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The following two results assert that any improvement over the brute-force algo-
rithm for quantified derandomization of polynomial-sized circuits, for any parametric
setting of quantified derandomization, implies thatNEXP 6⊂ P/poly. For small values of
the parameters (i.e., a polynomial number of exceptional inputs) we can get a stronger
conclusion, namely that NP 6⊂ SIZE [nk] for any fixed k ∈N.

Specifically, recall that the brute-force algorithm for quantified derandomization
evaluates the circuit over 2B(n) + 1 inputs. The results assert that solving the problem
in time noticeably less than B(n) implies circuit lower bounds. As pointed out by
Ryan Williams, this is a generalization of his result [Wil13], which is the special case of
B(n) = 2n/3. (The proofs rely on his result as well as on the extension in [MW18], and
benefit from the standard relaxations of the hypothesis – the algorithm only needs to
solve the one-sided error version of the problem, and may be non-deterministic.)

Definition 1 (quantified derandomization). The Quanti�ed Derandomization problem with

error bound B (QDB, in short) is the following promise problem:

1. The set of “yes” instances Y ⊆ {0, 1}∗ consists of descriptions of n-bit circuits that
accept all but B(n) of their input strings.

2. The set of “no” instances N ⊆ {0, 1}∗ consists of descriptions of n-bit circuits that reject
all but B(n) of their input strings.

When the given circuit is also promised to belong to a certain restricted class of circuits
denoted by C, we denote the problem by QDB[C].

Theorem 2 (beating the brute-force quantified derandomization implies circuit lower
bounds). Suppose that for some B(n) < 2n and all k ∈N there exists a non-deterministic ma-
chine M that gets as input an n-bit circuit C of size nk, runs in time B(n) · (log(B(n)))−ω(1),
accepts if C accepts all its inputs, and rejects if C rejects all but at most B(n) of its inputs.
Then NEXP 6⊂ P/poly.

There is a slight gap between the ideal threshold result, which would assert that
any improvement over B(n) · Õ(s) implies lower bounds (where s is the circuit size),
and Theorem 2, which requires an improvement over B(n). This gap is immaterial
when B(n) ≥ 2nΩ(1)

(e.g., as in Williams’ parameter setting), whereas for B(n) = 2no(1)

the proof below shows that the circuit size s is actually a fixed universal polynomial,
so the gap is small (with ideal dispersers this polynomial would be near-linear in n).

Proof. We will rely on the result of Williams [Wil13], which asserts that if for all
k0 ∈ N there exists a non-deterministic machine solving CAPP1, 1

2
for m-bit circuits of

size mk0 in time 2m/mω(1) then NEXP 6⊂ P/poly. The proof amounts to a reduction
of CAPP1, 1

2
to QDB with B = B(n) as in the hypothesis, using a near-optimal disperser-

based error-reduction computable by general circuits, from [TSUZ07].
We are given a circuit C0 : {0, 1}m → {0, 1} of size mk0 that either accepts all

its inputs, or rejects all but at most 2m/2 of its inputs. We will use the disperser
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Disp : {0, 1}n × {0, 1}` → {0, 1}m from [TSUZ07, Theorem 1.4] for error-reduction, in-
stantiated with input length n such that m = log(B(n)) (i.e., n = B−1(2m)), error
ε = .01, min-entropy k = log(B(n)), and seed length O(log(n)). Then, the circuit
C : {0, 1}n → {0, 1} defined by C(z) =

∧
s∈{0,1}` C0(Disp(z, s)) satisfies the following:

1. The circuit size is 2` · TDisp(n) · mk0 ≤ nk0+c, where TDisp is the polynomial time
complexity of Disp and c ∈N is a universal constant.

2. If C0 accepts all its inputs then C accepts all of its inputs, and if C0 rejects all but
at most 2m/2 of its inputs then C rejects all but at most B(n) of its inputs.

Using the hypothesized non-deterministic machine for QDB we can distinguish
between the two latter cases in time B(n) · (log(B(n)))−ω(1) = 2m/mω(1).

Theorem 3 (beating the brute-force quantified derandomization for B(n) = poly(n)
implies stronger circuit lower bounds). There exists a universal constant c ∈ N such that
the following holds. Suppose that for some B(n) = poly(n) there exists ε > 0 and a non-
deterministic machine M that gets as input an n-bit circuit C of size nc, runs in time B(n)1−ε,
accepts if C accepts all its inputs, and rejects if C rejects all but at most B(n) of its inputs.
Then, for all k ∈N it holds that NP 6⊂ SIZE [nk].

Proof. The proof is similar to the proof of Theorem 2, except that we use the result of
Murray and Williams [MW18] instead of that of [Wil13]: They proved that if for some
δ ∈ (0, 1) there exists a non-deterministic machine solving CAPP1, 1

2
for m-bit circuits

of size 2δ·m in time 2(1−δ)·m, then for all k ∈N it holds that NP 6⊂ SIZE [nk].
Let B(n) = na and let δ = δ(ε, a) be sufficiently small. We are given a cir-

cuit C0 : {0, 1}m → {0, 1} of size 2δ·m, and we reduce its error using the disperser
of [TSUZ07] with the same parameters as in the proof of Theorem 2 (i.e., n = B−1(2m),
min-entropy log(B(n)), small constant error, and seed length O(log(n))). The result-
ing circuit C is of size 2` · nk1 · 2δ·m, which is bounded by nc for a universal c > k1
(since m = log(B(n)) = a · log(n) and δ = δ(ε, a) > 0 is sufficiently small). The hy-
pothesized algorithm for QDB of C runs in time B(n)1−ε = 2(1−ε)·m < 2(1−δ)·m, where
the inequality relies on δ > 0 being sufficiently small.
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