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Abstract

We provide an overview of an analysis of the soundness error of parallel repetitions of gen-
eral (i.e., two-sided error) interactive proof systems. The bottom-line is that the analysis of
the general case, in which a majority decision is used, can be reduced to the analysis of the
conjunction rule that is used in the one-sided error case. This reduction uses a general result of
Panconesi and Srinivasan (SICOMP, 1997), which is worthy of wider familiarity. As a warm-up,
we present a very simple reduction that can be used when the original interactive proof system
has error probability that is smaller than 1/4.

A preliminary version of this text was posted in September 2023 on the author’s webpage.1

1 Introduction

We assume that the reader is familiar with the basic definitions of interactive proof systems (see,
e.g., [1, Sec. 2.2] and [2, Sec. 9.1]).2

It is taken for granted that the error probability of interactive proof systems can be reduced by
parallel repetitions, but this belief requires a precise formulation as well as a proof. Starting with
the formulation, recall that a general formulation of interactive proof systems refers both to the
completeness error (i.e., the probability that a yes-instance is rejected) and the soundness error
(i.e., the probability that a no-instance is accepted). In one-sided error systems (aka systems with
perfect completeness), the completeness error is zero. In general, the error probability of a system
is the maximum of the completeness and soundness errors.

The foregoing belief states that, for any interactive proof system with error probability at most
β < 1/2, executing m copies of the system in parallel and having the verifier decide according to a
majority rule (of the decisions made in the m copies) yields an interactive proof system with error
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1See https://www.wisdom.weizmann.ac.il/∼oded/cc-texts.html
2An interactive proof system for a set S is a two-party game in which a computationally unbounded party (called:

the prover) tries to convince an probabilistic polynomial-party (called: the verifier) that their common input, denoted
x, is in the set S. Such a proof system comes with statistically-relaxed notions of completeness and soundness:

� Completeness means that if x ∈ S, then the prescribed prover can convince the verifier that x is indeed in S
(except, maybe, with small probability).

� Soundness means that if x ̸∈ S, then, no matter what strategy the (cheating) prover follows, it will fail to
convince the verifier that x is in S (except with small probability).
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probability at most exp(−Ω((0.5−β)2 ·m)). We stress that the verifier acts in each of the m copies
according to the original prescribed (single copy) strategy, which means that its actions is each
copy are oblivious of the execution of the other copies. In contrast, the cheating prover may behave
arbitrarily; in particular, it may base its action in each copy on its current view of all m parallel
executions).

Nevertheless, the foregoing belief is correct, but the proof is more complex than one may expect.
The case of one-sided error probability (and a verifier deciding according to the conjunction rule)
was treated in [1, Apdx. C.1]. In that case, if the original proof systems has soundness error at
most s, then the resulting proof system (which uses m copies) has soundness error at most sm. The
proof of this claim is quite straightforward (alas tedious), and is reproduced in Section 3.

Intuitively, the proof (in the one-sided error case) is based on the fact that maximizing the
acceptance probability under the conjunction rule calls for maximizing the acceptance probability
in each copy. Unfortunately, it is unclear whether this intuitive holds under the majority rule,
which is employed in the general (i.e., two-sided error) case. We conjecture that the maximum
probability that a majority of the m copies accepts is obtained when the prover maximizes the
acceptance probability of each copy (independently of the others), but the analysis outlined next
does not rely on this conjecture.

2 The Reduction

Recall that we refer to a parallel execution of m copies of an interactive proof system with two-sided
error probability. Focusing on the no-instances, we wish to upper-bound the probability that the
majority of the copies accept (when the prover tries to maximize this probability while possibly
acting in each copy in a manner that depends on its view of all copies).3 We obtain the desired
upper bound by reduction to the one-sided error case (and the conjunction rule).

For illustration, suppose that the error bound β is a constant that smaller than 1/4. In this case,
for every no-instance, the probability that a majority of the copies accept is upper-bounded by the
probability that there exists an m/2-subset I of [m] such that all copies in I accept. This yields an
upper bound of

(
m

m/2

)
· βm/2, by using the analysis of the conjunction rule (see Section 3), which

asserts that the probability that all copies in I accept is at most β|I|. Now, using the hypothesis
that β < 1/4. it follows that

(
m

m/2

)
· βm/2 = exp(−Ω(m)). (Using an acceptance threshold of 0.66,

one can handle β = 1/3 in an analogous manner.)4

To handle arbitrary error bound β < 1/2, we use a more sophisticated argument. We first
observe that the completeness condition follows by using a prover strategy that applies an optimal
strategy to each of the copies, independently of the other copies. Focusing on the soundness
condition, our starting point is the observation that, for every set I, the probability that all copies
in I accept the input (i.e., a no-instance) is at most β|I|. Hence, although the m random events
that describe the verifier’s ruling in the m copies may be related (by the strategy of the prover),
we know that the conjunction of each k-subset of these events holds with probability at most βk.
At this point we apply a general result of [4], which states the following.

3The analysis of the completeness error is straightforward, because in that case both parties act in each copy
independently of the other m− 1 copies.

4The completeness error of the resulting proof system vanishes exponentially with ((1− β)− 0.66)2 ·m = Ω(m),
whereas its soundness error is upper-bounded by

(
m

0.66·m

)
· β0.66·m < (2 · β0.66)m < 0.99m.
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Theorem 1 (generalized Chernoff Bound): Let (ζ1, ..., ζm) be a joint distribution on {0, 1}m and
b1, ..., bm ∈ [0, 1] be numbers such that, for every subset I ⊆ [m], it holds that

Pr

[∧
i∈I

(ζi = 1)

]
≤

∏
i∈I

bi.

Then, for every c > b
def
=

∑
i∈[m] bi/m, it holds that

Pr

∑
i∈[m]

ζi > c ·m

 ≤ exp(−2 · (c− b)2 ·m).

Alternative proofs of Theorem 1 are given in [4, Sec. 3] and in [3]. The first proof generalizes the
standard proof of the Chernoff Bound, whereas the second proof uses a different strategy (and
actually derives the standard Chernoff Bound as a special case). Now, combining Theorem 1 with
Lemma 4 (of Section 3), we get

Theorem 2 (parallel repetition of interactive proof systems): Let A and B be arbitrary interactive
machines, and (A,B)(x) denote the binary output of B after interacting with A on common input
x. Let V be an interactive verifier of soundness error at most 0.5−δ; that is, for every no-instance
x, it holds that maxP ∗{Pr[(P ∗, V )(x) = 1]} ≤ 0.5 − δ(|x|). For any m : N → N, let V m denote a
verifier that, on input an m(n)-long sequence of n-bit long inputs, executes the corresponding m(n)
parallel copies of V , and outputs the majority verdict of these copies. Then, for every m(n)-long
sequence of no-instances (x1, ..., xm) ∈ ({0, 1}n)m(n) it holds that

max
P̂

{
Pr

[
(P̂ , V m)(x1, ..., xm(n)) = 1

]}
≤ exp(−2 · δ(n)2 ·m(n)).

In the special case of x1 = x2 = · · · = xm(n), one may use Lemma 3 instead of Lemma 4.

Proof: Let us spell out the straightforward proof. Fixing an arbitrary prover-strategy P̂ for
interacting with V m, we let (ζ1, ..., ζm) represent the verifier’s decisions in the m = m(n) copies
(i.e., ζi represents V ’s decision regarding the ith copy). For each I ⊆ [m], the event

∧
i∈I(ζi = 1)

represents the case that V m accepted in all copies in I when interacting with the prover-strategy
P̂ ; the probability of this event is upper-bounded by the probability that an arbitrary strategy P ∗

(which may depend on I) makes V m accept in these copies. Thus, applying Lemma 4, we infer
that the hypothesis of Theorem 1 holds, with bi = 0.5 − δ(n) (for every i ∈ [m]). Letting c = 0.5
and invoking Theorem 1, the current theorem follows.

Digest. The intriguing aspect of the proof of Theorem 2 is that it reduces the analysis of the
two-sided error case to the analysis of the one-sided error case. Actually, the reduction is from
the analysis of the majority rule (as applied to m parallel copies of an interactive proof system)
to the analysis of the conjunction rule (as applied to k ∈ [m] of these m copies). The reduction is
performed by Theorem 1, whereas the analysis of the conjuction rule is quite straightforward (and
is presented in Section 3). It is unfortunate that Theorem 1 is not better known.
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3 The One-Sided Error Case

This section actually deals with the analysis of the conjunction rule (when applied to k copies of
an interactive proof system). While the original motivation for this analysis was determining the
soundness error of interactive proof systems with perfect completeness, here the analysis is applied
to arbitrary interactive proof systems. The rest of the text is reproduced from [1, Apdx. C.1], with
minor revisions.

By k parallel repetitions of an interactive proof system, (P, V ), we mean a proof system
(Pk, Vk) in which the parties play in parallel k copies of (P, V ). That is, Vk (resp., Pk) gen-
erates k independently distributed random-pads, r1, ..., rk, for V (resp., ω1, ..., ωk for P ), and
sets its ith message to β1,i, ..., βk,i, where βj,i = V (rj , α1,j , ..., αi−1,j) (resp., to α1,i, ..., αk,i, where
αj,i = P (ωj , β1,j , ..., βi,j)). We stress that Vk accepts if and only if V would have accepted in all k
copies. We are interested in the soundness error of Vk, which only depends on V and k (and so Pk

and P are omitted from the rest of the discussion). For any pair of interactive machines, A and
B, let use denote by (A,B) the output of A after interacting with B, on common input x. The
Parallel Repetition Theorem for interactive proofs is captured by the following lemma.

Lemma 3 (folklore): Let V1 be an interactive machine, and Vk be an interactive machine obtained
from V1 by playing k versions of V1 in parallel. Let

p1(x)
def
= max

P ∗
{Pr[(P ∗, V1)(x) = 1]} , and

pk(x)
def
= max

P ∗
{Pr[(P ∗, Vk)(x) = 1]} .

Then
pk(x) = p1(x)

k .

Proof: Clearly, pk(x) ≥ p1(x)
k. The point is to prove pk(x) ≤ p1(x)

k. We stress that one may
not just assume that the optimal prover strategy against Vk consists of playing optimally but
independently in each of the k parallel copies. As we shall see below, this conjecture turns out to
be correct in the current setting (but is wrong in related settings such as multi-party interactive
proofs and computationally-sound proofs). Thus, a proof is due.

We start with a general description of the execution of an interactive proof system, where our
point of view is not of the parties themselves but rather of an external (all knowing) analyzer.
Fixing a verifier V we consider its interaction with a generic prover on any fixed common input,
denoted x. The verifier’s random choices can be thought of as corresponding to the contents of its
random-tape, called the random-pad. We assume without loss of generality that V sends the first
message and that the prover sends the last one. In each round, V ’s message is chosen depending
on the history of the interaction so far and according to some probability distribution induced by
V ’s local random-tape. The history so far corresponds to a fixed subset of possible random-pads,
and the possible messages to be sent correspond to a partition of this subset. Thus, each possible
message is sent with probability proportional to its part in this subset. The above description
corresponds to general interactive proofs. (In case of Arthur-Merlin games the situation is simpler:
V merely tosses a predetermined number of coins and sends the outcome to the prover.) As to the
prover’s messages, they are chosen arbitrarily (but are of length at most poly(|x|)). The interaction
goes on, for at most poly(|x|) rounds at which point the verifier stops outputting either accept or
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reject. The messages exchanged till that point are called a transcript of the interaction between
the prover and V . To simplify the exposition, we augment the transcript of the interaction by V ’s
random-pad. This way, V ’s accept/reject decision is determined by the augmented transcript (and
the input x).

The interaction between the prover and V on common input x may be viewed as a game in
which the prover’s objective is to maximize the probability that V accepts, and V ’s strategy is fixed
but mixed (i.e., probabilistic). The possible executions of this game are captured by the following
notion of a game tree.

Definition 3.1 (the game tree and its value): Let V and x be fixed.

� The tree Tx: The nodes in Tx correspond to prefixes of transcripts of possible interactions of
V with an arbitrary prover.

1. The root represents the empty interaction and is defined to be at level 0.

2. For every i ≥ 0, the edges going out from each 2ith level node correspond to the messages
V may send given the history so far, and the edges going out from each (2i + 1)st level
node correspond to the messages a prover may send given the history so far.

3. Leaves correspond to augmented transcripts as defined above, and so their direct ancestors
correspond to full transcripts.

� The value of Tx: The value of the tree is defined bottom-up as follows.

1. The value of a leaf is either 0 or 1 depending on whether or not V accepts in the augmented
transcript represented by it.

2. The value of an internal node at level 2i (aka verifier-node) is defined as the weighted
average of the values of its children, where the weights correspond to the probabilities
of the various verifier messages. (This definition holds also for the direct ancestors of
leaves, when viewing V ’s random-pad as an auxiliary, fictitious message sent by V .)

3. The value of an internal node at level 2i−1 (aka prover-node) is defined as the maximum of
the values of its children. This corresponds to the prover’s strategy of trying to maximize
V ’s accepting probability.

The value of the tree is defined as the value of its root.

We may assume, without loss of generality, that the averages taken in even-leveled nodes are plain
averages (rather than weighted ones). This is justified by duplicating odd-level nodes. We stress
that this modification is applied to the game-tree (not to the verifier), and results in a tree the
correspondence of which to the proof system is less obvious. Notice that we are dealing with a
general interactive proof, yet our analysis of the game-tree is a mental experiment (which need not
be efficiently implementable).

We consider the game-trees of both the basic proof system and the k-repeated proof system.
Fixing an input, we denote the first tree by T1 and the second by Tk. There is a natural 1-1 mapping
of nodes in Tk to sequences of k nodes in T1. Going from the leaves of Tk to its root, we prove
by induction that the value of each node is Tk equals the product of the values of the k nodes to
which it is mapped (by the above mapping). Specifically, denoting the values of node v in T1 by
val(v), and the value of node v in Tk by val(v), we prove the following claim by induction (from
the leaves).
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Claim 3.2 (the main claim): For every node, v = (v1, ..., vk) in Tk, it holds that val(v) =∏k
j=1 val(vj).

Proof: The claim is proved by induction from the leaves to the root. The base case (i.e., the values
at leaves) follows by the definition of the decision rule of Vk. As for the value of internal nodes,
the analysis splits according to the parity of their levels (resp., whether they are prover or verifer
nodes).

1. For a prover-node, v = (v1, ..., vk), denote its children in Tk by wi = (wi1
1 , ..., wik

k ), where
i = (i1, ..., ik) and wi

j is the i-th child in T1 of vj . Then, by definition of the game trees

val(v) = max
i

(val(wi)) , and (1)

val(vj) = max
i

(val(wi
j)) , for j = 1, ..., k. (2)

By induction, for every i = (i1, ..., ik),

val(wi) =
k∏

j=1

val(w
ij
j ) (3)

Combining Equations (1)–(3), and using the “distributivity of maximization and products”,
we get

val(v) = max
i

(val(wi))

= max
i

 k∏
j=1

val(w
ij
j )


=

k∏
j=1

max
ij

(val(w
ij
j ))

=

k∏
j=1

val(vj)

as required.

2. For a verifier-node, v = (v1, ..., vk), denote its children in Tk by wi = (wi1
1 , ..., wik

k ), where i
and the wi

j ’s are as above. Then, by definition of the game trees

val(v) = averi(val(w
i)) , and (4)

val(vj) = averi(val(w
i
j)) , for j = 1, ..., k. (5)

where averi(xi) denotes the average value of the xi’s which are to be understood from the
context. Again, Eq. (3) holds by induction, and so using the “distributivity of summation
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and products”, we get

val(v) = averi(val(w
i))

= averi

 k∏
j=1

val(w
ij
j )


=

k∏
j=1

averij (val(w
ij
j ))

=

k∏
j=1

val(vj)

as required.

The claim follows. □

Applying Claim 3.2 to the root, the lemma follows.

Generalization We comment that the above argument generalizes to the case in which the k
copies of V1 are invoked on possibly different inputs. That is,

Lemma 4 (parallel executions on different inputs): Let V1 be an interactive machine, and Vk be
an interactive machine obtained from V1 by playing k versions of V1 in parallel so that on input

x = (x1, ..., xk) to Vk the ith version of V1 is invoked on xi. Let p1(x)
def
= maxP ∗{Pr[(P ∗, V1)(x) =

1]}, and pk(x)
def
= maxP ∗{Pr[(P ∗, Vk)(x) = 1]}. Then

pk(x1, ..., xk) =
k∏

i=1

p1(xi)
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