On properties that are non-trivial to test

Nader H. Bshouty*

Oded Goldreich[†]

December 19, 2024

Abstract

In this note we show that all sets that are neither finite nor too dense are non-trivial to test in the sense that, for every $\epsilon > 0$, distinguishing between strings in the set and strings that are ϵ -far from the set requires $\Omega(1/\epsilon)$ queries. Specifically, we show that if, for infinitely many n's, the set contains at least one n-bit long string and at most $2^{n-\Omega(n)}$ many n-bit strings, then it is non-trivial to test.

A preliminary version of this work was posted as TR22-013 of ECCC.

The main result. This note refers to the query complexity of property testing (see the text-book [2]). Specifically, a tester for a set of strings S is explicitly given two parameters, a length parameter $n \in \mathbb{N}$ and a proximity parameter $\epsilon > 0$, as well as query access to an n-bit string x. The tester is required to distinguish the case that x is in S from the case that x is ϵ -far from S, where x is ϵ -far from S if its Hamming distance from each |x|-bit long string in S is greater than $\epsilon \cdot |x|$. (By distinguishing between strings in S and strings in S we mean accepting each string in S with probability at least S-bit least S

Definition 1 (non-trivial to test): A set of strings S is non-trivial to test if, for every $\epsilon > 0$ and infinitely many $n \in \mathbb{N}$, the query complexity of testing S, with parameters n and ϵ , is $\Omega(1/\epsilon)$.

Theorem 2 (sufficient condition for non-triviliaty): Suppose that, for infinitely many n's, the set S contains at least one n-bit long string and at most $2^{n-\Omega(n)}$ many n-bit strings. Then, S is non-trivial to test.

Note that the sufficient condition is necessary in general. In particular, a set S that, for every n, contains $2^{n-o(n)}$ many n-bit long strings may be trivial to test in the sense that, for every $\epsilon > 0$ and all sufficiently large n, every n-bit long string is ϵ -close to S.

Proof: We use a reduction from the special case in which every n-bit long string in S has Hamming weight at most $n - \Omega(n)$. Letting w be an n-bit long string of maximum Hamming weight, we consider a random variable X obtained from w by flipping each 0-entry in w to 1 with probability

^{*}Department of Computer Science, Technion, Haifa, ISRAEL. Email: bshouty@cs.technion.ac.il.

[†]Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. Email: oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1146/18). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 819702).

 $O(\epsilon)$. We observe that X is ϵ -far from S and that distinguishing w from X requires $\Omega(1/\epsilon)$ queries. Transforming each instance of the general case to an instance of the special case (by XORing with a random string) we establish the theorem. Details follow.

Let c < 1 be a constant such that for infinitely many n's the set $S^{(n)} = S \cap \{0,1\}^n$ is non-empty and contains at most 2^{cn} strings. For a sufficiently small $\eta = \eta(c) > 0$, we shall first show that for such n's there exists $r \in S^{(n)}$ such that the relative Hamming weight of each string in $r \oplus S^{(n)} = \{r \oplus s : s \in S^{(n)}\}$ is at most $1 - \eta$.

The foregoing claim is proved by the probabilistic method. Letting $\operatorname{wt}(x) = |\{i \in [|x|] : x_i = 1\}|/|x|$ denote the relative Hamming weight of x, we have

$$\begin{split} \Pr_{r \in \{0,1\}^n} \left[\exists s \in S^{(n)} \ \, \text{wt}(r \oplus s) > 1 - \eta \right] & \leq \ \, |S^{(n)}| \cdot \Pr_{r \in \{0,1\}^n} \left[\text{wt}(r) > 1 - \eta \right] \\ & \leq \ \, 2^{c \cdot n} \cdot \sum_{i < \eta n} \binom{n}{i} \cdot 2^{-n} \\ & = \ \, 2^{(c + H_2(\eta) - 1) \cdot n} \, < \, 1, \end{split}$$

where H_2 denotes the binary entropy function. Hence, there exists an n-bit string r such that $\tau \stackrel{\text{def}}{=} \max_{s \in S^{(n)}} \{ \operatorname{wt}(r \oplus s) \} \leq 1 - \eta$, and let $w \in r \oplus S^{(n)}$ be such that $\operatorname{wt}(w) = \tau$.

For every $\epsilon \in (0, \eta/2)$, let X be a random variable, distributed over n-bit strings, such that if $w_i = 1$ then $X_i = 1$ and otherwise $\Pr[X_i = 1] = 2\epsilon/\eta$ independently of all other X_j 's. Note that $\mathrm{E}[\operatorname{\mathtt{wt}}(X)] = \operatorname{\mathtt{wt}}(w) + \frac{2\epsilon}{\eta} \cdot (1 - \operatorname{\mathtt{wt}}(w)) \geq \operatorname{\mathtt{wt}}(w) + 2\epsilon$ (equiv., $\mathrm{E}[\sum_{i:w_i = 0} X_i] = 2\epsilon \cdot n$). Hence, assuming $n = \omega(1/\epsilon)$, with high probability, X is ϵ -far from $r \oplus S^{(n)}$, since $\Pr[\operatorname{\mathtt{wt}}(X) > \operatorname{\mathtt{wt}}(w) + \epsilon] = 1 - o(1)$ (equiv., $\Pr[\sum_{i:w_i = 0} X_i > \epsilon n] = 1 - o(1)$), whereas $\max_{s \in S^{(n)}} \{\operatorname{\mathtt{wt}}(r \oplus s)\} = \operatorname{\mathtt{wt}}(w)$. On the other hand, distinguishing $w \in r \oplus S^{(n)}$ from X requires $\Omega(\eta/\epsilon) = \Omega(1/\epsilon)$ queries, since $\Pr[X_i \neq w_i] \leq 2\epsilon/\eta$ for every $i \in [n]$.

It follows that ϵ -testing $r \oplus S^{(n)}$ (i.e., distinguishing strings in $r \oplus S^{(n)}$ from strings that are ϵ -far from $r \oplus S^{(n)}$) requires $\Omega(1/\epsilon)$ queries. The theorem follows, since ϵ -testing $r \oplus S^{(n)}$ reduces to ϵ -testing $S^{(n)}$ (i.e., given an ϵ -tester for $S^{(n)}$, we obtain an ϵ -tester for $r \oplus S^{(n)}$ by XORing the input string with r (and observing that the distance of x from $r \oplus S^{(n)}$) equals the distance of $x \oplus r$ from $S^{(n)}$)).

Digest. A key observation used in the proof is that shifting a (not too dense) set by XORing its elements with a random string yields a set of strings such that each string has relative Hamming weight that is closed to 0.5. Observing that the pairwise distances between strings is preserved and replacing η by $0.5 - \epsilon$, we obtain the following result (where n and k = k(n) are viewed as varying).

Proposition 3 (obtaining almost balanced error correcting codes): Let $C: \{0,1\}^k \to \{0,1\}^n$ be an error correcting code of relative distance δ , and ϵ be such that $\frac{k}{n} + H_2(0.5 - \epsilon)$ is upper-bounded by a constant that is smaller than 1. Then, with very high probability over the choice of $r \in \{0,1\}^n$, it holds that $C_r: \{0,1\}^k \to \{0,1\}^n$ such that $C_r(x) = C(x) \oplus r$ is an error correcting code of relative distance δ in which all codewords have relative Hamming weight $0.5 \pm \epsilon$.

Proof: Analogously to the proof of Theorem 2, we have

$$\begin{split} \Pr_{r \in \{0,1\}^n} \left[\exists x \in \{0,1\}^k \ \operatorname{wt}(r \oplus C(x)) \not\in [0.5 \pm \epsilon] \right] & \leq \ 2 \cdot 2^k \cdot \sum_{i < (0.5 - \epsilon) \cdot n} \binom{n}{i} \cdot 2^{-n} \\ & = \ 2^{1 + \left(\frac{k}{n} + H_2(0.5 - \epsilon) - 1\right) \cdot n} \end{split}$$

and the claim follows by the hypothesis that $\frac{k}{n} + H_2(0.5 - \epsilon)$ is upper-bounded by a constant that is smaller than 1.

Postscript. Subsequent to our work, Fischer [1] proved a stronger result of a similar nature. Specifically, both papers yield an $\Omega(1/\epsilon)$ query lower and both assume that the property of n-bit strings is non-empty, but we assume that the property has at most $2^{n-\Omega(n)}$ strings, whereas Fischer assumes the existence of a string that is $\Omega(1)$ -far from the property. Note that our hypothesis imply Fischer's (i.e., if each n-bit string is α -close to $S^{(n)}$, then $\frac{|S^{(n)}|}{2^n} \geq 2^{-H_2(\alpha) \cdot n}$). On the other hand, Fischer's result can be proved by following our proof strategy.

Acknowledgements. We thank Rocco Servedio for a useful discussion. We are also grateful to Augusto Modanese for pointing out an unclear argument in a previous verion.

References

- [1] E. Fischer. A Basic Lower Bound for Property Testing. arXiv:2403.04999 [cs.DS].
- [2] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

¹Specifically, if $s \in \{0,1\}^n$ is α -far from $S^{(n)}$, then 0^n is α -far from $S^{(0)} \oplus s$. Switching between 0s and 1s, we obtain a non-empty set such that all strings in it have maximal weight $1 - \alpha$, and proceed as in the last part of the proof of Theorem 2.