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Abstract

We consider the problem of testing asymmetry in the bounded-degree graph model, where
a graph is called asymmetric if the identity permutation is its only automorphism. Seeking to
determine the query complexity of this testing problem, we provide two partial results.

1. The query complexity of O(1/ log n)-testing asymmetry of n-vertex graphs is Ω̃(
√
n/ log n),

even if the tested graph is guaranteed to consist of connected components of size O(log n).

2. For every ϵ : N → [0, 1] such that ϵ(n) = ω((log log n)/ log n), the query complexity of
one-sided error ϵ(n)-testing asymmetry of n-vertex graphs is at least exp(O(1/ϵ(n))).

In addition, we show that testing asymmetry in the dense graph model is almost trivial, because
(in this model) every graph is close to being asymmetric.

Preliminary versions of this work appeared as TR20-118 of ECCC. The current version is drastically
different: It retains the main results of the previous versions, but omits several other results,
because – in retrospect – we find these results distracting. Instead, we emphasize the fact that our
results, regarding the bounded-degree graph model, are highly unsatisfactory and leave much to be
understood.

1 Overview

Property testing refers to probabilistic algorithms of sub-linear complexity for deciding whether a
given object has a predetermined property or is far from any object having this property. Such
algorithms, called testers, obtain local views of the object by performing queries and their perfor-
mance guarantees are stated with respect to a distance measure that (combined with a distance
parameter) determines which objects are considered far from the property.

In the last three decades, the area of property testing has attracted significant attention (see,
e.g., [5]). Much of this attention was devoted to testing graph properties in a variety of models in-
cluding the dense graph model [6] and the bounded-degree graph model [7] (surveyed in [5, Chap. 8]
and [5, Chap. 9], resp.). We mention, without elaboration, that the known results concerning these
models include both results regarding general classes of graph properties and results regarding
many natural graph properties. Yet, one natural property that (to the best of our knowledge) was
not considered before is asymmetry.
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by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
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The definition of asymmetric graphs is based on the definition of graph isomorphism. Specifi-
cally, for a (labeled) graph G = (V,E) and a bijection ϕ : V → V ′, we denote by ϕ(G) the graph
G′ = (V ′, E′) such that E′ = {{ϕ(u), ϕ(v)} : {u, v}∈E}, and say that G′ is isomorphic to G. The
set of automorphisms of the graph G = (V,E), denoted aut(G), is the set of permutations that
preserve the graph G; that is, π ∈ aut(G) if and only if π(G) = G.

Definition 1.1 (asymmetric and symmetric graphs): A graph is called asymmetric if its set of
automorphisms is a singleton, which consists of the trivial automorphism (i.e., the identity permu-
tation). Otherwise, the graph is called symmetric.

Although the title of this paper draws attention to the bounded-degree graph model, only part of
the paper (i.e., Section 2) studies testing asymmetric graphs in that model. Yet, our focus is on
the bounded-degree graph model, where we obtain very partial results. A possible contribution of
this paper is pointing out this sour state of affairs and calling for a better understanding of the
complexity of testing asymmetry in the bounded-degree graph model. In contrast, we discard the
problem of testing asymmetric graphs in the dense graph model, showing that it is almost trivial,
because all graphs are close to be asymmetric in that model (see Section 3).

We review both sections in the following corresponding subsections. But before going so, we
review a couple of basic conventions. First, throughout this work, we consider undirected simple
graphs (i.e., no self-loops and parallel edges). Second, we discuss graph properties, which are each
a set of graphs that is closed under isomorphism; that is, Π is a graph property if for every graph
G = (V,E) and any bijection π : V → V ′ it holds that G ∈ Π if and only if π(G) ∈ Π.

1.1 In the Bounded-Degree Graph Model

In the bounded-degree model, graphs are represented by their incidence functions and distances
are measured as the ratio of the number of differing incidences over the maximal number of edges.
Specifically, for a degree bound d ∈ N, we represent a graph G = ([n], E) of maximum degree d
by the incidence function g : [n] × [d] → [n] ∪ {0} such that g(v, i) indicates the ith neighbor of v
(where g(v, i) = 0 indicates that v has less than i neighbors). The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the symmetric difference between E and E′ over dn/2,
and oracle access to a graph means oracle access to its incidence function.

Definition 1.2 (testing graph properties in the bounded-degree graph model): For a fixed degree
bound d, a tester for a graph property Π is a probabilistic oracle machine that, on input parameters
n and ϵ, and oracle access to (the incidence function of) an n-vertex graph G = ([n], E) of maximum
degree d, outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ϵ-far from Π, then the tester accepts with probability at most 1/3, where G is ϵ-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π of maximum degree d it holds that the
symmetric difference between E and E′ has cardinality that is greater than ϵ · dn/2.

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error;
otherwise, we say that it has two-sided error.
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The query complexity of a tester for Π is a function (of the parameters d, n and ϵ) that represents
the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ϵ. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). The query complexity of ϵ(n)-testing Π is defined as the query
complexity of testing when the proximity parameter is set to ϵ(n); that is, we say that the query
complexity of ϵ(n)-testing Π is at least Q(n) if distinguishing between n-vertex graphs in Π and
n-vertex graphs that are ϵ(n)-far from Π requires at least Q(n) queries.

Theorem 1.3 (lower bound on the query complexity of testing asymmetric graphs (in the bounded-
degree graph model)): For every d ≥ 3, the query complexity of O(1/ log n)-testing asymmetry of
n-vertex graphs is at least Ω̃(n0.5). Furthermore, this holds even if the tested graph is guaranteed
to consist of connected components of size O(log n).

We stress that this result holds also for two-sided error testers. The result generalize to graphs with
connected components of size at most s(n) = Ω(log n), but in that case the gap between the upper
and lower bounds is poly(s(n)); see Theorem 2.1. The proof relies on the fact that the number of
asymmetric bounded-degree s-vertex graphs is exp(Ω(s log s)). Hence, using o(

√
n/s(n)) queries

one cannot distinguish the following two distributions:

1. A random n-vertex graph that consists of n/s(n) different asymmetric s(n)-vertex connected
components;

2. A random n-vertex graph that consists of n/s(n) asymmetric s(n)-vertex connected com-
ponents such that each connected component is isomorphic to exactly one other connected
component.

(See details in Section 2.)
In contrast, for s(n) = o((log n)/ log logn), the (two-sided error) testing problem is trivial,

because the number of bounded-degree s-vertex graphs is upper-bounded by exp(O(s log s)). This
implies that an n-vertex graph that consists of connected components of size at most s(n) =
o((log n)/ log logn) must contain some isomorphic components, and is thus symmetric.

Needless to say, Thorem 1.3 tells us nothing about the query complexity of ϵ(n)-testing asym-
metry of n-vertex graphs when ϵ(n) = ω((log log n)/ log n). Restricting ourselves to one-sided error
testers, the following resuult tell us that in that case the query complexity is at least exponential
in the proximity parameter (i.e., ϵ).

Theorem 1.4 (lower bound on the query complexity of one-sided error testing asymmetric graphs
(in the bounded-degree graph model)): For every d ≥ 3 and every ϵ : N → [0, 1] such that
ϵ(n) = ω((log log n)/ log n), the query complexity of one-sided error ϵ(n)-testing asymmetric n-
vertex graphs is at least exp(Ω(1/ϵ(n)) log(1/ϵ(n))). Furthermore, this holds even if the tested
graph is guaranteed to consist of connected components of size O(1/ϵ(n)).

The proof, also presented in Section 2, follows the basic strategy of Theorem 1.3 with a twist that
capitalizes on the one-sided error condition. Note that in both cases the lower bound is (slightly)
super-exponential in the size of the connected components. We warn, however, that the size of the
connected components is inversely proportional to the proximity parameter. This dependence is
inherent in light of the following result.
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Proposition 1.5 (on graphs that consists of asymmetric connected components (in the bounded-
degree graph model)): For every d ≥ 3 and every s : N → N, every n-vertex d-regular graph
that consists of connected components that are asymmetric s(n)-vertex graphs is O(1/s(n))-close to
being asymmetric.

(The proof is also presented in Section 2.)
We stress that Theorems 1.3 and 1.4 leave open the question of providing reasonable estimates

for the query complexity of ϵ-testing asymmetric n-vertex graphs (in the bounded-degree graph
model), when ϵ > 0 is a constant. Specifically, it may be that the query complexity of ϵ-testing
asymmetric n-vertex graphs is f(ϵ) for some function f : (0, 1] → N (e.g., f(ϵ) = exp(Θ̃(1/ϵ))), but
it may also be that this complexity must depend on n. Furthermore, it may be that Ω(1)-testing
asymmetric graphs requires linear query complexity.

On testing the set of symmetric graphs.

We mention that testing the set of symmetric graphs (in the bounded-degree model) is almost
trivial; specifically, the query complexity is 0 if ϵ ≥ 4/n, and dn = O(d/ϵ) otherwise. This is
the case because, with respect to a degree bound d, every n-vertex graph is 2d

dn/2 -close to being

symmetric (e.g., by making two vertices isolated).

1.2 In the Dense Graph Model

In the dense graph model, a graph G = ([n], E) is represented by its adjacency predicate, g :
[n]× [n] → {0, 1}, such that g(u, v) = 1 if and only if {u, v} ∈ E. The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the symmetric difference between E and E′ over

(
n
2

)
,

and oracle access to a graph means oracle access to its adjacency predicate.

Definition 1.6 (testing graph properties in the dense graph model): A tester for a graph property
Π is a probabilistic oracle machine that, on input parameters n and ϵ, and oracle access to (the
adjacency predicate of) an n-vertex graph G = ([n], E), outputs a binary verdict that satisfies the
following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ϵ-far from Π, then the tester accepts with probability at most 1/3, where G is ϵ-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ϵ ·

(
n
2

)
.

The query complexity of a tester for Π is a function (of the parameters n and ϵ) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ϵ. As stated upfront, it turns out that testing the set of asymmetric graphs in the dense
graph model is almost trivial; specifically,

Theorem 1.7 (testing asymmetric graphs in the dense graph model): The query complexity of
testing asymmetry graphs is 0 if ϵ > O((log n)/n), and Õ(1/ϵ2) otherwise.

This holds because in the first case (i.e., ϵ > O((log n)/n)), every n-vertex graph is ϵ-close to being
asymmetric (see Proposition 3.1), whereas in the second case one can afford to retrieve the entire
graph (since

(
n
2

)
= Õ(1/ϵ2)).
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On testing the set of symmetric graphs.

We mention that testing the set of symmetric graphs is also almost-trivial; specifically, the query
complexity is 0 if ϵ ≥ 1/n, and

(
n
2

)
= O(1/ϵ2) otherwise. This is the case because every n-vertex

graph is 1
n -close to being symmetric, since by [4, Thm. 1] any n-vertex graph can be made symmetric

by modifying the edge relation of at most n−1
2 vertex-pairs. (Note that an upper bound of n− 1 is

obvious by picking two vertices u and v, and modifying the neighborhood of u to equal that of v.)

2 In the Bounded-Degree Graph Model

In this section we present proofs of the results that were stated in Section 1.1. Starting with
Theorem 1.3, we first generalize its claim by replacing the logarithmic bound with an arbitrary

function s : N → N such that s(n) = Ω
(

logn
log logn

)
.

Theorem 2.1 (Theorem 1.3, generalized): For every d ≥ 3 and any s : N → N such that s(n) =
Ω((log n)/ log logn), the query complexity of (1/(3d · s(n)))-testing whether an n-vertex graph is
asymmetric is Ω((n/s(n))1/2). This holds even if it is guaranteed that the tested graph consists of
connected components of size at most s(n).

We stress that the bound holds also for two-sided error testers.

Proof: We use the following facts, proved in [2, 3] (for every d ≥ 3):

(F1): Most d-regular s-vertex graphs are asymmetric,

(F2): The number of d-regular s-vertex graphs is Nd(s) = Ω(s/d)ds/2.

Note that (F1) holds even if we require the graphs to be connected, since most d-regular graphs

are actually expanders. Also, for some constant c and s(n) = c log2 n
d log2 log2 n

it holds that Nd(s(n))
s(n)! >

2(0.5d−1)c log2 n−o(logn), which is larger than n when c > 2/(d − 2). It follows that there exists
a collection, denoted C, of m = n/s(n) non-isomorphic s(n)-vertex d-regular graphs that are
asymmetric and connected. The theorem follows by showing that Ω(

√
m) queries are necessary for

distinguish the following two distributions:

1. A random isomorphic copy of the n-vertex graph G1 that consists of copies of all graphs in
C; that is, G1 consists of m connected components such that each graph in C appears as a
connected component.

2. A random isomorphic copy of an n-vertex graph that consists of two copies of each of m/2
graphs selected at random in C; that is, we first select a random m/2-subset of C, denoted
C ′, and take a random isomorphic copy of the n-vertex graph GC′ that consists of two copies
of each graph in C ′.

Note that each graph in the support of the first distribution is asymmetric, whereas each graph
in the support of the second distribution is (1/(3d · s(n)))-far from being asymmetric. The latter
claim holds because making GC′ asymmetric requires modifying the incidence of at least one vertex
in at least m/2 of its connected components, which amounts to at least m

4 = n
4s(n) >

1
3d·s(n) · dn/2

edge-modifications.
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The fact that Ω(
√
m) queries are necessary to distinguish the foregoing two distributions is

proved by the “birthday” argument. Specifically, when making q queries to a graph drawn from
the second distribution, we encounter vertices in two different connected components that are
isomorphic to the same graph (in C) with probability at most

(
q
2

)
/|C ′|, where |C ′| = m/2. Whenever

this event does not occur, the answers are distributed identically to the way they are distributed
when querying a graph drawn from the first distribution.

Proof of Theorem 1.4.

Using the strategy of the proof of Theorem 2.1, we prove Theorem 1.4, which asserts that for
any ϵ : N → [0, 1] such that ϵ(n) = o((log log n)/ log n), the query complexity of ϵ(n)-testing with
one-sided error whether an n-vertex graph is asymmetric is exp(ω(1/ϵ(n))).

Setting s(n) = Θ(1/ϵ(n)), recall that the number of d-regular asymmetric s(n)-vertex graphs is
(1− o(1)) ·Nd(s) = Θ(s/d)ds/2. Now, we consider a generic n-vertex graph that contains copies of
all asymmetric s(n)-vertex graphs (as connected components). Specifically, we consider two cases:

1. The graph contains only s(n)-vertex connected components. In this case, as shown in the
proof of Theorem 2.1, the graph is (1/3d · s(n))-far from being asymmetric.1 Hence, an
ϵ(n)-tester must reject this graph (with probability at least 2/3).

2. The tested n-vertex graph contains a single copy of each of the asymmetric s(n)-vertex graphs
along with an asymmetric M -vertex connected component, where M = (n − ((1 − o(1)) ·
Nd(s(n))/s(n))) = n − o(n). In this case, the tested graph is asymmetric, and a one-sided
tester must accept it with probability 1.

Thus, when testing these types of graphs, a one-sided error tester must see two isomorphic connected
components in order to reject, which means that its query complexity must be Ω(

√
Nd(s(n))) =

exp(Ω(s(n) log s(n))).

Proof of Proposition 1.5.

Lastly, we prove Proposition 1.5, which asserts that for every s : N → N, every n-vertex d-regular
graph that consists of connected components that are asymmetric s(n)-vertex graphs is O(1/s(n))-
close to being asymmetric.

The basic idea is to arrange the connected components in a sequence, pick two vertices in each
connected component and connect the second vertex of the ith component to the first vertex of the
i+1st component. To simplify the analysis, we may delete all edges from n/s(n)2 of the components
and use the “freed” vertices to connect the other components via 2-paths rather than by edges.
More importantly, we need to orient the “super path”; we can do this by connecting a single vertex
to the first vertex of the first component and an (s(n)− 1)-vertex path to the second vertex of the
last component.

1Recall that this follows from the fact that almost all its connected components are isomorphic to other con-
nected components, because Nd(s(n)) = o(n/s(n)), and so the incidence of at least one vertex in each of almost all
components must be modified.
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3 In the Dense Graph Model

As stated in Section 1.2, Theorem 1.7 follows immediately from the following result.

Proposition 3.1 (all graphs are close to being asymmetric): In the dense graph model, every

n-vertex graph G is O(logn)
n -close to being asymmetric.

Proof: Given an arbitrary graph G = ([n], E), we construct a random variant of it, denoted
G′, by re-randomizing O(n log n) of its adjacencies, and show that (w.h.p.) the resulting graph is
asymmetric. Specifically, we consider the following “randomized” version of G.

Construction 3.1.1 (construction of G′): Given an arbitrary graph G = ([n], E), we proceed as
follows.

1. Select an arbitrary subset, S, of ℓ = O(log n) vertices in G.

2. Replace the subgraph of G induced by S with a random ℓ-vertex graph.

3. Replace the bipartite subgraph that connects S and [n] \ S by a random bipartite graph; that
is, for each s ∈ S and v ∈ [n] \ S, the edge {s, v} in contained in the resulting graph G′ with
probability 1/2.

We shall first show that, with very high probability, the subgraph of G′ induced by S is not
isomorphic to the subgraph of G′ that is induced by any other ℓ-subset.

Claim 3.1.2 (uniqueness of the subgraph induced by S): For every ℓ-subset S fixed in Step 1 of
Construction 3.1.1, with high probability over Steps 2 and 3, for every ℓ-subset S′ ̸= S of [n], the
subgraph of G′ induced by S′ is not isomorphic to the subgraph of G′ induced by S.

Proof: The case of S′∩S = ∅ is easy, because in this case the subgraph of G′ induced by S′ is fixed
in Step 1 (since it equals the subgraph of G induced by S′), whereas a random ℓ-vertex graph (as

selected in Step 2) is isomorphic to this fixed graph with probability at most ℓ! · 2−(
ℓ
2) ≪

(
n
ℓ

)−1
,

where the inequality uses a sufficiently large ℓ = O(log n). Hence, we can afford to take a union
bound over all ℓ-subsets that are disjoint of S. Unfortunately, for sets that are not disjoint of S, the
foregoing probability bound does not hold, and a more careful analysis is called for. Nevertheless,
the foregoing analysis does provide a good warm-up towards the rest.

First, for each ℓ-set S′ ⊂ [n] such that S′ ̸= S, we shall upper-bound the probability that
the subgraphs of G′ induced by S and by S′ are isomorphic, as a function of |S ∩ S′|. For every

bijection π : S → S′, let FP(π)
def
= {v ∈ S : π(v) = v} denote the set of fixed-points of π, and note

that |FP(π)| ≤ ℓ− 1 (since S ̸= S′). Now, letting GR denote the subgraph of G induced by R, we
shall show that the probability that there exists a bijection π : S → S′ such that π(G′

S) = G′
S′ is

upper-bounded by ∑
π:S

1-1→S′

min
(
2−|FP(π)|·(ℓ−|FP(π)|)/3, 2−(

(ℓ−|FP(π)|)/3
2 )

)
(1)
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and observe that Eq. (1) equals∑
f∈{0,...,|S∩S′|}

∑
π:|FP(π)|=f

min
(
2−f ·(ℓ−f)/3, 2−(

(ℓ−f)/3
2 )

)
≤

∑
f∈{0,...,|S∩S′|}

ℓ!

f !
· 2−max(6·f ·(ℓ−f),(ℓ−f)·(ℓ−f−1))/18

≤
∑

f∈{0,...,|S∩S′|}

ℓ!

f !
· 2−(ℓ−f)·(6f+(ℓ−f−1)))/36

<
ℓ!

|S ∩ S′|!
· 2−Ω((ℓ−|S∩S′|)·ℓ) (2)

To justify the upper bound claimed in Eq. (1), we fix an arbitrary bijection π : S → S′ and consider
the directed graph defined by π. Observing that this subgraph consists of directed cycles (of vertices
of S) and paths (ending at a vertex of S′), we identify a set I ⊆ S \FP(π) such that π(I)∩I = ∅ and
|I| ≥ (ℓ − |FP(π)|)/3. Letting eG′(u, v) = 1 if {u, v} is an edge in G′ and eG′(u, v) = 0 otherwise,
observe that π(G′

S) = G′
S′ if and only if eπ(G′)(π(u), π(v)) = eG′(π(u), π(v)) for every {u, v} ∈

(
S
2

)
.

Noting that eπ(G′)(π(u), π(v)) = eG′(u, v), the first bound in Eq. (1) is justified by

PrG′

[
∀(u, v)∈

(
S

2

)
: eπ(G′)(π(u), π(v)) = eG′(π(u), π(v))

]
≤ PrG′ [∀(u, v)∈FP(π)×I : eG′(u, v) = eG′(π(u), π(v))]

=
∏

(u,v)∈FP(π)×I

PrG′ [eG′(u, v) = eG′(u, π(v))]

= 2−|FP(π)|·|I|

≤ 2−|FP(π)|·(ℓ−|FP(π)|)/3

where the first equality is due to the disjointness of the sets FP(π)× I and FP(π)× π(I) (which in
turn follows from π(I) ∩ I = ∅), and the second equality is due to the fact that the incidences of
all vertices in FP(π) ⊆ S are random. Similarly, we justify the second bound in Eq. (1) by

PrG′

[
∀{u, v}∈

(
S

2

)
: eπ(G′)(π(u), π(v)) = eG′(π(u), π(v))

]
≤ PrG′

[
∀{u, v}∈

(
I

2

)
: eG′(u, v) = eG′(π(u), π(v))

]
=

∏
{u,v}∈(I2)

PrG′ [eG′(u, v) = eG′(π(u), π(v))]

= 2−(
|I|
2 )

≤ 2−(
(ℓ−|FP(π)|)/3

2 )

where the equalities are due to the disjointness of the sets
(
I
2

)
and

(
π(I)
2

)
and to the fact that the

incidences of all vertices in I ⊆ S \ FP(π) ⊆ S are random. This completes the justificaytion of
Eq. (1).
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Combining Eq. (1)&(2) with a union bound over all ℓ-subsets S′ ⊂ [n] that are different from
S, we upper-bound the probability that the subgraphs of G′ induced by S and by some other ℓ-set
are isomorphic by ∑

S′∈([n]
ℓ )\{S}

ℓ!

|S ∩ S′|!
· 2−Ω((ℓ−|S∩S′|)·ℓ)

=
∑

i∈{0,...,ℓ−1}

(
ℓ

i

)
·
(
n− i

ℓ− i

)
· ℓ!

i!
· 2−Ω((ℓ−i)·ℓ)

=
∑

i∈{0,...,ℓ−1}

(
ℓ

i

)2

· (n− i)!

(n− ℓ)!
· 2−Ω((ℓ−i)·ℓ) (3)

where the index i represents the size of the intersection of S′ with S. Using a sufficiently large
ℓ = O(log n), we upper-bound Eq. (3) by

∑
i∈{0,...,ℓ−1}

nℓ−i ·
(
ℓ

i

)2

· 2−Ω((ℓ−i)·ℓ)

< ℓ · max
i∈{0,...,ℓ−1}

{
nℓ−i ·

(
ℓ

i

)2

· 2−Ω((ℓ−i)·ℓ)

}
= ℓ ·

(
n · ℓ2 · 2−Ω(ℓ)

)
which is o(1). The claim follows. □

Conclusion. Using Claim 3.1.2, we claim that (w.h.p.) the graph G′ is asymmetric. This holds
because each of the following claims holds with high probability.

1. Any automorphism of the graph G′ maps the set S to itself.

(Indeed, this is due to Claim 3.1.2.)

2. The subgraph of G′ induced by S is asymmetric.

(Recall that by [4], almost all ℓ-vertex graphs are asymmetric.)

3. Any vertex v ∈ [n] \ S has a different “neighborhood pattern” with respect to S; that is, for
every u ̸= v ∈ [n]\S, there exists w ∈ S such that {u,w} is an edge in G′ if and only if {v, w}
is not an edge in G′.

By combining Conditions 1 and 2, it follows that any automorphism of the graph G′ maps each
vertex w ∈ S to itself, whereas by Condition 3 such an isomorphism must map each v ∈ [n] \ S to
itself. Hence, the claim (that G′ is asymmetric) follows, and the proposition follows by noting that
G′ is ℓ·n

n2 -close to G.

References

[1] L. Babai and E.M. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium on the
Theory of Computing, pages 171–183, 1983.

9



[2] B. Bollobas. Distinguishing Vertices of Random Graphs. North-Holland Mathematics Studies,
Vol. 62, pages 33–49, 1982.

[3] B. Bollobas. The Asymptotic Number of Unlabelled Regular Graphs. J. Lond. Math. Soc.,
Vol. 26, pages 201–206, 1982.

[4] P. Erdos and A. Renyi. Asymmetric Graphs. Acta Mathematica Hungarica, Vol. 14 (3), pages
295–315, 1963.

[5] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[6] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract in 37th
FOCS, 1996.

[7] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

10


