
Oded (August 29, 2022): On the All Pairs Distances Algorithm of Seidel (1995).

Seidel’s algorithm reduces the problem of finding all pairwise distances in an unweighted and
undirected graph to a logarithmic number of matrix multiplications (for matrices with small integer
entries).

The starting observation is that the distances between pairs of vertices in a graph G′ that
represents paths of length at most two deterimines the pairwise distances in the original graph G
up to one unit. That is, let A = (ai,j) be the adjacency matrix of the graph G, and B = (bi,j) be
the adjacency matrix of the graph G′ that represents the existence of paths of length at most two
in G (i.e., bi,j = 1 iff either ai,j = 1 or

∑
k ai,kak,j > 0). Then, distG(u, v) ∈ {2 · distG′(u, v), 2 ·

distG′(u, v)− 1}, where distH(u, v) denotes the distance between u and v in H.
The foregoing yields a recursive procedure for computing all pairwise distances, provided we

can distinguish between the case of distG(u, v) = 2 · distG′(u, v) and the case of distG(u, v) =
2 · distG′(u, v)− 1. Performing the latter task relies on the following dichotomy:

� If distG(u, v) = 2 · distG′(u, v), then for every neighbour w of v it holds that distG′(u,w) ≥
distG′(u, v). Hence, in this case∑

w∈Γ(v)

distG′(u,w) ≥ |Γ(v)| · distG′(u, v)

where Γ(v) denotes the set of neighbors of v in G.

� If distG(u, v) = 2 ·distG′(u, v)−1, then for every neighbour w of v it holds that distG′(u,w) ≤
distG′(u, v) and strict inequality holds for at least one w. Hence, in this case∑

w∈Γ(v)

distG′(u,w) < |Γ(v)| · distG′(u, v).

Lastly, observe that
∑

w∈Γ(v) distG′(u,w) equals the (u, v)th entry of TA, where T = (distG′(i, j))

is the matrix representing distances in G′. Hence, the recursive algorithm, denoted APD, proceeds
as follows, when given an adjacency matrix A of a (connected) graph.

1. Compute Z = AA by using matrix multication.

Let B = (bi,j) be a Boolean matrix such that, for every i ̸= j, it holds that bi,j = 1 if and
only if either ai,j = 1 or zi,j > 0.

2. If bi,j = 1 for every i ̸= j, then return 2B −A.

(Indeed, in this case, 2 · bi,j − ai,j equals 1 if ai,j = 1 and equals 2 otherwise.)

3. Compute T = (tu,v)← APD(B) by a recursive call.

(Recall that distG(u, v) ∈ {2 · tu,v , 2 · tu,v − 1}.)

4. Compute X = (xi,j)← TA by a matrix multiplication.

5. For every u ̸= v, let du,v = 2 · tu,v if xu,v ≥ |Γ(v)| · tu,v and du,v = 2 · tu,v − 1 otherwise.

Return D = (du,v).

Note that (integer) matrix multiplication was used twice: Once with 0-1 matrices, and once with
n-by-n matrices with entries in {0, 1, ..., n− 1}.

1

Finding shortests paths. While an explicit description of all shortest paths may have length
that is cubic in the number of vertices, it is reasonable to seek faster computation for the next
vertex of some shortest path. That is, given the distance matrix D = (du,v) of a graph, we seek
a matrix W = (wu,v) such that, for every u, v that satisfy du,v ≥ 2, it holds that wu,v is the first
vertex on a shortest path that connects u and v.

We first consider a simpler problem in which for Boolean n-by-n matrices A = (ai,j) and
B = (bi,j) we wish to find wi,j ’s such that if

∑
k ai,kbk,j > 0 then ai,wi,j = bwi,j ,j = 1. The key

observation is that such wi,j can be found by applying several random sieves to the matrix A.
Specifically, if

∑
k ai,kbk,j ∈ [2t−1, 2t], then letting si,k = 1 with probability 2−t and setting si,k = 0

otherwise, implies that Pr[
∑

k si,kai,kbk,j = 1] = Ω(1). (Indeed, we shall set a′i,k = si,kai,k.) In this
case, there exists a unique w ∈ {k : si,k=1} such that ai,kbk,j = 1. Now, letting a′′i,k = k is si,k = 1
and a′′i,k = 0 otherwise, we observe that this unique w equals

∑
k a

′′
i,kbk,j . This implies the following

randomized procedure.

1. Select t uniformly in [⌈log2 n⌉].

2. For each i ̸= k, set si,k = 1 with probability 2−t (and let si,k = 0 otherwise).1

3. Compute C = (ci,j)← A′B, where A′ = (a′i,k) = (si,kai,k).

Recall that ci,j = 1 indicates that there exists a unique w ∈ {k : si,k=1} such that ai,kbk,j = 1.

4. Compute T = (ti,j)← A′′B, where A′′ = (a′′i,k) = (a′i,kk).

5. For every i ̸= j, if ci,j = 1, then set wi,j = ti,j .

Note that, for every i ̸= j such that the (i, j)th entry of AB is non-zero, wi,j is set with probability
Ω(1/ log n). Hence, repeating the procedure for O(log2 n) times, yields the desired matrix W =
(wi,j); that is, all relevant wi,j ’s are set. (We comment that the foregoing description is different
from the one presented by Seidel.)

Getting back to the original problem (i.e., computing the next vertex on each shortest path), we
observe that we can solve this problem for pairs at distance δ by letting A be the adjacency matrix
of the graph and B be a Boolean matrix that represents all pairs at distance δ−1 (i.e., B = B(δ−1)

represents all vertex pairs that are at distance exactly δ − 1). Unfortuntely, this will require us to
solve n−2 instances of the simple (two Boolean matrix) problem. Using the fact that every w ∈ Γ(u)
satisfies dist(w, v) ∈ [dist(u, v) − 1,dist(u, v) + 1], we infer that dist(w, v) = dist(u, v) − 1 holds if
and only if dist(w, v) ≡ dist(u, v) − 1 (mod 3) holds. Hence the problem for pairs at distances
that are congruent to τ modulo 3 can be solved considering a Boolean matrix that reprsents all
pairs that are at a distance that is congrient to τ − 1 modulo 3. Thus, we may reduce the original
problem regarding the distance matrix D to three instances of the simple problem; specifically, the
instances (A,B(τ ′)) for τ ′ ∈ {0, 1, 2}, where A = (ai,j) is the adjacency matrix of the graph (i.e.,

ai,j = 1 iff di,j = 1) and B(τ ′) = (b
(τ ′)
i,j) such that b

(τ ′)
i,j = 1 if di,j ≡ τ ′ (mod 3) and b

(τ ′)
i,j = 0

otherwise.

1Actually, for each k ∈ [n], we can set all si,k’s to equal rk, where the (Boolean) rk’s are selected independently
such that Pr[rk =1] = 2−t. Furthermore, multiplying an n-by-n matrix that has m non-zero columns by an n-by-n
matrix reduces to multiplying an n-by-m matrix by an m-by-n matrix, which reduced to ⌈n/m⌉2 multiplications of
m-by-m matrices. This yields a complexity improvement if the “exponent of matrix multiplication” is larger than 2.

2

