Oded (June 21, 2022): The simplest yet derandomization of BPP based on HSG

In continuation to my choice Nr. 324, following is my take on the proof presented in Appendix A of
the paper of Cheng and Hoza (ECCC, TR20-016). Let HSG(s,n) denotes a hitting set (generated)
for circuits of size s that take n input bits.

Theorem 1 (the result): Suppose that HSG(s,n) can be computed in time T(s) € [s,2°]. Then,
BPtime(t) is contained in Dtime(T (T (poly(t)))).

Actually, the result is meaningful only if T(T'(m)) < 2™.

Proof: By standard error reduction, we may assume that, on input x, the BPtime algorithm,
denoted A, has error probability € = 1/2T(s(|z|) + O(n')) and runs in time t', where n’ = t/(n) =
O(t(n)log(1/€)) and s(n) = poly(t'(n)) is the size of the circuit C, : {0,1}"* — {0,1} such that
Cy(r) = A(x,r). (Formally we set e slightly smaller to avoid a vicious cycle.)?

For a generic n-bit input x to the algorithm A, we consider the following (s(n) 4+ O(n’))-sized

circuits C7, ,, : {0,1}" — {0,1} such that Chw(r) ¥ _c, (w @ 7), for all w € {0,1}". Letting

)

s' = s(n) + O(n'), we consider the following dichotomy regarding the C, ,’s.

Case of z being a no-instance: For every w € {0,1}" it holds that
Pr,[Cp ,(r)=1]>1—-€e>1/2.

Since each C!,  has size ¢/, it follows that for every w, there exists r € HSG(s',n’) such that
Cru(r)=1 (equlv Cy (wEB r) =0).

Case of = being a yes-instance: For every r € {0, 1}”/ it holds that
Pr,[C} (w)=1] < e
It follows that for every R C {0,1}" it holds that
Pry[3reRst. C, (w)=1] < |R|-e€

Equivalently, Pr,[3re Rs.t. Cy(w @ r)=0] < |R| - €.

In particular, for H < HSG(s',n’), considering C” : {0,1}* — {0,1} such that C”(w) = et

/\reH Cyr(w @ r), we have
PLCH@) =12 1 - T() e = 1/2,

since |H| < T'(s'). Observing that C has size at most s = T'(s") - (s’ + 1), it follows that
there exists w € HSG(s”,n’) such that CJ(w) = 1 (equiv., for every r € H it holds that
Crlwdr)=1).

'Recall that s(n) = poly(t(n)log(1/¢)), whereas we set ¢ to be somewhat smaller than 1/27(s(n) 4+ O(n’)). Using
T(s) < 2°M it follows that ¢ > exp(o(s(n))), which avoids a vicious cycle. For simplicity, we may just set e = 27",
and get s(n) = poly(t(n)). However, if both ¢ and T is polynomials, then we may set e = 1/poly(n), for a sufficiently
large poly.




In contrast, recall that if = is a no-instance, then for every w € HSG(s”,n’) there exists r € H such
that Cp(we@r) = 0.

This dichotomy yields a deterministic decision procedure, which on input = € {0,1}", determines
n', s’ and s”, computes H <+ HSG(s',n’) and H' + HSG(s”,n’), and accepts if and only if there
exists w € H' such that for every r € H it holds that A(x,w@®r) = 1. This decision procedure runs
in time
TS +T(")+T()-T(s")-t'(n) < 2-T(s)-T(T() - (s +1))-t'(n)

= T(poly(t(n))) - T(T'(poly(t(n))) - poly(t(rn)))) - poly(t(n)),

since s = O(s(n)) = poly(¢¥(n)) and ¢'(n) = o(t(n) - n). Using T(m) > m, we get a bound of
T (poly(t(n))) - T(T(poly(t(n)))) - poly(t(n)), which is upper-bounded by T(T'(poly(¢(n)))). W

Corollary 2 (a special case): Suppose that HSG(s,n) can be computed in poly(s)-time. Then,
BPtime(t) is contained in Dtime(poly(t)).

Remark 3 (a finer analysis): Recall that we used [HSG(s,n)| < T'(s). Using a finer bound of the
form |HSG(s,n)| < N(s), we can use s" = N(s') - (s’ + 1), and assuming that N(s) > s, we bound
the running-time of the decision procedure by

T(s) +T(s") + N(s') - N(s") - #'(n) < T(N(poly(t(n)))),

while using 8" < N(s')? < N(poly(t(n))) and N(N(poly(t(n)))® < T(N(poly(t(n)))).



