up-to a constant factor) sample-
complexity are of natural interest, the motivation for the study of the randomness-
complexity of such samplers is less evident. Indeed, one may offer the generic
answer (i.e., that randomness as any other resource need to be minimized),
but the previous section shows that (in a very natural setting) there is a very
concrete reason to care about the randomness-complexity of the sampler: The
randomness-complexity of the sampler effects the sample-complexity of an im-
plementation that uses a weak random source.

Recall that the naive sampler uses sample-complexity s
def
= O(ǫ−2 log(1/δ))

and randomness-complexity r = s · n. Using sources of constant min-entropy
rate, this yields an implementation of sample-complexity s′ ≈ r ·s = n ·s2. How-
ever using a better sampler that has sample-complexity O(s) but randomness-
complexity r′′ = 2n + O(log(1/δ)) (cf. [1]), we obtain an implementation of
sample-complexity s′′ ≈ r′′ · s = 2n · s + O(ǫ2s2). This is a significant saving,
whenever good accuracy is required (i.e., ǫ is small).

3.2 Property testing

This notion refers to a relaxation of decision problems, where it suffices to distin-
guish inputs having a (fixed) property from objects that are far from satisfying



5

the property (cf., e.g., original papers [11, 6] or surveys [4, 10]). Typically, one
seeks sublinear-time algorithms that query the object at few randomly selected
locations. In the natural cases, derandomization is not a viable option, because
a deterministic algorithm must inspect at least a constant fraction of the object
(and thus cannot run in sublinear-time). Let us clarify this discussion by look-
ing at the specific example of testing the bipartiteness property for graphs of
bounded-degree.

Fixing a degree bound d, the task is to distinguish (N -vertex) bipartite graphs
of maximum degree d from (N -vertex) graphs of maximum degree d that are ǫ-far
from bipartite (for some parameter ǫ), where ǫ-far means that ǫ · dN edges have
to be omitted from the graph in order to yield a bipartite graph. It is easy to see
that no deterministic algorithm of o(N) time-complexity can solve this problem.
Yet, there exists a probabilistic algorithm of time-complexity Õ(

√
Npoly(1/ǫ))

that solves this problem correctly (with probability 2/3). This algorithm makes

q
def
= Õ(

√
Npoly(1/ǫ)) incidence-queries to the graph, and (as described in the

original work [8]) has randomness-complexity r > q >
√

N (yet r < q · log2 N).2

Let us now turn to the question of implementing the foregoing tester in a
setting where we have access only to a weak source of randomness. In this case,
the implementation calls for invoking the original tester Õ(r) times, which yields
a total running time of Õ(r)·Õ(

√
Npoly(1/ǫ)) > N . But in such a case we better

use the standard (deterministic) decision procedure for bipartiteness!

Fortunately, a randomness-efficient implementation of the original tester of [8]
is possible. This implementation (presented in [9, 12]) has randomness-complexity
r′ = poly(ǫ−1 log N) (rather than r = poly(ǫ−1 log N) ·

√
N). Thus, the cost

of the implementation that uses a weak source of randomness is related to
r′ · s = Õ(

√
Npoly(1/ǫ)), which matches the original bound (up to differences

hidden in the Õ() and poly() notation). Needless to say, this is merely an exam-
ple, and randomness-efficient implementations of other property testers are also
presented in [9, 12].

4 Conclusions

This essay articulates an additional motivation for studying the randomness-
complexity of algorithms. This motivation is relevant even if one believes that
generating a random bit is not more expensive than performing a standard
machine instruction. It refers to the fact that the randomness-complexity of
a randomized algorithm effects the running-time of an implementation that may
only utilize a weak source of randomness (and does so by using a randomness-
extractor). Specifically, such an implementation incurs a multiplicative overhead
factor that is (at least) linearly related to the randomness-complexity of the orig-
inal algorithm. This fact motivates the attempt to present randomness-efficient

2 We comment that Ω(
√

N) is a lower-bound on the query-complexity of any property
tester of bipartiteness (in the bounded-degree model; see [7]).



6

versions of randomized algorithms and even justifies the use of pseudorandom
generators for this purpose.3

Acknowledgments

We are grateful to Ronen Shaltiel for an update regarding the state-of-art of the
problem of randomness extraction. We also wish to thank Adi Akavia and Shafi
Goldwasser for a discussion that led to the current essay.

References

1. M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive
Proofs. Computational Complexity, Vol. 4, No. 4, pages 319–354, 1993.

2. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864,
1984. Preliminary version in 23rd FOCS, 1982.

3. O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge Univer-
sity Press, 2001.

4. O. Goldreich. A Brief Introduction to Property Testing. This volume.
5. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Func-

tions. Journal of the ACM, Vol. 33, No. 4, pages 792–807, 1986.
6. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. Journal of the ACM, pages 653–750, July
1998.

7. O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-

rithmica, pages 302–343, 2002.
8. O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree

graphs. Combinatorica, Vol. 19 (3), pages 335–373, 1999.
9. O. Goldreich and O. Sheffet. On the randomness complexity of property

testing. Extended abstract in Proc. of RANDOM’07.
10. D. Ron. Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS, Vol. 5 (2), pages 73–205, 2010.
11. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with

applications to program testing. SIAM Journal on Computing, Vol. 25 (2),
pages 252–271, 1996.

12. O. Sheffet. M.Sc. Thesis, Weizmann Institute of Science, in preparation. Avail-
able from http://www.wisdom.weizmann.ac.il/∼oded/msc-os.html

13. R. Shaltiel. Recent Developments in Explicit Constructions of Extractors.
Bulletin of the EATCS 77, pages 67–95, 2002.

14. R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a
New Pseudo-Random Generator. In 32nd IEEE Symposium on Foundations

of Computer Science, pages 648–657, 2001.

3 The running-time of the generator itself can be ignored, because one may use a
pseudorandom generator that runs in time that is almost-linear in the length of
its output. Such a generator can be constructed by using a pseudorandom func-
tion (cf. [5]). Alternatively, such a generator is implied by the notion of an on-line
pseudorandom generator (cf. [3, Chap. 3, Exer. 21]).



7

15. A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller Codes.
In 32nd IEEE Symposium on Foundations of Computer Science, pages 638–
647, 2001.

16. A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE

Symposium on Foundations of Computer Science, pages 80–91, 1982.


