
Oded: On the LTC of DELLM, November 29, 2021

This text provides a high-level description of the locally testable code constructed by
Dinur, Evra, Livne, Lubotzky, and Mozes (ECCC, TR21-151). In particular, the group
theoretic aspects are abstracted as much as possible.

1 The result

Ever since Dinur’s seminal proof of the PCP Theorem [4], which provided as a “by product” a
locally testable code (LTC) of 1/polylog rate, the question resolved by Dinur et al. [5] was on the
table. I would not say that this question was on the table before [4], because I think that even
the 1/polylog rate was not seen on the horizon. Prior to [4], we were still making slow progress at
much lower rates (i.e., even rate n−o(1), for block length n, was not known).

In any case, inspired by prior studies of High-Dimensional Expanders, but actually stepping
away from them, the current work provides a LTC of constant rate, where here and above I refer
to the regime of constant number of queries (as opposed to prior work that achieved constant rate
with a quasi-polylogarithmic number of queries [6, Sec. 13.4.3]) and take constant relative distance
for granted.

Needless to say, the current work challenges the two-regimes perspective (i.e., the constant query
regime vs the constant rate regime) as well as the possibility that there is a trade-off between the
level of locality (i.e., number of queries) and the rate of the code.

The result of Dinur et al. [5] refers to the strongest used notion of locally testable codes (cf. [6,
Sec. 13.2]). Specifically, it is required that the tester always accepts any codeword, and that
any non-codeword is rejected with probability that is proportional to its distance from the code.
Needless to say, things are stated in asymptotic terms, where n is viewed as a varying parameter,
but all other parameters (i.e., rate, relative distance, and the number of queries made by the tester)
are all constants.

Definition 1.1 (LTC, for this text, loosely stated): The code C ⊂ {0, 1}n has rate log2 |C|
n and

(relative) distance minx 6=y∈C{∆(x, y)}, where ∆(x, y) = |{i ∈ [n] : xi 6= yi}|/n. We say that C is
locally testable if there exists an oracle machine, T , that makes a constant number of queries and
satisfies the following two conditions:

1. For every x ∈ C, it holds that Pr[T x(n)=1] = 1.

2. For every x ∈ {0, 1}n\C, it holds that Pr[T x(n) 6=1] = Ω(∆C(x)), where ∆C(x) = miny∈C{∆(x, y)}.

In this case, we say that C is a locally testable code.

In terms of property testing, a tester as in Definition 1.1 constitutes a proximity oblivious tester
with linear detection probability for the property C [6, Def. 1.7]. The main result of Dinur et al. [5]
is thus stated as follow.

Theorem 1.2 (LTCs exist and can be explicitly constructed): For any n, there exists a locally
testable code C ⊂ {0, 1}n of constant rate and constant relative distance. Furthermore, C is a linear
subspace, and a basis for it can be found in poly(n)-time.

1

It follows that C has an efficient encoding algorithm (a bijection mapping Ω(n)-bit strings to
codewords of C). It also has an efficient decoding (with errors) algorithm; but this (only) follows
from the proof provided in [5]. The presentation in [5] only supports n’s in a “linearly dense” set
(i.e., ni+1 − ni = O(ni), where nj is the jth smallest integer in the set), but this can be fixed by
padding.

2 The construction

The construction “lifts” the expander codes of [8], where the lifting is highly non-trivial because of
an extra feature required from the ingredients (cf., the 4-cycles). This feature (and its utilization)
is the key to the success of the new construction.

2.1 The ingredients

For a sufficiently large constant d, we use two d-regular (expander) graphs, G′ and G′′, on the
same vertex set V . These graphs are represented by their incidence functions g′i, g

′′
i : V → V

(for i ∈ [d]) such that g′i(v) (resp., g′′i (v)) denotes the ith neighbor of v in the first (resp., second)
graph.1 Furthermore, we assume that these functions are actually bijections. Indeed, each of these
graphs is an expander in the sense that its second eigenvalue (i.e., random-walk convergence rate)
is sufficiently small (as a function of other parameters). Moreover, we require:

1. The neighborhoods of a vertex in the two graphs are disjoint; that is, for every v ∈ V and
i, j ∈ [d], it holds that g′i(v) 6= g′′j (v).

2. Symmetry of the incidence functions; that is, for every i ∈ [d] there exists j ∈ [d] such that
g′j(g

′
i(v)) = v holds for all v ∈ V . Without loss of generality, we may assume that g′2i−1 is the

inverse of g′2i; that is, g′2i−1(g
′
2i(v)) = v. Ditto for g′′i .

3. Two interleaving steps form a 4-cycle in G′ ∪ G′′: For every v ∈ V and i, j ∈ [d], it holds

that g′′j (g′i(v)) = g′i(g
′′
j (v)). Hence, cv,i,j

def
= (v, g′i(v), g′′j (g′i(v)), g′′j (v), v) forms a 4-cycle in the

graph G = (V,E) that is formed by superimposing G′ and G′′ (i.e., E = (V,E′ ∪ E′′), where
G′ = (V,E′) and G′′ = (V,E′′)). We denote this set of (ordered) 4-cycles by Q; that is,

Q
def
= {(v, g′i(v), g′′j (g′i(v)), g′′j (v), v) : v∈V & i, j∈ [d]}. (1)

Note: Although there may be other 4-cycles in the graph G, in the sequel, whenever we refer
to 4-cycles, we mean the 4-cycles in Q only.

Indeed, the last requirement appears hardest to meet. Dinur et al. [5] achieve it by using left
and right multiplication (in a non-Abelian group). Specifically, they use Cayley graphs over the
vertex-set (group) V , with adequate generator-sets A = {ai : i ∈ [d]} and B = {bi : i ∈ [d]}, and
let g′i(v) = ai · v and g′′i (v) = v · bi.

1For simplicity, we use the same degree in both graphs and the same bound on the second eigenvalue.

2

Base codes: We also use constant-size codes C ′, C ′′ ⊂ {0, 1}d of rate r0 > 3/4 and relative
distance δ0 > λ, where λ > 0 is an upper bound on the (normalized) second eigenvalue of each of
the graphs. Furthermore, we pick these codes so that their tensoring yields a relatively “robust”
tensor code (see [5, Def. 2.8 & Lem. 2.9]).2

2.2 The constructed code and its tester

For a function f : Q→ {0, 1}, we denote by fv its restriction to the set of 4-cycles that are “rooted”
at the vertex v ∈ V ; that is, 4-cycles that have the form (v, g′i(v), g′′j (g′i(v)), g′′j (v), v) = cv,i,j for some

i, j ∈ [d]. Indeed, letting Qv = {cv,i,j : i, j ∈ [d]}, the function fv : Qv → {0, 1}d×d is viewed as a
d-by-d Boolean matrix with (i, j)th equals f(v, g′i(v), g′′j (g′i(v)), g′′j (v), v). The new code, denoted C,
consists of all Boolean functions f : Q → {0, 1} whose fv-restrictions are codewords of the tensor
code C ′ ⊗C ′′, where C ′ ⊗C ′′ is the set of all d-by-d matrices whose rows are codewords of C ′ and
columns are codewords of C ′′. That is,

C
def
= {f : Q→ {0, 1} | (∀v ∈ V) fv ∈ C ′ ⊗ C ′′}. (2)

The tester is the natural one; that is, it selects one condition at random and checks it. Specifically,
given oracle access to f : Q→ {0, 1}, the tester select uniformly v ∈ V , retrieves the d-by-d matrix
fv = (f(v, g′i(v), g′′j (g′i(v)), g′′j (v), v))i,j∈[d] by querying f on all 4-cycles in Qv, and accepts if and
only if fv is a codeword of C ′ ⊗ C ′′.

Comment: In the foregoing presentation each 4-cycle is represented four times (since each of its
vertices can be used as the “start vertex” (or “root”)).3 In contrast, in [5], the four representa-
tions are identified so that the value on each of them is obtained from the value on a canonical
representation of the relevant 4-cycle.4

3 The analysis (flavor only)

The analysis of the rate and distance of the code C follows the analysis of the expander codes of [8],
but the real issue is analyzing the foregoing tester. (Recall that generic expander codes are not
locally testable.)

Rate. Recalling that the code is a linear subspace, we lower-bound its dimension by 1
4 · |V | ·

d2 − |V | · 2d · (d − r0 · d), where 1
4 compensates for the four representations of each 4-cycle and

2d · (d− r0 · d) is an upper bound on the number of linear constraints imposed on each fv (i.e., 2d
is the number of rows and columns in each matrix Qv, and d− r0 ·d is the co-dimension of the base
codes). Hence, we obtain a rate of at least 1

4 − 2 · (1 − r0), which is a positive constant provided
that r0 > 7/8.

2In Dinur et al. [5], the base codes are denoted CA and CB , and they are shown to exists in [5, Lem. 5.1].
3The other three representation of cv,i,j = (v, g′i(v), g′′j (g′i(v)), g′′j (v), v) are cg′(i),i′,j′ , cg′′j (g′(i)),i,j and cg′′j (g′(i)),i,j′ ,

where g′i′ is the inverse of g′i and g′′j′ is the inverse of g′′j .
4This operation is called folding [3]; it replaces a potential auxiliary test (which queries the four representations)

that enforces all four representation to hold the same value.

3

Distance. Since the code is linear, we lower-bound the weight of its non-zero codewords. For any
f ∈ C and each i ∈ [n], let f (i) be a function on the edges of G′′ such that f (i)({v, g′′j (v)}) = f(cv,i,j),
which is well-defined by the folding (see Footnote 4). Now, assuming that f(cv∗,i∗,j∗) = 1 for some
v∗, i∗, j∗, it follows (by the distance of C ′) that, for at least for a δ0 fraction of the i ∈ [d], it holds
that the ith row of fv∗ is not an all-zero codeword (of C ′). Hence, for at least a δ0 fraction of the
i ∈ [d], the function f (i) is non-zero. Considering only the graph G′′ (and the based code C ′′), we
apply the analysis of expander codes to f (i) (see [5, Lem. 4.4], which reduces to [5, Lem. 2.1]). It
follows that a non-zero f (i) must have relative weight at least a δ0 · (δ0−λ), where λ upper-bounds
the second (normalized) eigenvalue of G′′. Recalling that at least a δ0 fraction of the f (i)’s are
non-zero, we conclude that the relative weight of non-codewords of C is at least a δ20 · (δ0 − λ).

Local testability – take 1. How come the new code is locally testable whereas expander codes
are not? As observed by numerous experts, generic expander codes (as generic LDPC codes) are
defined in terms of a low-density parity-check matrix, which (generically) may be of full rank. In
that case, removing a single parity-check from the matrix yield a larger code that may still have
large distance. But then the resulting code contains codewords that are far from the original code,
although they violate a single linear constraint of the original code. Hence, the natural tester that
checks a single linear constraint (in the original matrix) fails poorly.

In contrast, the tester associated with the new code C selects at random a set of highly depen-
dent linear constraints, which are associated with a (random) vertex, such that the sets associated
with different choices (i.e., vertices) have significant pairwise intersections. Specifically, for every
two neighboring vertices, u and v, the inspected d-by-d matrices (i.e., fu and fv) share d-entries
that correspond to the edge {u, v}. Hence, violating a single constraint (of C) leads to violating
many other (different) constraints. In particular, dropping few constraints from the low-density
parity-check matrix that corresponds to C leaves the code invariant.

Needless to say, the foregoing is extremely far from establishing the local testability of C. It
merely asserts that C passes a sanity check that the expander codes fail.

Local testability – take 2. As is often the case in property testing (cf. [7, Chap. 3]), the analysis
of the foregoing tester uses a self-correction process (in order to establish the contrapositive).
Specifically, Dinur et al. [5] present a decoding algorithm and prove that if the natural tester (which
selects a random vertex v ∈ V and accepts if and only if fv ∈ C ′ ⊗ C ′′) rejects f with probability
η, then the decoding algorithm finds a codeword (of C) that is O(η)-close to f .5 It follows (by the
contrapositive) that each f : Q → {0, 1} is rejected by the natural test with probability that is
lower-bounded by a constant fraction of f ’s distance from C.

The key issue, of course, is to design and analyze a decoding algorithm that satisfies the foregoing
condition. That is, given any f : Q → {0, 1}, the decoder must find a codeword of C that is
O(η(f))-close to f , where η(f) is the probability that the natural tester rejects f . A natural idea
is to iteratively modify f such that in each iteration we select an arbitrary 4-cycle c and reset f(c)
such that it satisfies a majority of the checks that look at it (i.e., f(c) = σ if c is assigned σ in
a majority of the d-by-d matrices fv that contain c).6 The decoding process terminates when no

5The actual constant in the O-notation is 4(2d+1), and the claim holds provided that λ ≤ α ·δ0, where α depends
on the “robustness” parameter of the tensor code C′ ⊗ C′′.

6That is, we consider all fv’s such that c = cv,i,j for some i, j ∈ [d].

4

addition modification is possible (i.e., where for each c ∈ Q the value of f(c) equals the majority
value assigned to c by the relevant fv’s).

The foregoing decoder is analogous to the one used for decoding expander codes. It seems that
this candidate decoder works well (i.e., correctly decodes f) in the case that f is close to C, but
the intended application of this decoder is showing that every f is O(η(f))-close to C (by showing
that, on any input f , the decoder finds a codeword that is O(η(f))-close to f).7 We stress that it
may be that the foregoing decoder works well on any input f (i.e., it always finds a codeword that
is O(η(f))-close to f), but this is currently unknown.

Local testability – take 3. In light of the foregoing, a different approach to decoding is taken.
The following decoding algorithm is based on the agreement testing paradigm, which arose with the
proof composition paradigm of PCPs [2, 1]. The foregoing paradigm links the agreement probability
of partial assignments to suitable intersecting subsets of the domain (i.e., “local agreement”) to
the existence of a global function that approximately fits these partial assignments (i.e., “global
agreement”). This paradigm will be applied here to the set of d-by-d matrices that correspond
to the codewords of C ′ ⊕ C ′′ that are closest to the matrices fv (for all v ∈ V). Note that d-
by-d matrices that correspond to neighboring vertices have a common row (or column)8, and the
agreement test will be applied (as a mental experiment) to these pairs of matrices. Also, the
disagreement probability (between the foregoing pairs of codewords) is at most twice η(f); see [5,
Eq. (4.5)].

In general, for every w = (wv)v∈V ∈ ({0, 1}d×d)|V |, we define the local disagreement of w as
the probability that the pair of matrices that correspond to a random edge agree on the row (or
column) that corresponds to the 4-cycles that contain this edge. That is, we consider

D(w)
def
= Pre={u,v}∈E [wu|e 6= wv|e] (3)

where wu|e (resp., wv|e) denotes the restriction of wu (resp., wv) to the row (or column) that
corresponds to the 4-cycles that contain the edge e (i.e., the 4-cycles in Qu∩Qv, where {u, v} = e).
(Recall that E is the edge-set of the graph defined in Section 2.1.)

Decoding is done in iterations such that in each iteration we pick an arbitrary vertex v and
modify the current wv so to minimize D(w) subject to the new wv being in C ′ ⊗ C ′′. Initially, on
input f : Q → {0, 1}, for every v ∈ V , we let wv be a codeword of C ′ ⊗ C ′′ that is closest to fv,
and the decoder halts when no modification is possible (i.e., no modification decreases the value of
D).9 At termination, either D(w) > 0, which is considered a failure, or D(w) = 0, which implies that
w corresponds to a codeword of C (i.e., there exists f ′ ∈ C such that wv = f ′v for every v ∈ V).

Indeed, the main result of [5, Sec. 4] is that this decoder works well, which yields the desired
LTC, once a suitable graph is constructed (in [5, Sec. 5]). Specifically, Dinur et al. [5] proved

Theorem 3.1 (the foregoing decoder works well [5, Prop. 4.7&4.8]): Let f : Q → {0, 1} and

η(f)
def
= Prv∈V [fv 6∈ C ′ ⊗ C ′′]. For some universal constant η0 > 0 (i.e., η0 = (Ω(δ0) − λ)/2d),

7Hence, the foregoing is insufficient for two reasons. First, we need the decoder to work on any input f , and not
only on inputs that are close to C; that is, the closeness to C is the desired conclusion, and can not be the hypothesis.
Second, even in case f is o(1)-close to C, which implies that η(f) = o(d2) = o(1), we need to upper-bound f ’s distance
to C in terms of η(f); that is, we seek a quantitative result (i.e., O(η(f)-closeness) not merely a qualitative result
(e.g., if η(f) = o(1), then f is o(1)-close to C).

8In contrast, in the case of expander codes, neighboring vertices have only a single edge in common.
9Note that if D is decreased by the modification, then D decreases by at least 1/|E| units.

5

if η(f) < η0, then the foregoing decoder never fails but rather outputs a codeword of C that is at
distance at most O(d) · η(f) from f .

In particular, [5, Prop. 4.8] asserts that if η(f) < η0, then the decoder does not fail, whereas [5,
Prop. 4.7] asserts that in this case the output (codeword of C) is O(d) ·η(f)-closet to f .10 Needless
to say, if η(f) ≥ η0, then the claim holds triviality (since every f is O(η0)-close to C).

Theorem 3.2 (construction of suitable graphs, follows from [5, Lem. 5.2]): For every λ > 0, there
exists a constant d such that, for every n ∈ N, a pair of Θ(n)-vertex graphs as in Section 2.1 can
be constructed in poly(n)-time. In particular, each graph is d-regular and its second (normalized)
eigenvalue is at most λ. Furthermore, incidence queries regarding each of the graphs can be answered
in poly(log n)-time.

(The foregoing is simplified: Dinur et al. [5, Lem. 5.2] obtain such graphs for any d that is a multiple
of some d0 ∈ N, and use this fact in order to present suitable base codes (see [5, Lem. 5.1]).)11

On the proof of Theorem 3.1. The easy part is showing that if the decoder does not fail, then
the codeword f ′ that it outputs is O(η(f))-close to f . Letting winit (resp., wfin) denote the initial

(resp., final) value of w, observe that ∆(f, f ′) ≤ |V init|+|V fin|
|V | , where V init = {v ∈V :winit

v 6= fv}
and V fin = {v ∈ V : wfin

v 6= winit
v }. Next, note that |V init| ≤ η(f) · |V | (since fv ∈ C ′ ⊗ C ′′

implies winit
v = fv) and |V fin| ≤ D(winit) · |E| (since each modification step decreases D by at least

1/|E|), whereas D(winit) ≤ 2η(f) (since {u, v} contributes to D(winit) only if either fu 6∈ C ′ ⊗ C ′′
or fv 6∈ C ′ ⊗ C ′′)12 and |E| = d · |V |.

The more difficulty part is showing that the decoder may fail only when η(f) ≥ η0. It is actually
shown that if the algorithm fails (i.e., D(wfin) > 0), then D(wfin) ≥ 2η0 must hold, which implies
η(f) ≥ η0. (Recall that wfin is stable in the sense that D cannot be decreased by any modification
to wfin.)

Loosely speaking, the foregoing claim is proved as follows. First, it is proved that if some
edge e contributes to D(wfin) (per the r.h.s of Eq. (3)), then a constant fraction of the edges
that participate in 4-cycles that contain an endpoint of e also contribute to this count (i.e, to
D(wfin)). This means that disagreements are propagated locally; that is, disagreement propagates
from a single edge to many edges in the various 4-cycles that touch this edge. Next, the expansion
properties of the graphs are used in order to prove that these local disagreements translate to
global ones; that is, if there are many disagreements in the 4-cycles that touch a vertex, then there
are many disagreements globally (i.e., in the entire graph). This means that D(wfin) > 0 implies
D(wfin) = Ω(1).

On the proof of Theorem 3.2. One may indeed wonder whether there exist pairs of graphs
satisfying the conditions stated in Section 2.1. The cue is using left and right multiplication (in

10In [5, Prop. 4.7] the constant factor is 4 · (2d + 1), but our presentation is a bit different (i.e., we use all four
representations of each 4-cycle) and this may affect the constant.

11The point is that they used a result that requires d to be a multiple of some given d0. We believe that this is
not really necessary. Alternatively, obtaining d that is a multiple of d0 is quite trivial if one does not aim at optimal
expansion (i.e., Ramanujan graphs), which is immaterial for the current application.

12Otherwise, winit
u = fu and winit

v = fv, which contradicts the hypothesis regarding {u, v}. Note, however, that
the same vertex may contribute to 2d edges. Hence, we have D(winit) · |E| ≤ 2d · η(f) · |V |.

6

a non-Abelian group); specificaly, Dinur et al. [5, Lem. 5.2] use Cayley graphs over the vertex-set
(group) V , with generator-sets A = {ai : i ∈ [d]} and B = {bi : i ∈ [d]}, and let g′i(v) = ai · v and
g′′i (v) = v · bi. Hence, g′i ◦ g′′j = g′′j ◦ g′i, whereas guaranteeing the g′i(v) 6= g′′j (v) holds (for all v ∈ V
and i, j ∈ [d]) does not seem problematic (yet, it is far from trivial, since we need these graphs to
be expanders (see [5, Sec. 6])).

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and Intractability of Approximation Problems. JACM, Vol. 45, pages 501–555,
1998. Extended abstract in 33rd FOCS, 1992.

[2] Sanjeev Arora and Shmuel Safra. Probabilistic Checkable Proofs: A New Characterization
of NP. JACM, Vol. 45, pages 70–122, 1998. Extended abstract in 33rd FOCS, 1992.

[3] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free Bits, PCPs and Non-Approximability –
Towards Tight Results. SICOMP, Vol. 27, No. 3, pages 804–915, 1998. Extended abstract in
36th FOCS, 1995.

[4] Irit Dinur. The PCP Theorem by Gap Amplification. JACM, Vol. 54 (3), Art. 12, 2007.
Extended absract in 38th STOC, 2006.

[5] Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes. Locally Testable Codes
with Constant Rate, Distance, and Locality. ECCC, TR21-151, 2021.

[6] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[7] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, Vol. 5, pages 73–205, 2010.

[8] Michael Sipser and Daniel Spielman. Expander codes. IEEE Trans. Inf. Theory, Vol. 42 (6),
pages 1710–1722, 1996. Preliminary version in 35th FOCS, 1994.

7

	The result
	The construction
	The ingredients
	The constructed code and its tester

	The analysis (flavor only)

