Oded (May 2020, revised July 16, 2020): On the main result of [1].

This memo presents what I consider to be the main result and technique of [1], which is a randomized
worst-case to average-case reduction for counting k-cliques in k-partite graphs.! Here the average-
case problem refers to the uniform distribution over (k-partite n-vertex) graphs and the error rate
(of the potentail average-case solver) is noticeable alas vanishing error rate. Specifically, the allowed
~O(k?)

error rate is (logn) , where n is the number of vertices in the graph.

The model. For fixed k, we consider counting k-cliques in k-partite n-vertex graphs, where each
part has size |[n/k]. Assume for simplicity that n is a multiple of k, and let m = (g) “(n/k)? < (g)
denote the number of possible edges in a k-partite n-vertex graph. Let Cy : {0,1}™ — N denote
the function that represents the number of k-cliques in a k-partite n-vertex graph represented by
(the non-redundant part of) its adjacency matrix.

Our aim is to randomly reduce computing Cy in the worst-case to computing Cy on the uniform
distribution. Below, we present a reduction that makes (log n)O(kQ) queries such that each query is
uniformly distributed in {0, 1}". The establishes the foregoing claim.

The reduction

For a prime p € (n*,2 - n¥], consider the extension of C}, to a polynomial P, over F = GF(p), and
observe that P is multilinear in (’2“) sets of variables, where each set corresponds to the bipartite
graph that connects two parts of the k-partite graph. Using the hypothesis that p > n* and the
fact that the value of C), on any binary sequence does not exceed n¥, it follows that the value of
Py, on binary strings equals the value of Cj on those strings. Thus, computing Cj reduces (in the
worst-cvase sense) to computing P.

By the standard self-reduction of polynomials, it follows that evaluating P in the worst-case is
randomly reducible (using (g) + 1 < k? queries) to computing P : F™ — F on the average with
error rate of at most 1/3k2. Hence, we focus on reducing the computation of P, on random inputs
(in F™) to the computation of Cj on random inputs (in {0,1}™).

Looking at a generic term of Py, observe that it has the form Ha<ﬂe[k] Xﬁgfg, where vy, ..., v €

[n/k] and qugjfg corresponds to a vertex-pair (i.e., (vq,vg)) with endpoints in parts a and g,
respectively. Letting X denote the corresponding sequence of variables, observe that

Pi(X)=) [T xid) (1)

v1,...,kE[Nn/k] a<pBe[k]

where (v1, ..., v) corresponds to a potential k-clique in the k-partite graph. Let £ = logy(n*+3) and
define the function Fy : {0,1}™* — N such that

Fi@) < Y [T > aledn. ot (2)

v1,...,0kEMN/E] a<pelk] i€l

1Let me stress that [1] has many other results, which the authors consider even more interesting.

where xia’/i;), xq()a’fj;g) represents the (¢-bit long) block that corresponds to the variable Xf,a v;
in Pg. Then,

Fi(x) = Z Z 9> a<peln (ta,s=1) . H xl(zﬁg'a,ﬁ)

V1,..., 05 €E[n/K] (i1,2,~-~7ik—1,k)€[f](}2€) a<Bek]

= Z 92 a<pelk] (fa,p=1) Z H xg;iﬁga’ﬁ),

(1120t k)E[@](g) v1,...,Uk E[n/k] a<pBe[k]

(Here we capitalize on the fact that in the first expression the sum is over k-long sequences rather
than k-subsets; this is due to the fact that C, and Py refer to k-cliques in k-partite graphs.) Using
the foregoing correspondence (between X and x), it follows that Py(X) is congruent to Fy(x)
modulo p. This holds not only when each block in x encodes the corresponding field element in X,
but also when it encodes a value that is congruent to this field element modulo p.

The latter observation is important because it allows us to encode a uniformly distributed
element of F™ by an almost uniformly distributed element of {0,1}™*. Specifically, we encode
v € F by a uniformly distributed sequence r = (T'(j))je[g] € {0,1}* such that el 2i-1.p0) =y
(mod p). Hence, when v is uniformly distributed in F, the resulting 7 is p - 2 %-close to being
uniformly distributed in {0, 1}%. Recall that p-27¢ < 2nF . n=(+3) < n=1/(1).

The key observation is that, for every (i12,...,i5—1%) € 5, it holds that

S I e = e, (3)

V1,..., 0 E[n/k] a<BE[k]

k
where yf,()a’,gg equals xia’ﬁ;ﬁﬁ). Hence, Fy(z) is computed by evaluating Cj at 6(2) points, and

if 2 uniformly distributed (in {0,1}™¢), then each query to Cj is n~'-close to being uniformly
distributed (in {0,1}™).

k
Conclusion. The foregoing worst-case to average-case reduction of C} makes ¢ = o). ((g) +1)
queries, and yields a correct answer (with probability at least 2/3) provided that the error rate (of
the average-case solver) is at most 1/3q. Recalling that ¢ = (k + 3) - log, n, this yields an error rate

of (log n)*é(kz).

Digest. The key observation is captured by Eq. (3), which implies that Fj(x) can be decomposed

to £() terms such that each term corresponds to a sequence (712, ...,1k—1k) € [@(g) and represent
the contribution of individual bits in each bipartite graph. Specifically, for o < 5 € [k], only the
contribution of the it B bit of the elements associated with the bipartite graph between the o®
and B parts is taken. This decomposition is possible since we are dealing with k-partite graphs,
given that we already expressed Fj(z) in term of the contribution of bits (see Eq. (2)); the latter
expression was already used in [2].

Comparison to [3]

The reduction presented above yields the correct answer whenever all queries are answered correctly.
In contrast, the reduction in [3] yields the correct answer even if only a noticeable fraction of the

queries are answered correctly. Hence, the current reduction yields a worst-case to average-case
reduction when average-case is understood as having noticeable alas vanishing error rate, whereas
the result in [3] applies to average-case in a much more relaxed sense (i.e., having vanishing but
noticeable success rate). On the other hand, here average-case refers to the uniform distribution
over all k-(equi)partite graphs, whereas [3] refers to uniform distribution over a more structured
set (which is easily recognizable).

References

[1] Enric Boix-Adsera, Matthew Brennan, and Guy Bresler. The Average-Case Complexity of
Counting Cliques in Erdos-Renyi Hypergraphs. In 60th FOCS, 2019.

[2] Oded Goldreich and Guy Rothblum. Worst-case to Average-case reductions for subclasses of
P. ECCC, TR17-130, 2017.

[3] Oded Goldreich and Guy Rothblum. Counting ¢-Cliques: Worst-Case to Average-Case Reduc-
tions and Direct Interactive Proof Systems. In 59th FOCS, 2018.

