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Abstract

This thesis endeavors to deepen the understanding of the dense model for testing
properties of combinatorial structures such as graphs, hypergraphs, matrices and tensors.
This is achieved through the development of structural concepts regarding testing in
the dense model, which are then put to use: In formulating new lower bounds on the
query complexity for testing certain classes of such properties; in enhancing known
lower bounds; and in achieving hierarchy results with both upper and lower bounds.
We first focus on dense graphs, and consider natural testing: Property tests which
act entirely independently of the size of the graph being tested. We introduce the
notion of graph properties being inflatable — closed under taking (balanced) blowups
— and show that the query complexity of natural tests are related to the degree to
which a property is approximately hereditary and approximately inflatable. Specifically,
we show that for properties which are almost hereditary and almost inflatable, any
test can be made natural with little penalty in the number of queries. In the reverse
direction, we show that properties admitting natural tests are approximately inflatable
and approximately hereditary, with parameters depending on the test’s number of
queries. Using the technique for naturalization, we restore in part a claim of Goldreich
and Trevisan regarding testing hereditary properties, and generalize the relation between
one-sided and two-sided lower bounds on triangle-freeness testing; we also give a simple
explicit proof of a slight improvement of the best current explicitly-stated lower bound
on triangle-freeness testing. More generally, we explore the relations of the notion of
inflatability and other already-studied features of properties and property tests in the
dense graph model, such as one-sidedness, heredity, and proximity-oblivion. Finally, we

generalize these results to dense structures other than graphs.

From natural testing we turn to study tests which are highly-dependent on the size
of their input graph: We construct a property of dense graphs which is maximally-hard
to test, in terms of the number of queries necessary, but which can be efficiently decided,
and whose test is time-efficient. Using this and some already-established constructions
we prove several hierarchy theorems for the dense graph model, establishing that for
every possible reasonable function of the input graph size, there exists properties with
exactly this function as its query complexity — and with certain desirable features. We
prove a similar hierarchy theorem both for testing generic functions and graphs in the

sparse testing model. As with the results regarding natural tests, in reaching these



results we further explore, and make extensive use of, the concept of graph blowups.

We next present several results regarding testing dense structures which are essentially
different than (the more widely-studied) general graphs.

We give lower bound results regarding testing bipartite graphs with colored edges,
and k-partite k-uniform hypergraphs (which can be seen as testing matrices and tensors
over fixed finite fields, if coordinate order is disregarded). In this context, a previous
positive result showing that bipartite graphs are easily testable for freeness of forbidden
induced subgraphs is shown not to hold when edges can have multiple colors, or when
the ‘dimension’ is increased to k-partite k-uniform hypergraphs with k£ > 3. A lower
bound is obtained, settling an open question of Alon, Fischer and Newman.

Two final results regard testing properties of general hypergraphs with multiple
edge relations (or colors), and more specifically, properties which are characterized by
partitions of vertex tuples, with density constraints on these partitions. We show that
such properties can be efficiently ‘pseudo-tested’, that is, one can distinguish whether or
not there exist partitions which approximately satisfy the density constraints. However,
this ‘pseudo-testing’, sufficient for obtaining an actual test for partition properties of
graphs, or of partitions of hypergraph vertices only, does not suffice in the general case
— as we are able to demonstrate by proving a lower bound on the query complexity of

such hypergraph properties.

These results are based, for the most part, on articles published by the author and
research collaborators in conferences and journals during the course of the author’s
doctoral research period, the most up-to-date versions of which being [FR07], [GKNR10]
and [FRI11].



Chapter 1

Introduction

Studies in Theoretical Computer Science, and specifically in Computational Complexity,
are most often concerned with the following kind of question: How much of a certain
computational resource is necessary, or sufficient, for solving certain computational
problems? The resource of interest can typically be the computation time, or the
number of operations: How fast can one, say, sort an array of numbers, as a function
of its length? Other resources often studied are the amount of memory space for
performing the computation, or the number of bits of communication necessary for
several computers interacting over a network to compute something in collaboration.
The field of Property Testing can be thought of as the study of how much information
from the input instance of a computational problem is necessary for making a valid
decision.

Of course, one can generally not make correct decisions with certainty about an input
object — a string of characters, a graph, a function evaluated over a certain domain
— without reading it in its entirety; but one can very often reach certain conclusions
about the entire input based on samples from it, with high probability of their being
correct. More specifically, a property test is allowed oracle access to some combinatorial
object, and must distinguish with high probability between the case of this object
satisfying a certain property, and the case of the object being far from satisfying it by
some measure of distance. Roughly, when one needs to change at least an e-fraction of
the representation of the object to make it satisfy the property, it is considered to be
e-far from satisfying the property. One is interested in devising tests making as few
queries as possible of function values, presence of graph edges, matrix cell values, etc. A
test, therefore, must probabilistically decide the promise problem, in which the input is
guaranteed to either satisfy a property or be far from satisfying it; and it is allowed to
err or fail for inputs which are close to satisfying the property, but do not quite satisfy
it.

Such problems were first studied by Blum, Luby and Rubinfeld in [BLR90], which
was concerned with testing the linearity of functions, and began a long line of inquiry

into testing algebraic properties; one of these works, by Rubinfeld and Sudan [RS96],



first introduced the general formulation of Property Testing as such.

The study of testing properties of combinatorial objects began with the work of
Goldreich, Goldwasser and Ron in [GGR98], regarding properties of graphs. Combi-
natorial property testing has been an active field of research in the decade-and-a-half
since, as is evidenced by the earlier surveys by Fischer [Fis04] and by Ron [Ron01], and
the more recent survey of by Ron [Ronl0] and by Goldreich [Gol10] (the latter is in fact

a collection of mini-surveys and articles, including [GKNR10]).

Dense structure testing and other models

One of the important aspects in the study of property testing is the testing model —
that is, exactly what information is the test given in advance; what is the distance
metric between input structures; and what kind of queries it can make regarding the
implicit input structure (or, alternatively, how is the input structure represented). For
example, in the case of graphs, the test might ask “is there an edge between the i*" and
4 vertices?” or it might ask “which vertex is the k' neighbor of the i*® vertex?” —
with these kinds of queries corresponding to an adjacency-matrix representation of a
graph or an adjacency-list representation, respectively.

The testing model corresponding to an adjacency-matrix representation of a graph is
called the dense model. This was the first model considered for testing graph properties,
introduced in [GGR98]. In this model, graphs on n vertices are e-close to each other if
one needs to add and/or remove an e-fraction of all possible (72‘) edges from one graph
to convert it into the other — an e-fraction of the representation of the graph. As the
properties concern graphs rather than representations (in which vertices are labeled),
the set of representations of satisfying graphs in the model must be closed under graph
isomorphism, so if a certain labeled graph is considered to satisfy the property, so are
all labeled graphs obtained from it by permuting the labels. In the dense model, sparse
graphs (with 0(n2) edges) are all close to being empty by this definition, hence the
model’s name.

A second model which has been the focus of research is the bounded-degree model,
corresponding to an adjacency-list representation of graphs. In this model, introduced by
Goldreich and Ron in [GR02], each vertex’ degree is bounded by a fixed value d, and the
test can query a vertex to obtain any of its up to d neighbors. Asymptotically, as d < n,
such graphs are all so sparse that in the dense model they would be indistinguishable
from the empty graph, and could be safely treated as empty. In the sparse graph model
also, the distance is the fraction of the total possible edges necessary to convert one
graph into the other — but in sparse graphs, a number of edges linear in n suffices to
make two graphs far from each other.

This difference between the models is not merely ‘fine’ versus ‘coarse’ resolution;
specifically, a property may be non-trivial (and not-maximally-hard) to test, in both

of these models. A telling example is the property of bipartiteness — the vertex set



being divisible into two subsets, with no edges within each set. In the dense model,
the complexity of bipartiteness is Q (%) (due to Bogdanov and Trevisan in [BT04])
and O(e™2) (due to Alon and Krivelevich in [AK99]); in the bounded-degree model the
complexity is Q(/n) (presented with the introduction of the model, in [GR02]) and
O(y/n - poly(1/e)) (in the subsequent [GR99] by the same authors).

These models do not cover the entire possible range of graph densities, and indeed,
Krivelevich, Kaufman and Ron have considered a model ‘mixing’ the queries possible in
the dense and the sparse models, in [KKR04] (exploring bipartiteness for different graph
densities from sparse to dense) and [AKKRO8] with Alon, as well as a graph testing
model with stronger queries in [BEKKR10] with Ben-Eliezer.

This thesis focuses on testing in the dense model. However, dense testing is not
limited merely to graphs, and extends readily to other kinds of structures: A structure’s
representation includes a set or several sets of vertices, as well as a fixed number of
relations (collections of tuples), or collection of sets, with limited arity or set size.
One can thus consider the testing of dense digraphs, partite graphs, graphs with edge
colors, matrices and tensors, or more generally — hypergraphs, with or without edge
orientation, with one or more edge relations (or with edge ‘colors’). The ‘denseness’
carries to different structures through the normalized Hamming distance metric: An
e-fraction of modifications out of the total number of possible edges/tuples/sets, or
number of matrix/tensor cells etc., makes two structures far from each other, and sparse
structures are regarded as virtually-empty.

As in the case of graphs, properties must be closed under permutations of the
vertices, so that any labeling or ordering of vertices in the representation of the structure
do not carry information; if one is testing binary matrices, for example, the two matrices

(9 §) and (§ ) represent the same object and both satisfy or fail to satisfy a given

property.

The above example immediately leads one to consider another extension of the dense
model, to structures such as ordered matrices and hypergraphs with vertex order. While
some of the research work leading to this thesis concerned such structures, they have
thus far failed to produce any results of note, and they are therefore not explored in
this thesis. However, Fischer and Newman’s [FN(07a] studies some specific properties of

multi-dimensional tensors with a partial order on their cells.

Testable and hard-to-test graph properties in the dense model

One wishes to be able to characterize which properties admit which kinds of tests:
What dependencies can one achieve of the necessary number of queries on n and €, and
what useful features can tests be shown to have. Interestingly, [GGR98] demonstrated
that certain (graph) properties, such as k-colorability, while being NPTIME-hard as
decision problems, admit very efficient tests in the dense model — using a number of

queries independent of the size of the input graph, and depending only on the distance



parameter ¢; such properties are referred to as being testable. [GGR98] established
a large class of properties as testable, and posed the characterization of the class of
properties testable in the dense model as an open problem. In the following decade,
a series of results gradually progressed towards this goal, and a characterization was
achieved in Alon, Fischer and Newman’s [AFNS09], and independently by Borgs, Chayes,
Lovész, S6s, Szegedy and Vesztergombi in [BCLT06] (in terms of graph limits).

The main technical tool in these works is Szemerédi ’s regularity lemma, stating
that large enough graphs can be decomposed into a bounded number of bipartite
graphs most of which are similar to random graphs (see Szemerédi ’s own [SzeT78]
for the original lemma, Fischer’s [Fis04, Section 5] for basic discussion of its use for
testing, or the characterization result in [AFNS09] itself). Unfortunately, using it incurs a
prohibitive dependence on € — while many significant properties have a mere polynomial
dependence on ¢ in the number of queries. Thus the question of the dependence of the
query complexity on ¢ has remained a significant avenue of research.

On the other end of the spectrum from testable properties are those properties
whose query complexity is ‘maximally’ dependent on n — with query complexity @(nQ);
artificial such properties were presented already in [GGR98]. Between the extremes,
certain properties have been established to have various query complexity functions,
(e.g. constant powers of n below 2, as in [FM06, PRR03]).

Relating features of properties, features of tests and query complexity

Within a given testing model, general results are often derived by further qualifying
the model with certain features and obtaining bounds on query complexity or other
provable consequences. These qualifications are usually features either of the property
itself, or of the test. For example, a notable result on the way to characterizing the class
of testable graph properties in the dense model is Alon and Shapira’s [AS08a]: This
work showed that if a property is hereditary, then it is also testable (that is, it admits
a test whose number of queries is independent of the size of the input); a hereditary
property is such that any induced subgraph of a satisfying graph is also itself a satisfying
graph. In fact, it was established that hereditary properties are not only testable, but
have tests with one-sided error (that is, tests that can never reject inputs satisfying the
property, regardless of which queries they make).

Another example is of strengthening an existing upper or lower bound result on
query complexity by making additional constraints on the property, as in Goldreich
and Trevisan’s [GT03, Theorem 1]: In this improvement of a result in [GGR98], the
existence is demonstrated of properties requiring Q(nQ) queries, which are not only in
NPTIME, as was previously known, but also monotone; a graph property is monotone
(increasing) if it is closed to adding edges, i.e. adding edges (but not vertices) to a
satisfying graph results in another satisfying graph.

A third example regards the characterization of the ‘power’ of features of tests. Such



is a result of Goldreich and Ron in [GR10] (following the earlier work of Gonen and Ron
in [GROT]) regarding adaptive tests; a test is adaptive if it considers results of previous
queries when deciding which query to make next. [GR10] finds some testable graph
properties in the dense model that exhibit a polynomial gap between an upper bound
on the query complexity of adaptive tests, and a lower bound on the query complexity
of non-adaptive tests. In the sparse graph model this gap can be exponential (assuming
the test does not have to provide the labels of queried vertices in advance).

A more restricting feature of a test than being non-adaptive is being canonical,
introduced in another section of [GT03]: A canonical test samples a number of vertices,
and queries their entire induced subgraph; it then makes a deterministic decision whether
to accept or reject the graph based on this small subgraph.

This thesis will present several results of a nature similar to these examples, as well
as introduce certain hereto-unexplored features of properties of dense graph (and other

dense structures).

Testing triangle-freeness

Perhaps the most studied class of properties in the dense model is that of being free
of certain families of forbidden substructures, and specifically the property of being
triangle-free. This property easily springs to mind once one begins to think up simple
properties of graphs: A first non-trivial such property may be “not having edges”,
distinguishing empty graphs from graphs with many edges; after edges, perhaps paths,
and then, perhaps a small cycle, a triangle. And while the query complexity obeing
free of edges or of paths of any fixed length is easy to analyze (the query complexity
is Q(1/e) queries), studying triangle-freeness testing is a very challenging endeavor:
While the property is known to be testable, there is a vast gap between the lower and
upper bounds for it.

The best known upper bounds for testing a graph for being free of triangles were
until recently based on applying Szemerédi ’s regularity lemma: See [Alo99], a proof
sketch in [Fis04], or a more general treatment covering any family of induced subgraphs
in Alon, Fischer, Krivelevich and Szegedy’s [AFKS00]. This construction yields a query
complexity equal to a tower function of height polynomial in 1/e (even a double-tower
for general forbidden induced subgraphs); recently, Fox has proven in [Fox11]| a tower
function upper bound for forbidden subgraphs, whose height is only logarithmic in 1/e,
by a technique similar to the one used for proving Szemerédi ’s Regularity Lemma,
customized to the problem of subgraph-freeness.

The study of the property of triangle-freeness has also seen much use of the relations
between features of properties and features of tests, for obtaining lower bounds. The
standard approach for proving lower bounds on a property’s query complexity is Yao’s
method, named after a principle observed in Yao’s [Yao77]: if any deterministic test can’t

distinguish well enough between two fixed probability distributions, one over satisfying



graphs and one over far graphs, then no probabilistic algorithm (which is a distribution
over deterministic algorithms) can do so either, and a lower bound is established —
usually for non-adaptive tests. If the test is adaptive, proving indistinguishability
becomes more complex, as queries depending on the test’s history of queries already
made can much better distinguish between input distribution.

If we limit our attention to one-sided tests only, things become somewhat simpler:
A test querying a subgraph which in itself contains no triangles would have to accept,
as it is possible that there are no edges in the graph except the queried ones. A bound
therefore requires only constructing a single graph (for every order n) which has very few
triangles, but no small set of edges intersecting all of them. Indeed, such a construction
by Alon in [Alo02] established a bound (mildly) super-polynomial in 1/e; this bound
is based on a number-theoretic construction of Behrend in [Beh46] of dense sets of
integers without any three-term arithmetic progression. A recent construction by Elkin
in [Elk11] of larger arithmetic-progression-free sets allows for a slight improvement of
the [Alo02] bound.

If one could convert such one-sided lower bounds into general, two-sided bounds,
this could be a shortcut avoiding a complex adversarial Yao’s-method construction.
And indeed, [GT03] includes a proposition communicated by Noga Alon: Testable
hereditary properties can be tested by merely ensuring that most small induced sub-
graphs themselves satisfy the property (with a mild increase in the number of queries).
Consequently, if the property is both hereditary and one-sided, then any test should
imply the existence of a one-sided test — and any bound on one-sided testing becomes
a bound on testing in general. Unfortunately, it later turned out that this proposition
only holds for tests which are ‘natural’: Tests acting independently of the size of the
input graph. This qualification appears in the errata [GT05].

Alon and Shapira worked in [AS06] around the hurdle of not being able to generalize
the one-sided triangle testing lower bound of [Alo02] to the two-sided setting, by proving
the same quasi-polynomial lower bound for any triangle freeness test, directly, using
Yao’s method to obtain specific indistinguishable distributions. However, this method
is limited to a specific kind of constructions, and may not necessarily apply to future

one-sided lower bounds.

1.1 Overview of results

Inflatable properties and natural property tests

In Chapter 3 (based on [FR11]) we establish links between the query complexity of natu-
ral tests and the features of graph properties being inflatable and hereditary. Specifically,
we show that for properties which are almost hereditary and almost inflatable, any test
with query complexity independent of n can be made natural, with a polynomial increase

in its number of queries. The naturalization is carried out as a sort of extension of the



canonicalization due to Goldreich and Trevisan in [GT03], so that natural canonical tests
can be described as strongly canonical. In the reverse direction, we show that properties
admitting natural tests are approximately inflatable and approximately hereditary, with

these parameters depending on the test’s number of queries.

Using the technique for naturalization, we restore in part the claim in [GT03]
mentioned above, regarding testing hereditary properties by ensuring that a small
random subgraph itself satisfies the tested property. This restoration allows us to make
a generalization regarding lower bounds on triangle-freeness testing: Any (future) lower
bound — not only the currently established quasi-polynomial one — on one-sided testing
for triangle freeness holds essentially for two-sided testing as well. We later make use of
this generalization in the lower bounds for testing partite dense structures, in Chapter 5
(see overview below). We also demonstrate the use of this generalization through an
explicit statement and simple proof of the bound implicit in the constructions of [Elk11],

constituting a slight improvement over the best established lower bound of [AS06].

Finally, we prove a characterization of those inflatable properties which admit a

proximity-oblivious test.

Query complexity hierarchies for dense graphs and other models

In Chapter 4 (based on [GKNR10]) we consider the question of the existence of properties
with arbitrary query complexity. We answer this question affirmatively, establishing
hierarchies of query complexity classes for both the sparse and the dense model for
graph testing. Loosely speaking, we prove that for every reasonable function ¢(n), there
exists a property of graphs which is not testable using o(g(n)) queries, but is testable

using O(g(n)) queries.

For the sparse graph model, we establish the hierarchy theorem using a non-artificial,
easy-to-formulate property for every ¢(n): The property of being 3-colorable and having
connected components of order at most g(n). The ¢(n)-query test establishing the upper

bound is one-sided.

For the dense model, we in fact prove three variant hierarchy theorems, each for

some additional feature of the properties or the test:

e A hierarchy of query complexity classes of properties which are PTIME-decidable
(as languages) and PTIME-testable — that is, properties with a test whose
running time is polynomial in g(n).

e A hierarchy for monotone properties (although not in PTIME).

e A hierarchy for properties in which the lower bound ¢(n) on query complexity is
matched by a one-sided upper bound, i.e. they can be one-sided tested with ¢(n)

queries.



Lower bounds for partite dense structures

In Chapter 5 (based on [FR07]) we consider dense structures other than general graphs:
Bipartite graphs with colored edges and k-partite k-uniform hypergraphs — which
correspond to matrices and tensors (with no order among rows and columns), binary
or over finite domains. Relating to [AFNO07], which established a polynomial upper
bound for testing binary matrices for forbidden subgraph freeness, we prove super-
polynomial lower bounds both for matrices over a trinary domain, and for 3-dimensional
binary tensors; this shows that the upper bound result, and the concept of ‘conditional
regularity’ underlying it, do not immediately extend to larger domains, nor to higher
dimensions. The lower bound is based on a reduction from testing cycle-freeness in
dense digraphs, utilizing also the result re-established in Chapter 3 regarding hereditary

property lower bounds.

Pseudo-testing hypergraph tuple partition properties

In Chapter 6 we consider the prospects of expanding the set of efficiently-testable
properties of hypergraphs with multiple (oriented) edge relations, as dense structures.
Specifically, we consider a generalization of the graph partition properties established
to be easily testable in [GGR98]. Fischer, Matsliah and Shapira show in [FMSO07]
that a rudimentary generalization of such partition properties to hypergraphs is also
efficiently testable. We study a stronger and somewhat more expressive generalization,
in which not only vertices are partitioned, but also vertex tuples of higher arity. We
show that such a class of properties, while not being maximally expressive (e.g. it
does not seem to allow expression of the property of having a regular hypergraph
partition) does not have tests which are efficient in terms of . On the other hand,
we show that they admit an efficient ‘pseudo-test’, which distinguishes hypergraphs
satisfying such a property from hypergraphs for which every partition is far from being
satisfactory; in other words, the pseudo-test may err for hypergraphs which are far from
the property but have approximately-satisfying partitions. Unlike the case of graphs,
having such an approximately-satisfying partition does not imply closeness to having a

properly-satisfying one.
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Chapter 2

Preliminaries

2.1 The dense model for property testing

This thesis concerns testing properties of dense combinatorial structures, with graphs
being the most commonly studied, and for which the testing model is usually defined.
As much of the thesis concerns other ‘dense’ structures (a concept which will be defined
shortly), we first define the model for the case of graphs, and then make definitions for

more general dense structures in Subsection 2.1.1.

In the context of this work, we refer to simple graphs, G = (V, E), with V being a set

of vertices of order n and £ an edge set containing unordered pairs of vertices.

Definition 2.1.1. The absolute distance between two graphs G, H of order n is the
number of edges one has to add and/or remove in G to make it into an isomorphic copy
of H; in other words, it is the minimum over all bijections ¢ : V(G)— V(H) of the

number of edge discrepancies — the symmetric difference

{{u, v} € E(G) [{¢(u),¢(v)} ¢ E(H)} W {{u,v} € E(H) [ {¢(u),d(v)} ¢ E(G)}

The (relative) distance dist(G, H ) between G and H is the absolute distance between
them normalized by a factor of (g)fl.

Two graphs are said to be e-far if their distance is at least e (that is, they have at least

e(}) edge discrepancies).

Definition 2.1.2. A property of graphs is a set II = |, _ II, of graphs, closed under

neN
graph isomorphism, where II,, is supported on graphs of order n.

A graph of order n is said to satisfy a property II if it is an element of II,,; a graph is
said to be e-far from satisfying a property II if it is e-far from every graph H € II,,.

Definition 2.1.3. A dense model property test for a graph property II is a probabilistic

oracle machine which, given the values (n,¢), as well as oracle access to a graph G of
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order n, makes a certain number of edge queries (“is there an edge between the vertices
uw and v?”), and distinguishes with probability at least 2/3 between the case of G being
in IT and the case of G being e-far from II. The (possibly adaptive) number and choice
of queries, as well as the rest of the algorithm, may in general depend on the value of n,

as can the decision to accept or reject.

Note. Many results regard tests for specific values of ¢, rather than tests receiving &
as a parameter. Alon and Shapira prove in [ASO8b] that these notions are different,
with some properties only being testable with e-specific tests rather than a general test
receiving ¢ as a parameter. (The difference has to do with the computational tractability
of the number of queries as a function of €; see [Sha06, Chapter 3] for further discussion.)
The results of this thesis hold for both settings. Specifically, all upper bounds are tests
receiving € as a parameter, while all lower bounds apply to e-specific tests as well as

tests receiving € as a parameter.

Definition 2.1.3, the traditional definition of a property test in the dense model,
includes an artificial dependence of the query model on the value of n: Without utilizing
this value it is not possible to make any queries. The results and observations in [GT03,
Section 4] emphasize the artifice of this particular dependence, and lead to an alternative

definition of a test avoiding it:

Definition 2.1.4 (Alternative to Definition 2.1.3). A dense model property test for a
graph property II is a probabilistic oracle machine which is given the values (n,¢), as
well access to a graph G of order n, through an oracle which takes two types of requests:
A request to uniformly sample an additional vertex out of the remaining vertices of
G, and an edge query within the subgraph induced by the sampled vertices (“is there
an edge between the i and j** sampled vertices?”). The machine makes a sequence
of requests to the oracle, and distinguishes with probability at least 2/3 between the
case of G being in Il and the case of G being e-far from II. If the test has sampled all
vertices of the graph being tested, additional requests to sample an additional vertex

will indicate that there are none left.

Definition 2.1.3 and Definition 2.1.4 are not equivalent as computational models in
general, but in the context of testing dense structure properties closed under isomorphism
— they are equivalent. With respect to graphs, this is established for all intents and
purposes in [GT03], albeit not formally stated there. Further discussion of this point

regarding dense structures in general can be found in Section 3.9.

2.1.1 General dense structures

A wide variety of dense structures are studied in this and other works on Property
Testing, so that a “most-general definition” covering them all would make for a sort of

a swiss-army-knife: General and partite graphs and hypergraphs; matrices and tensors,
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over binary or other domains; hypergraphs with uniform-arity hyperedges or multiple
arities; structures might have edges as sets of vertices, or as tuples as in the case of
digraphs, or both; there may be a single edge relation, or multiple relations; et cetera.
So as to state at least in a mostly-general way what constitutes a dense structure, we

shall use the following:

Definition 2.1.5. An unconstrained general dense structure is a hypergraph H =
(V1,..., Vi), (Eq,...,E)) with k vertex sets or parts, and ¢ (hyper)edge relations

(or “colors”), each being a set of arity-r; tuples over the union of the vertex sets:
ik
E;i CITiL Ui Vi

Definition 2.1.6. A general dense structure class constraint is a sentence in First-
Order Logic without equality, with vocabulary {Vi,..., Vi, E1,..., E;}. The arity of
each V; symbol is 1, and the arity of each F; is r;. A constraint must have the form
Vaxy...Vas p(xy,...,xs), with ¢ being unquantified; the formula ¢ must be made up
only of edge relation symbols of arity at least s, using all variables x1, ...,z at least
once (but with possible repetitions), vertex part containment relation symbols (using a

single variable), and Boolean connectives (including negation).

Definition 2.1.7. A class of general dense structures is the set of all unconstrained
general dense structures with the same specific k, ¢ and arities (ri)gzl, which satisfy a
specific common set of constraints with the appropriate vocabulary, where the constraints
are interpreted as follows: The domain is |J; V;; the V; symbols are interpreted as
containing all vertices of the i*" part of the structure; and the E; symbols are interpreted

as the structure’s own relations F;.

Such constraints allow the expression of the wider variety of structures mentioned above

through multi-relation hypergraphs. Some relevant examples:

e An edge relation may be constrained to be symmetric (permutation of the coor-
dinates does not change the edge function value). An example: Structures with
k=1,t=1and r = 2, with the constraint Vx Vy [El (z,y) < El(y,x)], are the

expression of undirected graphs (with possible self-loops).

e Several edge relations (say, ¢) of the same arity may be constrained to only have
some of the 2¢ possible values for a certain tuple; this allows the expression of
structures with colored edges, whose maximum number of colors is not a power of

two, using multiple edge relations.

e A constraint may prevent tuples containing a single vertex more than once.
For example, to prevent self-loops in graphs, the constraint imposed would be:
Va [-E(z,2))].

e An edge relation may be constrained to tuples in some specific sequence of vertex

parts Vj, x...xVj _; this allows the expression of bipartite digraphs or k-partite
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oriented hypergraphs. For bipartite digraphs (with &k =2, ¢ =1, r; = 1), the
constraint would be: VaVy [Ei(z1,x2) < (Vi(z1) A Va(z1))].

Finally, while some structures do not technically fit even this general definition (e.g.
matrices or tensors which have no vertices) — they can easily be expressed by a general
dense structure with a simple transformation or reinterpretation (e.g. interpreting a
matrix as the adjacency matrix of a bipartite graph). We will thus refer to them as

dense structures as well.

Definition 2.1.8. A property of general dense structures of a certain class is a set 11
of structures, all satisfying the constraints associated with the class, which is closed

under isomorphism (i.e. closed under permutation of the vertices in each part).

Definition 2.1.9. For a class of general dense structures with one edge relation E of
arity r, the absolute distance between structures in that class is defined as in the case
of graphs, except that the discrepancies are between tuples rather than 2-sets. The
(relative) distance is the absolute distance normalized by n™".

For classes with multiple edge relations, the absolute distance is not a meaningful
concept, as the number of tuples in each edge relation is of a different order of magnitude
with respect to to n. The (relative) distance, with respect to a specific bijection between
the vertices of corresponding parts of the structures, is the maximum over all edge
relations F; of the number of discrepancies with respect to the bijection in that edge

T

relation, normalized by n~"i. The overall (relative) distance is the the minimum of the

above over all bijections.

Note. One can, as an alternative to the definition above, further normalize the distance
by the maximum possible distance between two structures in the class (as in the case of

simple undirected graphs, where the distance is a fraction of (g))

Definition 2.1.10. A general dense structure with n vertices in each of its parts is
said to be of uniform order n; if the number of vertices in each part differs, then the

structure is said to be of (non-uniform) order (ni,na, ..., ng).

Definition 2.1.11. A dense model property test for a property II of a certain kind of
dense structures is a probabilistic oracle machine which, given the values (ny,...,ng,¢),
as well oracle access to a structure H with n; vertices in each of the k parts , makes a
certain number of tuple queries (“is the tuple (z1,...,z,,) in the edge relation E;?”),
and distinguishes with probability at least 2/3 between the case of H being in II and
the case of H being e-far from II.

A dense model uniform-order property test for a property II is a test as per the
above, except that the structure tested is guaranteed to be of uniform order n, and the

test is given the values (n,¢).
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Note. The alternative definition for a property test in Definition 2.1.4, without an
artificial dependence on the number of vertices (in each part), can be made similarly in
the case of a general dense structure, with the oracle receiving either requests to sample
a vertex from one of the parts of the graphs, or queries regarding the presence of tuples

of already-sampled vertices in one of the structure’s edge relations.

2.2 Features of dense structure property tests

As discussed in the introduction, it is interesting to distinguish tests not just by their
use of computational resources (queries, running time, etc.) but also by other features

specific to the setting of dense structure property testing or property testing in general.

Definition 2.2.1. A property test is said to be one-sided (or said to have one-sided
error) if it accepts all graphs in IT with probability 1.

Definition 2.2.2. A property test is said to be adaptive if the queries it makes to the
oracle may depend in some way on the results of previous queries. If no query made by

the test depends on previous query results, the test is said to be non-adaptive.

Definition 2.2.3. A test for a graph property II is said to be canonical if, for some
function s : N x (0,1) — N and some sequence of properties (H(i))ieN, the test operates
as follows: On input n and oracle access to an n-vertex graph G, the test samples
uniformly a set of s(n,e) distinct vertices of G, queries the entire corresponding induced
subgraph, and accepts if and only if this subgraph is in ™. If the graph has fewer
than s(n,e) vertices, the test queries the entire graph and accepts if it is in II.

For a general dense structure, a canonical uniform-order test samples s(n, €) vertices
from each one of the k parts, and queries the substructure induced by these sampled
vertices. If the structure has fewer than s(n,e) vertices per part, the test queries the

entire structure and accepts if it is in II.

Note. For multi-partite dense structures, this definition is somewhat lacking — it does
not cover tests of non-uniform-order structures. See Section 3.9 for further discussion

and a reasoning for limiting the definition’s scope in this work.

Definition 2.2.4 (as appearing in [GT05]). A (graph) property test is said to be nat-
ural if its query complexity is independent of the size of the tested structure, and on
input (n,e) and oracle access to a graph of order n, the test’s output is based solely
on the sequence of oracle answers it receives, and not on n (while possibly using more

random bits, provided that their number and use is also independent of n).

If our graph property tests are as defined traditionally (Definition 2.1.3), the above
definition of a natural test is flawed, and no test which makes any queries can be natural:

A test cannot make ¢(¢) queries to an input graph with less than /q(g) vertices (this
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point is also mentioned in [AS08a]). Instead of amending the definition of naturality
to avoid this semantic issue, it seems more reasonable to use the alternative definition
for the dense graph model, Definition 2.1.4, in which the artificial dependence on n is
removed. In this case, Definition 2.2.4 is valid: If the test attempts to sample too many
vertices, the oracle indicates its failure to do so and the test proceeds accordingly. In
fact, in this work the implicit assumption is made that whenever a test attempts to
sample more vertices than the vertex set contains, the oracle indicates that this is the
case, and the test proceeds to query the entire structure, accepting it deterministically
if it satisfies the property being tested.

In Chapter 3 we further develop the notions of canonicality and naturality of tests,

and explore their interrelation.

2.3 Features of dense structure properties

Definition 2.3.1. A property is said to be testable if it has a test whose maximum
number of queries is independent of n, and depends only on e. If the maximum number
of queries is a polynomial function in 1/e, the property is said to be polynomially
testable.

Definition 2.3.2. A graph property II of is said to be decidable in complexity class
CLASS if, for some reasonable string encoding of graphs (so that the string length is
polynomial in the order of the graph), the language consisting of these encodings for
the graphs of II is in CLASS.

Thus a property is in PTIME if the language of II graph encodings is accepted by a
deterministic Turing machine running in time polynomial in the length of its input, etc.

A similar definition can be made for non-graph structures — dense or otherwise.

Definition 2.3.3. A property of graphs is said to be e-testable in PTIME, if it has
an e-test, whose running time is bounded by a polynomial function of its number of
queries (rather than polynomial in n). The property is said to be testable in PTIME
or PTIME-testable if it is e-testable in PTIME for every € > 0.

Definition 2.3.4. A property is said to be hereditary if it is closed under the taking

of induced substructures.

Hereditary properties can be characterized by a (possibly infinite) set F of forbidden
induced substructures — a structure satisfies a hereditary property II if and only if it

has no induced subgraph from the forbidden set Fi.

Definition 2.3.5. A property of graphs or hypergraphs is said to be downwards mono-
tone if it is closed under the removal of edges (while maintaining the same number of
vertices). If a property is closed under the addition of edges, it is said to be upwards

monotone.
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Note. This notion of monotonicity is wider than that used in [AS05], which combines

the notions of monotonicity and heredity defined here.

Definition 2.3.6. A graph G’ = (V' E’) is said to be a blowup of a graph G = (V, E)
if V' can be partitioned into |V| clusters of vertices, each corresponding to a vertex in
V', where the edges in E' between these clusters correspond to the edges of E. In other
words, if (u,v) € F then the bipartite graph between the clusters corresponding to u
and v is complete, and if (u,v) ¢ E then this bipartite graph is empty. G’ must also

have no edges within the clusters of such a partition. A graph blowup is said to be:

an exactly-balanced blowup if the clusters in V' (corresponding to the vertices of G)
all have exactly the same size (and, in particular, |V divides |[V']). In this case,
for t = |V’|/|V], G’ is also said to be a t-factor blowup of G.

a balanced blowup if all clusters are of size either [|[V'|/|[V|] or [|V’|/|V]]. The
unqualified term ‘blowup’ indicates a balanced blowup.

a generalized blowup if all clusters in V' are non-empty (but have no other restriction
on their sizes).

a relaxed generalized blowup if the clusters in V' may have any size, with some possibly

being empty.

The above definition requires an explicit statement for classes of general dense

structures:

Definition 2.3.7. A dense structure H' = ((V{,...,V'x), (Ef,...,E’;)) is said to be
a blowup of a structure H = ((V1,..., V%), (E1, ..., Ey)) if it satisfies the following.
First, each of its vertex sets V/ can be partitioned into |V;| clusters of vertices, with
each cluster C), corresponding to some vertex v € V;. Additionally, the tuples in each EJ’
correspond to the tuples in F;: If z = (:cl, e ,ij) € E; then the complete r;-uniform
oriented hypergraph [],”, Cy, is contained in E’, and if z ¢ E then E’ contains no
hyperedge of this hypergraph. In particular, if H has no hyperedges involving the same
vertex more than once, then H’ has no hyperedges with more than one constituent
vertex within the same cluster.

A blowup is said to be balanced if the clusters in each V; all have the same size up
to a difference of at most 1; and exactly-balanced if the clusters have exactly the same
sizes (and, in particular, |V;| divides |V/]). In this case, for t; = |[V'|/|V], H' is also said
to be a (t1,...,tx)-factor blowup of H; if t; =t for all i € [k], the blowup is said to be
a t-factor blowup of H.

Observation 2.3.8. General dense structure classes are, in themselves, closed to taking
blowups: It is easy to verify that any constraint satisfied by a dense structure is also
necessarily satisfied by a blowups of structures in the class. General dense structure

classes are also closed to taking induced substructures, by a similar argument.
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Definition 2.3.9. A property II is said to be inflatable if it is closed under (balanced)
blowups, i.e. if G satisfies II, then so does any blowup of G.

The concept of inflatability, which this thesis introduces, is explored in Chapter 3.

2.4 Testing-Reductions between properties

The following definition is relevant essentially to any model for property testing, not

merely dense graphs or other dense structures.

Definition 2.4.1. Consider two classes CLASS and CLASS’ of combinatorial objects,
each with some distance metric and some measure of object ‘size’ (e.g. the number of
vertices in a graph or the number of bits in the representation of the object). Also, let
f : Rt —0,1] be a continuous function and g,h : N— N. The testing of a property
IT C CLASS, in some testing model, is said to be (f,, g,, h,)-reducible to the testing of
property II’ C CLASS’ in another testing model if, given oracle access to a structure
K € CLASS (with possible queries according to the testing model for IT), one may
simulate an oracle to a structure K’ € CLASS’ (accepting queries according to the

second testing model) with the oracle satisfying the following:

1. If K is of size n then K’ is of size at most O(h,(n)).

2. If K € II then K’ € II'.

3. If K is e-far from II (according to the CLASS metric) then K’ is f,(¢)-far from
IT" (according to the CLASS’ metric).

4. To answer a query regarding K’, one must make at most g.(n) queries to K.
Abusing the definition somewhat, we shall sometimes describe II as being reducible to

.

Lemma 2.4.2. If, in the above settings, the query complexity of 11" is O(q(n,€)), then
the query complezity of I1 is O(q(hy(n), fr(€)) - gr(n)).

Conversely, let f(€) be continuous, with its image containing some interval (0, &),
and let

hy'(n) = min{n' € N| h,(n') =n}
frle) = max{e’ € R" ‘ fr(€) =€}

With h, having an infinite image. If the query complexity of 11 is Q(q’(n, 5)), then the re-

ducibility implies that the query complexity of I’ is € <M . q’(hr_l(n), f_l(a))>

(for € < ¢ and the values of n for which h,~ " is defined).

Proof. For the upper bound claim: Given a structure in CLASS, one applies the

test for II’ (with h,(n) and f,(g) instead of n,e) while simulating oracle access to the
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corresponding structure in CLASS’. This is by definition a valid test for II’, making
the claimed number of queries.

For the lower bound one uses the reduction from testing II to II’, obtaining a valid
test as in the above. If the II” test makes 0<W11(7L,)) ¢ (hy (), f_l(s’))> queries
= fr(e), it makes o<m~q’(n”,€”)>

queries to the simulated oracle, for n” = h, ' (h.(n)) < n and €’ = f~1(f(e)) > ¢, with

each query requiring at most g,(n”) queries to the real oracle; thus actual number of

given n/ ¢, then when given n’ = h,.(n),&

queries is o(¢'(n”,€")) = o(¢'(n,€)), contradicting the query complexity lower bound
for II. These last two steps of our argument can be made since the range of n” is
unbounded, and &” can be arbitrarily close to 0, so their limsup ,_, n = oo and

lim infe,,_>0 e=0. O

Observation 2.4.3. Reductions defined as per the above preserve one-sided error (in
the construction of Il-testers from IT’-testers), but they do not necessarily preserve

non-adaptivity if the query translation (item 4 above) is not itself non-adaptive.

Observation 2.4.4. If I1; is (f1, g1, h1)-reducible to testing 115, and I, is (f2, g2, ho)-
reducible to testing II3, then II; is (f1 o f2,91 - g2, h1 © ha)-reducible to testing II3
— assuming that hs(n) is monotone increasing (otherwise one has to account more

accurately for the O(hi(n)) structure sizes resulting from the first reduction).
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Chapter 3

Inflatable properties and natural

property tests

3.1 Introduction

Goldreich and Trevisan’s [GT03] includes two results tying several features of properties
and tests together. Their article defined the feature of property tests being canonical
(Definition 2.2.3). The article also demonstrates how any test can be made canonical
with at most about a squaring of its number of queries; this immediately implies that the
gap between properties’ adaptive and non-adaptive query complexity (see the discussion
in Chapter 1) is at most quadratic. The second result (due to Noga Alon) was mentioned
in Chapter 1 with respect to triangle-freeness testing: If a property is hereditary, then a
test for it can be replaced with merely ensuring that a small sampled subgraph satisfies
the same property as the large one. However, the proof in [GT03] implicitly assumes
that the test is natural (as in Definition 2.2.4); thus this result must be qualified, and is
not usable as such for deriving lower bounds on testing a property in general.

It seems odd, however, that tests for hereditary properties could circumvent the
argument in [GT03]. Many hereditary properties (specifically, those with finite families
of forbidden graphs) are highly ‘local’ in their definition; wherefore might they benefit
significantly from basing their action on the order of the entire input graph? If we
constrain ourselves to properties with features preventing blatant ‘pathologies’ which
preclude natural tests (e.g. the property of graphs having an odd number of vertices) —
then one tends to believe that property tests are ‘essentially natural’, so that perhaps
one can ‘smooth out’ any non-natural artificial dependence of tests on n.

The relevant features of properties allowing this adjustment will have to do with
their heredity, on the one hand, and their inflatability on the other. For an intuition for
the choice of these features, think of a property test as being canonical, with a set of
acceptable subgraphs for each order n of the input graph; in general, this set may gain
or lose elements as n increases or decreases; we want to ‘fix’ it somehow. Constraining

a property to be hereditary intuitively ‘covers’ one direction of change in n : As the

20



input order increases, the set of forbidden subgraphs increasingly gains elements, so one
expects the set of subgraphs accepted by the test to shrink gradually, or at least fail to
grow. In the other direction, we would like the test’s set of accepted subgraphs not to
grow as n goes down; now, if whatever it is we accept at a certain order also appears
at higher orders — through blowups — then we do not expect the set of accepted
subgraphs to shrink. Again, this is merely intuition. A concrete immediate effect of
requiring inflatability is precluding the pathology of graphs going from satisfying a
property at order n to being very far from satisfying it by merely adding a vertex.

With regards to the idea of ‘smoothing out’ non-naturality, a typical example would
be a test which arbitrarily rejects some specific queried subgraph at, say, even orders,
and accepts it at odd ones. If this subgraph is very unlikely to appear in graphs in the
property, then a natural test could be ‘spoiled’ by adding this behavior to it, while still
remaining a valid test. However, this can only be done for a single possible queried
subgraph, or few of them — such behavior is impossible with all acceptable graphs,
or with any subset of them which has an overall high probability of being sampled.
This leads one to recall that, in Alon, Fischer, Newman and Shapira’s [AFNS09], the
characterization of testability uses the set of all subgraphs of a fixed order accepted by
a canonical test. Even more relevant is Fischer and Newman’s [FNO7b] (proving that
testable properties are also estimable, a key result necessary for the characterization
in [AFNS09]), where it is observed that if one has a good estimate of the subgraph
distribution, then one knows in particular whether a test querying subgraphs of this
order accepts with high probability or not. In fact, disregarding the heavy use of
Szemerédi ’s regularity lemma in [FNO7b], its result is based mostly on estimating
the subgraph distribution up to a small variation distance — an approach sometimes
referred to as “meta-testing”.

Indeed, by analyzing tests with a focus on the distribution of subgraphs of a fixed
order and its behavior in subgraphs and blowups, under the constraints of heredity and
inflatability (even with a little relaxation), tests can be made natural, with a polynomial
penalty in the number of queries. This technique, the concept of inflatable properties,
and some of the aspects of our analysis, allow us to achieve several related results —
including a partial restoration of the proposition regarding testing hereditary properties

— and to draw conclusions regarding lower bounds for testing triangle (and other induced

subgraph) freeness.

3.2 Additional preliminaries

3.2.1 On features of properties and of tests
Canonicality

The definition of a property test being canonical appears above, as Definition 2.2.3. Any

test can be made canonical:
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Theorem ([GT03, Theorem 2|). If a graph property has a test making q(¢) queries
involving at most s(g) vertices, independently of the size of the input graph, then it
has a canonical test with queried subgraph order at most 9s(¢) (and query complezity
O(q(e)Q)). If the original test is one sided, this canonical test’s queried subgraph order

is s(e) and it is also one-sided.

Note. The theorem is not phrased in terms of the number of sampled vertices, but
this is evident from the proof of theorem: The original test is repeated 9 times and
the majority-vote is used, to amplify the probability of success from 1/3 to 1/6; see
also [GT05, Page 2, Footnote 1]. If one wishes the canonical test to succeed with
higher probability, this can be achieved by repeating the original pre-canonized test
additional times (and using a majority vote) before applying canonization; the penalty

is a constant-factor increase in the final order of the queried subgraph.

A canonical test, which accepts a graph G when the queried subgraph on its sampled

vertices is G’, is said to accept G by sample G'.

In this chapter we will be dealing mostly with tests which combine both the features
of canonicality and naturality, focusing on making canonical tests natural as well. For
canonical tests, the feature of naturality means that the ‘internal’ property, the one
for which the sampled subgraph is checked for, does not depend on the order of the
input graph. This observation leads us to use naturality to define several ‘levels’ of

canonicality for a property test:

Definition 3.2.1. Consider a canonical test for graph property II, with (H(i))z1 being
the sequence of properties the satisfaction of which the test checks for its sampled

order-s subgraph. The test is said to be

perfectly canonical when 1™ = II: The test does nothing but ensure that a small
random subgraph satisfies the same property that the larger input graph is being
tested for.
strongly canonical when ™ = II’: The test ensures that a small sampled subgraph
satisfies some fixed property, the same one for any order of the input graph, but
not necessarily II itself.
weakly canonical for any (H(i))zlz It may be the case that II"™ is different for different
input graph orders n.
Notes.
— Indeed, a test is strongly canonical if and only if it is both canonical and natural.
— In Alon and Shapira’s [AS08a|, the term oblivious is used for what we have defined
as a strongly canonical test.
— There is only one perfectly canonical test for any queried subgraph order; of course,
for many properties this will not constitute a test, as it will not distinguish satisfying

graphs from far graphs with sufficient probability.
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Approximate inflatability and heredity

We have defined what it means for a property to be inflatable and hereditary, in exact
terms. In this chapter we require relaxations of these definitions, to be able to describe
properties as approximately hereditary or approximately inflatable. These definitions
will concern random subgraphs and “random blowups” of graphs, so we first discuss the

latter briefly.

Definition 3.2.2. A random blowup of a graph from order n to order n’ is the blowup
in which the n’ (mod n) vertices have the larger clusters in the blowup (clusters of size

[n'/n] rather than | n’/n|) are chosen uniformly at random.

Definition 3.2.3. Let G, H be graphs of the same order, let 7 : V(G)— V(H) be a
bijection achieving dist(G, H ) (in terms of edge discrepancies), and let G’ be a blowup
of G. A blowup H' of H to the same order as G’ is said to correspond to G’ if for every
v € V(Q), the size of v’s cluster in G’ is the same as the size of 7(v)’s cluster in H'. In

other words, “the same” vertices in G and H get larger clusters.

Lemma 3.2.4. Let G # H be graphs of order n, let n’ >n, and let 7 : V(G)— V(H)
be a bijection achieving dist(G7 H), i.e. exhibiting dist(G, H) . (g) discrepancies. If one
uniformly samples a blowup G’ of G to order n’, and applies a corresponding blowup to

H, then the expected distance between the two blowups is strictly lower than dist(G, H)

Proof. We show that the expected number of discrepancies under a bijection mapping
each vertex v’s cluster to a vertex in the cluster of m(v) is less than dist(G, H ) (g/),
implying the claim. By the linearity of expectation, it suffices to show that for every
pair of vertices u, v which exhibits a discrepancy under 7 before the blowup, the

expected number of discrepancies of the two corresponding clusters in G’ and H' is
under (n//n)* < (g)/(g)

Now, let Kk = n’ (mod n) and m = |n’/n]|. The number of discrepancies due to
{u, v} is the product of the sizes of v and v’s clusters (denote their sizes cs(u), cs(v)).
Each of these clusters has size either m or m + 1; thus

Ex[cs(u) - cs(v)] =1 (m-m)+ Prles(u) =m+1] - (1-m)
+ Prics(v) =m+1]- (m-1)
+ Prcs(u) =cs(v) =m+1]-(1-1)

=m?4+2-m-— +Prles(u) = cs(v) = m + 1]

)< (B - ()

This completes the proof. O

=m>+2-m-

S| 3|
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Incidentally, Pikhurko has shown in [Pik10, Lemma 14] that the distance be-
tween blowups can’t be very far below the distance between the original graphs:
dist(G', H') > %dist(G, H), for exactly-balanced blowups; this non-trivial direction
of the distance bound, however, is only relevant to Chapter 4 of this work (see, specifi-

cally, Subsection 4.5.2), and not to this chapter.

Definition 3.2.5. A graph property II is said to be (s, d)-inflatable if for any graph G
satisfying II, of order at least s, all blowups of G are d-close to satisfying II. A property
IT is said to be (s, d)-inflatable on the average if for any graph G satisfying II, of order
at least s, the expected distance from II of blowups of G to any fixed order (a uniform

sampling out of all possible blowups to that order) is less than §.

As noted above, blowups do not affect graph distances overmuch. This implies that

taking a blowup cannot drive you too far away from an inflatable property:

Proposition 3.2.6. Let property 11 be (s, §)-inflatable on the average, let G be a graph
of order n > s, and let n' > n. The expected distance of G from the property does not
increase by more than § with a random blowup, i.e. Excqr [dist(G’, H)] < dist(G, H) +9.

Proof. Let H € Il be a graph of the same order as G such that dist(G, H) = dist(G, H )
Let G’ and H' be corresponding random blowups of G and H respectively (as per
Definition 3.2.3). The lemma gives Ex¢r [dist(G’, H’)} < dist(G, H); also, since II is
(s,0)-inflatable on the average, and since H if of order at least s, and since H’ is a also
random blowup, its own expected distance from II is less than §. We can now use the

triangle inequality to conclude that:
Ex [dist(G',IT)] < Ex [dist(G', H') + dist(H’,11)
= Ex[dist(G', H')] + Ex[dist(H', IT)
< dist(G, H) + 6 = dist(G,1I) + 6
as claimed. O

Having defined the approximate notion of inflatability, let us make a similar definition

of approximate heredity:

Definition 3.2.7. A property II is said to be (s, d)-hereditary if, for every graph in II,
all of its induced subgraphs of order at least s are §-close to II. A property 1I is said to
be (s, d)-hereditary on the average if, for every graph in II, the expected distance from

IT of a uniformly-sampled subgraph of any fixed order s’ > s is less than 4.

3.2.2 Fixed-order subgraph distributions of graphs

Definition 3.2.8. Given a graph G, consider the graph induced by a uniformly sampled
subset of s vertices. We denote the distribution of this induced subgraph by D¢,, the
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order-s subgraph distribution of G; D¢, (G’) is the relative frequency of a subgraph G’

of order s in G.
Note. In [FNO7b], this distribution is called the graph’s g-statistic.

Definition 3.2.9. Let G® denote the set of all graphs of order s. The distance between
two distributions D, D’ over graphs of order s, denoted dist(D,D' ), is the variation

distance between them, i.e.

dist(D, D’) Z |D(G (@)
Gegs

The distance between two graphs’ distributions of order-s subgraphs cannot exceed

their relative distance as graphs by more than a factor depending on s:

Lemma 3.2.10. If two graphs G, H (of order n > s) are 5(;)_1-close, then their
order-s subgraph distributions are d-close, i.e. dist(Dg,Dj’q) <.

Proof. Let ¢ : V(G)— V(H) be a bijection achieving the minimum of the number
of edge discrepancies. The graphs’ being ¢ (;)_l—close means that there are at most
5(;)71 . (g) such discrepancies. Now consider a uniformly-sampled set of s vertices in
V(G), and the subgraph they induce in G and (through ¢) in H. Every pair of vertices
in the subgraph is uniformly distributed among the pairs of vertices of G or of H, so
the probability of having any discrepant edges between these two subgraphs under ¢ is
at most 9. When we condition on the sample not containing any vertex pair discrepant
under ¢, the distributions of such an order-s subgraph of G and of H become identical;

the variation distance between the unconditioned distributions cannot, therefore, exceed
d. O

Another feature of the order-s subgraph distribution is that it does not change

overmuch when taking the blowup of a graph.

Lemma 3.2.11. Let 6 > 0, let G be a graph of order n > %(;), let G' be a random
blowup of G to order n' > n, and let H C G*. Then

Ex

G/

Pr [H € H]
H~DS,,

<0

— Pr [H €H]
H S

NDG

Proof. Let Dg, denote the order-s subgraph distribution of G/, conditioned on the event
that every vertex of the subgraph is in the cluster of a different vertex of G. For any
fixed G', we have

Pr [HeH]— Pr [HeH]

: s TS
HeDs . S dlSt( e DG/)
o’ HND‘G,

25



This variation distance is bounded by the probability p that multiple vertices in H
sampled uniformly from G’ are in the same cluster of vertex of G. For a given pair of
vertices of H, the probability of their being in the same cluster is at most the relative

size of a large cluster, which is bounded by 2/n; union-bounding over all pairs, we have,

r<(3) 2= () 550

The proof can now be complete if we show that

irrespective of G,

Ex

Pr [H € H]
G/

= Pr [H € H]
H~DE, H~Dg

G

For this purpose, let us analyze separately the various sets of s vertices in G (correspond-
ing to sets of s clusters in G’): The probability of sampling H in H is the probability of
sampling a set S of s vertices, such that the induced graph H = Hg on these vertices
is in H; in G’, it is the probability of sampling vertices from the appropriate sets of s
clusters. Let Sy be the family of s-vertex sets S with Hg € H. Denote by ps(G’) the
probability that a set S’ of s vertices, each from a different cluster of a G vertex, equals

S. Now, by the linearity of expectation,

Ex

Pr [H € H]
G/

H~DS,

:%)’( Z ps(G/) = Z %3([])5(61/)]

SeSy SeSy

The expectation Exq/[ps(G’)] is the same, by symmetry, for all s-subsets S, as the
blowup G’ is sampled uniformly. It must therefore be equal to the inverse of the number
of sets S, i.e. (’;)_1. Thus

—1
n
Bx| Pr [Hem] = ¥ Exbsc)) = 5 (1) = primen
H~Dg, SeSy SESH G
as claimed. O

Note that while a single event (or a single order-s subgraph or set of s clusters) has
the same expected probability when taking a random blowup, in specific blowups the
probability of an event or a set of clusters may very well be quite different, even for
n > s, as one may choose to have, say, the higher-degree vertices have bigger clusters,
and the lower-degree vertices have smaller clusters. The following proposition gives a
deterministic bound on the distance between the subgraph distributions using both the

order of the pre-blowup graph n and the ‘imbalance’ of the blowup:

Proposition 3.2.12. Let G be a graph of order n > s and G' a blowup of G to order
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n' >n, and let k =n' (mod n). If n divides n', then

s 1
dist(DZy,, D¢ - —
ist(Dgy, D) < (2> n
and for any n > n' it holds that

) s\ 1 min{k,n — k} s\ 1 n
dlst(Df;,,DE) < <2> 'E—FS'T < (2> .E_FS.?

Proof. Let us first analyze the case of the blowup G’ being exactly-balanced, i.e. ' = n-k
for some k € N. Consider a sample of an s-vertex subgraph of G’. Conditioning on
the event of every vertex being sampled from the cluster of a different vertex of G, the
distribution of order-s subgraphs of G’ is exactly D. Thus the unconditioned distance
dist(D‘&,,DSG) is at most the probability of sampling at least two of the s vertices from
the same cluster. Since G’ is an exactly-balanced blowup, this probability is less than
1/n for a single pair of vertices. Applying a union bound over the (;) pairs of vertices
yields dist(Dg,, D&) < £ (5).

In the general case, G’ is not necessarily exactly-balanced. However, let us choose
one vertex from each of the n’ (mod n) larger clusters to form a set U. the subgraph
of G' induced by V(G’)\ U is an exactly-balanced blowup of G; and with probability at

least 1 — s - X a sample of s vertices from V(G) is in fact sampled from V(G’)\ U only,

n’?

conditioning on which event the above distance bound holds. Alternatively, think of an
exactly-balanced blowup G” of G, to order n’ +n — k. The exactly-balanced distance
holds for G”, but when conditioning on the event of no vertices being sampled out of

the n — k additional vertices in G”, it has the same order-s subgraph distribution as G’;
n—k

this event’s probability is at least 1 — s "5,

In the general case, therefore, we have

. s s . 1/s k 1 /s n — ]{,‘
st D D) < mm{n<2> o n<2) T }

as claimed. O

3.3 Overview of results

We first state our main result in a simplified manner, for motivation and clarity:

Theorem 3.1. If a hereditary, inflatable graph property has a test making q(e) queries,
regardless of the size of the input graph, then it has a strongly canonical test — specifically,

a natural test — making O(q(5)4) queries.

We will in fact prove a mildly stronger version, with the above being a special case:

Theorem 3.1 (exact version). Let II be a graph property that has a test with queries

involving at most s(e) distinct vertices, regardless of the size of the input graph, and let
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51 = 12(358). If 11 is (31, %(821)71)—hereditary on the average and (81, sfﬂ—inﬂatable
on the average, then it has a strongly canonical test whose queried subgraph order is

s1 = 0(s(e)?).

Note. This theorem should also hold also for properties with weaker inflatability — a
higher threshold value than stated above for e-inflatability on the average — with some
modifications of our proof, and with a worse dependence of the queried subgraph order

on s.

We also prove a weak converse of Theorem 3.1:

Theorem 3.2. If a graph property I1 has a natural (not necessarily canonical) test with
queries involving s(e) distinct vertices, then for every & > e, I is (sh,s’) -hereditary
176)) and s; =
0(82 (e = 5)7llog2( ! )) respectively (with the coefficients s, and s; being independent

e'—e

on the average and (si,e’) -inflatable on the average, for sy = O(s : log(e,

of the specific property II ).

Let us now recall the proposition from Goldreich and Trevisan discussed in the

introduction:

Proposition ([GT03, proposition D.2|, corrected as per [GT05]). Let II be a heredi-
tary graph property, with a natural test making q(e) queries. Then II has a perfectly
canonical (one-sided) test with queried subgraph order O(q(g)).

Originally, this proposition was stated without requiring that the test be natural (merely
that the number of queries be independent of the order of the input graph). Combining

now this corrected, qualified version above with Theorem 3.1, one obtains:

Corollary 3.3. Let IT be a hereditary inflatable graph property, with a test making q(e)

queries. Then 11 has a perfectly canonical (one-sided) test with queried subgraph order

0((q(2))?).

We use the contrapositive of this corollary to provide a more straightforward proof of
[AS06, Theorem 1], even improving it slightly for the case of triangles (using the recent
result in [Elk11)):

Theorem 3.4. Any e-test — natural or otherwise, with one-sided or two-sided error
— for the property of being triangle-free makes Q<(1/€)c'(10g(1/5)) meestt/ )> queries,
for some global constant c.

(The lower bound in [AS06, Theorem 1], is (¢/e)<™¢/%)))

Returning to [GT03, proposition D.2], while for hereditary inflatable properties we
have established it with a power-of-four penalty on the number of queries, for properties

with one-sided tests it can be shown to hold as stated:
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Proposition 3.3.1. If a hereditary inflatable property I1 has a one-sided (not necessar-
ily natural) test making q(g) queries, then II has a perfectly canonical test with queried

subgraph order at most 2q(¢).

Finally, we place the notion of inflatability in the context of proximity-oblivious
testing (see the exposition of this concept in Section 3.8), we prove the following partial

characterization:

Proposition 3.3.2. Let 11 be an inflatable hereditary property. I1 has a constant-query,
proximity-oblivious test if and only if there exists a constant s such that, forn > s, Il,,
consists exactly of those graphs of order n, which are free of order-s graphs outside of
II.

3.4 Naturalizing tests

In this section we prove Theorem 3.1.

Let II be a property meeting the conditions in the statement of the theorem. As II
has a test with queries involving at most s(e) vertices (independently of n), by [GT03,
Theorem 2] it has a canonical test, querying a uniformly sampled subgraph of order at
most 9s, in its entirety. As noted after the citation of this theorem, in Subsection 3.2.1
above, we may assume that the canonical test’s probability of error is at most % rather
than %, at the cost of increasing the queried subgraph order to sg = 31s.

One may think of the existence of such a canonical test as meaning that the
membership of a graph in II is essentially determined by its distribution of (induced)
subgraphs of order sg. This being the case, let us consider a (canonical) ‘meta-test’ for
I1, which estimates whether the subgraph distribution leads to acceptance (of the input

graph G of order n). This meta-test is listed as Algorithm 3.1.

Note. The order s; of the larger subgraph used for this estimate is chosen so as to ensure
the stability of the distribution under blowups — a consideration which will become
relevant later in this section. On the other hand, s; is not high enough to properly
estimate the distribution, i.e. estimate the frequency of specific order-sy subgraphs
(there are exp(€2(so?)) of them) in G.

Algorithm 3.1 A Meta-Test for II

1: Uniformly query a subgraph Ggampie of order s; = 12(%) = 12(3132(8)).
2: If at least a %—fraction of the order-sy subgraphs G’ of Gsample are such that the
(canonical) sg-test accepts G by sample G', accept. Otherwise reject.

Lemma 3.4.1. Algorithm 3.1 is a valid test for property I1, with probability of failure
at most 1/6.
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Proof. Suppose the input graph G either satisfies Il or is e-far from satisfying II. Let
G’ be one of the (zé) order-sg subgraphs of Ggample.- Let X be the indicator for the
so-test erring (that is, rejecting G in case G satisfies II, or accepting G in case G is far
from IT) by sample G'. Every order-sg subgraph of Gsample is in fact uniformly sampled
from the input graph, thus Ex[X¢] is the probability of the sp-test erring — at most
%. The expected fraction of order-s subgraphs of Gsample by which the sp-test errs is
therefore also at most 3—16. Considering the meta-test’s behavior again, it can only err if
1

at least a g-fraction of the subgraphs of Gsample cause the so-test to err. by Markov’s

inequality the probability of this occurring is at most % % = %. O

Let us now modify Algorithm 3.1 to reject samples which are themselves not in the

property at order s1; the result is listed as Algorithm 3.2.

Algorithm 3.2 Modified Meta-Test for II

1: Uniformly query a subgraph Ggampie of order s; = 12(%) = 12(3132(5)).

2: If Gigample is not in II, reject.

3: If at least a %—fraction of the order-sg subgraphs G’ of Gsample are such that the
so-test accepts G by sample G, then accept. Otherwise reject.

Lemma 3.4.2. Algorithm 3.2 is a valid test for property II.

Proof. The additional check only increases the probability of rejection of any input
graph, so it does not adversely affect the soundness of the modified test (that is, a graph
e-far from 1II is still rejected by Algorithm 3.2 with probability at least % > %)

As for the modified test’s completeness, we recall that II is (s, %(521)_1)—hereditary
on the average. This implies that, for an input graph in II, the average distance of
subgraphs of order sy from II is %(321)_1; as each order-s; subgraph not in II is at least
(sg)fl—far from II, the fraction of order-s; subgraphs of G which aren’t in IT is at most
%. Regardless of these, at most a %—fraction of the order-s; subgraphs of a satisfying
graph cause Algorithm 3.1 to reject. Union bounding over these two sets of subgraphs
causing rejection we find that the probability of the modified meta-test rejecting a graph

inHislessthan2-%:%. O

Now, Algorithm 3.2 is not necessarily natural, receiving as input the order n of the
graph G being tested, and passing this value to the original sg-test; but if Algorithm 3.2
were somehow also natural, this would complete the proof of Theorem 3.1, as the test
otherwise meets the requirements. Since Algorithm 3.2 is canonical, its naturality means
being strongly canonical: accepting the same set of sampled subgraphs for any input

graph order. Interestingly enough, our modification has indeed made this the case:

Lemma 3.4.3. Let H be a graph of order s1 by which sample Algorithm 3.2 accepts
for at least some input graph order n. Algorithm 5.2 cannot reject for any input graph

order n' > s1 by sample H.
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Proof. Assume on the contrary that Algorithm 3.2 rejects by sample H for some n’ > s1.
We first note that Algorithm 3.2 does not reject by H at order n’ on account of H not
being in I (as samples which aren’t in IT are rejected at all input orders). We will show

that this invariably implies that the original test is incomplete.

Let IT/, denote the set of order-sg subgraphs by which sample the so-test accepts

an input graph G at order n/. Our assumption is that the probability of the sg-test

1

accepting a subgraph of H is less than 7, or in terms of the subgraph distribution,

Pry po [1T,] < -

Now, consider a random blowup H’ of H to order n’. II is (51, %(520)_1)—inﬂatable

on the average, and H is in 11, so
1 S0 -1
Ex|[dist( H', I —
a0 < g5 ()
and by Markov’s inequality,

Pr
H/

dist(H',11) > (%0 NP
=6\ 2 2

Also, let § = %. Since s1 > %(820), we may apply Lemma 3.2.11 (substituting H and H’

for G and G', sq for s, s1 for n) for the event of the so-test accepting at order n':

]1%)’( Hsljég’, [Hy e II,]| < HSE)]I)‘? [Hy € 1I,/]
+ ];][)/( HSE){);?/ |:HS S H;L’] — HS:E)]I':);? [Hs € H;L/}
/ LS
<HSIN>E;?[HSeHn/] tI< ot o=g

and again by Markov’s inequality

Pr [H,ell,| > 2

Pr
S
Hs~D?0, 3

1
H' 2

Combining these two facts, we conclude that with positive probability, H' is a graph
which is both very close to II and is accepted by the sp-test with probability at most %

Now, let H' be a graph in IT at distance at most %(820)71 from H'. By Lemma 3.2.10,

these two graphs’ order-sy subgraph distributions are %—close, implying that

Pr [H €Il |- Pr [H ell,]| <

n' s
0
Hys~D),

[N
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We now use the triangle inequality to bound the probability of the sg-test accepting H:

Pr [Hyell|< Pr [Hyell,|+| Pr [Hsell,| - Pr [Hsecll,]

HSND‘;NO, Hs~D7Y, Hs~D?Y, HSND;TOI
< 2 n 1 5
3 6 6

This contradicts the original test’s probability of error — it must accept H , a graph

in II, with probability at least 1 — 3—16 > %. It can therefore not be the case that

Algorithm 3.2 rejects H at order n’. O

Proof of Theorem 3.1. Given a property Il satisfying the conditions, we have devised

355)

by Lemma 3.4.3, it accepts and rejects the same set of queried subgraphs for all graph

)

Algorithm 3.2: This is a canonical test for II, with queried subgraph order s; = 12(

orders n > s; — that is, it is a natural test. O

3.5 Lower bounds for triangle-freeness testing

As discussed earlier, part of our interest in the naturalization of tests is obtaining
lower bounds on testing the property of triangle-freeness (or freeness of other induced
substructures), through lower bounds on one-sided testing or other more fundamental
results.

The current state of the art in terms of an explicitly-stated lower bound is:

Theorem ([AS06, Theorem 1]). The query complexity of any e-test — natural or oth-
erwise, with one-sided or two-sided error — for the property of being triangle-free is at

least (¢/e)° ™ /%) for some global constant c.

Now, consider the contrapositive of Corollary 3.3:

Corollary. If a hereditary inflatable property has no perfectly canonical test with queried
subgraph order ¢'(¢), then it has no test whatsoever (natural or otherwise, with one-sided

or two-sided error) making q(c) queries such that q(g)? = o(q'(¢)).

[AS06, Theorem 1] can be obtained by combining the one-sided lower bound for testing
triangles of [Alo02] with Corollary 3.3, without requiring the careful use of Yao’s method
in [AS06].

The proof of the one-sided testing lower bound, in [Alo02], is based on a construction
of a large subset of [n], which is free of arithmetic progressions (i.e. tuples z,z +
d,z + 2d,z + 3d,...). The specific construction used in [Alo02] is that of Behrend, in
[Beh46]. Recently, after 60 years with no progress, an improvement was made over this
construction by Michael Elkin in [Elk11] (with a simpler proof suggested by Green and
Wolf in [GW10]):
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Theorem. For every natural number n, there exists a subset X, C [n], with | X,| =

n- 1/¢/log(n) . . . . .
(m , which contains no 3-term arithmetic progressions.

Now, this new construction can be translated into a lower bound on testing triangle-
freeness either using our methods, or using the Alon-Shapira Yao-style argument from
[AS06], so that an improved two-sided lower bound can be considered to already be
established as the state of the art. However, as it has not been explicitly stated in the

literature, we sketch the proof below.

Lemma 3.5.1 (implicit in [Alo02] and [AS04b]). Let m(e) be the highest integer with
a subset X,,, C [m] of size em which contains no non-trivial solutions to the equation
1+, ..., x5—1 = (k= 1) -z (for an odd k). Any one-sided-error test for the property
of a graph being k-cycle-free makes Q((m(e))k_Q) queries.

Proof Sketch. One constructs a k-partite graph of size O(m(e)), and connects vertex
i in each of the first £ — 1 parts to each vertex in the set {i + = |z € X} in the next
part, for every i. One then connects the vertex i of the k*® part with each vertex in the
set {i — kx| z € X}, for every i. It can be shown that this graph has ©(m|X|) k-cycles,
all distinct — as two k-cycles can only share an edge if X has a k-term arithmetic
progression. As |X| > em, the graph is far from being k-cycle-free.

One then blows up the graph by a factor of ©(n/m). The resulting graph can
be shown to be far from being k-cycle-free, but only has ©((n/m)* -m-|X|) =
O(nk /mk*2) cycles. Now, a one-sided test making o(mk*Q) queries will not find
any of these cycles in the blown-up graph, and will have to accept (as its queries can be

completed into a k-cycle-free graph).
(This argument, with some modification and for the case of 4-cycles in digraphs, is made

in detail in Chapter 5.)

Observation 3.5.2 ([Alo02]). If a set of integers is free of 3-term arithmetic progres-

sions, then it is free of solutions to the equation x; + x2 = (3 — 1)xs.

Combining Lemma 3.5.1 and Observation 3.5.2 with the contrapositive form of

Corollary 3.3, we have, for the case of graphs:

Corollary 3.5. Let m(e) be the highest integer with a subset X,, C [m] of size em
which is free of 3-term arithmetic progressions. Any test for the property of a graph
being triangle-free makes Q((m(e))1/4) queries.

Now, the progression-free set used in [Alo02] has size

n

exp(lO ln(n)ln(k)>

| Xn| >
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which implies m(e) > (¢/e)*™ %) for an appropriate global constant ¢’. The Elkin

X, = <n 1/4/log(n)>

construction has size

" o/log(m)

with log(n) being the base-2 logarithm, implying that m(e) > exp(c’ : long(l/e)), for
an appropriate global constant ¢, and with p =1+ m (we omit the calculation.)

This proves Theorem 3.4.

Note. A generalization of Elkin’s result by Kevin Obryant to k-progression-free sets
in [Obrl1] hints at possible similar lower bounds on testing induced k-cycle freeness.
However, the argument in Observation 3.5.2 does not apply to cycles of length over 3
(eg. 1+3454+7=(5—1)-4is a 5-term linear equation, but the set {1,3,4,5,7}
has no 5-term progression); one would have avoid cycles due to such solutions in an

alternative construction.

3.6 Omne-sided error and natural tests

Observation 3.6.1. If a hereditary property has a strongly canonical test, then this

test must be one-sided.

Proof. If the test for the hereditary property IT (deterministically) rejects any sampled
subgraph G’ of a graph G € II, the test also rejects G’ when it is the entire graph.
But when G’ is the entire graph, it will always be the sampled subgraph, i.e. the test
rejects G’ with probability 1. G’ can therefore not be in IT — a contradiction to II
being hereditary. O

The implication in Observation 3.6.1 can be reversed, in a way — weak approximate

heredity as a consequence of one-sided testability:

Lemma 3.6.2. If a property 11 has a one-sided strongly canonical test with queried

subgraph order s(e) for some €, then II is (8(5), 5) -hereditary.

Proof. Let G € 11, for n > s(g), and let G’ be a subgraph of G of order at least s(¢).
If G’ is e-far from II, then it must have an order-s subgraph G” by which sample
the test rejects G’. But the test also rejects G by sample G”, in contradiction to its

one-sidedness. O

Note. This lemma is somewhat similar to the second direction of [AS08a, Theorem 2],

in which the existence of a one-sided natural test is shown to imply ‘semi-heredity’.

One would hope to somehow get rid of the dependence on ¢ and find conditions under

which the property is hereditary, at least down to some ng; this becomes possible if
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the test is proximity-oblivious, but note that if a property II has a natural proximity-
oblivious test, then II is simply the property of being free of subgraphs by which
this test rejects (at least for n > s; see discussion in Section 3.8, and specifically
Proposition 3.3.2).

In the proof of Lemma 3.6.2, we used the one-sidedness of the test to obtain
deterministic approximate heredity; Section 3.7 below deals with the general, two-
sided case, and establishes approximate heredity only on the average. Deterministic
approximate heredity may indeed require the test to be one-sided. For example, the
property II; ., containing those graphs with at most %(g) edges, is (O(%), 5) -hereditary
on the average, has a two-sided natural test (in fact, its query complexity can be shown
to be 0(1/52)), but it is not (s,% - 5)—hereditary for any s and 0 > 0 (as there are
satisfying graphs with arbitrarily large complete subgraphs).

Returning again to the direction of Theorem 3.1, let us follow an alternate line
of argumentation than the one used to prove Theorem 3.1, this time for the case of

one-sided tests.

Lemma 3.6.3. Let II be an inflatable property. A one-sided canonical test for II can

only reject an input graph when it samples a subgraph which is not itself in 11.

Proof. Suppose that, for some input graph G of order n, the test samples a subgraph
G’ € II. Since II is inflatable, there exists a blowup G” of G’ to order n such that
G" € TI. Now, G’ is an induced subgraph of G”, so it is possible for the test to sample
G’ when G” is the input graph. Since the test is one-sided, it can not, therefore, reject

an input graph of order n with G’ as the sample. O

Proof of Proposition 3.3.1. By [GT03, Theorem 2], II has a canonical one-sided test
with queried subgraph order s(e) < 2¢(e), which is also one-sided. By Lemma 3.6.3, this
test only rejects sampled subgraphs which are not themselves in II. Now suppose we
modify the test so as to reject all sampled subgraphs not in II. As we are only rejecting
additional subgraphs, the test’s soundness can only improve. As for its completeness,
we note that since 11 is hereditary, no graph in II has any subgraphs outside of II, so the
test still accepts graphs in II with probability 1. The resulting test is indeed perfectly

canonical. ]

3.7 Inflatability and heredity of naturally-testable prop-

erties

Lemma 3.7.1. If a property 11 has a strongly canonical test with queried subgraph
order s(g), with probability of error § < %, then II is (%(;),E + 35) -inflatable on the

average.
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Proof. Let G be a graph of order n satisfying II, for n > %(‘;), and let G’ be a random
blowup of G to some higher order. Let IT' be as in Definition 3.2.1 — the set of order-s
subgraphs by which sample the test accepts an input graph. By Lemma 3.2.11, we have

Ex

x| Pr [H ¢ 11']

!
s — Pr [H ¢1I'|

H~DS,

<46

so Exgr [Pr H~pe, [H & I ]] < 24. By Markov’s inequality
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Now, if G’ is rejected by the test with probability at most 1 — 4§, it cannot be e-far from
IT; if it is rejected with higher probability, we can’t make any assumptions regarding its

distance. Thus
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meeting the requirement for approximate inflatability. O

Lemma 3.7.2. If a property 11 has a strongly canonical test, with queried subgraph

order s(g), with probability of error § < L, then II is (5,8 + %6) -hereditary on the

37
average.

Proof. Let G be a graph in II of order at least s, let G’ a uniformly-sampled subgraph
of G of order s’ > s, and let per denote the probability of the test rejecting with G
rather than G as its input graph. The expectation of pg is exactly 8, the probability of
the test rejecting G — as the process of sampling an order-s’ subgraph, then sampling
an order-s subgraph out of it, is the same as just sampling an order-s subgraph of G.
We can apply Markov’s inequality and bound the probability of pg being too high:
Pro/per > 1-6] < %. Since the test is sound, we know that if pgs is lower than
1—4, then G’ cannot be e-far from IT; if pg is higher, we do not assume anything about
G"’s distance from II. Thus

]ggc[dist(G’,H)] < Prlper <1-6]-c+Prlper 2 1-4] -1

) 0 3
< 1- — .1 = < s
< €+1_6 €+1_5_€+25 O

Proof of Theorem 3.2. Let § = %(5’ —¢). Our first step is the same as in the proof
of Theorem 3.1 — pre-amplifying the probability of success of the natural test and
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canonicalizing it. Our modified test remains natural (thus being strongly canonical), with
probability of failure at most 4, and its queried subgraph size is s, = O(s -log (5*1)),
as per the discussion of canonicalization in Subsection 3.2.1. Now, by Lemma 3.7.2, IT is
(sh, e+ %5) -hereditary on the average, and by Lemma 3.7.1, II is (% (52}‘) , €+35)—inﬂatable

on the average. This meets the claim. O

3.8 Natural testability and proximity-oblivious testing

In most works regarding property testing, tests are devised based on a foreknowledge
of the proximity parameter : Either the test is given € as input, or ¢ is fixed globally.

Goldreich and Ron explore an alternative approach in [GR09]:

Definition 3.8.1. A proximity-oblivious test for property II with detection probability
p(+) is a probabilistic oracle machine, which is given the value n, as well oracle access
to a graph G of order n in the same manner as a usual test. The machine accepts a
graph G € II,, with probability 1, and rejects a graph G ¢ II,, with probability at least
p(dist(G, Hn)) .

Notes.

— One can obtain an e-test in the usual sense by invoking the proximity-oblivious test
©(1/p(e)) times.

— A proximity oblivious test has query complexity which may depend on n, but not on

€.

In this section we concern ourselves with proximity-oblivious tests, that havequery

complexity independent of n.

Lemma 3.8.2. If a hereditary, inflatable graph property has a proximity-oblivious test
making ¢ queries, using s < 2c sampled vertices, then it has a perfectly canonical

prozimity-oblivious test with queried subgraph order s (making at most (;) queries).

The proof of this lemma is exactly the proof of Proposition 3.3.1, which does not
make any assumptions regarding the test’s use of the value of €, nor regarding its
probability of rejecting far graphs.

The general results of [GR09] regarding the dense graph model include a char-
acterization of the properties admitting a (not necessarily natural) constant-query

proximity-oblivious test:

Theorem ([GR09, Theorem 4.7]). A property II has a constant-query proximity-oblivi-
ous test if and only if there exists a constant ¢ and a finite sequence F = (Fa)nen of
sets of graphs, such that each F,, contains graphs of size at most ¢, and 11, is the set of

order-n JFy-free graphs.
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When limiting our focus to properties which we know to be naturally testable, we

can tighten the characterization:

Proof of Proposition 3.3.2. 1f 11 is the property of being F-free for F = (II,), then IT
is proximity-oblivious testable with a constant number of queries: As established by
Alon, Fischer, Krivelevich and Szegedy in [AFKSO00], any graph G is either close to

S

being F-free, or has §(g) - n® induced copies of this forbidden subgraph (with § being a
double-tower function of (1/e), as this fact is established using a version of Szemerédi
’s regularity lemma). In this direction, our argument is the same as in the proof of
the general characterization theorem of proximity-oblivious-testable properties [GR09,

Theorem 4.7].

The other direction follows from Lemma 3.8.2: The existence of a proximity-oblivious
test implies the existence of a perfectly canonical test querying a subgraph of order s
and rejecting if it isn’t in II,. This test accepts, with probability 1, exactly those graphs
which are free of induced subgraphs outside Il,; as it is one-sided, this implies that II,

at order s and above, is the set of (II,)°-free graphs. O

3.9 Naturalization and inflatability in other dense struc-

tures

The results of this chapter all essentially hold, albeit with different parameters, for any
class of dense structures which fits the general definition in Subsection 2.1.1 — and also
for structures mentioned there which require some trivial reduction to fit that definition,

such as matrices and tensors with no order on their coordinates in each dimension.

There is, however, a subtle point regarding the orders of structures tested: In graphs,
a test whose queries involve s(g) vertices, when applied to a graph of order under s, can
simply query the entire graph and decide deterministically — using a number of queries
bounded by (;) This is not generally possible in multi-partite dense structures: A test
might require more vertices than are present in one of the parts, but it cannot query
the entire graph without making a number of queries depending on other n;’s, which is
not bounded. Instead, the test may require complex behavior, different than for the
general case, to effectively test structures with some parts being small and others large.
While such behavior is worthy of independent study, we wish to make straightforward
generalizations of this chapter’s results, so we choose to ignore this setting. We will
therefore only be generalizing our results to uniform-order tests; and this choice also

motivates the limited scope of our definition of canonicality in Definition 2.2.3.

We shall not repeat the proofs made above for graphs also for the case of general
dense structure classes, but rather state the generalized results and provide proof
sketches.
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3.9.1 Generalized preliminaries

For the rest of this section, we fix a class of general dense structures (as per the definition
in Subsection 2.1.1), letting & denote the number of vertex parts, ¢ the number of edge

relations, and 7; the arity of the i*" edge relation. We also denote 7 = max{ry,...,r:}.

Observation 3.9.1. Under our assumptions and by Definition 2.1.10, a dense structure
of uniform order s supports up to o(s,t, k,r) =t - (ks)" potential hyperedges; if the
class of structures is unconstrained, and 7y = ... = r; = r, then the structure supports

exactly this number.

Theorem 3.6 (Generalization of [GT03, Theorem 2]|). If a property I1 has a uniform-
order test making q(g) queries involving at most s(e) vertices from each part of the
nput structure, independently of the size of the input structure and its parts, then
IT has a canonical test, sampling a substructure of order at most 9s(¢) (and making
O(o(9s,t,k,7)) = O(s") = O(q") queries). If the original test is one-sided, then a
queried subgraph of order s(e) will suffice for such a canonical test, which will also be

one-sided.

Proof Sketch. The transformation of an arbitrary graph test into a canonical one in
[GTO03, Section 4] has three steps:

e First, the test is split into two phases: A uniform sampling of vertices, followed by
a (probabilistic) decision based on their induced subgraph, queried in its entirety;

e The second phase of the test is made independent of the labeling of the vertices
of the induced subgraph. In other words, the test is made to accept with the
same probability any two induced subgraphs seen in the second phase which are
isomorphic to each other.

e Finally, the probabilistic aspect of the second phase is discarded by rounding
probabilities, so that induced subgraphs are deterministically either accepted or

rejected.

Considering these three steps, one observes that they do not depend on a graph’s
having two vertices per edge, or on the non-partiteness of general graphs. We can
therefore apply the same transformation to a test of any dense structure: We sample
O(s(e)) vertices from every part, and query the entire induced substructure on the
sampled vertices (making o(s,t, k,r) queries). A deterministic decision is now be made
based on this order-s substructure.

The only point one must take into account when canonicalizing tests of uniform-order
partite structures is, that the choice of part from which to sample the next vertex may
depend on previous query results — an aspect missing in the case of graphs. This is
the reason why as many as k - s vertices (the number of vertices in a substructure of

uniform order s) may be required: Instead of adaptively sampling s vertices, choosing
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one part or another for each of them, we sample s vertices from every part, and can
thus simulate the original test’s sampling using our already-sampled vertices.

One may verify that the rest of the details of the proof of [GT03, Theorem 2]
indeed hold regardless of the choice of general dense structure class (but assuming that
the structure has enough vertices). The constant factor 9 is due to the repetition of
the original test to amplify the probability of success, an amplification necessary for
rounding the acceptance probabilities (and unnecessary for the case of one-sided tests).

This too is the same for any dense structure.

Definition 3.9.2. For a dense structure G in our chosen class, We denote by D¢, the
distribution of substructures induced by a uniformly-sampled set of s vertices in each
part — the order-s substructure distribution of G; D (G’) is the relative frequency of a

substructure G’ of order s in G.

We let G® denote all structures of uniform order s in our class of dense structures, and
define the distance between distributions similarly to the case of subgraph distributions
(see Definition 3.2.9).

Lemma 3.9.3 (Generelization of Lemma 3.2.10). If two dense structures G, H are

0/o(s,t,k,r)-close, then their order-s substructure distributions are §-close, that is,
dist(D,, D%;) < 6.

Proof Sketch. The proof is the same as in the case of graphs, except that the number of

potential hyperedges in an order-s substructure is bounded by o(s,t, k,r) rather than
S
(3):

Lemma 3.9.4 (Generelization of Lemma 3.2.11). Let 6 > 0, let G be a structure with
n; > %k(;), for all i € [k]; let G' be a random blowup of G to some higher order

(s1,82,.--,8k) (or uniform order s); and let H C G°. Then
Ex| Pr [HeH|| - Pr [HeH| <o
G’ HNDE, HNDE

Proof Sketch. The difference in this proof from the case of graphs is that there are as
many as s vertices in each part of each structure in G*, so one must union-bound over
as many as k(;) pairs of vertices which may be sampled from the same cluster, rather

than (;) in graphs or other non-partite structures. Otherwise the proof is the same.

3.9.2 Generalization of our main results

Theorem 3.7 (Generalization of Theorem 3.1). If a hereditary inflatable property has
a uniform-order test making q(g) queries, regardless of the size of the input structure
and its parts, then it has a strongly canonical uniform-order test — specifically, a natural

test — making O(q(s)zr) queries.
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Theorem 3.7 (Exact version). Let s : Rt — N.  There exist s1 = O(k(3)), & =
Q1/o(s,t,k,r)) and e, = Q(1/o(s1,t,k,7)) for which the following holds: Suppose
a property 11 of dense structures of a certain kind is (81, 5h) -hereditary on the average
and (31, si) -inflatable on the average, and that I1 has a uniform-order test making queries
involving at most s(e) distinct vertices in each part of the input structure (regardless of
the size of the parts). Then II has a strongly canonical uniform-order test querying a

substructure of order sy.

Proof Sketch. The proof for the case of graphs works for whatever dense structure we are
concerned with: We canonicalize the original test; switch to estimating the acceptance
probability of the canonical test over a larger (order-s;) substructure; and finally reject
if the larger substructure is itself not in II. Using Lemma 3.9.3 and Lemma 3.9.4,
analysis shows that this is both a valid test and that it is natural, i.e. the same property
set of sampled substructures is accepted at any input order.

The only adjustments are in the larger sampled substructure size and the heredity

and inflatability parameters:

e The sampled substructure must be high enough for Lemma 3.9.4 to yield a
sufficiently small constant difference in the distributions of order-s substructures;
for our dense structures this is O(k(3)) instead of the O((3)) for the case of

graphs, as discussed in the proof of Lemma 3.9.4.

e The heredity parameter must relate to the larger substructure size s; as per
the above. Also, it must be strong enough so that, on the average, an order-s;
substructure of a structure in II will itself be in II, rather than just being close to
IT; this explains the inverse dependence on the number of edges/hyperedges in

the substructure.

e The inflatability parameter must be such that a random blowup of a graph in II
is close enough to Il for Lemma 3.9.3 to yield a small constant distance between

the order-s substructure distributions.

The parameters appearing in the statement of the generalized theorem (for uniform-order

structures) indeed meet these requirements.

The converse of Theorem 3.7 also admits exactly the same proof as for the case of

graphs, with a tweaking of the inflatability parameter s; similarly to Lemma 3.9.4:

Theorem 3.8 (Generalization of Theorem 3.2). If a property II has a natural (not
necessarily canonical) test which, for structures of order at least s(€), makes queries

involving at most s(g) distinct vertices in each part, then for every €' > e, II is (sh,zs')—

hereditary on the average and (si, 5’) -inflatable on the average, for sp = O(s . log(a,l_a))
and s; = O<k32 (el = 5)_110g2(€,1_€)) respectively.
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Note. In this direction, we are not limiting the argument to uniform-order tests.

Alon’s [GT03, Proposition D.2] regarding perfectly canonical testing of hereditary
properties (quoted above with its qualification in [GT05]) applies, with the same proof,

to any class of dense structures; with it, and Theorem 3.7, we derive the following:

Corollary 3.9 (Generalization of Corollary 3.3). If a property 11, which is hereditary
and inflatable, has a uniform-order test making q(€) queries, then it has a canonical

uniform-order test with queried subgraph order poly(q(g)).

Proposition 3.9.5 (Generalization of Proposition 3.3.1). If a property II, which is he-
reditary and inflatable, has a one-sided (not necessarily natural) uniform-order test
making q(g) queries, then II has a perfectly canonical uniform-order test with queried

subgraph order at most r - q().
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Chapter 4

Query complexity hierarchies for

dense graphs and other models

4.1 Introduction

While the rest of this thesis is mainly concerned with properties whose query complexity
depends only on the distance parameter €, this chapter focuses on properties whose
tests require more queries as graphs grow, and with this dependence of their query
complexity on n.

Goldreich, Goldwasser and Ron’s initial exposition of graph property testing already
considered the question of properties of dense structures that are ‘maximally’-dependent
on n: [GGRI8, Proposition 4.1.1] establishes the existence of a property of strings, or
generic functions (from [n] to a finite domain), with Q(n) query complexity, linear in
the size of the representation; and in [GGRI8, Proposition 10.2.3.1], this construction is
built upon to establish the existence of a dense graph property with query complexity
linear in the size of the representation, i.e. q(n) = Q(n?).

There is no reason to assume a gap in the query complexity anywhere on the
‘spectrum’ between ¢(n) = ©(1) and g(n) = ©(n?), especially as over time, properties
have been established to have all manners of specific query complexities in between:
Graph isomorphism testing, in different variants, has been shown by Fischer and
Matsliah in [FMO06] to have query complexities such as (:)(n?’/ %) and ©(y/n); Dyck
languages (parenthesis languages) have been shown to require Q(nl/ 11) queries and be
testable with Q(n2/ 3p01y10g(n)) queries; et cetera. Indeed, it is natural to expect there
exist properties of dense graphs (or other dense structures) with any arbitrary query
complexity as a function of n: Properties testable with ©(g(n)) queries, without being
testable with o(g(n)).

In this chapter we prove the existence of such query complexity hierarchies for three
testing models: Beginning with the simple case of properties of generic Boolean functions
(or equivalently, of binary strings); making an aside for the case of bounded-degree

(sparse) graphs; and finally focusing on dense structures, specifically dense graphs. For
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each model, we provide explicit (probabilistic) constructions for such properties. In fact,

all of these hierarchy results are established in a very similar pattern:
e We start with an appropriate maximally-hard property II’ for our specific setting.

e A property I1? is constructed for an arbitrary choice of g(n), using mostly some
sort of replication or blowup, so that every structure in I19,, corresponds to some

structure in IT’ of size g(n) or lower.

e Testing IT’ is shown to be reducible (either generally, in the sense of Definition 2.4.1,
or for some subset or distribution) to testing 117, establishing an Q(g(n)) lower

bound on the query complexity of I19.

e A test for 117, making O(q(n)) queries, is explicitly presented, which essentially
considers (for an input structure of order n), which smaller structure(s) from IT’

is the input a blowup or a replication of, if at all.

There is, however, some subtlety to the question of the existence of properties of
arbitrary query complexity, and even the existence of maximally-hard properties.

A first aspect to consider in this respect is the kinds of properties we wish to obtain.
A “purely random” property will almost surely be hard to test, but it will also be hard
to decide (and impossible to decide for all n by a single machine only receiving n);
certainly such a property will not be polynomially decidable in general; and it will not
have useful structural features. Such is the hard property for the dense graph model,
constructed in [GGRI8] (although [GGRI8, Proposition 10.2.3.2] already improves on
this by making the property NPTIME-decidable). Another improvement, in Goldreich
and Trevisan’s [GT03, Theorem 1], is an NPTIME monotone property; to decide
it or to test it, one needs to recognize outputs of a certain pseudorandom generator,
making this an NPTIME problem not likely to be in PTIME. Thus the question
stands whether there are even @(nQ)—hard properties which are definitely in PTIME
while exhibiting most or all of these features. Also, features of properties may be more
difficult to establish at ¢(n) = 0(n2); specifically, a maximally-hard property is one-sided
testable, but in a somewhat meaningless sense: Reading the entire graph meets the
query complexity lower bound, and one can thus obviously make a deterministic decision
with no error; for g(n) = o(nz), a one-sided testability is not at all a trivial matter.

In order to provide hierarchies with these desirable features, we first strengthen the
hardness results from [GGRI8]|, by constructing a maximally-hard property which is
both PTIME-decidable and PTIME-testable, in Section 4.2. We use this particular
hard property, and the original one of [GGR98, Proposition 10.2.3.1], to establish
three hierarchy theorems for the dense graph model, corresponding to three different

combinations of the above features:

e PTIME-decidability + PTIME-testability, in Section 4.5.

e Monotonicity, in Section 4.6.
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o PTIME-decidability + one-sided testability, in Section 4.7.

A second subtle aspect regards the reductions in the pattern described above for
proving hierarchy results. As in Chapter 3, all of these dense model results involve
careful use and analysis of graph blowups (see Definition 2.3.6) to relate testing at
higher and lower graph orders. Specific to this chapter is the following question: If a
graph is far from another graph, or from a property, what guarantee is there that it
remains far from it when applying a blowup? The answer is that, in fact, a (balanced)
blowup can bring graphs much closer together, even making them identical in some
cases; we must therefore prove an appropriate bound on this effect, for different settings
in every section, so as to preserve the hardness of properties through blowups. That is

perhaps the key to this chapter’s dense model results.

4.2 Hard properties decidable and testable in PTIME

Several hierarchy results in this chapter involve hard properties decidable in polynomial
time (as per Definition 2.3.2): The result regarding generic functions in Section 4.3,
and two of the three dense graph model results, in Section 4.5 and Section 4.7). As
our construction of the maximally hard-to-test graph property uses the maximally
hard-to-test Boolean function property, we state and establish the existence of both of

them together through a single argument:

Theorem 4.1. There exist a PTIME-decidable property I1 of generic Boolean func-
tions, and a constant €41 > 0, such that any e-test for I with ¢ < e41 must make Q(n)

queries, i.e. query at least a constant fraction of the function values.

Theorem 4.2. There exist a PTIME-decidable property I1 of dense graphs, and a
constant €49 > 0, such that for any sufficiently large n, any e-test for I1 with € < e4.9
must make at least cq.0 - (Z) = Q(n2) queries, i.e. query at least a constant fraction of

the potential edges.

4.2.1 The difficulties deciding hard-to-test properties in [GGR98]

Let us recap the two-step construction of a hard graph property (of query complexity
Q(n?)) in [GGRY8, Proposition 10.2.3.1]:

e First, a certain small sample space is shown to yield a hard property of Boolean
functions: The sample space is small enough to be sparse, so that a random
function is far from it; the sample space also exhibits strong pseudorandomness,
in that its projection on any (small) constant fraction of the coordinates is close
to a projection of a uniformly-sampled random function. Thus a test making at

most this many queries cannot tell apart functions sampled uniformly from {0, 1}"

45



from functions sampled from the small sample space, while it is necessary for it to

usually reject the former and accept the latter.

e Next, the domain of the boolean functions is mapped to the set of (unordered)
pairs of graph vertices, and the set of functions is made closed under graph
isomorphism (i.e., permutations of the vertices), by adding all isomorphic images
of the constituent (labeled) graphs. The result is a graph property, with the
original boolean function values corresponding to adjacency matrix entries. The
parameters are such, that even though the resulting property may be contain
much as n! times as many graphs as the property of Boolean functions, it is still
sparse within the set of all possible graphs; a random graph is still far from it;
and it still has the strong pseudorandomness with respect to projections — so the

indistinguishability is maintained.

There are two difficulties, one in each of the steps of construction, which make the
resulting property hard to test in PTIME:

e The small sample space used in the first step is in NPTIME (that is, one can
decide membership in it with an NPTIME machine), but it is not clear whether
it is in PTIME.

Overcoming this difficulty: Instead of the small sample space used in [GGR9S],
we shall use another adequate pseudorandom space, the membership in which is
decidable in PTIME.

e One can easily determine whether a given (labeled) graph is a permutation of
a (labeled) graph in the small sample space — using a short witness, being the
permutation function (i.e., this can be determined in NPTIME). But it is not
clear whether this can be done in PTIME, without the witness.

Overcoming this difficulty: We augment the graphs constructed using the Boolean
functions, so that after applying an isomorphism (permuting the vertices), the
original index of each vertex can be efficiently recovered. Thus the final class
can be recognized in PTIME by reversing the isomorphism, reconstructing the

Boolean function and determining whether it is in the sample space.

4.2.2 The alternative construction

We wish to use a sample space of graphs, the membership in which is efficiently decidable,
such that constant-size fractions of it do not reveal enough to make a decision about
the entire graph. To this end we begin with such a sample space for binary strings,
rather than graphs, which is d-wise independent, i.e. its distribution projected onto
any d coordinates is uniform — for d = Q(n). The existence of such a space is a

long-established result due to Alon, Babai and Itai:
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Proposition ([ABI86]). There exists a global constant axpr > 0 and a linear code,
explicitly constructible by a PTIME Turing machine given n as input, which maps
strings of length n/1000 to strings of length n, such that every aapin positions in a
codeword are linearly independent (and consequently, any assignment to them can be

extended to an equal, positive, number of codewords).

Such a code is constructed using a parity-check matrix spanning a 0.999n-dimensional
vector space (the “dual code”), in which every vector has Hamming weight at least
aapin. The space of codewords will be our sample space, and the parity-check matrix

can be used to efficiently decide membership in the code.

This result in itself is already sufficient for a construction proving Theorem 4.1; but
as it will be undertaken as a part of the construction and proof regarding dense graph
properties, we shall not set down the proof at this point. Instead, we move from functions
to graphs. Consider the same code for N = (g), and fix some efficiently-computable
well-ordering =< on the set {{i,j} |1 <1i,j <n}.

Definition 4.2.1. For a sequence s = (s1,...,sy) € {0,1}", we define G, = ([n], Ey),
the graph corresponding to s where {i, j} € E, whenever the {i,5}'" bit of s, by the

order <, is 1.

If s is a codeword, G is said to be a codeword graph. Obviously, as long as a graph is
labeled, it can be decided in PTIME whether it is a codeword graph or not.

The set of labeled codeword graphs is not in general closed under isomorphism, and
does not therefore constitute a graph property. As was done in the [GGR98, Proposition
10.2.3.1] construction, we wish to close the set under isomorphism — but first we must

augment the graphs so as to be able to easily recover their original labels. Specifically,

Definition 4.2.2. For a graph G = ([m], E5) of order m, the (1 mod 4)-separating
augmentation of G is the graph G’ = ([4m + 1], E), obtained by adding a (3m + 1)-
vertex labeled clique to G, and connecting every vertex j € V with the first j vertices

of the clique, i.e.
E,=E;U{{u,o} [m+1<uv<dm+1}U{{jm+L}[j€[mALe[j}

we similarly define the (2 mod 4), (3 mod 4) and (0 mod 4) separating augmentations,
in which the large clique is of size 3m + 2, 3m + 3 and 3m + 4 respectively.

The three additional variants of the separating augmentation are defined so that
augmented graphs will not be constrained to have a specific order modulo 4 (order 4n+1
in the basic definition). In most of our analysis below we shall ignore the additional

variants, implicitly using the same argument for them as well.
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The hard property II. Our hard property II = | I1,, shall constitute, at every

neN
order n > 5, the set of isomorphic images of separating augmentations of graphs of
order | (n —1)/4], with the original graph G5 having undergone an (n mod 4)-separating

augmentation.

Lemma 4.2.3. II is decidable in PTIME.

Proof. Consider some n = 4m + i, for i € {1,2,3,4}. Given a graph of order n, which
is the result of a separating augmentation, we note that the vertices originally in the
(3m + 1)-clique are distinguishable from the rest, as their degree is at least 3m, while
the degree of vertices from the pre-augmented graph is at most m — 1 to other vertices
from the pre-augmented graph, and at most m to vertices in the clique, or 2m — 1
in total. Having separated the clique and the original vertices, the original index of
each original vertex is equal to the number of its neighbors in the clique. We can
thus efficiently reconstruct the (single) original order-m graph corresponding to any
separating augmentation (or determine that our input is not such an augmentation).
Having reconstructed the smaller graph, our earlier arguments implies we can decide in

PTIME whether the string s corresponding to Es is a codeword or not. O

To complete our analysis, we shall use Yao’s method to demonstrate that II cannot
be tested using o(n?) queries. Fix some sufficiently large n, let m = [(n — 1)/4] and

i =((n—1)mod 4) + 1, and consider two distributions:

Gn: A uniform distribution over the augmentations of codeword graphs of order m (i.e.

over II,), and
Ry: A uniform distribution over the augmentations of all graphs of order m.

Note that any n beyond some threshold value can be chosen, as our construction allows

for augmentations from any sufficiently large order m to any orders 4m + 1,...,4m + 4.

Lemma 4.2.4. If two graphs G1,G2 of order m are 6-far from each other, then (pairs
of isomorphic images of) their separating augmentations to order n = 4m + i are
(0/32 — O(1/m))-far from each other.

Proof. In this proof, as in a few additional ones in this chapter, it will be easier for us
to bound distances by accounting for two-tuple discrepancies with respect to a bijection
between graphs rather than the edge discrepancies, i.e. for every discrepant edge {u, v}
as per the above, we count both (u,v) and (v, u); this allows us to separate the counts
for each vertex in (G. As there are no self-loops in our graphs, the number of tuple
discrepancies is exactly double the number of edge discrepancies.

Let G', GY denote the augmentations of the two far graphs. Clearly, a bijection
which maps (the copy of) G to (the copy of) Go exhibits at least

25<T;L> _ ig<<4m2+i> B (12+8i)n;+i(i—1)> _ icé<4m2+i> ' <1—O<;>)
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discrepancies.

Now suppose that some vertex v of G; in G} is mapped to a vertex of the large
clique in G%. v is connected to at most 2m — 1 vertices in G} (m in the large clique
and m — 1 in G;), while the large clique vertex in G} is connected to at least 3m
vertices. This mapping of v therefore incurs more than m discrepancies of the form
(v,u). We conclude that by mapping G vertices to G large-clique vertices, one can
reduce the number of discrepancies no more than by a factor of 4 + O(1/m). Thus any
bijection between G} and G has at least %—2(4";”) - (1 =0(1/m)) discrepancies, and

118 (6/32 — O(1/m))-far from G,. O

Lemma 4.2.5. The probability of a graph sampled from R,, being d4.05 = 0.4/64-close
to a graph in I1,, is o(1).

Proof. Let R!, denote the uniform distribution over all graphs of order m; A sample
from R,, can be obtained by applying an augmentation to a sample from R/, .

Now, II,, is the set of augmentations of codeword graphs; by Lemma 4.2.4, if a graph
sampled from R, is 0.4/64-close to a graph in II,,, then its pre-augmentation graph
(that is, its corresponding graph from R/ ,) is at least 0.4-close to a codeword graph (for
sufficiently large n). It thus suffices to prove that the probability of a graph sampled
from R/, being 0.4-close to a codeword graph is o(1).

Indeed, this follows from the fact that the codeword graphs are a sparse set: Each
codeword graph has at most (m)! = 200™°e(™)) (Jabeled) isomorphic images. The
sample space size (the number of codeword graphs) is 20‘001(7;), so the number of their
isomorphic images is 9(0-001+0(1)(3) | There are Zz'iggl) ((%)) graphs which are 0.4-close

to a specific codeword graph (corresponding to the possible choices of k < 0.4(73) edges
to add or remove); and it holds that ZZﬁgQ) ((:2;)) < 9Hu(04)(3) — 0(20'971‘(?)> =

9(0:972+0(1)-(3) _ where Hy(-) denotes the binary entropy function, which satisfies

Hy(0.4) < 0.971. Thus, for a sufficiently large n, the total number of order-m graphs

which are 0.4-close to the set of codewords is under 20'973'(?); since R, is uniformly
)

distributed over all 2(3) labeled graphs of order m, the claim follows. O

Lemma 4.2.6. Let M be a probabilistic oracle machine, whose number of queries is at
most d = aABI (ZL) > (%60%31 — 0(1)) (Z) It holds that Pr [MR" = 1] =Pr [Mg” = 1].

Proof. We establish the claim using two reductions — to distributions over graphs of
order m, then to distributions over strings.

Let G, denote the uniform distribution over (labeled) codeword graphs of order
m, and let R/, denote the uniform distribution over all graphs of order m. Both
distributions R,, and G, are obtained by applying the same augmentation to samples
from G}, and R/, respectively; and the result of each query to an augmented graph
depends on one or no edges of the original order-n graph. It therefore suffices to prove

the claim assuming queries are made to the original order-m graphs rather than their

49



augmentations or the isomorphic images thereof — that is, it suffices to prove that one
cannot distinguish between R}, and G/,.

Now, the result of a query of a potential edge {i,j} in the edge set Fs of a basic
graph is the {7, j}'® bit of the string s corresponding to G. G/, corresponds, therefore,
to a uniform sample from the d-wise independent space of length- (") strings, and R/,
corresponds to a uniform sample of a string of this length. Thus the claim reduces to
asserting that using d queries, one cannot distinguish between strings sampled from the
d-wise independent sample space and from a uniform distribution, respectively. For
non-adaptive tests, this is the definition of the d-wise independence; but adaptivity does
not offer an advantage, since for any choice of up to d queries already made, and for any
sequence of results for these queries, the conditional distributions for their completion
into d query result are the same (and uniform) regardless of the choice of edges to query.
A rigorous treatment of this transition from a non-adaptive to an adaptive bound may
be found in [Fis04, Section 8]. O

Proof of Theorem 4.2. Our constructed property II is decidable in PTIME, as estab-
lished by Lemma 4.2.3. Now, set €49 = d4.0.5 and cq0 = %GABI, and let n be sufficiently
large for Lemma 4.2.6 to hold with d = 1—1704 ABI (g) An e-test for I accepts with proba-
bility at least 2/3 a graph sampled from G,,. By Lemma 4.2.6, if the test makes less
than ¢4 (g) queries, it will accept a graph sampled from R,, with the same probability.
By Lemma 4.2.5, with probability 1 — o(1), a graph from R,, is d4.25 = 4.2-far from II,
so the probability of the test accepting graphs in R,, which are 4 o-far from II is at
least 2/3 — o(1). Thus for every sufficiently large n there exists a specific graph which

is £4.2 > e-far from II,,, and is accepted with probability over 1/2 — a contradiction.[]

Proof Sketch for Theorem 4.1. The proof uses a subset of the arguments above — one
need not construct anything from strings or functions in the d-wise independent sample
space, so the membership decision is clearly in PTIME; also, the sample space is itself
sparse enough so that a random Boolean function is g4 1-far from it with high probability.
One can thus construct appropriate indistinguishable distributions as for the case of

graphs.

4.3 A hierarchy of generic function properties

In the generic function testing model, the objects tested are functions from [n] to a
finite domain; as the elements of the tested functions’ domain are not interchangeable
as in the case of graphs, one can think of such functions as strings. Our construction

will only require Boolean functions (or binary strings).

Definition 4.3.1. The absolute distance between two functions f,g : [n]— {0, 1} is
the number of elements of [n] on which they differ. The (relative) distance dist(f, g)

between f and g is the absolute distance normalized by a factor of 1/n.
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The definition of a property and of satisfying a property or being e-far from satisfying
it are the same as in the dense graph model (except that the classes are of functions,
and the distances are as defined above). An e-test for a property of Boolean functions
is also defined as for the dense model, except that a test’s oracle access is to a generic
function f, with a query being an index i € [n] and a reply being the value of f(i). A
test may, alternatively, receive € together with n as a parameter, so a single algorithm

is used for all values of €.

Theorem 4.3. There exists a constant €43 > 0, such that for ¢ : N— N with an infinite
image (i.e. limsup,,_,. q¢(n) = 00), there exists a property I1 of Boolean functions that is
testable with one-sided error using q(n)+O(1/e) queries and running in time polynomial
in its number of queries, but not e-testable with o(q(n)) queries, even with two-sided
error, for € < e43. Furthermore, if q(n) is computable from n in poly(n) time, then
the property is PTIME-decidable, and if it is computable in poly(q(n)) time, then the

property has a test whose running time is polynomial in its number of queries.

Note. We assume that the test is given n as input in binary representation rather than
in unary, otherwise the computation of ¢(n) can only be polynomial in ¢(n) if n is

polynomial in g(n).

4.3.1 Property construction

For the rest of this section, fix q(-).

Observation 4.3.2. We may assume, without loss of generality , that ¢(n) < n/2, as
otherwise we could replace ¢(n) with ¢’(n) = [max(q(n)/2,1)], and Theorem 4.3 would

yield a property with the same features but a different constant.

The complexity-q property. Let II' = |J 11, be a property of Boolean functions

meN
which requires ©(n) queries to test, and is PTIME-decidable as a property of strings;
Theorem 4.1 guarantees that such properties exist.

Now, let m,n be such that m = g(n). For some f’ € II',,, consider the function
f(@) = f (14 (i—1mod q(n))) = f'(1+ (: — 1 mod m)). The domain of f is [n]; and
it consists of |n/q(n)] duplicate copies of f’ with perhaps another final incomplete
copy. With this construction in mind, our property of query complexity g(n) shall be
19 = J,,en 1195, with 119, consisting of the functions f constructed for all f” in II',,,,

for m = q(n).

Observation 4.3.3. If ¢(n) is computable from n in poly(n) time, then I17 is decidable
in PTIME: To decide whether f over domain [n] is in I1%, one computes ¢(n), determines
whether its corresponding f” is in IT',,, (for m = ¢q(n)), and checks whether f(i) = f(i+m)

for every i < n —m.
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4.3.2 Lower and upper query complexity bounds

Lemma 4.3.4. Testing 11, is (f, 1, h)-reducible to testing 119, for f(e) =¢/2 and the
partial function h(m) = min{i € N| q(i) = m} (defined at orders n for which the set is
non-empty).

Proof. Let m € N be such that n = h(m) is defined, and consider some Boolean function
/" over domain [m]. One can construct the function f, corresponding to f’, over domain
[n] as in the construction of I19; if f € II’, then f € 119, and if f’ is e-far from II', one
must change an e-fraction of every complete copy of f’ in f to obtain a function in I,

W - € fraction to obtain [n/m]

so over all of values f, one must change at least a
duplicate copies of a function in II'. (It may be the case that less or no changes are
necessary to the incomplete copy of f). As g(n) < n/2, this fraction is at least /2.
Given oracle access to f’, one can simulate an oracle to f, making one query to f’ so as

to answer a single query made to f. This meets the requirements of Definition 2.4.1.00

The lower bound follows as a corollary of the reduction above, when setting 4.3 =
f(ea1) = €a1/2:

Lemma 4.3.5. For e < ey3, any e-test for I11 makes Q(q(n)) queries.

Proof. By Lemma 4.3.4 above, testing IT/ is (f,1, h)-reducible to testing 1%, with a
linear f(e) and the partial function h(m) = min{i € N | ¢(i) = m}, defined for m in the
image of ¢(-); since ¢(+)’s image is infinite, the £(n) lower bound for testing II" when
e < 4.1 implies (by Lemma 2.4.2) a lower bound of (g(n)) on the number of queries

required to test I1¢ when € < f(e4.1) = €43 O

For the upper bound, we present a straightforward test for 119, listed as Algorithm 4.1.

Algorithm 4.1 A test for I1¢
: for ©(1/¢) times do
Uniformly sample j € [¢(n)] and r € [[n/q(n)] — 1].

It r-q(n) +j < nand f(r-q(n) + ) # £(j), reject.
end for

: Query all of f(1),..., f(g(n)).
: Reconstruct the function f' : [¢(n)]— {0,1} s.t. f'(i) = f(4).
: Deterministically decide whether f’ € II' and answer accordingly.

Lemma 4.3.6. Algorithm 4.1 is a non-adaptive one-sided-error test for 119 making
q(n) + O(1/e) queries. Furthermore, if g(n) is computable in poly(q(n)) time, then the

test’s running time is polynomial in the number of queries.

Proof. The number of queries of Algorithm 4.1 is clearly as stated. The first part of

the test has running time linear in 1/e; then come the steps dependent on n, being
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the computation of g(n), then the querying of g(n) values and the decision whether f
is in IT/,. The test’s running time is spent computing g(n), determining whether the
first g(n) values are in IT’, and additional work taking time linear in ¢(n) (ignoring an
addition of O(1/¢)). As II' is decidable in PTIME, the decision takes time polynomial
in ¢(n). Thus if ¢g(n) is computable in poly(g(n)), the test’s overall running time is
polynomial in ¢(n) + O(1/¢), being its number of queries.

As for completeness and soundness: If f € II, then by definition it is a repetition
of some f’ in II’ and will therefore be accepted. On the other hand, if f is accepted
with probability at least 2/3, then the f’ constructed by the test is necessarily in IT',
and f must be e-close to a repetition of f’ — as otherwise the first phase of the test
would reject with probability at least €/2 at every iteration (again, since g(n) < n/2),
and thus with probability at least 2/3 over all iterations. Thus if f is e-far from I1¢
then the test accepts it with probability lower than 1/3. 0

Theorem 4.3 is now proven by a combination of the query complexity lower bound
of Lemma 4.3.5 and the upper bound established through the valid test in Lemma 4.3.6,
and Observation 4.3.3 regarding the PTIME-decidability.

4.4 An aside: A hierarchy of bounded-degree graph prop-

erties

This section regards testing bounded-degree graphs, in which any single vertex is
connected to at most d vertices: |I'(v)| < d. Respecting this bound, E is represented in

this model by a function:

Definition 4.4.1. For a graph G = (V| F) with maximum degree d, an edge function
is a function gg : Vx[d]— V U {L} such that g(v,i) = u € V if u is the i*" neighbor

of v (by some arbitrary order) and g(v,i) = L if v has less than i neighbors.

The neighbors of v in G are {g(v,1),...,g(v,deg(v))}.

Definition 4.4.2. The absolute distance between two bounded-degree graphs G, H of
order n is the minimum distance between pairs of edge functions gg, gy representing
them, which is in turn the number of values one has to modify in gg to get gr. The
(relative) distance dist(G, H) between G and H is the absolute distance between them

normalized by a factor of 1/dn.

Note. Unless one wishes to test bounded-degree digraphs, it must be the case that
whenever u = g(v, ) for some i, v = g(u, j) for some j; and there are in fact only at

most dn/2 edges. Any modification of the edge function must respect this constraint.

The definition of a property and of satisfying a property or being e-far from satisfying

it are the same as in the dense graph model, except for the different normalization of
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the distance. A property test in the bounded-degree model for a graph property II is
defined as in the dense model, except that its oracle access is to a graph edge function
ga, and its queries are to specific values of this function (“what is the index of the i*h

neighbor of v?”).

Note. As in the dense model, one could alter the definition to remove the artificial
dependence of tests on n through the need to use vertex indices, but since this chapter

is concerned with tests that depend on n, we shall not explore this here.

Theorem 4.4. In the bounded-degree model, there exist constants d € N and €44 > 0,
such that for every q : N— N with an infinite image, there exists a (downward) monotone
property of degree-d-bounded graphs that is testable with one-sided error using O(q(n)/e)
queries, but not e-testable using o(q(n)) queries, even allowing two-sided error, for any
€ < e44. Particularly, the property of degree-d-bounded graphs being 3-colorable, while

having connected components of size at most q(n), is such a property.

To establish any hierarchy theorem for the bounded-degree model in the common
pattern of this chapter (and similarly to Theorem 4.3), we need a property known to be
maximally hard. As implied in the statement of Theorem 4.4 above, for bounded-degree
graphs this shall be the property of being 3-colorable, which is also monotone, and
exhibits some additional features which we shall make use of in the proof. It is known

to be hard, by a result of Bodganov, Obata and Trevisan:

Theorem ([BOT02, Theorem 2]). There exist constants e3_.cor, and d, such that any
e-test of d-bounded graphs for being 3-colorable makes Q(n) queries, even when allowed

to have two-sided error, for any ¢ < €3.coL-

From the remainder of this section, let us fix d to be as guaranteed by [BOTO02,
Theorem 2], and fix also ¢(-), assuming without loss of generality that ¢(n) < n/2 (see
Observation 4.3.2 for the justification; here we would be dividing ¢ by 2d rather than 2
to obtain the inequality).

The complexity-q property Let II’ be the property of being 3-colorable, and denote
" = U,eny I'm- Our property is 117 = |, 11%,,, with 1%, consisting of all graphs
made up of connected components of size at most g(n), which are all 3-colorable, i.e.

every connected component itself satisfies IT'.

4.4.1 Lower and upper query complexity bounds

Lemma 4.4.3. Testing 3-colorability is (f, 1, h)-reducible to testing 119 for f(e) =¢/2
and the partial function h(n) = min{i € N|q(i) = n} (at orders n for which h(n) is
defined).
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Proof. For n = min{i € N | ¢(i) = m}, and given a graph G’ of order m and degree at
most d, consider a graph G consisting of ¢ = |n/m] disjoint disconnected copies of G,
and an additional n mod m isolated vertices. If G’ € I, then G € II9. For the case
of G’ being e-far from II’, we note that due to the downward monotonicity of I19, the
distance of G from II? is the number of edges one must remove to achieve a graph in
19 (i.e. there is no benefit in adding edges).

We also note, that graphs in I1? are themselves 3-colorable (being disjoint unions
of 3-colorable graphs), so the edges removed must make G a 3-colorable graph. This
requires in particular making every induced subgraph of G 3-colorable, including its
(previously) connected components. We conclude that the minimum number of edge
removals necessary is exactly the number of edges whose removal is required to make each
connected component 3-colorable in itself. To make one of the connected components
3-colorable, we must remove at least an e-fraction of its edges, and the overall fraction
of edges to be removed is at least t'Tme. As by assumption ¢(n) < n/2, this fraction is
at least £/2, so G is ¢/2-far from I19.

Finally, given oracle access to an edge function of G’, one can simulate an oracle
to an edge function of G: For some v’ € V', being the j* copy of some v € V, its i*®
neighbor will be the j* copy of the it" neighbor of v.

This meets the requirements of Definition 2.4.1. O

The lower bound follows as a corollary of the reduction above, when setting €44 =

f(e3-coL) = €3.coL/2:

Lemma 4.4.4. Fore < ey4, any e-test for 111 makes Q(q(n)) queries.

Proof. By Lemma 4.3.4 above, testing IT), is (f,1, h)-reducible to testing 11, with a
linear f(e) and h(m) = min{i € N|¢(i) = m}, for m in the image of ¢(-); since ¢(-)’s
image is infinite, the Q(n) lower bound for testing II" when ¢ < e3.cor, implies a lower
bound of €2(g(n)) on the number of queries required to test 11?7 when ¢ < f(e3.cor) =
€4.3. 0

For the upper bound, we present a test for I19, listed as Algorithm 4.1. As in the

case of generic functions, the test is quite straightforward.

Lemma 4.4.5. Algorithm 4.2 is a one-sided-error test for 119 making g(n) - O(1/¢)

queries.

Proof. For every iteration of the main loop of Algorithm 4.2, we make at most d - ¢(n)
queries before either deciding that the component is too large or querying the entire
component; thus the number of queries of Algorithm 4.2 is as stated. If G € 119, by
definition it consists of components of size at most ¢(n) which are in II', and will
therefore not be rejected. On the other hand, if G is accepted with probability at least

2/3, then it must be the case that at most an e-fraction of the vertices lie in components
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Algorithm 4.2 A test for I1¢
1: for ©(1/¢) times: do
2:  Uniformly sample v € V(G).
3:  while The neighbors of vertices known to be in the connected component of v
have not all been queried do
4 Query another unknown neighbor of a vertex in the connected component of v.
5 If v’s component is now known to contain at least q(n) + 1 vertices, reject.
6: end while
7. If v’s connected component (now fully explored) is not in IT', reject.
8: end for
9: accept.

which the test would reject for being too large not in II’. These can all be made into
isolated vertices, by removing at most € -dn edges, i.e. G in this case is close to satisfying
I19. Thus if G is e-far from I19, then the test accepts it with probability lower than
1/3. O

Theorem 4.4 is now proven by a combination of the query complexity lower bound
of Lemma 4.4.4 and the upper bound established through the valid test in Lemma 4.4.5.

Note. Theorem 4.4 also holds for higher values of d beyond the minimum guaranteed
by [BOT02, Theorem 2|, by the same construction, when adjusting €44 to account for

the higher number of possible edges.

Is it possible, as an improvement over the Theorem 4.4, to construct the property
with query complexity ©(¢g(n)) such that the test’s dependence on ¢ is additive rather
than multiplicative? i.e. obtain a test with query complexity ©(¢g(n) 4+ 1/¢) as is the
case in Theorem 4.37 One can alter the construction above so that the graph is made
up of ‘marked’ components, all being copies of the same 3-colorable graph, and use it
with some out-of-component gadgets for marking a graph over the copies of the same
vertex in the various components. This super-imposed graph could be used to ensure
that every pair of copies of two vertices is connected in all components, or in none of
them. However, one can’t use this sparse graph to check arbitrary pairs of components,
as there would be 2(n/g(n)) components and one would need a walk of length at least
Q(log(n/q(n))) in the super-imposed graph to reach all of them, even if the graph were
an expander or a balanced tree. One would also need to ensure the super-imposed graph
to be appropriate — but this in itself may not be an easy task: [GR02] presents a lower
bound of Q(y/n) for testing an order-n bounded-degree graph for the property of having

a certain degree of expansion.

4.5 A hierarchy of PTIME-testable properties

In this and the next two sections we return to the dense model for property testing,

specifically to dense graphs, proving three hierarchy theorems for three possible combi-
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nations of features of properties of arbitrary complexity. The first of them, presented
in this section, regards properties which are PTIME-decidable and PTIME-testable,
using the hard property constructed in Theorem 4.2, carrying its PTIME decidability
to the properties themselves at any query complexity and the testability essentially also

to the optimal tests for these properties.

Definition 4.5.1. A function ¢ : N— N is said to be a reasonable query complexity
function for dense graphs if g(n) < (Z), and the image of ¢(-) is infinite, that is,

limsup,,_,, q(n) = oo.

Theorem 4.5. There ezists a constant 45 > 0, such that for every reasonable q(-) (in
the sense of Definition 4.5.1), there exists a property of dense graphs that is testable
with two-sided error using O(q(n)/e?) queries, but not e-testable with o(q(n)) queries,
even allowing two-sided error, for € < e45. Furthermore, if q(n) is computable from
n in poly(n) time, then the property is PTIME-decidable, and if it is computable in
poly(q(n)) time, then the property has a test whose running time is polynomial in its

number of queries.

4.5.1 Property construction
Vertex dispersal

Our property I1¢ will consist of copies, or rather, blow-ups, of graphs from a maximally-
hard property, similarly to the proof of Theorem 4.3. However, in order for us to be
able to tell vertices apart from each other after their having been blown up, we would
like the neighborhoods of different vertices in pre-blown-up graphs to be “substantially

different” from each other:

Definition 4.5.2. Let a > 0. A graph G of order n is said to be a-dispersed if, for
every two different vertices u,v € V(G), their neighbor relations disagree on at least an
elements. In other words, |(I'(v) \ I'(v)) U (I'(u) \ T'(v))| > an. A set of graphs is said
to be dispersed if there exists a single a > 0 such that all graphs constituting the set

are a-dispersed.

Note. This notion of dispersion has nothing to do with the notion of dispersers as

relaxed randomness extractors (as surveyed in Shaltiel’s [Sha04]).

We begin with the maximally-hard graph property of Theorem 4.2, denoted here
II" = J,;en I}, which has query complexity ©(n?), and is also PTIME-decidable. We

now augment the graphs from IT’, so as to make them dispersed:

Definition 4.5.3. Let G = (V, E) be a (labeled) graph of order n. Supposing for ease

of notation that V' = [n], the dispersing augmentation of G consists of:

1. Setting n/ = 2Mog22n 401 ¢ 2 41, 4n).
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2. Adding n’/2 isolated vertices to the graph before the original vertices, making the
vertex set [n//2 + n] (with vertices n’/2 4+ 1,...,n'/2 + n being the vertices of G).

3. Adding an n/-clique to the graph, making the vertex set [n + 3n’/2].

4. For every vertex i € [n//2+ n] (the original and isolated vertices), adding an
edge between vertex i and vertex n’/2 4+ n + j (the j® vertex of the large clique)
whenever the inner product of i — 1 with j — 1, when viewed as logy(n')-bit strings,
is 1 rather than 0.

Notes.

— A dispersing augmentation is a different operation than the separating augmentation
used in Subsection 4.2.2; however, since dispersing augmentations are the only ones
used in this section, we refer to them throughout the rest of the section merely as
augmentations.

— Graphs of different orders have dispersing augmentations of different orders; this is
the reason why we do not simply augment to size 2n’. Additional motivation for the

specifics of the definition can be found in their use below.

Pre-blowup construction and analysis

The dispersed pre-blowup property We set II” to constitute all isomorphic images

of dispersing augmentations of graphs from II’.

The dispersed set I1” is a graph property — albeit empty for (infinitely) many graph
orders. Each labeled graph in II” consists of a large clique, a smaller graph from II’
with some additional isolated vertices and a “Hadamard-like” bipartite graph between
them. II” is not the final property we shall be testing, but in order to complete our

construction we must establish several of its features:

Lemma 4.5.4. 11" is 1/8-dispersed, and the minimum degree of graphs in 1. is higher
than n/4.

Proof. Let G” € 11", and let n be such that G” is an isomorphic image of the augmen-
tation of a graph of order n. Showing that the neighborhoods of every two vertices in
G" differ by at least n’/4 vertices establishes the claim regarding dispersion.

Let us consider the neighborhoods of pairs of vertices based on vertices’ membership

in the large clique:

e For the case of one vertex outside the large clique and another from the large
clique, the large-clique vertex is connected to n’ — 1 other vertices in the large
clique, while the other vertex of the pair is connected to exactly n’/2 of the large
clique vertices (by construction of the Hadamard-like bipartite graph), so the two
neighborhoods differ on at least n’/2 — 1 > n’/4 vertices.

e For two vertices 41,19 outside the large clique, their neighborhoods differ with
respect to each large clique vertex j such that the inner product of j with i1 @ io

is 1, i.e. the neighborhoods differ on n’/2 of the large-clique vertices.
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e For pairs of large clique vertices, an analogous claim as for in-clique pairs could
have held for them, had there been exactly n’ non-large-clique vertices; this is
not the case, but let us think of them as having ‘lost’ a single difference of their
neighborhoods for every isolated vertex ‘missing’ from the augmentation: At most
n'—(n+n'/2) = (n'/2—n) < (n'/2 —n'/4) = n'/4; thus the neighborhoods of

pairs of large-clique vertices differ on at least n’'/2 — n'/4 = n’/4 vertices.

Also, any vertex, either in or out of the large clique, is connected to at least n'/2

vertices of the large clique, hence the minimum degree is n'/2 > |V(G")|/4. O

We now wish to show that the dispersing augmentation preserves distances, but

before doing so we require the following simple result:

Lemma 4.5.5. Let G, Gy be two graphs of order n at distance €. If one adds n’' —n
full-degree vertices, or alternatively n' — n isolated vertices, to each of the graphs,
their distance becomes exactly e - (g)/(g) > e(n/n')?. Specifically, there are optimal

bijections between the augmented graphs in which Gy is mapped to Gs.

Proof. We prove for the case of isolated vertices; the case of full-degree vertices is
similar.

Clearly, by taking the optimal bijection between G; and G5 and expanding it into
a bijection between the additional isolated vertices, one obtains a bijection with 5(3)
discrepancies.

In the other direction, denote by G’ and G) the graphs with the isolated vertices
added. Suppose a bijection ¢ : V(G])— V(G,) maps some vertex v € V(G1) to an
isolated vertex; ¢ must have some isolated vertex of G} mapped to some u € V(Gs). If
one remaps v to u, the number of edge discrepancies does not increase: |I'(v)| + |I'(u)|
discrepancies from mapping v and the isolated vertex respectively are avoided, and
the number of discrepancies added is the size of the symmetric difference of the two
neighborhoods, I'(v) and I'(u), which is at most the number avoided. We thus conclude
that there is an optimal ¢ which maps V(G1) to V(G2), so the minimum number of

discrepancies cannot be less than 6(;) ]

Lemma 4.5.6. IfG ise-far from Il then the dispersing augmentation of G is £ /250-far
from 11"

Proof. Let n be the order of G, and let G’ be its dispersing augmentation, having
n = n+%n’ = n+ 2008227+ yertices. To be in I1”,, a graph must be an augmentation
of an order-n graph in II’; specifically, it must have an induced copy of some Gell ,
an appropriate number of isolated vertices and a large clique. If G is e-far from II, and
one only modifies the copy of G in G’, with the isolated vertices and the large clique
vertices keeping their respective roles, then the fraction of G’ which must be modified
to obtain a graph in I1” is 6(2)/(”2”) > 6(3)/(72") > ¢/50.
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However, one might also have vertices of G’ outside of the copy of G take the role of
G vertices. To bound the effect of such mappings, let us consider the tuple discrepancies
(rather than edge discrepancies) in a bijection from G’ to some graph in I1”.

First suppose that large-clique vertices are mapped to non-large-clique vertices (G or
isolated vertices), and vice-versa. Specifically, let v in G or an isolated vertex be mapped
to a large-clique vertex v/, with some large-clique vertex u mapped to a G-vertex or
isolated vertex /.

Had the augmentation had n’ non-large-clique vertices, each large-clique vertex
would be connected to n'/2 of them by the Hadamard-like graph. The augmentation
has n’/2 + n non-large-clique vertices, so each large-clique vertex is connected to at
least n of them. A large-clique vertex therefore has degree at least (n’ — 1) + n, while a
G, G or isolated vertex has degree at most n’//2 + (n — 1); thus u must have at least
n’/2 + 1 vertices removed and v must have at least n’/2 + 1 vertices added, i.e. v, v/,
u and v’ contribute at least n’ + 2 discrepancies. If one were to map v to u and v’
to ', the number of discrepancies would have been at most 4n’ (discrepancies in the
Hadamard-like bipartite graph) plus 2(n — 1) (discrepancies within G), less than 5n’
in total. Thus by altering the mapping as just described, the number of discrepancies
increases by a factor of 5 at most; overall, with the same maximum increase factor
in discrepancies, one can avoid any mapping of large-clique vertices to GG or isolated
vertices.

Now, if large-clique vertices are only mapped to large-clique vertices, the discrepancies
under the mapping can be divided into discrepancies within the Hadamard-like bipartite
graph, and discrepancies within the set of G and isolated vertices. By Lemma 4.5.5,
this latter number of discrepancies is no less than 2¢(}) (as the isolated vertices were
added to two graphs at distance €), so the overall number of discrepancies is at least this
much. Having increased the overall number of discrepancies by at most a factor of 5 by
enforcing no large-clique vertex to be mapped to a non-large-click vertex, we conclude
that an unconstrained bijection has at least 1 - 2¢(}) > %5(72") tuple discrepancies, so
the distance of G’ from I1” is at least £/250. O

Lemma 4.5.7. Testing 11" is (f(e),1, " (n))-reducible to testing 11", for f(e) = /250
and h"(n) = 3 - 2M0822n+ D1 4y < 7,

Proof. For a graph G, we simulate an oracle to the corresponding augmentation G’
of G, with 3n’ +n = 3. 2M108Cn+ DT 4y = 1"(n) vertices. Queries involving the the
large clique, the Hadamard-like bipartite graph or the n’/2 isolated vertices of G’ can
be answered without making any queries to GG, based on vertex indices only; queries
regarding pairs of vertices from the pre-augmented G are simply passed to the oracle to
G. If G satisfies I, then its augmentation satisfies II”, by definition; the other direction
is Lemma 4.5.6: If G is e-far from II', then G’ is £/250 = f(e)-far from I1”. O

Lemma 4.5.8. 11" is PTIME-decidable.
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Proof. Suppose a graph G’ of order n’ is in II”. G’ is a dispersing augmentation of
some G in I’ of order n (satisfying n/ = 3 - 2[06Cn+D1 4 an equation from which
n can be calculated efficiently). We can easily tell apart the large clique vertices in
G’ from all other vertices, as their degree is at least 2M1°8(2»+D1 1 | /2| while the
degree of other vertices is at most 2M108Zn+D1-1 L 1 < 2Mleg@n+D]  We can also
tell apart the isolated vertices added to G’, as G itself has no isolated vertices (and
we can ignore the edges to the large clique, which we have set apart). Now, having
located the (isomorphic) copy of G in G’, we can ensure in PTIME that it is indeed in
I1”, as I1” itself is PTIME-decidable. It remains to ensure that the bipartite graph
between the large clique and the other vertices is Hadamard-like, as in the definition of

the augmentation.

This would be perfectly immediate with 210827 +D1 yertices both inside and outside
the large clique — in that case the bipartite graph’s adjacency matrix is a full square
Hadamard matrix, and vertex indices can be permuted according to a permutation of
the [log(2n 4 1)] bits in the index of a vertex, with the permutation resulting again
in a Hadamard matrix. In this case, one can verify the adjacency matrix by locating
[log(2n + 1)] large clique vertices, with the i*" refining the partition induced by the
previous ones from 2! into 2¢ cells of equal size. One then ensures that the vertices
outside this ‘basis’ each have a neighborhood which is the exclusive-or operation of a

unique subset of the basis vertex neighborhoods.

In our case, we can also successively locate appropriate large-clique vertices, but
more careful accounting is necessary. We proceed from the most to the least significant
bits — a concept which has meaning in our graph, as one cannot simply permute the
vertices outside the clique (there are not enough of them, and isolated and G vertices
are not interchangeable). Thus one begins by finding a clique vertex disconnected from
all isolated vertices and connected to all G vertices. It is necessarily the first vertex of

the large clique (according to the original labeling).

One can now limit the focus to the isolated vertices, and successively locate vertices
splitting the existing partition cells of the isolated vertices into halves, choosing such
a vertex with the minimum number of neighbors in G. At some point one gets the
same number of non-neighbors and neighbors in G for the splitting large-clique vertex,
and from this point on the order of bits within indices of G and isolated vertices is
immaterial, since these bits may be permuted without requiring that vertices be missing
from G’. The successive choice of large-clique vertices for the ‘basis’ can from that point
on ignore the balance of G neighbors and non-neighbors and proceed as in the simple
case of the full Hadamard matrix. Eventually an appropriate ‘basis’ of [log(2n + 1)]
vertices is obtained and the other large-clique vertices can be verified to each uniquely
correspond to an index in [2ﬂog(2n+m]. Thus G’ € II” will be accepted by a PTIME

computation.

Conversely, if the algorithm sketched out above accepts G’, it has appropriately
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partitioned it into large-clique, isolated and G vertices; verified that G is in II”; and

that the bipartite graph to the large clique is valid. This implies G’ is in I1”. O

Blowup construction and analysis

Definition 4.5.9. For n € N, the I1? pre-blowup order for n, denoted m(n, q) or m for
short, is the highest integer up to and including [\/q(n)J, for which I1/, is not empty,

or 1 if there is no such integer.

Observation 4.5.10. m(n,q) is no lower than 3/q(n) — 1 (comparing 3n’' + n for

consecutive values of n). Consequently, (m(g’q)) = O(q(n)).

The complexity-q property. 119 = |, I19, is the property for which I17,, contains
all (isomorphic images) of blowups of graphs in I1” m(n,q) t0 order n. In other words,
a graph in I19,, has m clusters of size either |[n/m] or [n/m], with complete bipartite

graphs of edges between these cluster pairs corresponding to edges of a graph in II ,m(n,q)'

Lemma 4.5.11. If q(n) is computable from n in poly(n) time, then 117 is PTIME-
decidable.

Proof. By Lemma 4.5.4, II” is dispersed; specifically, the neighborhoods of each vertex
in a graph in II” are distinct. This holds after blowup; that is, the neighborhoods of
vertices from different clusters are distinct. Thus, given an order-n graph G, one can
cluster it; ensure that G is a blowup, with m(n, ¢) clusters, all of size |[n/m| or [n/m];
reconstruct a pre-blown-up graph G” of order m; and determine whether G” € II”.
Since 11" is PTIME-decidable (as per Lemma 4.5.8 above), ¢(n) < (}), and the other
tasks can all be carried out in time polynomial in n, we conclude that the total time

necessary is polynomial in n.

4.5.2 A query complexity lower bound for the constructed property

As in the case of generic functions, this lower bound uses a reduction from testing II at
order n to testing II’ at a lower order — as we’ve augmented and blown up graphs from
II'. However, unlike replications of generic function, blowups — even exactly-balanced
ones — do not necessarily preserve the distance between graphs; see [GKNR10] for an
example due to Arie Matsliah, of a constant factor decrease in distance when blowing
up corresponding graphs from two families. When blowups are not exactly balanced,

distance can even be nullified:

Example 4.5.12. Let G have one isolated vertex and a 2-path on two vertices, and
let G2 have two isolated vertices and two connected vertices; the distance between G
and Gy is 1/6 — removing one edge of the 2-path makes G into G3. Now consider

a blowup of these order-4 graphs to order 5: In G the isolated vertex is replicated,
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while in Ga, one of the connected vertices is replicated. The (unlabeled) result of both
blowups is a graph consisting of two isolated vertices and a 2-path on three vertices;
thus the distance has dropped from 1/6 to 0.

Fortunately, while the distance may decrease, this change can be bounded when
one of the graphs is dispersed, even for the more problematic case of n not dividing n’,

where the blowup cannot be exactly-balanced:

Lemma 4.5.13. There exists a global constant c45.13 > 0, such that for every n,e, «
and every pair of (unlabeled) graphs (G1,G2) of order n, with Gy being a-dispersed, the
following holds: If G1 and Go are e-far from each other, then any pair of (balanced)
blowups of G and Gs to order n’, are at a distance of at least c45.13 - - € from each

other.

Note. In the case of exactly-balanced blowups, an even stronger result of Oleg Pikhurko,
published independently of our work, holds: The distance between the blowups is no
lower than a third of the original distance, regardless of their dispersal ([Pik10, Lemma
14]).

Proof of Lemma 4.5.13. Roughly, we argue that the dispersal feature of G; makes it
approximately optimal to map complete clusters of one graph to complete clusters of
the other to the extent possible, rather than splitting clusters of the first graph among

several clusters of the other graph.

Let us label the vertices of both graphs, so that we may denote V(G1) = V(G2) = [n]
(this induces a labeling of the blowup clusters). Let G} and G’ denote the respective
blowups of the two graphs. Let ¢t = [n'/n]; the clusters in G} and G} all have either ¢
or t + 1 vertices. The (relative) weight of a cluster of s vertices in a graph G, denoted p,
is the fraction s/|V(G)[; the relative weight of a pair of clusters is the product of their
weights.

Consider a bijection 7' : V(G})— V(GY%) which minimizes the number of discrepan-
cies; in the context of this proof we will be counting the tuple (ordered pair) discrepancies
of 7/ rather than the edge discrepancies.

If the blowups were exactly-balanced (that is, with every cluster having exactly
t = n'/n vertices), and every cluster of G| were mapped by 7’ to a cluster of G, (of the
same size), one could construct a corresponding map 7 : V(G1) = V(Gs), with 2 as
many discrepancies as 7’; and since Gy and Gy are e-far, this would imply that 7’ has
at least t2 - 2¢ (g) = 2¢ (gt) discrepancies (the distance can’t be preserved exactly, since
the fraction of (v,v) tuples is smaller in larger graphs; if one normalizes distances by
n?, then one gets an equality here).

Now, we refer to a cluster of G2 of weight p as pegged if it has more than %p of
its weight, over a half, in vertices which 7’ maps from a single cluster of G, and as

unpegged otherwise. (e.g. note that a cluster of size 2 is pegged if and only if both
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of its vertices are mapped from the same cluster). Also, let ¢/ be such that there are
exactly 2¢/n? discrepancies under 7.

We first show that the total weight P of unpegged clusters in G5 is bounded as a
function of &.

Indeed, consider an unpegged cluster in G, with weight p. This cluster must have
vertices mapped to it from at least two clusters of G1. Order all of its source clusters
by decreasing number of vertices mapped to the G, cluster, breaking ties arbitrarily,
and start taking a union of them from the first on. At some point the union of clusters
contains between p/3 and 2p/3 of the vertices. Now match arbitrarily as many as
possible of these vertices to vertices from the remaining source clusters. The result is
a set of at least pn’/3 disjoint pairs of vertices mapped to the unpegged G cluster,
each two coming from different clusters of G. Every such pair contributes at least
atn discrepancies to the total count: The two vertices’ neighborhoods disagree on an
vertices in Gq, and at least « - tn in the blowup G (possibly significantly more). When
mapped to the same cluster in G%, they must be made to have the same neighborhood;
regardless of which neighborhood this is, for every disagreement, one of the two vertices
must have an edge removed or added.

The set of all unpegged clusters, having total weight P, contributes, therefore,
PT"I catn = 9n/(tn) > %@ = %(n’f discrepancies. If P > 12¢’/a, this exceeds
2¢'n’?, the total number of discrepancies — an impossibility.

For a pegged G)-cluster, consider the G'j-cluster being the source of the majority of
its vertices. Can such a G'-cluster be the source for two separate G4 clusters? Indeed,
it can, for t = 1 — a 2-vertex G cluster pegging two 1-vertex G clusters. However, by
the pigeonhole principle, for each such G} cluster, there must exist some 2-vertex G,
cluster whose two vertices come from different G} clusters, i.e. an unpegged G% cluster
of the same weight. Thus the total weight of two-pegging G -clusters is no higher than
the weight of unpegged G% clusters, 12¢’/a; and the weight of the G, clusters they peg
is at most 24¢’/a. Let us refer to these clusters as jointly-pegged and to the rest of the
pegged clusters as singularly-pegged.

Now, consider a bijection m between the vertices of G1 and Ga, such that for every
singularly-pegged Gh-cluster io and its source G'j-cluster i1, T maps vertex i; to vertex
i9, i.e. ™ “agrees with the majority mapping” of ' for singularly-pegged clusters; the
rest of 7 is set arbitrarily. This definition is consistent, as the singular pegging ensures
that our definition does not make two constraints on the mapping of a single Gy vertex.

We note that discrepancies under , of (i,7) with (7(¢),7(j)), can be ‘charged’ to
discrepancies under 7/, if the G, clusters corresponding to (i) and 7(j) are singularly-
pegged: If (w(i),m(j)) is discrepant with its source tuple (i, j), then the majority of
vertices in GY, cluster (i) form a discrepant tuple with vertices from the majority in the
cluster 7(j) — because their sources under 7’ are vertices in clusters i and j respectively.

Now, As G1 and Go are e-far, m must have at least 25(721) > en? discrepancies

(counting tuples rather than sets). Thus the total number of vertex pairs in pairs of GY
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. . . . 2
clusters, whose corresponding Go vertex pairs are discrepant under , is at least %z—:n’

(as for a given 7 discrepancy, the product of the corresponding cluster weights is at
least (t/n’)* > (1/2n)?). Up to three quarters of these pairs (Zen’ %) may have at least
one vertex not originating in the pegging G cluster, and are therefore not known to be
discrepant; also, less than 4 - Pn’ 2 of these pairs may involve vertices from unpegged or
doubly-pegged clusters. The remaining pairs must be discrepant under 7’ as well. We
thus arrive at an inequality relating € and &’

1

3 12 12 712
— - — —4.P 2
4€n 16€n n < 2En
1

e’ ’
—e—48— <2
165 8 < Z¢

/

e < 32 + 7685
[0

This implies &' > ae/800. The fraction of discrepant edges (rather than tuples) under
7' is therefore E/n’z/(g,) > ¢’/ /2 and the claim follows for ¢4513 = 1/1600. d

Lemma 4.5.14. Testing 11" is (f, 1, h')-reducible to testing 117, for f(e) = (c45.13/8) €
and W' (n) = min{i € N| |\/q(i)| =n} (at orders n for which W (n) is defined; in which
case n =m(h'(n),q)).

Proof. Even for orders n for which h/(n) is defined, we only consider those orders for
which I1”,, is non-empty (as otherwise, a trivial test for II” will simply reject).

Given a graph G of appropriate order n, we apply the blowup to order h'(n) as in
the construction of I1%, obtaining a graph G’. By our construction, If G satisfies II”, G’
satisfies I19. In the other direction, consider a graph G which is e-far from II”. Since G
is e-far from every individual graph in IT”, and by Lemma 4.5.4, it is also 1/8-dispersed,
we may apply Lemma 4.5.13, and conclude that the blowup G’ of G is (¢4.5.13/8) - e-far
from the blowup of every graph in I1”, that is, far from every graph in 1%, and
hence this far from I1¢ as a property.

Also, Given oracle access to GG, one can easily simulate an oracle to G’, using at

most one query to G for the answer to any query made to G'. 0

Lemma 4.5.15. Testing II' is (f(¢),1, h(n))-reducible to testing 11%, for

h(n) = h'(h"(n)) = min{i eN ‘ L q(i)J = g - gMlos2(nt DT n}
f(E) = C4.5,13/2000 - €
(at orders n for which h'(n) is defined).

Proof. The reduction is a combination of the reductions from testing II’ to testing I1”

(as per Lemma 4.5.7, and from testing 11" to testing IT (as per Lemma 4.5.14). O

We can now prove the lower bound, setting e45 = ¢4.5.13/2000 - £4.1:
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Lemma 4.5.16. For e < e45, any e-test for 119 makes Q(q(n)) queries.

Proof. By Lemma 4.5.15 above, testing I1/, is (f, 1, h)-reducible to testing 19, with
f(e) = ¢4513/2000 - € and h(n) = min{i eN ’ [Va(@)| =32 2logx(2n+1)] 4 n} h(n)
has an infinite image, and f(¢) is continuous and contains the interval (0, c4.5.13/2000).
Also, the lower bound for testing IT" with ¢ < g41 is ¢/(n) = Q(nQ) queries. Finally,
g(n) has is infinite range, thus so does h(n). We now apply Lemma 2.4.2, and obtain
a lower bound of Q((h_l(n))Q) on the number of queries required to test 117 with
€ < f(e45) = £45. The proof is completed by noting that when h=!(n) is defined, its
value is ©(1/q(n)) (see also Observation 4.5.10). O

4.5.3 A test for the constructed property

An adaptive, two-sided error test for 117 is listed as Algorithm 4.3. For clarity of analysis,
the test makes the assumption that n/m is an integer, in which case the graphs in II
are exactly-balanced blowups, with no need to account for the small difference in cluster

sizes; we later argue that this assumption can be foregone.

Algorithm 4.3 A test for I1?

1: € < ¢/5, m«+ |/q(n)].
Phase I: Clustering and representative vertex selection.

Ssig + uniform sample of O(log(m)) signature vertices.

Sesize < uniform sample of s’ = @(mlog(m) / 5’2) cluster size estimation vertices.
Query all edges between Scsize and Sig.

Cluster the vertices of Scgize using the known part of their neighborhoods.

If the number of clusters is not exactly m, reject.

If any cluster has size outside the range (1 £ &’)s’/m vertices, reject.

R + An arbitrarily selection of one representative vertex in Scgze from each cluster.

Phase II: Representative validation.
9: for O(1/¢) times: do
10:  Uniformly select a pair of vertices u, v.
11:  Cluster u and v using their neighborhoods in Sgig.
12:  If w or v are in none of the m existing clusters, reject.
13:  Let ry, 7, € R denote the representative vertices of the two vertices’ clusters.
14:  If {u,v} € F and {ry,m,} ¢ E, or vice-versa, reject.
15: end for

Phase I1I: Checking the pre-blown-up graph.

16: Query the order-m subgraph induced by R.
17: Decide whether the induced subgraph is in I, and answer accordingly.

Lemma 4.5.17. Algorithm 4.3 is a valid test for 119, making O(q(n)) queries. Fur-
thermore, if q(n) is computable in poly(q(n)) time, then the test’s running time is

polynomial in its number of queries.
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Proof. The number of queries made by Algorithm 4.3 is dominated by the queries of
edges between Sge and Scize, and by the querying of the m-vertex subgraph in the
final step. The number of queries made there is O(a_2 . mlogg(m)) + (”2”‘), as we are
interested in the dependence on m, this is ©(m?) = ©(g(n)).

As for running time, the potentially time-consuming parts of the test are computing
q(n) and deciding whether the order-m subgraph induced by the representatives is in
IT’; if the former task can be carried out in poly(g(n)) time, then by Lemma 4.5.11 the
latter task will require poly(\/m) time, which is specifically poly(q(n)), so this part
of the claim holds.

We now turn to the test’s completeness. Let G € II,, be a blowup of G’ € II/,. By
Lemma 4.5.4, II"” is §-dispersed; thus for every pair of (different) vertices u,v € G/, a
uniformly-sampled vertex is located in only one of their neighborhoods, with probability
at least %. For a sample of ©(log(m)) vertices uniformly, the probability that the
neighborhoods of v and v to have the same intersection with all sampled vertices is
less than %(g‘)_l. The same is true when u, v are vertices of G, from different clusters,
and the signature vertices are sampled from G rather than in G’. Union-bounding over
all (")) pairs of G’ vertices, we find that with probability at least 1 — %, the signature
vertices induce the m clusters in G corresponding to the vertices of G’, each of size n/m.
Also, the probability that the fraction of sampled validation vertices from a certain

cluster is outside the range (1 +¢’) - s'/m is less than exp(€(—¢"s'/m)) < 1/6m; thus
1
6
Assuming all of the above occurs, Phase I does not reject; Phase II cannot reject since

with probability at least 1 — =, Scsize contains (1 +¢’) - s’/m vertices from each cluster.
the u and 7, v and r, have the same neighborhoods respectively; and in Phase III the
test correctly reconstructs the pre-blowup graph G’ (regardless of which representatives
were chosen) and accepts, as G’ is in II”. Thus the probability of accepting G is at least
2/3.

It remains to establish the soundness of the test. Let us suppose that an input graph
G is accepted with high constant probability (e.g. 1/3), and show that it cannot be

e-far from II.

The signature set Sg;g is said to be a good signature if the clustering it induces has
at least m clusters each of size (1 £ 2¢")n/m (and a bad signature otherwise). We first
show that the high probability of acceptance implies that G has a good signature, which
is sampled as Sgjg. Assume to the contrary that Sgs is bad.

If Sgig only induces less than m clusters, then the test must reject in Phase I, so we
assume at least m clusters are induced. Suppose some m vertices of S originate in m
of these induced clusters. Now consider the distribution of the s’ — m remaining vertices
of Secsize- These must contain between (1 —¢’)s’/m—1 and (1+¢")s’/m — 1 vertices from
each of these induced clusters, for Phase I not to reject G. Specifically, the remainder
of Sesize must contain this number of vertices from some Sgig-induced cluster C', whose

size in G is not in the range (1 £ 2¢’)n/m. Now consider the n — m remaining vertices
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of GG, from which the remainder of Sc;,e is sampled; the fraction of C' vertices among
these is outside the range (1 + 1.5¢")(n — m)/m (due to our implicit assumption that
n > s'; see Definition 2.1.4.) The probability of the remainder of Scg,e containing the
necessary fraction of vertices from C' is therefore exp(—€((0.5¢’ )%s'/ m)) < 1/3. Thus
under our assumption that the signature is bad, Phase I rejects G with probability at
least 2/3 — contradicting our assumption that G is accepted with high probability. It
must therefore be the case that G has good signatures, and one of these is sampled as
Ssig-

Now, a representative set R = {r1,...,r,} is said to be well-representing (with

respect to a signature Sg) if all of the following holds:

(i) Each r; is in a different cluster induced by S;g.
(ii) An &'-fraction of the vertex pairs u,v of G are such that both u and v are in
represented clusters, and are consistent with their representatives with respect to
E (that is, {u,v} € E iff {ry,r,} € E).
(iii) The subgraph of G induced by R is in II/),.

If the test does not reject by the end of Phase I, it must have found m clusters
induced by Ssig, so the set R it obtains obeys requirement (i). If R fails to obey (ii), it
will be rejected with probability greater than 2/3 at Phase II, due to an unrepresented
vertex or an inconsistent pair of vertices ; if R fails to obey (iii), it will be rejected at
Phase III, deterministically. Thus, under our assumption that the test accepts, there
must exist some well-representing set R, with respect to the good signature set, which
the test obtains.

Fixing a good signature set Ssg and a well-representing set R, let {C1,...,Cy,}
denote the set of m clusters induced by Sgi, and let V;,. denote the set of vertices not
belonging to any of the m clusters. One can redistribute the excess vertices in each Cj,
and the vertices of V;,. among the C;’s, so that each C; becomes of size n/m exactly
(at most 2¢'n/m additions or removals in each cluster). One then needs to modify
the edges incident on redistributed vertices to match the subgraph induced by R; this
requires at most He’ (g) changes: Up to 4¢’ (g) vertex pairs whose endpoints have been
reassigned to a different cluster, plus up to &’ (g) pairs which had been in disagreement
with their representative pair with respect to E. This results in a graph satisfying II,
and as 5¢’ = ¢, we conclude that G is indeed indeed e-close to II under our assumption.
The claim follows. ]

Note. In the above, the large deviation bounds are applied as though the vertices
sampled are independent, while when a set of vertices is sampled without replacements,
this is not the case. However, large deviation bounds do apply to samples without
repetition from a finite set (in fact, even slightly more tightly than to independent
samples). This is established in [Hoe63], in the discussion preceding and following
Theorem 4 there. That theorem implies that the same or similar bounds established

elsewhere (e.g. [ASE92, Appendix A]), through examining the expectation of the
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exponent of the sum of independent bounded variables, also apply to samples without

repetition.

Observation 4.5.18. The test in Algorithm 4.3 can be generalized to the case in
which n/m is not an integer. The modification required is to allow for any n mod m
of the clusters to have desired size [n/m| while the others have |n/m]| (or actually
ensure that the validation vertices’ intersections with the clusters are of relative sizes
between (1 —¢’)|n/m]/n and (14 ¢€’)[n/m]/n). In the analysis of the test, the “well-

representing” sets will be respective of specific choices of m mod n larger clusters.

Theorem 4.5 is now proven by combining the lower bound of Lemma 4.5.16 and
the upper bound established through the valid test in Lemma 4.5.17, together with
Lemma 4.5.11 regarding PTIME-decidability (while taking Observation 4.5.18 into

account).

4.6 A hierarchy of monotone properties

This section continues Section 4.5, with a second hierarchy theorem for dense graph
properties. In this section, instead of focusing on the PTIME testability, the additional
feature we ensure for properties of arbitrary query complexity is upwards monotonicity.
The direction of monotonicity is inconsequential, as one notes that an identical result
holds for downwards monotone properties by considering the complements of graphs in
the upwards-monotone property; we hereon in this section refer to upwards-monotone
properties as simply ‘monotone’. Unlike the first and third hierarchy results, the con-
struction here does not utilize the PTIME-decidable hard-to-test property constructed
in Section 4.2, but rather the hard property of [GGR98, Proposition 10.2.3.1], which is
generally very hard to decide deterministically, but whose simpler construction better

allows us to place other relevant constraints on its constituent graphs.

Theorem 4.6. There exist a constant €46 > 0, such that for every reasonable q(-)
(in the sense of Definition 4.5.1), there exists an (upwards) monotone property of
dense graphs that is testable with two-sided error using O(q(n)e_410g2 (5_1)) queries (or
O(q(n)) if one ignores the dependence on €), but is not e-testable using o(q(n)) queries,

even allowing two-sided error, for e < 4.

4.6.1 Property construction

Our construction of a property which is both monotone and hard-to-test will effectively
involve the taking of what is at the same time a blowup and a monotone closure of
another property. This operation must maintain not only an (gq) lower bound on
testing, but also the upper bound, the possibility of testing with O(q) queries. This is

a challenge, as the possible addition of edges can ‘drown out’ much of the structure
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of the graph. We shall overcome this difficulty with a combination of two measures:
The first is that if “too many” edges have been added relative to the original graph,
then we will allow ourselves to always accept, thus limiting the hardness to graphs with
average degree in a certain range; the second measure is constraining the graphs to have
additional structural features which are robust enough, so that few edge additions do
not disrupt them overmuch. This second measure is achieved through the choice of our

initial, hard-to-test property.

Revisiting the hard property of Goldreich, Goldwasser and Ron

We wish to begin our construction with a hard property satisfying several additional

constraints:

Lemma 4.6.1. There exists a (not generally monotone) graph property II' = J, o 117,
with the following features. First, a probabilistic oracle machine making o(nQ) queries
can only distinguish with probability o(1) between a uniformly-sampled graph from 11,
and a graph sampled from distribution G(n, %) Also, for every 6 and sufficiently large
n (as a function of §), every graph G € I, satisfies:

1. FEvery vertex in G has degree (% + 5)n.
2. For every pair of vertices in G, the union of their neighborhoods contains (% + 5)n

vertices.
Also, every two graphs G1,Go € 11, satisfy:

3. If G1, Go are non-isomorphic, then they are 0.4-far from each other.

4. If G1, Go are isomorphic, but their isomorphism fixes less than 0.9n of the vertices,
then they differ on at least 0.01(3) of their edges. In other words, and letting
[n] denote the graphs’ vertex set, if the isomohrphism m : [n]|— [n] is such that
{i € [n] | 7(i) #i}| > 0.1n, then the identity bijection between Gy and G induces
at least 0.0l(g) edge discrepancies.

Finally, in addition to the above, an n-vertex graph, sampled from the G(n, %) distri-
bution (i.e. each vertex pair being an edge with probability 1/2, independently of the
others), is 0.4-far from II" with probability 1 — o(1).

Proof. Let II' be the property constructed in the proof of [GGR98, Proposition 10.2.3.1],
with two slight modifications. II’ is obtained there by sampling K = 275°(3) (labeled)
graphs using the G (n, %) distribution, and closing the resulting set to isomorphism
by taking all isomorphic images of the sampled labeled graphs. Our first modification
will be setting K differently, to QTIt)()'(g); the construction remains the same with the
alternate K, except that the query complexity lower bound for distinguishing between
I’ and a random graph with probability 1/2 drops from some c - n? to some ¢ - n? for
some global constants 0 < ¢ < ¢; see the proofs of [GGRI8, Proposition 10.2.3.1] and

[GGRYS, Proposition 4.1.1] for details. We also note that if ¢/n? queries are required to
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distinguish between the distributions with probability 1/2, then with 0(n2) queries, one
can only distinguish between them with probability o(1).

We now turn to the degree constraints and our second modification of the property.

The probability of a single graph out of the K failing to satisfy either of the first
two degree constraints is at most O(n?) - exp(—€2(én)) (using standard large-deviation
bounds, and for n sufficiently large to ignore the neighborhood size being n — 1 rather
than n). We introduce a second modification to the construction, which is the removal
of these unsatisfactory graphs (and their isomorphic images) from IT’; few enough graphs
are removed so that the argument regarding distinguishing graphs sampled from II’ and

from G(n, %) still holds; and the density of II' remains very close to the original.

with probability 1 —o(1), II’ (as a set of labeled graphs) has close to n!K constituent
graphs at order n. By a union bound, the probability of a G(n, %) graph being 0.4-close
to it is therefore less than this number times the probability of a G(n, %) graph being
close to a specific (labeled) graph. This latter probability is equal to the probability of
a graph having at most 0.4(75) edges (considering these edges as changed edges from
the original graph), which is less than exp(—0.02 (g)), it is therefore the case that a
G(n, 3) graph is 0.4-far from I with probability 1 — o(1).

A similar argument can be used to establish the third constraint: Fixing graphs
G1,...,Gs_1 in I, the graph G sampled into II" (before any removal of graphs) is
merely a sample from G(n, %) The probability of this sample being 0.4-close to any
of the previous s — 1 graphs sampled into I’ or their isomorphic images is o(1/K);
union-bounding over all K samples, we conclude that the third constraint is indeed met
with probability 1 — o(1).

It remains to establish the fourth constraint in the statement of the lemma. Consider
an arbitrary permutation 7 over [n], fixing less than 0.9n vertices. We wish to show that

a large enough subset E’ of the pairs in G satisfies E' N 7(E’) = &; if this is the case,
2
discrepancies of E’ by an identity bijection between Gy and Gs is close to 3E’ with
high probability.

we can use the fact that Gy is sampled from G(n ) and conclude that the number of

Indeed, let U = {i € [n] | w(i) # i} be the set of unfixed elements, with |U| = an.
Let I C U be a subset of them such that |I| = [$an| and 7(I) NI = @. Such
a set exists, as a greedy algorithm can construct it by repeatedly adding another
unfixed element ¢ € U, and marking 7(¢) as unacceptable for addition. We now set
E' ={{u,v}|lueIAveV\({TUnr(I))}. These edges have no endpoint in m(I), and
are mapped by 7 to pairs with one endpoint in 7([), so that E' N7(E’) = & as desired.
Thus under the identity bijection between G and Ga, every pair in E’ is mapped to a
pair out of E’. As the edges of G are chosen to exist independently of each other and

with probability 1/2, the expected number of discrepancies of the identity bijection is
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therefore at least

1 1 1 1 1 1
§‘E" =3 |- (|V|—2|I|) = 3 {3anJ : (n— 2{3anJ> = —an®- (3 —2a) — O(n)
In the range 0.1 < o < 1, the minimum of the first term is achieved at 0.1 and the
expression is 5 - 0.1n% - (3 — 0.2) — O(n) > 0.015(}) for sufficiently large n. Now, the
probability that one specific G; and one specific isomorphic image G2 = 7(G1) have
less than 0.0l(g) discrepancies in E’ is at most exp(—2 -0.005 (’;)) Union-bounding
over all K initial graphs in IT" and all their permutations fixing less than 0.9n of the
vertices, we conclude that with probability 1 — o(1), all such pairs indeed have at least
0.01(5) discrepancies.

By another union bound using the arguments above, all constraints hold simultane-
ously with probability 1 — o(1). O

Note. Regarding the deterministic computational complexity of II’, it may not even
be deterministically computable, due to the random sampling. We could replace, in
the construction of II'[n], the sampling with an exhaustive search of the first set (by a
lexicographic order) of graphs which satisfies the requirements and is of appropriate size;
this would ensure computability. Also, it may be possible to devise a construction based
on a small NPTIME-decidable sample space, as in [GGR98, Proposition 10.2.3.2]; but

we do not explore this possibility in this work.

Property construction via approximate monotone blowups

Definition 4.6.2. Let G = (V, E) be a graph of order n and G’ = (V', E’) a graph of
order n’. G’ is said to be a B-threshold approximate monotone blowup of G if V' can
be partitioned into |V| + 1 clusters of vertices, as follows: The last cluster contains
n’ mod n vertices with full degree n’ —1; the rest of the clusters are all of size t = |n//n],
and each correspond to a vertex v € V; for every u/,v" € V' in clusters corresponding
to u,v € V, such that {u,v} € E, either {u/,v'} € E’, or at least one of v’ and v’ is
a heavy vertex, having degree at least n’ mod n + S(tn — 1) (i.e. at least B(tn — 1)
neighbors within the first |V| clusters).

Note. The condition on edges in E and E’ ensures that, ignoring high-degree vertices,
clusters in the blowup are in monotone agreement with vertices in the original graph:
Pairs of clusters in G’ corresponding to connected pairs in G have a complete bipartite
graph between them; and the bipartite graph between clusters corresponding to a
disconnected pair may, or may not, be empty. As we will see below, however, our
concern will be with graphs whose overall number of edges is not too high, so that these

bipartite graphs cannot ‘fill out’ overmuch.

Let us now fix some parameters, so as to be able to construct a specific I1. As our

construction utilizes Lemma 4.6.1, it depends on the value of § for which we apply that

72



lemma. We fix A = 107 ¢y 513 . This value, the ‘leeway’ for ‘informative’ vertex degrees
in graphs of our monotone properties, is set low enough to meet certain constraints
which come up in in the analysis of the construction, and in the proof of the validity of
a test in Subsection 4.6.3 further below.

Now let us fix ¢(-) for the rest of this section. We assume that g(n) > g =
100A~*1og* (Afl). This (non-optimized) bound is necessary for some of our arguments
below, as the orders of graphs with which we will be concerned depend on g(n). There is
no loss of generality in this assumption regarding ¢: Recall that ¢ is required to satisfy
q(n) < (g), and for its image to be infinite. Thus if our additional assumption does not
hold, we replace ¢ with ¢'(n) = min{ (g) ,max{q, qo}}. This is still a valid function with
respect to the statement of Theorem 4.6, and when plugged in there it yields the same
result, albeit with a different threshold distance €45 for hardness. Note that gy does

not depends on €.

A complexity-q property. Let m(n,q) = L\/q(n)J. We set 119 = |, [19,, with
I19,, containing all graphs G = (V, E) satisfying at least one of the following two

conditions:

(C1) The graph has at least 0.5+ 2A - (}) edges.
(C2) Each vertex in G has degree at least (0.5 — A)n and G is a 0.52-threshold approx-

. . /
imate monotone blowup of a graph in Hm(n, 9

Observation 4.6.3. 117 is monotone (as each of the two conditions is itself monotone).

4.6.2 A query complexity lower bound for the constructed property

The hard property I’ we use as the base of our construction is proven to be hard, in
[GGRI8, Proposition 10.2.3.1], using Yao’s method, with the far distribution consisting
of G(n, %) graphs. As graphs in I1Y are constructed by transforming graphs in I,
our lower bound will use distributions of transformed graphs, in a similar manner to
Section 4.2:

R.: An exactly-balanced blowup of a graph sampled from distribution G(m(n, q), %),
to order n — (n mod m), to which are added n mod m additional vertices of full

degree.

. ; /
n- I
Gn: An exactly-balanced blowup of a graph sampled uniformly from II;,, to order

n — (n mod m), to which are added n mod m additional vertices of full degree.

(Recall that these distributions are only defined for n sufficiently large so that the
constraints on A and ¢ may be satisfied, with Lemma 4.6.1 holding.)

Lemma 4.6.4. The graphs of G, are all in 119,.
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Proof. A graph of G, is an exactly-balanced blowup of a I1?’ graph, with additional
full-degree vertices — constituting an approximate monotone blowup, regardless of the
threshold value: The n mod m full-degree vertices count as a separate cluster, and the
rest of the graph is in monotone agreement with the 119’ graph. Also, the minimum degree
of a I19” graph is at least (0.5 — A)m; the minimum degree of the exactly-balanced blowup
is therefore at least (0.5 — A)(n — (n mod m)), and adding full-degree vertices makes
the minimum degree no less than (0.5 — A)(n — (n mod m)) + (n mod m) > (0.5 — A)n.
This meets condition (C2). O

Lemma 4.6.5. with probability 1 — o(1), a graph sampled from R, is (0.08 - c45.13)-far
from the support of Gy,.

Proof. By Lemma 4.6.1, a graph G sampled from distribution G(m, %) is 0.4-far from
IT/,, with probability 1 — o(1). Also, with probability 1 — o(1) G is 0.4-dispersed. When
both these events occur, Lemma 4.5.13 guarantees that any exactly-balanced blowup of
G is (c4513 - 0.4 - 0.4)-far from all exactly-balanced blowups of graphs in II/,. Finally,
adding n — (n mod m) full-degree vertices to all exactly-balanced blowups both of G
and of a graph in IT), can reduce the distance between them by a factor of no more than
n/(n mod m) < 2 (by Lemma 4.5.5). Thus after applying the entire transformation
of the definition of R, to G, we have a graph sampled from distribution R, which
with probability 1 — o(1) is 0.08 - ¢4 5.13-far from the transformed graphs I/, graphs;
the proof is completed, as these transformed graphs are the support of G,,. O

Lemma 4.6.6. Let 6 < A/4, let G’ be a graph of order n' = n — (n mod m) with
mazimum degree at most (0.5 + 0)n’, and let G be the result of adding n mod m vertices
to G’ with full degree n — 1. If G is d-close to 119, then it is (635 + A)-close to the
support of the G,, distribution.

Proof. We first consider values of n which are multiples of m, in which case there are
no full-degree vertices added to blowups in the construction of I1%,, and no full-degree
vertices in G. Also, for this case we only assume § < A.

Let H € 119 be the satisfying graph closest to G. The number of edges in H is less
than (0.5+46)(5) +0(%) = (0.5+28) - (3) (edges in G plus an upper bound on edges
added); H must therefore satisfy condition (C2) rather than (C1) in the definition of
I17. Let H' € I, be the graph of which H is an approximate monotone blowup, and
let H” be an exactly-balanced blowup of H' to order n. We show that H” — which is
in I17, and particularly in the support of G, — is close to G.

Denote by Vieavy the set of heavy vertices in H, that is, the vertices which have
degree greater than 0.52n (note that since n is a multiple of m, these do not include
any full-degree vertices added to the monotone blowup). Also, for ease of notation we
assume V(G)=V(H)=V(H")=V.

The discrepancies between corresponding edges of H and H” can be attributed

to one of two causes: Having a heavy vertex (in Vieavy) for an endpoint; or the edge

74



being in a bipartite graph between clusters of H, whose corresponding H’ vertices are
disconnected (there is no case of H” having an edge between non-heavy vertices of H,

which is not also present in H — by the definition of an approximate monotone blowup).

Regarding heavy-vertex-endpoint edges, we note that G has no 0.52-heavy vertices,
having maximum degree 0.5 + 0; thus Vjeavy contains only as many vertices as is made
possible by up to § (g) edges it may have in addition to those of G; thus |Vieavy| <
5(75)/(0.52 —(0.549))n < 305(n —1). At most (n — 1) edge discrepancies between H
and H” edges may be attributed to each such vertex, for a total of less than 604 (g)
edge discrepancies over all of Vieayy-

Now suppose we correct all discrepancies in H with H” involving heavy vertices,
i.e. modify the neighborhoods of vertices in Vjeavy to their values in H . These vertices
now obey the constraints on non-heavy vertices in an approximate monotone blowup —
and if we were now to remove all edges existing in H but not in H”, we would get H”
exactly: We would be ‘cleaning out’ the bipartite graphs corresponding to disconnected
H'-vertices. The number of edges we would need to remove would be the difference in
the total number of edges between the modified H and H”. Correcting heavy vertices
necessarily involves removing more edges to them than are added, so after this correction
to H it still has at most (0.5 + 26) - (}) edges. The number of edges in H” is at least
2(0.5— A)n? > (0.5 — A) (%) edges, since the average degree of H”, as a graph in I17,
is at least (0.5 — A)n. The number of edges remaining to be removed to make the
modified H into H” is therefore no higher than (26 + A)(3).

Altogether, H and H” are therefore at a distance of no more than 626 + A, so G

and H" are at a distance of no more than 635 + A.

Now let us consider the general case, in which n is not necessarily divisible by m;
we wish to reduce it to the case of n divisible by m, for which no full-degree vertices
are added.

Let H be as in the previous case: A graph satisfying 119 at minimum distance from
G. H has n mod m full-degree vertices; without loss of generality , we may assume that
the n mod m full-degree vertices in G are mapped to these, and that G’ (the exactly-
balanced blowup being an induced subgraph of G) is mapped to an induced subgraph H’
of H, of order n’ = n— (n mod m); this assumption is possible by Lemma 4.5.5. H is an
approximate monotone blowup of some graph in II/, — and H’ is also an approximate
monotone blowup of the same graph (with the cluster of full-degree vertices being
empty). Thus H’ satisfies 119, and, in fact, it is in the support of G,. The distance
of G' from H' is ' = 4(5) / (Z/) < 40 < A. The argument for the previous case now
applies to G’ (as even though G’ does not meet the requirements of the lemma, it meets
the relaxed requirements of the first case discussed above); thus G’ is (630" + A)-close
to Gyy.

Finally, let H” denote the G, graph closest to G’. Adding n mod m full-degree
vertices to H” results in a graph which is in Gy, and its distance from G is (63" + A) -
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(3)/(3) <630+ A, O

Lemma 4.6.7. with probability 1 — o(1), a graph sampled from R, is A/4-far from
1,

Proof. Let 6 = A/4, and let n be sufficiently large so that with probability 1 — o(1), a
uniformly sampled graph of order m(n, ¢) has maximum degree (0.5 + §)m; its blowup to
order n—(n mod m) has maximum degree (0.5 + §)(n — (n mod m)). Now, suppose that
the graph from R,, observes this bound (before the addition of the n mod m full-degree
vertices), and that R, is also d-close to I1%,,. We may now apply Lemma 4.6.6 to conclude
that the graph is (630 + A)-close to the support of G,,. But since A = 107 %¢4 513, we
have 636 + A < 0.08 - c45.13. By Lemma 4.6.5, this can be the case only with probability
o(1). O

We consequently set 46 = A/4.

Lemma 4.6.8. Any probabilistic oracle machine making o(mz) queries has probability

o(1) of distinguishing between inputs from R,, and from G,.

Proof. The proof is by the same argument as in Lemma 4.2.6: Let R}, and G, be the
uniform distributions over all graphs of order m and over II/,, respectively; distributions
R, and G, are obtained by applying the same augmentation to samples from G/, and
R, respectively. The result of each query to an augmented graph depends on one or no
edges of the original order-m graph. It therefore suffices to prove the claim assuming
queries are made to the original order-m graphs rather than their augmentations or the
isomorphic images thereof; in other words, it suffices to show that the probability of
an oracle machine distinguishing between inputs from R/, and from G/, using 0(m2)

queries, is o(1). This is guaranteed by the choice of IT" in Lemma 4.6.1. O
Lemma 4.6.9. Any e-test for 119, for e < e46, makes Q(q(n)) queries.

Proof. Let n be sufficiently large for Lemma 4.6.7 to hold, and let ¢ < €46. An e-test
for II accepts with probability at least 2/3 a graph sampled from G,,. By Lemma 4.6.8,
if the test makes o(m?) = o(g(n)) queries, then for a sufficiently large n it will accept a
graph sampled from R, with probability at least 2/3 — o(1). By Lemma 4.6.7, with
probability 1 —o(1), a graph from R,, is A/4 = g4 ¢-far from II, so the probability of the
test accepting graphs in R,, which are g4 ¢-far from II is also at least 2/3 — o(1). Thus
for every sufficiently large n there exists a specific graph which is A/4 = g4 > e-far

from II,,, and is accepted with probability over 1/2 — a contradiction. O

4.6.3 A test for the constructed property

In this subsection we present a test for II9. As in Section 4.5, we assume, for the

sake of simplicity, that n is an integer multiple of m, in which case graphs in I1?¢ are
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approximate monotone blowups, with no full-degree vertices added to them; we later

argue that this assumption can be foregone.

Definition 4.6.10. Let = = J,,cy En denote the property of graphs satisfying a relaxed
version of the conditions of (C2) of I1%, and failing to satisfy a relaxation of condition
(C1). Specifically, a graph G is in Z if its minimum degree is at least (0.5 — 105A)n
(rather than (0.5 — A)n in (C2)), its average degree is lower than (0.5 + 10°A)n (rather
than (0.5 4+ 2A)n, the threshold for (C1)), and it is a 0.52-threshold approximate
monotone blowup of a graph in H;n(m Iy

The motivation for this definition is that, when testing a graph satisfying (C2)
but not (C1), we hope to reconstruct, by querying poly(1/e) edges, a graph which
approximately satisfies (C2) with the above parameters. Before proceeding to present an
actual test, we wish to establish the fact that, having reconstructed a = graph, we can
also determine the pre-blowup graph of which it is an approximate monotone blowup.
This is less than trivial, due to = graphs having some heavy vertices, as well as some

edges between clusters which are disconnected in the pre-blowup graph.

Lemma 4.6.11. Let G = (V, E) be a graph in =, for sufficiently large n. There ezists
a graph G" = (V" E") and a corresponding partition of the non-heavy vertices into m
cells (denoted VY, ..., V! ), so that the following holds:

1. V" has a vertex for each non-empty cell V;, i.e. |V"| = |{i € [m] | V] # &}| (and
specifically, |[V"| <m).

2. G" is an induced subgraph of some graph in I, .

3. Each V; contains at most n/m vertices.

4. G" is in monotone agreement with the partition, i.e. for every {i,j} € E" and
every (u,v) € V<V, it holds that {u,v} € E.

5. At most 0.01lm sets V; are empty.

6. Neighborhoods of different vertices within the same partition cell agree on all but
at most 0.09n vertices.

7. Neighborhoods of vertices from different partition cells disagree on at least 0.45n

vertices.

Proof. Let Vyeavy € V denote the set of heavy vertices of G (those with degree exceeding
0.52n). Before considering the seven requirements, we first bound from above the number
of heavy vertices in G, using the constraint on the minimum and the average degrees:
A bound is obtained by assuming that every non-heavy vertex contributes only the
minimum degree towards the overall average, and the heavy vertices contribute only 0.52n
each. In this case a sum over the vertex degrees yields 0.52n - |Vieavy| + (0.5 — 105A)n .
(n = |Vheavy|) < (0.5 +10°A)n?; thus (0.02 + 10°A) - [Vieavy| < (2-10°A)n; as (2 -
105)/(0.02 + 105A) < 107, this implies |[Vieavy| < 107A.
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A partition and a graph G” satisfying the requirements above are the obvious ones:
G is a 0.52-threshold approximate monotone blowup of G’ = ([m], E’) of order m, and
G" is chosen as the subgraph of G’ induced by those vertices 7 with V; # &; this satisfies
requirements 1 and 2. The partition chosen is the clustering of V' in the approximate
monotone blowup, i.e. V/ is the cluster originating in i € G’, excluding any heavy
vertices. This satisfies requirements 3 and 4 (by definition of an approximate monotone
blowup). Regarding requirement 5, empty partition cells correspond to clusters with n/m
vertices which are all heavy, and there can be at most \Vheavy]/% < 107"Am < 0.01m
of these (for sufficiently large n).

Regarding requirement 6: The neighborhoods of a pair of vertices in the same cluster
V; of the blowup must agree on at least those edges mandated by G’, whose endpoints
are not heavy; i, as a vertex of G’ has degree no lower than (0.5 — A)m, so there are
(0.5 — A)n edges which both vertices must have, minus up to |Vieavy| edges to heavy
vertices which are not constrained to be present: At least (0.5 — (107 + 1)A)n. On top
of these, every one of the two vertices can have at most 0.52n — (0.5 — (107 + 1)A)n =
0.02n + (107 + 1)An < 0.021n additional neighbors so as not exceed the maximum
degree of a non-heavy vertex. Thus the two neighborhoods can differ by at most
2-0.021n < 0.05n of their neighbors.

Regarding requirement 7: If the blowup had been exactly-balanced rather than
monotone, that is, had G not had any heavy vertices, and had G contained only those
edges corresponding to edges in G, a pair of vertices in different clusters V; and Vj’
would each have at least (0.5 — A)n neighbors, of which at least (0.25 — A)n were
shared with the other vertex and at least (0.25 — A)n not shared. Thus G’ mandates
a (0.5 — 2A) fraction of difference between the neighborhoods. As argued above, the
heavy vertices and the leeway with respect to the degree of non-heavy vertices can alter
the number of vertices in disagreement by at most 2 - 0.021n for each vertex. Thus the
difference between the neighborhoods is at least (0.5 — 2A)n —2-0.021n > 0.45n.

Lemma 4.6.12. Let G, G’ be as in Lemma 4.6.11; the graph G" and the partition
Vi,..., V), guaranteed to exist by Lemma 4.6.11 are unique up to isomorphism (re-

labeling), and for a given V{,... V. the labeling of G" is unique.

Proof. Consider an arbitrary graph and partition of V' \ Vieavy which satisfy all the
requirements of Lemma 4.6.11. Now, two vertices from the same G’-cluster cannot be
assigned different cells V;, V; — as such two vertices have highly different neighborhoods
by requirement 7 (of Lemma 4.6.11), and their placement together will violate require-
ment 6 (their neighborhoods will not be consistent enough). For a similar reason, a pair
of vertices from different clusters cannot be assigned the same cell in the partition —
their neighborhoods will differ while required to agree. It must therefore be the case

that the partition is exactly Vi, ..., Vy,, up to a reordering. Let us assume without loss
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of generality this is exactly the partition (without reordering). It now remains to show
G" must be as chosen in the proof of Lemma 4.6.11.

If a pair of non-heavy vertices v € V;/ and v € Vj’ are not connected in G, their
cluster vertices in G” cannot be connected, i.e. it must be the case that {i,j} ¢ E'.
If all pairs with disconnected clusters in G” were disconnected, it would be uniquely
determined, proving the claim. G is a monotone blowup, so as mentioned earlier, we
must show that the adverse effect of heavy vertices and unnecessary edges cannot bring
it into monotone agreement with a graph in II,, other than G”.

To do so, we show that the minimum number of (ordered) pairs of clusters, whose
bipartite graph is not full, is high enough to practically determine G”. To obtain
this minimum number, we bound the total number of disconnected (ordered) pairs
of non-heavy vertices in different clusters: There are at most (0.5 + 10°A)n? ordered
pairs in G connected by an edge, overall; and at most 2|Vieayvy|n pairs are incident
upon heavy vertices, so the total number of disconnected pairs in different clusters is at
least (0.5—109A)n? — 2| Vheavy|n — 3 [Vi]* > (0.5 — (2107 + 10%)A)n? =3, (n/m)* >
(0.5 —201-10°A)n* — n?/m. As m > A~! and (201 - 10° + 1)A < 0.001, this is at
least (0.5 — 0.001)n?. There must therefore be at least 0.499m? (ordered) pairs of
different clusters with missing edges between non-heavy vertices. As the average degree
of G” is no lower than (0.5 — A)m, there are at most m? — ((0.5 — A)ym? + 0.499m?) <
(0.001 + A)ym? < 0.003(|V2”|) additional (ordered) pairs of clusters which may fail to be
present as edges in G”. Thus any two graphs of order m, with subgraphs which can
serve as G, are at a distance of no more than 0.003 from each other, corresponding to
a choice of the potential additional missing edges. We recall that I/, graphs are 0.4-far
from each other (condition 3 in Lemma 4.6.1 met by graphs in II'). Combining these
two facts we conclude that the order-m graph, of which G” is a subgraph, is determined
up to isomorphism; and as G’ can be such a graph, the order-m graph is necessarily
some relabeling of G’.

Now, since the distance between any two potential G” graphs is less than 0.01, the
labeling of G’ is determined up to an isomorphism fixing over 0.9m of the vertices (as
per condition 4 of Lemma 4.6.1). It remains to show that an isomorphism on G’, which
fixes over 0.9m of the vertices, but moves at least one vertex of a cluster ¢ with V; # @,
makes G” incompatible with V{,... V.

Consider, therefore, two subgraphs G and GY of relabelings G} and G} of G’,
satisfying the requirements with respect to the clustering V{,...,V, , and such that the
mapping between G and G, fixes 0.9m of the vertices, but replaces a vertex i € V(GY)
by some other vertex j # i of G’ (not necessarily a vertex in G5). The neighborhood of
each non-heavy vertex in V; must contain all non-heavy vertices in clusters V}/ such that
{i,k} € E{, due to the monotone agreement with G/; and it must contain all vertices
in clusters V; such that {j, k} € Ej, due to the monotone agreement with G%. Now, for
at least a 0.9-fraction of the clusters V}/, it is the case that {j,k} € Fj if and only if

{j, k} € Ef — so the V/ vertex’ neighborhood must contain these non-heavy vertices.
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Consequently, the degree of a vertex of V) must be at least (0.5—A)n (edges mandated
by GY), plus (0.5—A—0.1)n (edges mandated by GY to vertices fixed by the isomorphism),
minus at most (0.25 + A)n (the maximum intersection of the neighborhoods of pairs
of vertices in G’, by Lemma 4.6.1), minus |Vieavy|n (heavy neighbors). Recalling that
|Vheavy|n < 107 An, this sum is at least (0.65 —A— 107A)n > 0.64n, which is impossible
for a non-heavy vertex. Thus the isomorphism cannot replace any i € V(GY), so G/ and
G must be exactly the same as labeled graphs, i.e. G” is indeed uniquely determined,

as claimed. O

We now have all the machinery necessary for presenting a test for I19, listed as

Algorithm 4.4, and establishing its validity.

Algorithm 4.4 A test for I1¢
1: € < min{e, A/1000}/20, m < |\/q(n)].

Phase I: Graph edge density estimation
2: Estimate the edge density of G, using @(1/5/2) independent edge queries.

3: If the estimated edge density exceeds 0.5 + 2A — 2¢’, accept.
Phase II: Vertex degree estimation
4: Smin-deg < uniform sample of ©(1/&") vertices.
5: Ssig < uniform sample of @(log(\Smin_degD /5'2) signature vertices.
6: for each vertex v € Snin-deg dO
7:  Estimate the degree of v using Ssig (by querying the potential edges from v to Ssig).
8 If v has estimated degree under (0.5 — A — &')n, reject.
9: end for

Phase III: Finding representatives for a clustering

10: Srep < uniform sample of G(m/s'g) vertices.

11: Ssig  uniform sample of © (log(|Srep|) /€’*) signature vertices.
12: Slep + @

13: for each vertex v € Sep do

14:  Estimate v’s degree using Ssig.

15:  If v’s estimated degree is less than (0.52 — ¢')n, add v to Sjep-
16: end for

17: If |Step| < 0.99|Srep), reject.

18: Saig < uniform sample of O(log(|S:ep|)) signature vertices.

19: M+ 0, R+ @

20: for each v € S,, do

21:  for each i € [m'] do

22: Estimate the size of the difference between the neighborhoods of v and r; by the difference of
their neighborhoods in Ssig .

23: If the neighborhoods of v and r; differ by no more than 0.06s, add v to V;’ and continue to
the next iteration at line 20.

24:  end for

25: m' < m+1,r v V2 «{v} R« RU{r;}
26:  If m' > m, reject.
27: end for

. (continued) ...

Observation 4.6.13. The queries made by Algorithm 4.4 are dominated by those in
Phases IV and V: (7)) = ©(¢(n)) and © (¢ - log(t/¢) /e?) = ©(m - log?(m) - e *log(1/e))
respectively. Thus the overall number of queries, ignoring the dependence on ¢, is

©(q(n)).
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Algorithm 4.4 A test for I1? (continued)

Phase IV: Determining G' and G"

28: Query the graph Gr, induced by R and labeled accordingly.

29: Let G’ = ([n], E') € II,, be such, that G is in monotone agreement with the subgraph induced by
its first m’ vertices: If {4,j} € E’ then {r;,r;} € E.

30: Let G” be the subgraph of G’ induced on the first m’ vertices.

31: If there exists no appropriate G’, or if G’ is not uniquely determined by Gr, reject.

Phase V: Estimating cluster sizes
32: Scsize + uniform sample of t = © (mlog(m) - log(1/¢") /e'?) vertices.
33: Saig + uniform sample of © (log(t/c) /") signature vertices.
34: for each v € Scize do
35:  Estimate v’s degree using Ssig.
36: If v has estimated degree over (0.52 — 25/)11, remove it from Scsize and continue to the next v.
37 w(v) + L
38:  for each i € [m'] do

39: Estimate the size of the difference between the neighborhoods of v and r; using Sig.
40: If the neighborhoods of v and r; differ by less than 0.06s, let 7(v) = 1.

41: end for

42: end for

43: If any cluster 7 has over (1 + &'/2)t/m vertices in Scsize With m(v) = i, reject.
44: Tf more than an ¢’/2-fraction of the vertices remaining in Scsize have 7(v) = L, reject.

Phase VI: Ensuring the monotone agreement of G with G”

45: Ssig + uniform sample of © (log(1/¢") /%) signature vertices.

46: for ©(1/¢') times do

47:  Sample a pair of vertices u, v and query {u,v}.

48: Estimate the degrees of v and v using Sig.

49:  If u or v have estimated degree over (0.52 — €’)n, continue to the next pair.
50:  Cluster u and v as in Phase V.

51:  If m(u) = L or w(v) = L, continue to the next pair.

52:  If {m(u),7(v)} € E” but {u,v} ¢ E, reject.

53: end for

54: accept.

In proving Algorithm 4.4’s validity as a test, we will separate the arguments for

completeness and for soundness, both of which being non-trivial.

Completeness of the test

We will again denote by Vieavy the set of heavy vertices of G5 we also refer to vertices
with degree under 0.52 — 2¢’ as light vertices; the rest are non-light vertices, and the set

of these vertices is denoted V.

Lemma 4.6.14. A graph of order n which satisfies (C2) but not (C1) has at most
150An wvertices of degree over (0.52 — 3¢")n. In particular, less than a 150A-fraction of
its vertices are non-light, i.e. |Vy| < 150An.

Proof. The argument is similar to that made for heavy vertices earlier in this section:
Let U denote the set of vertices with degree over 0.52 — 3¢’. Since the average degree of
G is less than (0.5 + 2A), and the minimum degree is at least (0.5 — A)n, U satisfies
(0.52 — 3e")n-|U|+ (0.5 — A)n-(n — |U|) < (0.5 + 2A)n?; thus (0.02 + A — 3¢ )n-|U| <
(3A)n?; this yields the claim, as 0.02 + A — 3¢’ > 0.02. O
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Lemma 4.6.15. If G € T4, then it is accepted by Algorithm 4.4 with probability at
least 2/3.

Proof. If G satisfies condition (C1), then it will be accepted with high probabili-
tyby Phase I of the test; in fact, this will be true if G’s average degree is at least
(0.5 4+ 2A — &')n. We thus focus on the case of G satisfying I1¢ but having less than this
average degree, thus satisfying (C2). Let G’ = ([m], E') € I1? be the graph of which G
is an approximate monotone blowup. To prove that the test accepts G with high enough

probability, we show that each of the following ‘desirable’ events is likely to occur:

1. The graph is not determined to have low minimum degree (in Phase II).
2. Almost all vertices sampled into Sy, are light vertices, which are then placed in
S/

rep being too small).

(hence Phase IIT does not reject on account of Sy,

3. The clustering of S, in Phase ITI is valid, i.e. the vertices assigned to each cluster

are all those vertices of S’

rep 10 the cluster of some single G’ vertex.

4. By the end of Phase III, R contains only non-heavy vertices, and its light vertices
represent almost all clusters of G’.

5. The graph Gpg, induced by the cluster representatives in R, is such that its
corresponding G” is uniquely determined (hence Phase IV does not reject).

6. All cluster size estimates in Phase V are about 1/m of the total size of Scgize
(hence Phase V does not reject on account of cluster size imbalance),

7. The clustering of Scgize is valid, and all heavy vertices are discarded (hence Phase
V does not reject on account of there being too many unclusterable vertices).

8. The fraction of Scsize discarded for having high degree is not excessively high.

9. The clustering of pairs in Phase VI is valid, i.e. all pairs with a heavy endpoint
are discarded, and all vertices in pairs assigned 7(v) = i are non-heavy vertices
from the same G’ vertex cluster as the representative r;.

10. Phase VI finds no monotone disagreement between G and G” (and hence does

not reject).

If all of these events occur, G is indeed accepted.

Phase II degree estimates The degree estimate of a single vertex v € Spin-deg 1S
£’-close to its actual value with probability 1 —exp(—Q(” - |Sg|)) =1 —exp( —Q(e"?-
£'72 - 10g(| Smin-deg|))) >1—10.01 - {Smin_deg‘. (This last argument uses a large-deviation
bound on the vertices in in Spin-deg, Which are uniform samples without repetition; see
the note on page 68, following the proof of Lemma 4.5.17.) Union-bounding over all
vertices in Spin-deg We conclude that with probability greater than 1 — 0.01, all of their
degree estimates are correct to within ¢/. As G’s minimum degree is at least (0.5 — A)n,
the estimates are all at least (0.5 — A — &’)n, so G is not rejected at Phase II in this

event.
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Light vertices in Syep, and S;ep In Phase III, the degree estimate of a single
vertex of Syep is €’-close to its actual value with probability 1 — exp(—Q(log(|Srep|)))
(independently of the choice of Sj,,), so with probability greater than 1 — 0.005 all s
vertices in the set have estimates correct to within . Also, with probability greater
than 1 — exp(€(m)) > 1 — 0.005, the fraction of non-light vertices in Syep is at most &’
higher than their fraction in G (which is under 150A, by Lemma 4.6.14); in this event,
|Step| has at most a 150A + ¢’ < 151A < 0.01 fraction of non-light vertices. If both

events occur, more than 0.99|S.e,| light vertices are placed in S

reps SO the test does

not reject on account of S,

rep Deing too small. Note also that these events occur with

probability greater than 1 — 0.01, independently of the choice of light vertices in Syep
given their total number; in other words, with probability greater than 1 — 0.01 these
events occur and, additionally, if we condition on the specific number s of light vertices
in Siep, these light vertices are distributed uniformly over all sets of s light vertices in
Srep-

Validity of the clustering of S5/ Let V{,..., V) be as in Lemma 4.6.11. Now,

rep

two non-heavy vertices in Sy, in different V;”’s have neighborhoods differing on 0.45n

rep
vertices, by item 7 in Lemma 4.6.11, and two non-heavy vertices in the same V/ have
neighborhoods differing on at most 0.05n vertices by item 6 in Lemma 4.6.11. Thus
with probability 1 — exp(£2(log(|Step|))), @ pair of non-heavy vertices will be estimated
to have neighborhoods with under 0.06n differences, if the pair of vertices are in the
same cluster, and over 0.06 if they are in different clusters, using the set of s’ signature
vertices. Thus with probability greater than 1 — 0.005, all decisions of whether the pairs
of non-heavy vertices in Sﬁep are in the same cluster will be correct — independently

of which non-heavy vertices make up Sy,

As argued above, with probability greater

than 1 — 0.005 all degree estimates of Sy.p, are correct, so no heavy vertices are placed

in S;ep. Thus with probability greater than 1 — 0.01 all clustering decisions regarding
pairs of vertices in S’ are correct, the clustering is valid, and the test will not reject G

rep
on account of having more than m clusters. This, independently of the choice of light

vertices in Syep given their total number (see comment above).

R represents most clusters well Suppose that all degree estimates in Phase 111

are correct to within &’. In this case no heavy vertex is placed in S,

rep and consequently

no heavy vertex is placed in R. It then remains to show that few clusters are missing
representatives in R.
Now, suppose additionally that the clustering of Sﬁep is valid. In this case, if a

cluster is represented in S/, it will be represented in R and not have its constituent

rep’
non-heavy vertices represented by some r; from another cluster. Finally, suppose that

light vertices in Siep are all placed in Sj,,.

With this supposition it suffices to show
that only few clusters have no light vertices in Srep.
Now, there are less than 150An non-light vertices in GG, and thus less than 150A /(1 —
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g’) < 151A — &’ clusters have fewer than 'n/16m light vertices (we refer to such clusters
as light-poor). A cluster with at least e'n/16m light vertices (a light-rich cluster) has
at least one light vertex in Syep, with probability at least 1 — exp(—£2(1/¢’)), thus the
expected number of light-rich clusters, having no light vertices in Siep, is less than
¢'m/3200. If this is the case, then with probability greater than 1 — 0.005, the actual
number of such light-rich clusters is less than £'m/16, making the total number of
clusters missing from R lower than 151Am, i.e. m —m’ < 151Am. When the above
holds, and R has no heavy vertices, we refer to R as being well-representing.

Thus R is well-representing with probability greater than 1 — 0.03 overall, and
with probability greater than 1 — 0.005 conditioning on relevant previous desirable
events. This event occurs with probability greater than 1 — 0.03, independently of the
distribution of light vertices within each cluster given their number in that cluster.
(Note, however, that the number of light vertices in each cluster is not independent of

the event of R being well-representing).

The uniqueness of G’ We would like to show that the graph G'r will be found to
uniquely determine G”, the subgraph of G’ corresponding to the clusters represented
in R. We condition on the event of R being well-represented, with the choice of light
vertices in Srep being uniform given their total number. When this event occurs, the
appropriate subgraph of G’ is necessarily a possible choice for G” at Phase IV, as it is
in monotone agreement with Gp — but we wish to show that it is the only such choice,
using Lemma 4.6.12.

We cannot apply Lemma 4.6.12 to G itself, which is unknown to the test, nor to Gg.
Instead, consider a graph G obtained as follows: We blow up Gr by a factor of n/m; for
any unrepresented cluster in G, we add a cluster of n/m heavy vertices, with full degree
n — 1. We will demonstrate that G is in =, so that Lemma 4.6.11 and Lemma 4.6.12
apply to it. This will establish the uniqueness of our desired G”, as G is its approximate
monotone blowup.

Regarding the minimum degree of G: Had R represented all clusters, the minimum
degree would have been (0.5 — A)n, as G would have been a monotone blowup of G’
with no heavy vertices. Since we replace missing clusters with full-degree vertices,
edges are only added relative to the case of having more clusters represented. Thus the
minimum degree is no less than (0.5 — A)n in G as well.

Now let us bound the average degree of é, letting dy denote the average degree
of a graph H. As G is a random graph based on the choice of R, let us consider the
distribution of a single representative r;. The representative is not a uniform sample
from V;, as a uniform sample may fail to be estimated as non-heavy even with our
having conditioned on R being well-representing. But with our conditioning, if r; is
a light vertex, its distribution is uniform over all light vertices in the cluster. Thus
the variation distance between the distribution of any r;, and the uniform distribution

over its cluster V;, is at most the probability of the uniformly-sampled V; vertex being

84



non-light. This implies, specifically, that for two represented clusters ¢ and j, with r;

and 7; being their (random-variable) representatives

Pr[{r;,r;} € E]

Ti,Tj
< v,V € B+ Pr v; or v; non-light
- (vl,vj)EV ><Vj[{ ! ]} ] (vi,vj)EViXV}[ ! J & }
uniform uniform
< Pr vi,vi} € B+ Pr v; non-light] + Pr [v; non-light
< LPr ) € B (s non-light] + P [v; non-lgh]
uniform umform uniform

Also, had all clusters been represented in R, and had r; been sampled uniformly from
its cluster, the expected average degree in G would be exactly the average degree of G
(normalized by m/n), i.e. is at most (0.5 4+ 2A —&")m

Bearing the above in mind, we can obtain a bound on the number of tuples in Gr
(which is m/ times its average degree) if we account for non-light vertices. Recall that

the expectation is under our conditioning of R to be well-representing.

Ex[m’ - dg,]
= Z Pr[i, j represented] - Pr[{r;,r;} € Eli, j represented]
’,"'“T

i,j€[m]

< Z Pr  [{vi,v;} € E] + Pr [v; non-light] + Pr [vj non-light]
- (viyv5)EVi XV}
i,j€[m] uniform unlform unlform

- Z (ul,fu])er ][{vz,vj} € El+2m - Z 1)Zl:;rl v; non-light]
7€Ml " Uhiform i€[m] uniform

2 2
<™ dg+2- (m : !Vn1> <m- (ng +300Am)
n n n

The expected degree of G is n/m times that of Gg, plus less than n/m for every
one of the m — m/ clusters unrepresented in R. As R is well-representing, m — m’ <
151Am, so the contribution of unrepresented clusters to the expected degree is at most
(n/m) - (1561Am) = 151An. Thus,

Ex[dg] < Bx| " - da, +151An] = Ex|
n

S A - 151A)m?
1+ 302A

p—" (m/ . dGR) + 151An}

EX[(m -dGR)] + 151An

< (@dG + 300Am> +151An

n
( )3 m
< (14 3024) - (dg + 300An) + 151An
< (14 302A) - ((0.5 + 2A — &')n 4 300An) + 151An
< (0.5 + (24302 0.5 + 302 - 2A + 300 + 302 - 300A + 151)A)n
< (0.5 + 605A)n
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As the average degree of G cannot be lower than its minimum degree, which is at least
(0.5 — A)n, we can apply Markov’s inequality to the difference between the average and
the minimum degrees of G to conclude that, with probability greater than 1 — 0.2,
the average degree of G is under 0.5 4+ 5000A. When this occurs, Lemma 4.6.11 and
Lemma 4.6.12 apply to G.

Thus an appropriate G’ and G” exist, with G’ determined uniquely, and the test
doesn’t reject in Phase IV — with probability greater than 1 — 0.23 overall, and with
probability greater than 1 — 0.2 conditioned on those relevant previous desirable events

occurring.

Validity of the clustering of Scsize We can employ the same argument as for the
clustering Siep, except that the set size is t: With probability greater than 1 — 0.005 all
degree estimates are correct to within ¢/, and with probability greater than 1 —0.005, all

decisions of whether the pairs of non-heavy vertices in S/, and in S’ _ are in the same

re csize
cluster will be correct. Thus supposing that the represen‘satives in R are all non-heavy,
with probability greater than 1 — 0.01 all heavy vertices are discarded and all clustering
decisions are correct — that is, for every vertex v remaining in Scgize, m(v) = @ if v is an
in the cluster of r;, and 7w(v) = L if it is unrepresented.

Thus the clustering is valid with probability greater than 1 — 0.04 overall, and with

probability greater than 1 — 0.01 conditioning on relevant previous desirable events.

Cluster sizes in Scgze As every cluster in G corresponding to a vertex of G’ has size
n/m, the expected fraction of Scsize from each cluster is 1/m. We apply a large deviation
bound for sums of low-probability indicators (see, e.g. [ASE92, Theorem A.11]) to
conclude that the probability of a cluster having more than (1 +¢’/2)t/m vertices is less
then exp( — (e't/2m)?/2(t/m) + (a’t/2m)3/2(t/m)2) = exp((—?+¢?/2) - t/8m) <
exp(—e’? - t/10m) = exp(—Q(log(m))) < 0.01/m. Union-bounding over all m clusters
we find that with probability greater than 1—0.01, all clusters have less than (14-¢'/2)t/m
vertices in Scgize. When this event occurs and the clustering is also valid, no cluster has
more than (1 + &'/2)t/m vertices assigned the same (-) value.

Thus the cluster sizes are all determined to be within €’/2 of their expected value,
and the test does not reject on account of cluster size imbalance, with probability greater
than 1 — (0.04 4+ 0.01) = 1 — 0.05 overall, and with probability greater than 1 — 0.01

conditioning on relevant previous desirable events.

High-degree vertices in Scsize Vertices in Scsize may only be discarded if they are
estimated to have degree over 0.52 — 2¢’. With probability greater than 1 — 0.005, all
degree estimates of vertices in Scsize are correct to within &’ (by an argument similar to
previous phases) — independently of the choice of vertices in Scsize. When this event
occurs, only vertices with degree over 0.52 — 3¢’ may be discarded. By Lemma 4.6.14, the

fraction of these is at most 150A. By a similar argument as for Phase III, the fraction

86



of these vertices in Scgize is at most ¢’ higher than their fraction in G, with probability
greater than 1 — 0.005. Thus with probability greater than 1 — 0.01 (regardless of
previous desirable events), less than a 150A + ¢’ < 151A-fraction of the vertices of Sesize
are discarded for having overly high degree, independently of the choice of these vertices
in Scsize-

Note that this event is not one of the desirable events listed earlier in the proof, but

it is useful to condition upon; see below.

Vertex clustering failures in Scgi,e We wish to bound the fraction of vertices in
Sesize Which are not discarded for overly high degree, but are assigned w(v) = L; we
suppose that R is well-representing.

To do so, we begin by bounding the fraction of light vertices in Scsize Without a
representative in R. There are at most €'m/16 light-rich clusters unrepresented in R;
thus the total number of light vertices whose clusters are unrepresented in R does not
exceed m - €'n/16m in light-poor clusters, plus €'m/16 - n/m in light-rich clusters, or
e’'n/8 overall. Consequently, the expected fraction of light vertices in Scgize unrepresented
in R is ¢//8; with probability greater than 1 — Q(m -log(1/¢)) > 1 — 0.005, the actual
fraction is under ¢’ /4.

Suppose that the vertex degree estimates in Phase V are correct to within &’ (this
happens with probability greater than 1 — 0.005 independently of the choice of Sesize)-
Suppose also that the fraction of vertices with degree over 0.52 — 3¢’ in Scgize (before
any discards) is at most 151A; as argued above, this occurs with probability greater
than 1 — 0.005. When both these events occur, the number of light vertices discarded
for having overly high estimated degree is at most a 151A-fraction of the vertices of
Scsize- Thus the fraction of unrepresented light vertices after the discard is at most
1/(1 — 151A) < 2 times the original fraction, i.e. under £/2. As all vertices remaining
after the discard are light, the fraction of unrepresented light vertices is the fraction of
unrepresented vertices remaining in Scgze. Finally, if we suppose that the clustering
in Phase V is valid, this fraction is the fraction of vertices v remaining in Scsi,e With
m(v) = L.

Thus less then an &' /2-fraction of the vertices remaining in S, are assigned
m(v) = L, with probability greater than 1 —0.06 altogether, and with probability greater

than 1 — 0.01 conditioning on relevant previous desirable events.

Validity of the clustering in Phase VI The argument regarding the clustering in
Phase III applies also to the clustering of vertices in Phase VI, using the representatives
in R. If the representatives in R are all non-heavy, then with probability greater than
1 — 0.005, every one of the non-heavy vertices being clustered in Phase VI will be
assigned the correct cluster, or assigned L if their cluster is not represented in R. With
probability greater than 1 —0.005 all vertices sampled in Phase VI have degree estimates

correct to within &', so no clustering is attempted of heavy vertices. Thus the clustering
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in Phase VI is valid with probability greater than 1 — (0.03 + 0.01) = 1 — 0.04 overall,
and with probability greater than 1 — 0.01 conditioned on relevant previous desirable

events occurring.

Monotone agreement of G with G” Suppose that G” is determined uniquely, and
that the clustering in Phase VI is valid. When both these events occur, Phase VI does
not reject, because non-heavy vertices in G are in monotone agreement with G’, and
the test only checks vertices (correctly) determined to be non-heavy.

Thus G is not rejected in Phase VI with probability greater than 1 — 0.24 overall,

and with probability 1 conditioning on relevant previous desirable events.

The conjunction of all desirable events above occurs with probability greater than
1 —10.305 > 2/3, so the test indeed accepts with sufficient probability. O

Note. As in Section 4.5, the large deviation bounds are applied as though the vertex
samples are independent, while when a set of vertices is sampled without repetitions, this
is not the case. However, such bounds are even tighter for samples without repetitions,

so such use is justified.

Soundness of the test

Lemma 4.6.16. If G is e-far from 119, then it is rejected by Algorithm 4.4 with proba-
bility at least 2/3.

Proof. We prove that if the test accepts with probability at least 1/3, then G cannot
be e-far from I19.

If G has average degree over (0.5 + 2A — ¢)n, then it isn’t e-far from I1? and the
claim holds trivially. We thus assume G’s average degree is under (0.5 + 2A — e)n. In
this case, G is accepted with at most a small constant probability in Phase I; it thus
remains to prove that if the other phases accept with probability at most slightly lower
than 1/3, then G cannot be e-far from II7.

If G has more than &'n vertices with degree under (0.5 — A — 2¢’)n, then it is rejected
by Phase II, the vertex degree estimation phase, with probability greater than 3/4, and
the claim holds. Let us also assume, therefore, that G' has at most ¢'n vertices with
degree under (0.5 — A — 2¢")n.

Let Sy, 1@ and G” be as determined in Phases IIT and IV. The clustering 7 they
induce is a clustering of at least (1 — &’)n of the vertices with degree at most 0.52 — 3¢’
(that is, at most &’ of these have 7(v) = 1), as otherwise Phase V rejects with high
probability. Also, each cluster contains at most (14 2¢")-n/m such vertices, as otherwise

Phase VI rejects with high probability. Finally, the number of edges missing between

n

2), as otherwise, again, Phase V

clusters, which are connected in G”, is at most &(

rejects with high probability.
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To complete the proof we show that under the above conditions, the graph is close
to satisfying either (C1) or (C2), and consequently close to I1%. Indeed, suppose that

we modify G as follows:

1. Add the edges missing between clusters connected in G” edges.

2. Move vertices with degree at most 0.52 — 3¢’ from clusters with more than n/m
vertices to smaller clusters (at most 2¢'n such vertices need be moved), adding to
their neighborhoods those edges mandated by G’ for the new cluster.

3. Move vertices with degree at most 0.52 — 3¢’, which have 7(v) = L, into any
cluster into clusters with less than n/m vertices (including possibly clusters not
represented in R), adding to their neighborhoods those edges mandated by G’ for
the new cluster.

4. Arbitrarily add edges to vertices with degree at least 0.52 — 3¢’ to make them
heavy (i.e. increase their degree to 0.52).

5. Distribute heavy vertices among clusters so that each cluster has exactly n/m

vertices (without making any actual edge changes).

The result of the above modifications is a partition into m equal-size cells, which
constitutes an approximate monotone blowup of G’. Finally, we connect heavy vertices
to low-degree vertices until they meet the minimum degree requirement in (C2). This
is possible, due to the fact that in a monotone blowup of G’ to order n with no heavy
vertices, each vertex has degree at least (0.5 — A)n, so any vertex in the modified G
with degree lower than (0.5 — A)n must be missing edges necessitated by G’; these
cannot be missing between pairs of non-heavy vertices, due to the monotone agreement
of G with G’, so they must be missing between heavy and non-heavy vertices.

Now, if at any point in the above operations we have added so many edges, that the
average degree of the modified G surpasses 0.5+2A — the graph satisfies I19 by condition
(C1), and we leave it as it is; otherwise, after all these operations, the graph must satisfy
(C2). Either way, the number of edges we have added is at most: &'(5) for the first
operation; (2¢'n) - (n — 1) = 4¢’(%) for the second operation; (e'n) - (n — 1) = 2¢'(}) for
the third operation; 3¢'n? < 7¢’ (g) for the fourth operation (for sufficiently large n); no
changes for the fifth operation on the list; and less than (2 + (0.5 + A))e'n? < 6¢’(})
for the final minimum degree increase (for sufficiently large n). In total, less than
(1+442+7+6)'(5) =20¢'(5) =(}) edge additions are necessary to make G satisfy
either (C1) or (C2). G is therefore not e-far from II9. O

Observation 4.6.17. The test in Algorithm 4.4 can be generalized to the case in which
n/m is not an integer. The modification required, in broad terms, is to check that about
n mod m of the vertices have full-degree, account for them as an (m + 1) cluster, and
set the other cluster sizes accordingly. This may also necessitate special handling of
heavy vertices with full or almost-full degree (which cannot be told apart from the ‘real’
n mod m full-degree vertices) apart from heavy vertices with significantly lower degree.
We do not go into the details.
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Theorem 4.6 is now proven by combining the lower bound of Lemma 4.6.9, and the
upper bound established through the test in Algorithm 4.4 — valid as per Lemma 4.6.15
and Lemma 4.6.16 — if m divides n, and by their variations taking Observation 4.6.17

into account, otherwise.

4.7 A hierarchy of one-sided-testable properties

We continue Section 4.5 and Section 4.6 with a third hierarchy theorem for dense graph
properties. In this section, we modify the construction in Section 4.5, so as to make
the properties amenable to a one-sided test at an arbitrary query complexity, while
any significant reduction in the number of queries precludes even two-sided testing —
in a sense, a tighter hierarchy. Unfortunately, while the construction maintains the
PTIME-decidability of the property itself, it seems to make testing the property less
computationally efficient, that is, we are not able to present a test whose running time
is polynomial in its number of queries — as a test seems to need to decide what is

essentially a subgraph isomorphism problem.

Theorem 4.7. There exists a constant €46 > 0, such that for every reasonable q(-) (in
the sense of Definition 4.5.1), there exists a property of dense graphs that is testable
with one-sided error using O(q(n)/e?) queries (or O(q(n)) queries ignoring €), but not
e-testable using o(q(n)) queries, even allowing two-sided error, for e < e4.7. Furthermore,

if q(n) is computable from n in poly(n) time, then the property is PTIME-decidable.

4.7.1 Property construction

Thinking about how to obtain a one-sided-testing hierarchy theorem, we naturally ask
ourselves whether Algorithm 4.3, the test used for the upper bound in Section 4.5, can
be made one-sided. The reason it cannot is that we require the clusters in the blown-up
graphs there to be of equal or almost-equal size; and if the cluster sizes are off, with
some clusters being significantly larger than others, then the graph would be far from
an appropriate blow-up (since vertices cannot be moved from one cluster to another
without many edge changes). A test cannot avoid, therefore, having to estimate these
sizes — and this estimate can be invalid, as the test’s sampled vertices may come from
just a few of the clusters. In light of this fact, let us forego the strict requirement on
cluster sizes, and only require that a graph be a generalized blowup (see Definition 2.3.6),
with potentially highly-disparate cluster sizes, but keeping all clusters present for easy
deterministic decision. (This modification will also allow us to handle more cleanly
handle the possibility of n not being an integer multiple of the size of the pre-blown-up
graph). We can then make a similar argument to that in Section 4.5, with the necessary

allowance for this generalization:
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Lemma 4.7.1. There exists a global constant c47.1 > 0, such that for every n,e, a and
every pair of (unlabeled) graphs (Gi,G2) of order n, with Gi being a-dispersed, the
following holds: If G1 and Gy are e-far from each other, then any (relaxed or proper)
generalized blowup of Go to order n is at least cq710%e-far from any balanced blowup of
Gi.

Before proceeding to the proof, we recall having established in Lemma 4.5.13 that
a balanced blowup (rather than merely a relaxed generalized blowup) of G2 must be
c4.5.13 - o - e-far from a balanced blowup of GG;. To prove that a relaxed generalized
blowup G}, of G is also far from G, we will want to relate the “degree of imbalance”
of a blowup to its distance from any balanced blowup. To do so, we first formalize this

concept.

Definition 4.7.2. Let G be a labeled graph of order n and G’ a relaxed generalized
blowup of G to order n’. The (relative) weight p; of the cluster V; of the i vertex of G
is the fraction |V;|/n/.

Definition 4.7.3. Let G be a graph of order n and G’ a relaxed generalized blowup of
G to order n/, with t = [n//n|. G’ is said to be a d-balanced blowup of G if the variation
distance between the relative weights of clusters in the blowup, and the relative weights
of clusters in a balanced blowup, is at most § — over all possible choices of n’ mod n

larger clusters in a balanced blowup, i.e.

. . S; -
mm{; pi— || si e {t,t+1} /\Z;si = n’} <26
Notes.
— A balanced blowup is 0-balanced, and any relaxed generalized blowup is 1-balanced.

1
n’

=Ylpi — 5| < 20.

Proof of Lemma 4.7.1. Let G be a balanced blowup of G (with clusters of size either
t or t+ 1) and GY be a relaxed generalized blowup of G5. Let us label the vertices of

— If n divides n/, the condition for §-balance is merely E‘pz —

both graphs, so that we may denote V(G1) = V(G2) = [n] (this also induces a labeling
of the blowup clusters)

We distinguish two cases, based on the “degree of imbalance” in the blowup of Ga
into GY. Our threshold d-balance value for the analysis will be § = ¢45.13 - @ - /5.

Suppose, first, that G} is a d-balanced blowup of Gy. If that is the case, G} is in fact
44-close to a balanced blowup of Gs: For the choice of s; achieving the variation distance,
one simply moves a 2§ fraction of the vertices between clusters of G5, so that the cluster
sizes become exactly the chosen s; values. Switching the cluster of a single vertex entails
as many as n’ —1 edge changes, for a total of 26n/(n’—1) = 40 (7;/) over all vertices moved.
We now use the triangle inequality to conclude that the J-balanced blowup is at least

(ca513 - - & — 4d)-far from G; and we note that ¢4 513 - a-e—4d = = 4513 - - /5.
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We are therefore left with the case of G not being d-balanced. If, for every bijection
between G| and G, we were somehow able to pair the ‘excess’ vertices with other
distinct vertices, so that every pair is in the same cluster of G5 but with different origins
in G, our proof would be concluded, as any such pair entails many discrepancies with
respect to the bijection.

Towards this end, note first that due to the d-imbalance of G, for every choice of
blowup cluster sizes, more than a d-fraction of the weight of clusters is excess weight
beyond the designated cluster weight, i.e. for every choice of (s;);"_; corresponding to a
blowup, and denoting I = {i € [n] | p; > %}, we have Y, (p; — si/n’) > 6.

Now consider some bijection 7/ between the two blowups. Let s?/ =t+1if any G}
clusters of size t + 1 are mapped to ¢ in their entirety and ¢ otherwise. Clearly, there
are at most n’ mod n indices 4 such that s?/ =1+ 1, so there exists some choice of s;’s
corresponding to a blowup for which s; > s?’ for every i. Now, since for this choice we
have 3,7 (pi — si/n’) > 8, we also have, for the same I, 3, ;(pi — sT /n’) > .

We now wish to ‘pair up’ vertices from different G/ clusters within clusters of G%.
Consider some cluster i of GY, with p;n’ vertices. The largest set of vertices in this

. . . . . . /
cluster with the same origin in G} is of size at most sT ;

T consequently, cluster ¢ has

at least %(,01 — sf/ /n’ ) pairs of vertices from different clusters. (To see why this is the
case, think about repeatedly removing arbitrary pairs of vertices in GY% originating in
different clusters of G; eventually one is left with vertices in G} all from the same
cluster in G/, and their number cannot exceed sf/.) Over all clusters in I, we have
Sier3(pin’ — s?/) > 0n’/2 such pairs. Each pair is the cause of atn > « - n'/2 distinct
discrepancies (as discussed in the proof of Lemma 4.5.13 — the neighborhoods of the
two vertices must be made the same); the total number of discrepancies under 7’ due to
all these pairs is at least §/2 - an’ 2 /2. 7' was chosen arbitrarily, so the same minimum
number of discrepancies exists under any bijection between G and GY%; thus the distance
between the two graphs is at least dav/4.

The claim is now proven by setting c¢4.7.1 = ¢4.5.13/20 and noting that min(é, da/4) =

5@/4 = 04.5.13042/20. O

A complexity-q property. Let II” be as constructed in Subsection 4.5.1, a dispersed
PTIME-decidable property requiring Q(n2) queries, and let m(n,q) be as in Defini-
tion 4.5.9. We set I19 = | J,,cx I19,,, with I19,, containing all (proper) generalized blowups
of graphs in I1”,,(,, . In other words, a graph in I19, has m non-empty clusters with

complete bipartite graphs between cluster pairs corresponding to pre-blowup edges.

Lemma 4.7.4. If q(n) is computable from n in poly(n) time, then 117 is PTIME-
decidable.

Proof. The proof is very similar to that of Lemma 4.5.11: Since no two vertices of a
graph in II” have the same neighborhood, one can easily reconstruct the original graph

given m non-empty clusters, regardless of their sizes (but assuming that g(n) itself can
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be computed in polynomial time). Since I1” is in PTIME, one can then efficiently
decide whether the pre-blown-up graph satisfies it or not. Note that the fact that I1¢
contains generalized blowups rather than relaxed generalized blowups is critical to this
argument, as without a vertex from every cluster, one would only be able to reconstruct
a subgraph of the original order-m graph, and might then need to decide an instance of

subgraph isomorphism. O

4.7.2 A query complexity lower bound for the constructed property

Consider again the hard-to-test PTIME-decidable property I1¢ constructed in Sub-
section 4.2.2. When used in Section 4.5, its query complexity (and its lack of isolated
vertices) was sufficient for establishing a lower bound on testing its blowups. Our
analysis here will have to be a bit finer, as we will not be using a reduction proper —
neither from I19 of Section 4.5 nor from I1” of Subsection 4.2.2.

We recall that by Lemma 4.2.6, Q(nQ) queries are required to distinguish between
the distributions G, a uniform distribution over graphs in I/, and R,,, a separating
augmentation (as per Definition 4.2.2) of a uniformly sampled graph of order | (n — 1)/3].
Let us now carry this result over to dispersal-augmented graphs.

Before stating our lemma, we first note that our graphs of order m(n, q) are now
the results of dispersing augmentations. Recalling the definition of these augmentations
(Definition 4.2.2), and denoting by m/(n, ¢) the order of a pre-augmented graph, we have
m = m/ + 320108+ DT Gince m < 21+Moe@m+ D1 " we have [log(m)] = [log(2m’ +1)],
som'=m — %ZUOg(m)J.

Now, the indistinguishable distributions for 119 are (for sufficiently large n):

R;,: A graph sampled from distribution R,/ dispersal-augmented to order m(n, q),

n,q)»
then blown up to order n.

G!,: A graph sampled from distribution G/ (n,q)> dispersal-augmented to order m(n, q),

then blown up to order n.

Lemma 4.7.5. With R}, and G}, as per the above, any probabilistic oracle machine M
making o(q(n)) queries to its input graph satisfies Pr {MR,R = 1} =Pr [MGIH = 1}.

Proof. We repeat an argument used in proving Lemma 4.2.6: As both distributions
R, and G, are obtained by applying the same dispersing augmentation and blowup to
samples from G,, and R,, respectively, and as the result of each query to a dispersing
augmented graph depends on one or no edges of the original pre-augmented graph, and
the result of each query to a blowup depends on one or no edges of the pre-blown-up
graph — it suffices to prove the claim assuming queries are made to the original order-m
graphs from R,, or G,, respectively — rather than to blowups of their dispersing
augmentations. Lemma 4.2.6 proves, specifically, that if o(g(n)) queries are made, a

machine has the same probability of accepting graphs from these two distributions. [J
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Lemma 4.7.6. A graph sampled from R) is c47.104.25/(250-64)-far from 117 with
probability 1 — o(1).

Proof. By Lemma 4.2.5, with probability at least 1 — o(1) a graph G sampled from
R, is d4.25-far from II” ,. Supposing this is the case, consider some graph H € II ,.
By Lemma 4.5.6, the dispersing augmentation of G will be d495/250-far from the
dispersing augmentation of H. Now, the blowup of the dispersing augmentation of G
to order n is a balanced blowup of an 1/8-dispersed graph, so by Lemma 4.7.1, it is
ca71(1/8)% - 64.0.5/250-far from any generalized blowup of the dispersing augmentation
of H. The claim follows when recalling that I1? is the set of all generalized blowups of

dispersing augmentations of graphs in 117 ,. O
We can now prove the lower bound, setting e47 = ¢4.7.104.2.5/(250 - 64):

Lemma 4.7.7. Any e-test for 117, for € < e4.7, makes Q(q(n)) queries.

Proof. Let n be sufficiently large for Lemma 4.7.5 to hold. For € < €47, an e-test
for II making less than o(g(n)) queries, which accepts graphs in IT with probability
at least 2/3, will accept a graph sampled from R/ with probability at least 2/3 (by
Lemma 4.7.5). Now, by Lemma 4.7.6, with probability 1 — o(1), a graph from R/, is
c47104.25/(250 - 64) = &4 7-far from 117, so the probability of the test accepting a graph
sampled from R] which are e47-far from I1? is at least 2/3 — o(1). Thus for every
sufficiently large n there exists a specific graph in the support of R/, which is e47 > e-far

from I1%,,, and is accepted with probability over 1/2 — a contradiction. O

4.7.3 A one-sided test for the constructed property

Algorithm 4.5 will be the test achieving the upper bound.

Algorithm 4.5 A test for I1¢

: Compute m(n, q).

: Uniformly sample a set S of ©(m/e) vertices.

: Query the subgraph Gg induced by S.

: If Ggample is a relaxed generalized blowup of a graph in 7 to order |S|, accept.
Otherwise reject.

W N =

We stress that the test does not expect its sample to be a proper generalized blowup
of a graph II” to order n — that is, it may include merely a subset of the clusters of
such a blowup. Looking at the test, one may wonder whether it doesn’t, perhaps, accept
graphs which, despite being relaxed generalized blowups of graphs in I1”, are still far
from proper generalized blowups (with all m clusters present); before proceeding to

proving the test’s validity, we allay this concern:

Lemma 4.7.8. Suppose n > 4dm/e, and let G1 and G2 be graphs of order m and n
respectively, such that Go is e-far from any proper generalized blowup of G1. Then Go

is €/2-far from any relaxed generalized blowup of G1.
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Proof. Let G be a relaxed generalized blowup of G at minimum distance from Gs. To
make G into a proper generalized blowup of G, one must ‘populate’ the missing G-
vertex clusters with vertices from other clusters, which now have more than one vertex.
There are at most m—1 missing clusters, and moving a vertex from one cluster to another
requires at most n — 1 edge modifications. Thus the total number of edge modifications
required to populate all clusters is less than (n—1)-(m—1) < (n—1)- (2 — 1) < 1¢(3),
i.e. G is g/2-close to a proper generalized blowup of G1. It must therefore be the case
that G; and G are at least ¢/2-far. O

As the test samples more than 4m/e vertices, the case of graphs with less than
this many vertices is covered by the default behavior on graphs with too few vertices —
querying the entire graph and deciding deterministically (see Definition 2.1.3 and the
following discussion). It thus suffices if the test rejects graphs of higher order which are

g/2-far from relaxed generalized blowups of graphs in I1”.

Lemma 4.7.9. Algorithm 4.5 is a valid test for 119 with one-sided error, making O(q(n))

queries.

Proof. Clearly, a graph G satisfying I1¢ is accepted with probability 1, as G is particularly
such a blowup, and being a relaxed generalized blowup of one of a set of graphs is
hereditary: Losing vertices simply means having smaller clusters (due to the relaxation
the clusters may be reduced to having 0 vertices).

Now suppose that G’ is /2-far from I1%,; we assume without loss of generality
that n > 4m/e. Think of S as being sampled in 2m iterations, each adding O(1/¢)
newly-sampled vertices to S. Let S; denote the sample in the i'! iteration and let
S<i = Uje[z‘] S;. Consider Gg<i, after the i*h iteration; suppose that it is a relaxed
generalized blowup of a graph in I1”,,. In this case, Lemma 4.7.10 below guarantees
that a uniformly sampled pair of vertices, when added to S, increases the number of
clusters over the number in Gg<i+1 with probability Q(e); when this pair is sampled
from V(G) \ S, the probability can only be higher. Thus with probability at least 2/3,
at least one of the O(1/¢) pairs increases the number of clusters. Consequently, over all
m iterations, our sampled subgraph has probability at least 1 — exp(—(m)) > 2/3 of
being rejected either for reaching more than m clusters in the subgraph, or for having
an induced subgraph which is itself not a relaxed generalized blowup of any graph in
I1”,,, discovered already in an early iteration.

Finally, the number of queries is (@(m(gv‘n/f)) = O(m?/e?) = O(q(n)/e?) (see
Observation 4.5.10 regarding the last transition). Ignoring the dependence on &, this is
indeed O(q(n)). O

Lemma 4.7.10. Let G be a graph of order n > 2me which is e-far from 11¢,,, and
let Ggr be the subgraph of G induced by a set of vertices S" C V(G). Let m’ denote
the number of clusters in Gg. Suppose that m' < m(n,q) and that Gg is a relazed
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generalized blowup of some graph in 11!". Then for a uniformly sampled pair of vertices
{u/,v'}, there is a probability of at least /8 that S" U {u,v} induces a graph with more

than m' clusters.

Proof. We first apply Lemma 4.7.8: Since G is e-far from any proper generalized blowup
of a graph in I1/ | it is €/2-far from any relaxed generalized blowup of a graph in I17,.

Now, let G’ € II/", be the graph of which G is a relaxed generalized blowup. We
note that, specifically, Gg is a proper generalized blowup of an induced subgraph G” of
G, with [V(G")| = m/.

Consider a clustering of all vertices of G using S’ as a signature, i.e. vertices with
the same neighbors in S’ are in the same cluster. Some of these clusters contain vertices
from S’ (let C, denote the cluster containing v € S’), and some may be new, with S’
neighborhoods differing from all existing vertices in S’. If G has at least en/8 vertices
in new clusters, one of them is sampled with probability at least /8, and the claim
follows, since it will constitute a new cluster in the sampled subgraph.

If, on the other hand, there are few new clusters, the clustering is at “risk” of
contradicting our assumption regarding G: If clusters C, and C,, for most pairs
u,v € S', are mostly consistent with {u,v} with respect to to the edge relation, then G
can be made into a relaxed generalized blowup of G” using few modifications. Specifically,
it must be the case that at least 3¢(}) edges {u/,v'} with «' € C,, and v' € C,, for the
corresponding u,v € S" have {u/,v'} € E(G") iff {u,v} ¢ E(G"); otherwise one can
correct all these discrepancies, then move all new-cluster vertices to S’-vertex clusters,
with at most n — 1 edge changes per vertex, for a total of %5(11 —1)n = is(g) additional
changes.

Consequently, when sampling two new additional vertices u',v" from S’ clusters
(denoted C,, and C,), with probability at least £/4 we find that they do not agree with
their cluster with respect to being an edge. It must then be the case that the number
of clusters in Ggry(y,»} must increase when clustering according to the neighborhoods
in S"U{u,v}. O

Theorem 4.7 is now proven by a combination of the query complexity lower bound
of Lemma 4.7.7, the upper bound established through the valid test in Lemma 4.7.9,
and Lemma 4.7.4 regarding the decidability of I19.
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Chapter 5

Lower bounds for testing partite

dense structures

5.1 Introduction and overview of results

While testing graphs has received the most attention in the research of combinatorial
property testing (specifically, testing graphs in the dense model), other dense structures
are also of interest. Some are strictly more expressive than graphs (see the discussion
of hypergraph partition properties in Chapter 6 below), some strictly less expressive,
such as bipartite graphs, and some have both restrictions and extensions of the power
of expression. This chapter considers the latter case: Bipartite graphs, but with edges
in multiple colors; and k-uniform hypergraphs which are also k-partite (referred to as
k-graphs for short throughout this section).

For strictly less expressive structures — in the same testing model essentially, the
dense model in our case — upper bounds on testing more expressive structures generally
apply, while lower bound results for more expressive structures come into question, as one
may expect to provide stronger upper bounds by exploiting the structural restrictions.

Such expectation was indeed justified for the case of bipartite graphs, with properties
defined by a family of forbidden subgraphs. In general graphs, testing arbitrary such
properties (without relying on the size of the input graph) requires the use of Szemerédi
’s regularity lemma, resulting in extremely poor dependence of the query complexity on
€. While the known lower bounds are not at all close to the tower functions incurred
by the use of regularity, they are super-polynomial, and there is certainly reason to
suppose that the minimum query complexity of such tests is in fact much higher. As it
turns out, in bipartite graphs this is not the case.

Fischer and Newman showed, in [FNO1], a first upper bound for testing forbidden
induced subgraphs in bipartite graphs (viewing them as binary matrices, see below)

— although this was doubly-exponential in 1/e and was not known to contradict the
established lower bounds, it was a non-regularity based technique, that could not be

applied as such to general graphs. It was improved upon in Alon, Fischer and Newman’s
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[AFNO07], yielding a polynomial upper bound on such tests. Interestingly, the main
tool of [AFNOQ7] is a sort of a regularity lemma — but with a conditional: Either a
bipartite graph has a relatively small “regular” partition (we shall not go into the
details of the definition of regularity here) of size polynomial in the regularity parameter,
or every possible small induced subgraph appears in the graph, in significantly many
copies. In the former case one can construct a ‘signature’ of the regular partition using
polynomially many queries, and decide based on this signature; in the latter case, a
uniformly-sampled subgraph will, with high probability, contain a forbidden structure.

One would hope that such a technique may apply in somewhat more general contexts:
Instead of just bipartite graphs, graphs with edge colors (or alternatively, matrices
over a finite domain larger than {0,1}); or in higher dimension — k-edges instead of
two-edges, k-partite hypergraphs instead of bi-partite graphs (or alternatively, binary
tensors instead of matrices). This was an open question posed in [AFNO07].

After some efforts attempting to extend the upper bound further, research has

yielded the opposite — an establishment of lower bounds, precluding this possibility:

Theorem 5.1. There exists a 2-colored bipartite graph F with two vertices per part,
such that any e-test of 3-colored bipartite graphs for being free of having F as an induced

subgraph, performs no less than (c/s)c'ln( /%) queries for some global constant c.

Theorem 5.2. There exists a 3-uniform tripartite hypergraph F with two vertices in
each part, such that every e-tester of 3-uniform tripartite hypergraphs for being free of
copies of F, as an induced sub-hypergraph, performs no less than (c/s)c'ln( c/e) queries

for some global constant c.

The proofs use constructions based on adaptations of the lower bound known for

testing forbidden subgraphs (specifically, triangles) for general graphs.

5.2 Additional preliminaries

The following table summarizes the specifics of dense model testing, for colored bipartite

graphs and for k-graphs, in comparison with the case of (general, non-partite) graphs:

o0-Colored (Complete)

Structures Graphs Bipartite Graphs k-Graphs
“what is col(z,y)?” with

query Yz,y} € EY col values ranging in “(z1,...,x) € E?
{0,...,0—1}

maximum

distance between (g) n? nk

structures

vertex set(s) \%4 Uuv Vi,oo o, Vi

meaning of the ot 1y, vl=1v] Vil=...= Vil
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A matrix M over {0,1} can be associated with the (labeled) bipartite graph G =
(U,V,E), with

U:{ul,...,un}
V:{vl,...,vn}
E(G) :{(ui,vj) € UXV‘M(Z,]) = 1}

that is, the bipartite graph whose adjacency matrix is M. Similarly, a matrix over a
larger domain {0,...,0 — 1} can be associated with an appropriate o-colored bipartite
graph; and a k-dimensional tensor T" over {0, 1} can be associated with the k-graph of
which it constitutes the adjacency tensor.

The conceptual similarity between matrices or tensors, and representations of colored
bipartite graphs or of k-graphs, will be used implicitly throughout this chapter. Note,
however that properties are closed under relabeling, i.e. a permutation of the indices on
the axes of the matrix/tensor in all dimensions. Thus, when we refer to ‘submatrices’
of a bipartite graph’s adjacency matrix, we are actually referring to subgraphs — the
submatrix coordinates may be selected irrespectively of the order of coordinates in the

adjacency matrix.

Finally, our lower bound constructions also involve the following:

Definition 5.2.1. A cyclic k-partite digraph G = (V1, ..., Vi, E) is a k-partite digraph

in which every edge in E extends from V; to V{; mod k)41 for some i € [k].

5.3 A lower bound for colored bipartite graphs

Our proof for Theorem 5.1 will be based on the argument that any test (not just tests
with one-sided error) must, in some sense, find copies of forbidden subgraphs; see the
discussion in Section 3.3, and specifically, Corollary 3.3. We will thus be proving the

following key lemma, regarding the scarcity of forbidden subgraphs:

Lemma 5.3.1. There exists a (2,2) bipartite graph F, such that for every e and for
every n > 16(0/5)76'11](6/5), there exists a 3-colored bipartite graph G which is e-far
from being free of F', while the fraction of (2,2) subgraphs of G which are copies of F' is

at most (¢/e) ™% for some global constant c.

In leading up to a proof of this lemma will shall begin with a simple and rough
construction: Describing how the adjacency matrix of a colored bipartite graph can
represent partite cyclic digraphs, with the representation preserving the distributions of
induced substructures in the digraph; we shall then construct 4-partite cyclic digraphs
in which induced directed 4-cycles are super-polynomially rare.

Such a construction will prove a weaker version of Lemma 5.3.1: For one, we will

have used many more than 3 colors — the representation of a digraph will not be very
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terse; also, we will have used numerous forbidden submatrices, as a submatrix of the
digraph representation will also contain information about additional edges to those

constituting a 4-cycle. We will then proceed to make several refinements:

1. One may construct digraphs with few 4-cycles as described above, with the

additional constraint that the first three edge layers are identical.

2. One may construct 4-partite digraphs as described in item 1, with the additional
constraint that the edge layers are symmetric with respect to a relevant ordering

of the vertices in each part.

3. The construction for item 2 can be shown to satisfy the additional constraint
that no pair of vertex indices is such that its corresponding pairs of vertices are

connected in all four edge layers.

These successive refinements will bring every pair of vertex indices j1, jo to have
only three possible edge configurations; consequently, we will only need three colors for
the matrix representation of the digraph, and only one forbidden submatrix (i.e. only

one forbidden subgraph).

5.3.1 Representing cyclic partite digraphs by matrices

Given a cyclic k’-partite digraph, we decompose its edges into &’ bipartite digraphs
between pairs of cycle-consecutive parts. The edge relation between each of these pairs
can be thought of in terms of its binary adjacency matrix, leading to the following

representation:

Definition 5.3.2. Let G = (V,..., Vi, E) be a cyclic k-partite digraph, with £’
vertex sets of size n each, where V;=(vj1,...,v;,). The matrix representation of G,
denoted CM(G), is the matrix of order n, over a domain of size 22 (the set of cell
colors), corresponding to all possible combinations of the following 2k’ binary values:
For M = CM(G), each cell M(j1,j2) has a distinct color bit for each one of the k" edges
(V141502,55), - - s (vk/_ljjl,vk/m), (Uk’,j17vl,j2)7 and another bit for each one of the &’
edges (V1,jy,v2,5,); - -+ (V1,45 Uk j1 ), (Uk? ja, V1,5, )- Each bit is set to 1 if its respective

edge exists, and to 0 otherwise.

Our lower bound construction utilizes cyclic 4-partite digraphs which are far from not
containing a (directed) 4-cycle, yet have few copies of it; we consequently set henceforth
k' = 4. The reason for this choice of the number of parts is that 4 is the lowest even
number of parts with an induced subgraph for which testing freeness is hard — as
described in Alon and Shapira’s [AS04b]. Our matrix representations CM(-) therefore
has cells with 225 = 28 = 256 possible values.
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The forbidden submatrices

Querying a matrix cell at (j1,j2) yields information about edges in all four layers;
querying a 2 x 2 submatrix with coordinates (ji, j3) X (j2,74) yields information about
several directed 4-cycles, one of which is C' = (vy j,,v2,j,, V3,45, V4,5,). We note that for
every 4-cycle of G there is a choice of ji, ..., j4 for which C as defined above corresponds
to that cycle. We thus only need to forbid 2 x 2 submatrices witnessing the existence
of the four edges of the single directed cycle C associated with a given submatrix.
There are many possible such 2 x 2 submatrices, as the existence of any of the rest of
the (k'/2)% - 2k’ — k' = 28 edges represented in the submatrix cells does not affect the

228 matrices in which the

presence of C. The forbidden submatrices are therefore the
four color bits for the edges of C are set.

Note that in some cycles of G it may be the case that j; = js3 and/or jo = j4. We
refer to such cycles as degenerate; our construction and our arguments below will only
involve graphs with no degenerate cycles, so we may disregard these.

For every copy of a (non-degenerate) 4-cycle in G, there exists exactly one order-2
forbidden submatrix in CM(G) (recall that the submatrix may appear permuted in rows
or columns). This is true despite the fact that it is possible to infer the existence of a
4-cycle also from other submatrices of CM(G). In other words, a selection of a order-2
submatrix of CM(G), and a check of whether its C' exists, correspond to a selection of
four vertices in the four parts of G and a check of whether they form a (non-degenerate)

cycle. With n = [V;| as the size of each V;, There are (n(n — 1))* such possible choices.

5.3.2 An initial hard-to-test matrix

Definition 5.3.3. The trivial integer solutions to the equation z1+zo+. . .4z, = rTr 1

are those in which all of z1, ..., z, are equal.

Lemma 5.3.4 ([Alo02, Lemma 3.1] and [AS04b, Lemma 6.1]). For every natural r >
2, and for every positive integer m, there exists a subset X,, C [m], of size at least
exp(—l()\/ln(m)ln(r)) -m, with no non-trivial solution to the equation x1+xo+. ..+, =

r-Tr41.

Fix r = 3 and ¢/ = 8¢. Let m be the maximum possible satisfying e'm < 7-27!.
474 X,,|, obtaining, for an appropriate constant ¢, the bound m > (c/z—:’)c'ln(c/al).

Using such a set X = X,,,, we construct a cyclic 4-partite digraph T": The four parts
of T’s vertex set, Vi,..., Vs, have cardinalities m, 2m, 3m, 4m respectively. For every
i€{1,2,3}, j € [im] and x € X, T has the edge (v;,v;+z) between V; and V;y1; T also
has the edges between V; and V; of the form (vjy3s,v;), for every x € X and j € [m].

As one may verify (see [AS04b, Lemma 6.2]), E(T') contains m|X| edge-disjoint
copies of the directed 4-cycle, formed by 4m|X| edges, and no other directed 4-cycles;
T’s total number of edges is (1 +2+ 3+ 1) - |X|-m > 2-4%'m?. For our purposes we

would like all parts V; to have the same size, so we add isolated vertices making every
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V; of size exactly 4m. Let T be the graph resulting from this addition. We note that

all cycles of T} are non-degenerate.

Lemma 5.3.5 (special case of [AS04b, Lemma 6.3]). Let K = (V(K), E(K)) be a di-
graph and let T = (V(T), E(T)) be an s-factor blowup of K. Let R be a subset of the

set of edges of T', and suppose that each copy of K in T contains at least one edge of R.
Then |R| > |E(T)|/|E(K)|* > |E(T)|/|V(K)[*.

Now let G denote an s-factor blowup of T, with s = |n/(4m)|. We have |E(G1)| >
s2-2-4%'m? > 4%¢/n?. Since E(T}) consists of edge-disjoint 4-cycles, E(G1) consists

of edge-disjoint s-blown-up 4-cycles. By Lemma 5.3.5, with a 4-cycle as K, at least a

1
|E(K)[*
so as to remove all 4-cycles from G1; G is thus &’-far from being 4-cycle-free. On the

other hand, as | X| < m, G has m|X|-s* < m?s* < 4*n*/m? copies of the 4-cycle. One

can also verify that all cycles of (G; are non-degenerate.

= ﬁ-fraction of the edges of each of these s-blown-up 4-cycles must be removed

We must now transform the argument regarding the scarcity of forbidden subgraphs
in G to apply to forbidden submatrices in CM(G1).

Proposition 5.3.6. For o = 28 there exists a finite set F of o-colored order-2 matrices,
such that for every e and n > (¢/e )™ /%) there exists a o-colored matriz M which is
e-far from being free of members of F, and yet, the fraction of order-2 submatrices of M
—cln(c/e

which are copies of a member of F is at most (c/e) ) for some global constant c.

Proof. Let M = CM(G1), and set the family of forbidden matrices to be the 228 matrices
defined above.

To prove the second part of the claim we recall that there is only one copy of a
forbidden matrix in CM(G1) for every copy of a 4-cycle in G. Only cin? / m? of the
(n(n —1))? possible directed non-degenerate 4-cycles with vertices in consecutive parts
appear in G, so no more than an 8¢;/m? fraction of the (n(n — 1))? submatrices of
CM(Gq) of order 2 are copies of forbidden matrices.

For the first part of the claim, we note that by modifying a matrix cell one affects
the representation of at most 8 edges of G7. Thus, unless at least £'n?/8 = en? cells are
modified, more than (1 — &’)n? of the edges of G have their two representing color bits
(i.e. in both the cells CM(G1) (4, 5) and CM(G1) (j,4)) unmodified. In this case, G still
has a 4-cycle with its representing order-2 submatrix intact, i.e. CM(G1) still contains

a copy of a forbidden matrix. O

5.3.3 Reducing the number of colors

As mentioned above, 256 colors are more than necessary to construct a hard to test
matrix. We now reduce this number by refining our construction; as we do so, we
lose the expressivity of matrices; we maintain, however, the ability to represent the

particular graphs we construct for proving the lower bound.
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Making most edge layers identical

We note that in the graph 71, the edge sets in the ‘first’ 3 layers, those between V; and
Vig1 for 1 <4 < 3, are quite similar: v; ; is connected to v; j4,. The difference is that
in each of the V;’s, only the first im vertices are connected onwards to vertices in V;1.
We now add “4-z” edges for all vertices in each V;, not just the first im vertices — that
is, we make (v; j,Vit1,j4+.) an edge whenever j + 2 < 4m and z € X.

Let T3 denote this new graph. As with the graph Tj, every directed 4-cycle

(V1,51 V2,40, U345, Va4, ) in T satisfies
(J2 = J1) + (Js = j2) + (ja — js) = (ja — j1)
so when denoting
TI=j2—j1 T2=j3s—Jo T3=ja—Js Ta= (Jja—j1)/3

the equation becomes x1 + x9 + w3 = 3x4; since z1,...,2x4 € X, all four x values must

be equal. Also, if such a cycle begins with j; > m in Vi, then

(j1 —m|jr/m], jo —m|jr/m],js — m|j1/m], ja — m|j1/m])

is another cycle in T, (the vertex indices all remain positive), which begins with j; < m,
i.e. it corresponds to a cycle in the original T7. It follows that the total number of cycles
has increased by no more than a factor of 4, and that all cycles are still non-degenerate.

Since all cycles are edge-disjoint in 75 as well, the number of cycles increases with
the s-factor blowup of Ty into G by a factor of s%, as in the case of G1. Gg has the
same vertex sets as (G1, and a superset of the edges of G, making it at least as far
from being 4-cycle free as G1. As for the number of cycles, T} had at most m|X| < m?
4-cycles, Ty has at most 4m|X| < 4m? 4-cycles, and G5 has at most 4m?s* < con* / m?
4-cycles, for some constant co.

We can now use our different construction of 75 to reduce the number of colors
necessary for its representation: As the bits for the three V; — V;41 edge layers are the
same, we only need two bits for each type of layer (one for the j; — jo edge and one for
the ‘flip” edge jo — j1), times two types of layers (V; — Viy1 and V; — V}): in total we
now use only 2% = 16 colors. This property of Ty’s first three layers carries over to G
with the blowup.

Our observations thus lead us to conclude that Proposition 5.3.6 also holds for

o = 2* with a different choice of the constants.

Making the edge layers symmetric

The number of color bits may be further reduced — halved — if we ensure that whenever

(Viy j1 s Vi, jo) 1s an edge, s0 is (V4 jy, Viy 5, ). To achieve this, we could add the ‘flip” edges
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to Ty — in addition to the edge (j1,j1 + ) between V; and V;11, and the edge (j1 + 3z, j1)
between V4 and Vi, we could add (j; + z,j1) between V; and Vi1, and (51,71 + 3x)
between V4 and Vi respectively.

The addition of the ‘flip’ edges may, however, result in an excessive increase in
the number of cycles, and possibly also result in intersections of the edges of different
cycles. To avoid this, we again modify our pre-blowup graph 7T'. Let us first consider a
replacement of T5 by the following T3: Each of the four vertex sets is now { 1,...,4%. m}.
The edges in the first three layers (which continue to be uniform) are (j1, j1 +x+3m) for
allz € X and j; € [42m —x— Bm]; the edges between V and Vj are (j1+3(x+3m), j1)
for all € X and ji € [4*m — 3(x + 3m)]. Each directed 4-cycle (v1j,,v2.j,, 3,55, V4 jy)

must still satisfy
(J2 —J1) + (Js — J2) + (Ja — js) = (Ja — J1)
We denote
T1 = Jo—j1—3m 2 =jz—j2—3m 3= ja—js—3m z4= (ja—j1—9IMm)/3

and this yields again the equation z; + x5 4+ x3 = 3z4. Thus as in the case of T above,
cycles only exist when the edge x-values are all equal, i.e. T3 has no more than 42m| X|
copies of a 4-cycle.

We now add all flip edges to T3: the edges of the form (v; j, +243m, vi+1,;,) are added
in the first three layers, and the edges of the form (’U47j1 , v17j1+3(x+3m)) are added in the
fourth layer. Let T3 denote the resulting graph.

Lemma 5.3.7. Every cycle in T3 is either a cycle in Ty (a no-flip-edge cycle) or a
cycle consisting only of flip edges.

Proof. Consider first some tuple (j1, j2, j3, j4) of vertex indices in the four parts where
the first two edges are non-flip while the third one is a flip edge. In this case, we find

that j4 cannot be very far from j:
l7j1 —jal = (1 — Jo) + (U3 — J2) — (U3 — Ja)| £ 2- (Bm +m) — 3m < 9Im

however, for (jy,j1) to be an edge in the fourth layer (either a non-flip or a flip edge),
we must have |j4 — 71| = 9m + 3z for some = € X. No such edges exist, proving that
such a cycle is impossible. The remaining cases where one of three V; — V11 edges
is in the direction opposite to the other two edges are similarly impossible, implying
that the edges in the first three layers are in the same ‘direction’ for every cycle of T3.
If these three edges are non-flip edges, the j’s are an increasing sequence, and so the
fourth edge must have j4, > ji, i.e. it must also be a non-flip; if the edges in first three
layers are flip edges, the j’s are a decreasing sequence, and j4 < ji, i.e. the fourth edge

must also be a flip edge. O

104



As for the number of cycles with all-flip or all-non-flip edges: If (v;, j,, vi, j,) is a non-

flip edge, then (vi1’42m_j1+1, vi2742m_j2+1) is a flip edge, and (vi174gm_j2+1, vi2’42m_j1+1)

is a non-flip edge. Thus if

(V1,715 V2,425 V3, js» Vdjs)

is a cycle with no flip edges, then

(U1,42m—j1+17 V2,42m—jo+15 U3,42m—js+15 ’U4,42m—j4+1)

is an all-flip-edge cycle, and vice-versa. This bijective correspondence, together with
the lemma above, bring us to conclude that there are exactly twice as many cycles in
Ty as there are in Ty, and that they are all edge-disjoint. Furthermore, the necessity of
the first three edges to be in the same direction means that j; # js and jo # j4, so all
cycles are still non-degenerate.

Ty is a graph with 4%m vertices in each part and no more than 2 - 42m|X| 4-cycles,
all edge-disjoint. Blowing it up by a factor of s = n / (42m) , we obtain a graph G5 with
n vertices per part and 2 - 42m|X| - s* < c3n? / m? cycles for an appropriate constant cs.
G3 is also &’-far from being cycle-free, by an argument similar to the case of Gy, with a
proper choice of m(e') = (¢/e)*™ /%) reflecting the change in the constants used in the
construction of T3 and the blowup.

To represent (3, we only need two bits of color: One bit for the first three layers (a
single bit now suffices for both the ‘non-flip” and the ‘flip’ edge), and one bit for the
Vi — Vp layer. We have thus brought down o, the domain size for matrix cell values for

which Proposition 5.3.6 holds, to 22 = 4 (again, with a different choice of a constant c).

Mutual exclusion between the edge layers

How can we further reduce the number of colors? The upper bound result of [AFNO7]
implies that it is impossible to reduce the number of bits per cell from two to one,
without making the matrix easy to test for the presence of forbidden submatrices. Still,
a decrease from four to three colors is possible. In fact, if we review the construction of
T3 and G carefully, we find that for any (j1,j2), we only have three edge combinations

represented for (ji,j2) (and the now-symmetric (j2,71)):

1. (j1,72) is an edge in the V; — V;1; layers, but not in Vj — V;.
2. (j1,7j2) is not an edge in V; — V;1; layers, but is an edge in V; — Vi.
3.

(71, J2) is not an edge in any layer.

No (j1,j2) can be an edge in all four layers, since edges in V; — Vj correspond to index
differences |j; — jo| of at least 9m + 1 (before the blowup of T3 into G3), while edges
Vi = Viy1 correspond to differences of at most 4m. Thus Proposition 5.3.6 holds for

CM(G3) as a 3-colored matrix as well. In fact, we are now able to prove Lemma 5.3.1:
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Proof of Lemma 5.3.1. G is CM(G3) constructed above. Indeed, there is now only one
possible order-2 submatrix (up to permutations) of CM(G3) witnessing the presence
of its corresponding cycle C in G3: My = (12) (this is a matrix over {0,1,2}). One
may verify that in all other order-2 submatrices, at least one of the cycle edges must be

missing. Thus F' is the subgraph with adjacency matrix M. O

5.3.4 Proof of the lower bound

Observation 5.3.8. The property of colored bipartite graphs being free of the forbidden
subgraph F', of the proof of Lemma 5.3.1, is hereditary — like any property of being
free of forbidden induced substructures. It is also inflatable, as F' is not a blowup of a

smaller graph.

With our construction in Lemma 5.3.1 and the above observation, we can now
proceed to proving the lower bound theorem. As our proof makes use of the general
results regarding dense structures (in Section 3.9), we make a final observation regarding

the testing model to justify this use:

Observation 5.3.9. 3-colored bipartite graphs can be expressed as a class of general
dense structures (as per Subsection 2.1.1): Two vertex sets V} = U, Vo =V, and two
edge relations E7, Fy, with appropriate constraints. The constraints would be: Every
edge of any of the two relations has the first vertex in U, and the second in V; and
whenever Ej(u,v) is an edge, Fa(u,v) can’t be an edge. A query of an edge of the
3-colored bipartite graph corresponds to two queries, of the values of Fy and Fs, for
the appropriate tuple. Also, the bipartite graphs we consider are of uniform order —

both parts have the same number of vertices.

Proof of Theorem 5.1. Consider an e-test of 3-colored bipartite graphs for being free
of the forbidden subgraph F; which makes at most ¢(g) queries. As this property is
hereditary and inflatable, we may apply Corollary 3.9 to this test, which is specifically
a uniform-order test, to obtain a perfectly canonical one-sided test for F-freeness with
queried subgraph order ¢'(¢) € poly(q(g)).

By Lemma 5.3.1, there exists (for any sufficiently high n) a graph G and a forbidden
subgraph F, such that G is e-far from being free of F', but only a (¢ /5)7‘3/'1“(6// €)
fraction of its order-2 subgraphs are copies of F, for some global constant .

The expected number of copies of F' in the subgraph of G queried by the perfectly
canonical test is no more than O(q’ 4) / () e)cl'ln( “/2) __ the expected number of copies
of CM(F) in a submatrix of CM(G) of order O(¢'). Thus if g(e) < (¢/e)*™ /=) for an
appropriate constant ¢, then the expected number of forbidden subgraphs discovered is

o(1), so the test accepts G with probability 1 — o(1) — a contradiction. O
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5.4 A lower bound for k-uniform k-partite hypergraphs

5.4.1 A hard-to-test tensor

Fix €. Let M be as in the proof of Lemma 5.3.1, but with distance parameter &' = 2.
Let us again think of the 3-colored matrix M as having two color bit layers: One
bit-layer for the first three edge-layers of the 4-cycle (V; to V;11), and another bit-layer
for the 4th edge-layer (Vi to Vi); it is still the case that no matrix cell M (ji, j2) has
both of its bits set.

Let us separate M into two binary matrices M’ and M”, with M’(j1,j2) being the
first color bit of M (j1, j2) and M"(j1,72) being the second color bit. Using these two

matrices, we construct a 3-dimensional tensor T" of order n:

M (z,y) 1<z<mn/2

T(z,y,2) =
M"(z,y) n/2<z<n

We split the forbidden order-2 matrix Mg of Lemma 5.3.1 in a similar fashion, to obtain

a forbidden order-2 subtensor Tg:

()ee)

(the two matrices are the layers for the two values in the z coordinate).

Lemma 5.4.1. Let T be a subtensor of T with coordinates (j1,73) X (j2,j4) X (21, 22).
T' =Ty if and only if the following holds: (j1,j2,j3,ja) are vertex indices of a cycle in
Gs, z1 € {1,...,%} and zo € {%+1,...,n}.

Proof. 1f 21,20 < 5 or 21,20 > 5, then T " is invariant along the z-axis and is therefore
not a copy of Tx. Now suppose that zo € {1, cee %} and z; € {% +1,... ,n}; in this
case, all of (vj,,v;,), (vjs,v),) and (vj,,vj,) are edges in the fourth edge layer of G
and (vj,,v;,) is an edge in the first three edge layers. We recall that G'3 is a blowup of

vy, € T3 such that (U‘/ U-/), (U-/ v-/>

the graph T3, thus there exist vertices v 15 Vg 4 Vg

e
and (vjé, Uji) are edges in 73’s fourth edge layer, and (UJQ';’ Uji) an edge in its first
three edge layers. Now, the edges in the fourth layer correspond to index differences
|71 — 751,175 — gb| and |j4 — j}| of at least 9m + 1. Thus either j; < 5m or j; > 9m + 1.
In the first case, jo > 9m + 1, j3 < 5m and jy; > 9m + 1, thus |j] — 74| > 4m, which
makes it impossible for (j},71) to be an edge in the first three layers. The second case is
similar. Thus whenever z9 € {1, cee %} and z; € {% +1,..., n}, it is impossible that
T = Tg.

Finally, suppose (z1, z2) € {1, . %} X {% +1,... ,n}. In this case T'(-,-, 21) is the
first color bit of a order-2 submatrix of M, and T"(-, -, z2) is the second color bit thereof.
If (41,72, 73, 7J4) are not vertex indices of a cycle of G4, then at least one of the four ‘1’

bits of Tk must be missing from 7", so again T" # Tk.
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For the second direction of the lemma, let (41, j2, js, j4) be vertex indices of a cycle in
Gs, and let (21, 22) € {1, ey %} X {% +1,... ,n}. The existence of the cycle constrains
the four subtensor cells corresponding to the four edges to be 1, and the fact that no
edge can exist both in the first three edge layers of G3 and in its fourth layer constrains
the other four bits to 0, so indeed T" = Tf. O

5.4.2 Proof of the lower bound

Lemma 5.4.2. There exists a single 3-dimensional binary tensor Tr of order 2, such
that for every n,e there exists a tensor T, which is e-far from being free of Tr, yet the
fraction of order-2 subtensors of T which are copies of T is at most (c/s)fc'ln(c/e), for

some global constant c.

Proof. Let T, Tr, M, M', M" and &' be as in Subsection 5.4.1. Lemma 5.4.1 ensures
that for every choice of z-axis coordinates z1, z2, either no choices of (ji, j3) X (j2,J4)
yield a copy of T (for the case of z1 > § or 2o < §), or at most a (c’/s’)_c/'ln(cl/al)
fraction of these choices yield such a copy (due to the properties of M). Setting ¢ = ¢//2
we conclude that at most a 1 - (¢ )e)~ME) < (¢)e)7e/) fraction of the order-2
subtensors of 1" are copies of the forbidden subtensor.

As for the distance from being Tr-free, for every z; € [n/2], one must modify enough
cells of T'(-,-,21) = M" and T(-,-, 21 + §) = M" to affect all copies of Ty located in
this pair of layers. These copies are in bijective correspondence with the copies of the
forbidden order-2 matrix in M, and the number of x,y coordinate pairs in which M has
to be changed to remove all copies of the forbidden submatrix is at least 'n?; thus at
least 2en? changes are necessary to remove all copies of Tf in T'(-, -, 21), T (-, -, 21 + 5)-
There are § disjoint pairs of such layers, so at least en® changes are needed in total. T'

is therefore e-far from being Tr-free. O

Observation 5.4.3. The property of 3-graphs of being free of the forbidden sub-3-
graph, whose adjacency tensor is Ty, of the proof of Lemma 5.4.2, is hereditary — like
any property of being free of forbidden induced substructures. It is also inflatable, as

T is not a blowup of a smaller tensor, so F' is not a blowup of a smaller 3-graph.

Before proceeding to the proof, we note that 3-graphs can be expressed as class of a
general dense structures (as per Subsection 2.1.1): 3-partite structures, with a single
ternary edge relation, constrained to only have edges with the first vertex of the tuple
in the first vertex part, the second in the second part and the the third in the third
vertex part. As the 3-graphs also have uniform order (the same number of vertices in

each part), this implies that the results in Section 3.9 apply for 3-graphs.

Proof of Theorem 5.2. The proof is virtually the same as for Theorem 5.1.
Consider an e-test of 3-graphs, making at most g(¢) queries, for being free of the

forbidden 3-hypergraph F whose adjacency tensor is Tr from Lemma 5.4.2. As by
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Observation 5.4.3 this property is hereditary and inflatable, we may apply Corollary 3.9
to this test, which is specifically a uniform-order test, and obtain a perfectly canonical
one-sided test for F-freeness with queried subgraph order s(e) = poly(q(¢)).

By Lemma 5.4.2; there exists a 3-dimensional tensor T of order n that is e-far from
being free of Ty, but only a (/)™ ¢/%) fraction of its order-2 subtensors are copies
of T, for some global constant ¢’; let H be a 3-graph whose adjacency tensor is T'.

The expected number of copies of F' in a uniformly sampled sub-hypergraph of
H is no more than 0(36)/(0’/6)0/'111(0,/5) — the expected number of copies of Tf in

a uniformly sampled subtensor of T of order s. Thus if g(g) < (¢/)*™ /%), for an
appropriate constant ¢, then the expected number of copies of F' discovered is o(1), so

the test accepts H with probability 1 — o(1) — a contradiction. O
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Chapter 6

Pseudo-testing hypergraph tuple

partition properties

6.1 Introduction

In this chapter we seek to further chart the territory of efficiently-testable properties
of dense structures — specifically, hypergraphs with multiple edge relations or colors.
For the case of dense graphs, [GGR98]| established several specific properties to be
testable using poly(1/¢) queries — bipartiteness and colorability, max-clique, bisection,
etc. — concluding with graph partition properties which can express all of these. Such
properties are defined using a partition of the vertices (not the edges), with constraints
on the sizes of the partition cells, and on the density of the bipartite graphs between
edges (see [GGRIS8, Section 9] for the details). [GGR9S8] establishes their polynomial
testability (albeit with running time exponential in the number of queries and 1/¢).
To date, this is the widest known “naturally-arising” class of polynomially-testable
properties of dense graphs.

In [FMS07], Fischer, Matsliah and Shapira extended the polynomial testability of
partition properties to hypergraphs with multiple edge relations. The constraints in
this setting are very similar to the graph case: Constraints on the densities of vertex
partition cells, and on the densities of the uniform hypergraphs with vertices originating
in combinations of these partition cells.

A noteworthy use of this extension is its application to testing regular partitions in
graphs (rather than hypergraphs): [GGR98]| partition properties are not rich enough to
express the constraint on a bipartite graph between two vertex sets of being regular
in the sense of Szemerédi ’s regularity lemma. Using hypergraphs, this constraint
becomes expressible: Using the terminology of Gowers in [Gow07], a bipartite graph is
regular if it has few ‘combinatorial octahedra’ — quadruples of vertices, two from each
set, supporting a length-4 cycle. (This alternative view appears implicitly already in
Alon, Duke, Lefmann, Rodl and Yuster’s [ADL194].) One can construct an auxiliary

hypergraph for a given graph, with an appropriate quaternary relation, and constrain it
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to have few such octahedra; thus one can test, with a number of queries polynomial
in €, whether or not a graph has a regular partition with at most m cells. But while
the broadening of the scope of testing to hypergraphs allowed for regular partitions of
graphs, this kind of partition properties is not rich enough to express the constraints

necessary to test for regular partitions of hypergraphs.

The motivation for considering a generalization of [GGR98] and [FMSO07] partition
properties is therefore double: The question of whether one can expand further the
class of efficiently-testable properties (in hypergraphs, but possibly with implications
on other structures); and the prospects for testing hypergraphs for regular partitions of

a fixed size.

The generalization we make is that of partitioning not just the vertices of a hyper-
graph, but also tuples of multiple vertices — one partition of the singletons, another of
the pairs, another of the triples, etc. Of course, this is meaningless unless the constraints
on edges regard these partitions of tuples, so let us illustrate what this entails. All
(hyper)edge constraints have the form “the density of k-vertex tuples, being edges of a
certain color which satisfy some condition relating to the partition(s), out of the total
n® such tuples, is such-and-such”. In [GGR98], the constraints are on 2-tuples (or on
2-sets, depending on whether the graph is directed), and the condition is “one vertex
is in partition cell j;, and the other vertex is in partition cell j5”. In [FMS07], the
constraint is on any one of the hypergraph’s edge relations, with its appropriate arity,
but the condition is the same: The tuple is broken up into its s constituent vertices,
and the origin of every one of them in the partition is constrained. Conditions regarding
partitions of tuples will not always decompose a k-tuple into k single vertices, but rather
make any sort of decomposition into tuples of arity up to & — designating certain pairs,
triplets etc. of the elements of the tuple, with the condition being that each sub-tuple
in the decomposition comes from some specified cell in the partition of tuple in its arity.
Thus, taking 3-tuples for example, the condition may be that the pair of the first and
third vertices come from cell no. 4 in the partition of pairs, while the second vertex of
the 3-tuple comes from cell no. 5 of the partition of vertices.

While this generalization is not the broadest possible, it is the focus of this chapter,
and it is already rich enough so that the results of [GGR98] and [FMS07] do not fully
apply.

A key point in both these previous works is the following: If a (hyper)graph has a
partition which approximately satisfies the density constraints, then the hypergraph
is close to having a partition satisfying them exactly; that is, one can add or remove
a small fraction of the edges so that a perfectly-satisfying partition is obtained. (In
[FMSO07], this point is made immediately after the statement of Theorem 2.) We show
that this is not the case for partitions of hypergraph vertex tuples — at least not with
a polynomial relation between the distance of the hypergraph from being satisfactory

to the differences in densities of its best partition.
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This difficulty is a corollary of two results, an upper bound and a lower bound, on

testing such properties:

The upper bound result, in Section 6.3, is that one can ‘test’ whether a graph has
a satisfying partition or whether all partitions are far from satisfying the constraints.
This is not an actual test: While we accept graphs satisfying the property, we reject
graphs not on account of their being far from satisfying it, but rather on account of their
partitions being far from satisfactory. This ‘pseudo-testing’ can be done with a number
of queries polynomial in 1/e, using a generalization of a technique from [GGR9S§]
and [FMSO07]: Beginning with an unknown satisfying partition, one can repeatedly
redistribute more and more small sets of vertices and tuples, using ‘type estimators’
which minimize the ‘damage’ of this redistribution, so that the unknown partition which
satisfies the constraints perfectly is gradually transformed into a partition which only
approximately satisfies them, but is wholly known to the test. The validity of this final
partition can be ensured with high probability of success. As pointed out above, for
vertex-partition properties, this constitutes an actual test, but not so for tuple-partition

properties.

The lower bound result, in Section 6.4, shows that some tuple partition properties
are not polynomially testable. We demonstrate how tuple partition constraints are
actually rich enough, already as we study them, to express the property of a graph being
triangle-free. This gives a super-polynomial lower bound for testing tuple partition
properties — at least in the general case. This lower bound does not rely on any specific
triangle-testing lower bound construction (unlike the result in Chapter 5, which relies
on a lower bound in partite graphs). We cannot even say for a fact that these partition

properties are testable at all (that is, have tests independent of the size of the graph).

As mentioned above, the generalization in this work of partition properties is only
partial. The expressive power it lacks is that of involving vertices and sub-tuples
of constrained tuples in multiple conditions regarding the tuple partitions — cross-
constraining, so to speak. For example, given a tuple x = (z1,...,z5), we might wish
to constrain both the origin of (x9,x3, x4, 1) and at the same time also the origin of,
say, (zs5,x3,24). Such constraints are necessary for expressing hypergraph regularity, as
the regular sub-entities of a hypergraph are simplical complexes, and their regularity
involves densities of tuples supported by intersecting lower-arity tuples; for details, see

one of the variant definitions of hypergraph regularity: [Gow07, NRS06, Ish09].

Attempts to establish the pseudo-testability of such properties have not met with
success thus far. Some further discussion of the prospects for these more expressive

partition properties is found in Chapter 7.
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6.2 Additional preliminaries

6.2.1 Hypergraph tuple partition functions and named tuple decom-
positions

Definition 6.2.1. For some vertex set X and maximum arity k, partition functions
with respect to X are in fact a single function over the domain [k], but such that
each function P(s) is a partition of the tuples of a certain arity into m sets, or cells:
P(s) : [[i; X — [m].

We denote the j™ partition cell of arity s, with respect to partition functions P, by
X7 = (P(s)" (4)-

Such partitions of the sets of tuples induce partitions of a hypergraph’s set of edges,

through the concept of edge decompositions which we define below.

Let [81]352 denote the set of all non-empty sequences, with length up to so, of distinct
elements of [s;]. For a sequence A € [s1]=%2, we denote by [J A the (unordered) set of
all elements in A and by |A| the length of A. Thus A = (4y,... ,A|A|).

Definition 6.2.2. Let z = (z1,...,75) € [[{_; X and A € [s]=*. For tuple x and index
sequence A, the A-projection of x, denoted x(A), is the tuple y, of arity |A|, such that

Yi = T A;-

Definition 6.2.3. A function ¢ with domain Dom(¢) C [&’ ]Skl and range [m] con-
stitutes an k’-named tuple decomposition (or k'-NTD for short) if every pair of its
constituent sequences A, A’ € Dom(¢) are disjoint, i.e. |JAN|JA = &, while on
the other hand, all possible elements appear within some sequence in ¢’s domain:
U{UA| 4 € Dom(6)} = [

In other words, an s-NTD constitutes: a partition of [£'] (the coordinates in an &’-tuple);
an ordering of the cells in this partition of the coordinates into sequences; and an

indication for each such sequence of its intended origin in P.

A tuple z is said to observe an NTD ¢ (by partition functions P) if for every A € Dom(¢),
(P(JA))(xz(A)) = ¢(A), i.e. the partition cell of the subtuple z(A) of = is the one
indicated by ¢ for A.

Ezample 6.2.4. Let n = 2000, s = 3, let m = 10 and let = = (7,1003,21). Let ¢ be the
NTD with domain Dom(¢) = {(2), (1,3)}, so that (2) > 5 and (1,3) > 4. The NTD
¢ represents the constraint on 3-tuples of their second element coming from the fifth
partition cell (in a partition of individual vertices) and the subtuple of a 3-tuple, made
up of its first and third element, coming from the fourth partition cell (of the partition
of 2-tuples, which may be entirely unrelated to the partition of individual vertices). For
x to observe ¢ with some partition functions P, these must satisfy (P(1))(1003) =5
and (P(2))(1,3) = 4.
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Note. NTDs will be used to impose constraints on vertex tuples, and offer a certain
power of expressing such constraints. As discussed earlier, their expressive power is
not maximal: No sub-tuple z(A) of a tuple x has elements involved in two constraints
of the same NTD simultaneously. In the above example, since the second element of
the tuple is constrained as a singleton, no constraints on pairs can involve it. Thus
instead of having Dom(¢) = {(1), (2), (3),(1,2),(2,3),(1,3)} we only have the sequence

of tuple indices [s] decomposed into disjoint subsequences, each with its own constraint.

We denote by ®° the set of all s-NTDs, and their union of all arities up to k& by
ok = Us<i @

6.2.2 Partitions and partition oracles

While we are interested in partitions of (multi-colored) hypergraphs, the objects we
are testing are the hypergraphs themselves, rather than possible partitions; we will be
constructing ‘partition oracles’ using queries to classify vertex tuples, thus simulating

these hypothetical partitions.

Definition 6.2.5. A (q,m, k) partition oracle is a mapping 7 : U];:l [, X— [m]
such that for z € [[7_; X, m(x) may be computed using ¢ queries of the hypergraph. A

partial partition oracle is defined similarly, but provides answers only for some subset
k
Y g Us:l Hf:l X.

Definition 6.2.6. A set of (possibly partial) oracles, sharing the same domain, is said
to have shared query complexity q if, for any element of their domain, the set of all
queries necessary for all the oracles to return an answer is of size at most ¢ (where each

of the oracles might use as many as all ¢ queries).

Definition 6.2.7. Fix P(s), let Y C [[;_, X and let Q(s) be a partition function for
this subset. The modification of P(s) according to Q(s), is the function

(Qs))(z) zeY
(P(s))(z) = ¢Y

Definition 6.2.8. For a partial partition oracle m for some set, the modification of
P(s) according to m, denoted by P(s) o m, is the modification of P(s) according to the
partition induced by 7.

6.2.3 Multi-colored hypergraph partition properties

Partition density features and density characteristics

As in the case of graph partition properties (studied in [GGR98]) and hypergraph vertex

partition properties (studied in [FMSO07]), we concern ourselves with the intersection of
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the edge set(s) with sets of tuples obeying partition-related constraints. In the case of
graphs, a constraint on an edge {x1,z2} is “z; is in some certain specified cell of the
vertex partition, and x9 is in some certain specified cell”; for our partition properties,

constraints correspond to NTDs.

Definition 6.2.9. For a hypergraph H, partition functions P (with maximum arity
k > max{r(c) | c € C(H)}), a color ¢ € C(H) and an NTD ¢ € &7, let

Hy(c) = {y € H(c) |V B € Dom(¢) [P(|BI)(y(B)) = (B)] }

that is, Hy(c) is the set of all hyperedges in H(c) which observe the NTD ¢: For a
subtuple of [s] which ¢ constrains to some partition cell, P assigns the corresponding

subtuple of y to the same partition cell.
Definition 6.2.10. An (m, k,C)-density characteristic is a tuple 7 = (p, u) of density
functions

p o [k] x [m]—10,1]

W {(c, ®) ’ ceCand ¢ € CDT(C)}—> [0, 1]
p values shall be referred to as the characteristic’s tuple densities, and p values as its
edge densities.

Definition 6.2.11. The density characteristic corresponding to a hypergraph H and
partition functions P, denoted 7tF = (pHvP,qup), is the one satisfying, for each
K € [k] and j € [m],

1

PP (K, G) = v X7 ’
and for each ¢ € C(H) and ¢ € (),
H,P 1
(e, ¢) = r(c)|H¢(C)‘
n

In other words, p"*F(k/, j) denotes the density of the j*® partition cell of k’-tuples
within the entire set of k’-tuples; and 1’ (¢, ¢) denotes the density of the hypergraph’s

c-colored edges with the named decomposition ¢.

Note. The edge density figures are ‘absolute’ — fractions of n*" possible tuples for some

k', rather than fractions of the number of tuples with the same NTD.

Observation 6.2.12. The total number N9 of vertex and edge density values in a

single density characteristic is less than k - (m +c-kk- mk)

A hypergraph H and partition function P are said to satisfy a density characteristic 1
if p"P =), A hypergraph H is said to satisfy a density characteristic 1 if there exist
partition functions which, together with #, satisfy .
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Observation 6.2.13. A density characteristic v is satisfiable by hypergraphs on n
vertices only if all tuple and edge densities of ¢ are multiples of n~* for the respective

values of k.

Definition 6.2.14. The distance between two density characteristics is the maximum

difference between corresponding p” (k’, j) and p* (¢, ¢) values of the two characteristics.

Partition-based properties

Let ¥ be a set of (m, k,C)-density characteristics, and let H be a hypergraph on vertex
set X with color set C. H is said to satisfy the set W if it satisfies some specific density
characteristic ¢ € ¥ (with some partition functions P). H is said to e-approximately
satisfy W if there exist partition functions P, and some ¢ € ¥, which is in itself satisfiable

and of distance at most ¢ from "%,

Definition 6.2.15. For a density characteristic set W, the property Ily of hypergraphs
is defined as the set of all hypergraphs which satisfy W.

A hypergraph is said to e-approximately satisfy 11y if it e-approximately satisfies W.
As discussed in the introduction to this section, a hypergraph’s being approximately
satisfying of IIy does not necessarily imply that it is also close to satisfying I1y. We

thus make a definition analogous to that of a property test.

Definition 6.2.16. Let Il be a partition property as per the above. A pseudo-test
for Iy is a probabilistic oracle machine with the same input and oracle as a (dense
model) property test, which distinguishes with probability at least 2/3 between the
case of G being in Iy and the case in which, for every choice of partition functions P,
(pH’p, MH,P) is e-far from ¥ (rather than the case of G being far from Iy ).

Pseudo-testing can be seen as testing under a different distance metric — the minimum

distance of the hypergraphs’ partition functions.

6.2.4 Tuple types and type estimators

What is the effect of reassigning a hypergraph’s vertex tuple a different partition cell
on the partition’s density characteristic? As in [GGR98| and [FMS07], we will need to
estimate this effect and cluster tuples accordingly, so as to be able to redistribute tuples
among partition cells without affecting the partition density characteristic overmuch.
Let s <k <k,let x € [[{_; X and let A be a sequence in [k’]* (that is, a sequence
of s distinct elements between 1 and k'). We say that x takes the role of A in a tuple
Yy € Hf;l X if y(A) = x. We're interested in characterizing the effect on edge densities
of having x taking the role of different sequences A, for every possible decomposition of

the rest of the tuple besides x:

Definition 6.2.17. A partial function ¢ : [k’}gklf‘g% [m] constitutes an A-less k'-

named tuple decomposition for arity k' (or (k', A)-NTD for short) if for every two
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distinct sets B, B’ € Dom(¢), |UB N B’ = @, and every index not in A is covered by
some B, while no index in A is covered, i.e. |J{JB|B € Dom(¢)} = [K'] \ U A.

The set of all (k', A)-NTDs shall be denoted ®+A with ®F14 denoting their union over
all ¥ € [k].

Definition 6.2.18. For a hypergraph H, partition functions P, a color ¢ € C(H), an
(r(c), A)-NTD ¢ € &4 and an |A|-tuple z, we define

H" () = {y € H(c) | y(A) =  and ¥ B € Dom() [P(|B)(y(B)) = ¢(B)] }

In other words,Hﬁ’m (c) is the set of all hyperedges in H of color ¢, in which x takes the

role of A, and which also observe ¢.

Definition 6.2.19. An s-tuple type is a function 7 : TypeDom (s)— [0, 1], with its

domain being

k
TypeDom (s) = U {(A,c, $) € [k]SXC(H)X(I)[S]’A r(c) =k and ¢ € (I)r(c),A}
k'=s

Definition 6.2.20. The type of an s-tuple x with respect to a hypergraph H and

HPx whose values are the relative sizes of

partition functions P is the s-tuple type 7
all of constrained edge sets of the various arities and for the various roles x can take in
such edge sets:

1
HPx( A _
T A9 = Th

We denote by Type(s) the set of all possible types of s-tuples (with respect to m and k).

" (c)]

Definition 6.2.21. The distance diSt(Tl , 7'2) between two s-tuple types is the maximum
over (4, ¢, ¢) € TypeDom (s) of the absolute differences |11(A, ¢, ¢) — 12(A, ¢, ¢)|.

In our arguments below we shall be using rounded estimates of tuples’ type for
clustering. For this purpose, we define:

Definition 6.2.22. The tuple type e-net for s-tuples is the set TypeNet, . of all types

7 = (p, ) supported on exact multiples of e.

Lemma 6.2.23. The size of the e-net for s-tuples is polynomial in 1/¢:
m(2ek)2F
| TypeNet, .| < (1+ 1/¢)lcIm = poly(1/e)

Proof. For every one of the |C(H)| colors, TypeDom (s) has elements for any possible
choice of a sequence A of length s and an A-less NTD in ®"(¢). The number of such
choices is m to the power of possible decompositions of an r(c)-tuple into a sequence A
and additional subsequences of [r(c)] \ A. The number of such decompositions can be

upper-bounded as follows: Order the elements of [r(c)]; the first s elements constitute
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Aj; as for the rest, one has to choose sizes for as many as r(c) — s additional sequences

(which contain the remaining elements of the r(c)-tuple as ordered); assuming s < r(c),

the number of such choices is (2(T£fg)__‘92_1). The number of decompositions is therefore
under (r(c))! - (Q(TT(,((:Z)_fz_l) < (2er(c))2r(c) < (2ek)*. The claim follows. O

TypeNet, . is a %6—net of tuple types — any type is within a distance of %6 of
a type in TypeNet, .. It can therefore induce a clustering of types, associating each
possible type with one of those in TypeNet, .: We first impose some arbitrary order on
TypeNet, _, then define:

8,7

Definition 6.2.24. For any s-tuple type 7, the TypeNet, . type corresponding to T is

the first type among those TypeNet, . types which is at the minimum distance from 7.

¢

[ 7
se as “7’s cluster

with respect to TypeNet, .. Given a specific hypergraph and partition functions P(-),

Abusing notation, we refer to this corresponding type in TypeNet

this clustering of tuple types also induces a clustering of a hypergraph’s tuples — a

clustering according to type.

Aside from the single type with which a tuple x is associated, z is said to be compatible

with any tuple type 7 € TypeNet, . whose distance from 7 is less than e.

Definition 6.2.25. A type estimator for a set Y € [[;_; X with respect to TypeNet,
is a probabilistic machine which, given some tuple y € Y as input, makes certain queries
to the hypergraph, and then returns an element of TypeNet, . as the estimated cluster

of y.

The concept of shared query complexity for type estimators is defined similarly to the

case of partition oracles (see Definition 6.2.6).

6.3 An upper bound on pseudo-testing partition proper-

ties

We begin with our positive result regarding tuple-partition properties: The possibility
of efficiently distinguishing hypergraphs with satisfying partitions from hypergraphs

which do not e-approximately satisfy the given constraints with any partition:

Theorem 6.1. Let ¥ be a set of density characteristics for hypergraphs with colors C,
regarding partitions with m cells in each arity. One can pseudo-test Iy with a number

of queries polynomial in €.

Note. For the purpose of this theorem, we assume that the set ¥ is ‘easy’, in the sense
that one can efficiently compute the distance of a specific density characteristic from ¥

(and specifically, whether it is in ¥ or not). We omit an exact definition of this notion.
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The key to the proof (similarly to the argument in [GGR98, Section 9.1] and [FMS07,
Sections 6,7]) is the following: Omne can arbitrarily redistribute small sets of tuples
among the m partition cells (of the appropriate arity in our case), with a relatively
small effect on the partition’s density characteristic — provided that the elements in
the small set being redistributed all have very similar types, and that the overall size of
every partition cell remains almost the same after redistribution. This is established
in Subsection 6.3.1. Given a small set Y C [[7_, X, and assuming that the rest of the
partition is known to us, we can rebuild another, similar, partition resulting from the
small-set redistribution. We can do so repeatedly for a chosen partition of all the vectors
in Hi1:1 X,..., Hle X into such small redistribution sets, so that, in fact, we eventually
need not have any output depend on knowledge of the original partition; the overall
deviation from the original partition’s density characteristic will still be relatively small.

The problem with this procedure is that for every small set Y we examine, we do
not actually know the rest of the partition, nor the fraction of the elements in Y of each
type within each of the partition cells. We overcome this ignorance by simply trying all
possibilities, i.e. when sampling tuples with which to determine the type of the elements
of Y, we will ‘branch’ our computation for all m partition cells to which any tuple may
belong. Similarly, when choosing how to redistribute the elements of Y of similar type,
we will in fact branch our computation for all possible sizes for distribution among the
m partition cells (rounded to multiples of some fraction depending on €). We will thus
construct, in fact, a large number of partition oracles — exponential in 1/e — but their
shared query complexity will still be polynomial in 1/¢, as they all use the same set of
queries. This construction of partition oracles and tuple type estimators is described
and analyzed in Subsection 6.3.2.

If an appropriate partition exists, then one of these oracles will simulate it relatively
well. The pseudo-test will be able to determine whether this is indeed the case by
estimating the partition’s density characteristic using the oracle. This is demonstrated

in Subsection 6.3.3, and allows us to complete the proof.

Throughout this section we assume that & > max{r(c) | c € C(H)}, and without loss
of generality that k = max{r(c)|c € C(H)}. Also, our query complexity expressions
treat m and k as constants rather than parameters (e.g. the O(-) notations hide

coefficients depending only on m and k).

6.3.1 Key Lemma: Low-damage tuple redistribution

Our proof hinges on repeatedly estimating the types of vertex tuples — with respect to
initial partitions P — and then modifying P by redistributing tuples of similar type
among the various cells at a given arity, while ensuring that ¥"7" does not change
overmuch.

Suppose, then, that we have a small set of tuples to redistribute. Formally, let
T € Type(s) be a type of s-tuples. Let Y7 C []? ; X be a small set of tuples with
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[YT| < ¢n®, whose types are all ’-compatible with 7 with respect to the partition P(s),
except perhaps for at most a &-fraction. Also, let Q : Y™ — [m] be a re-distribution of
Y™ — a function partitioning it into m cells, which maintains fairly well the number of
elements in each partition cell: The partition cell sizes of Q and P(s) (with respect to

Y™) differ by at most an n-fraction of the total size, that is, for every j € [m],

-1/ P,s T
Q) - |x] Ny

<n|YT|

Lemma 6.3.1. Let P, Y7, Q be as per the above, and denote P =P o Q. Then

Y

dist(™P p"P) < K2 (e 4+ C+£) -

nS
Proof. We must bound the change in density of both the vertex and the edge densities
of ¥7HF relative to 7,
_As regards the tuple densities of P, the claim follows from the fact that each set
X}D’S has lost ‘XJP’S ny”

has therefore changed by no more than n-n~*|Y7| as per the constraint on Q.

elements and gained ‘Q‘l(j)‘ elements; the density p(s, j)

Moving to edge densities, fix some color ¢ € C and an NTD ¢ € ®"(©); we must bound
the change in the density Hy(c). We do so by considering various kinds of s-tuples in
Hy(c) with respect to before and after the redistribution:

First consider those r(c)-tuples x containing at least two s-subtuples from Y7:
z(A) C Y™ and z(B) € Y7 for two different (and disjoint) sequences A, B € Dom(¢).
The fraction of these tuples within all r(¢)-tuples is at most n=25|Y7|* < ¢ - n~*|Y7| for
every choice of disjoint sequences A and B in ¢; the number of such choices is less than
(r(c)/s)? < r(c)?, so the total contribution of such tuples to the change in density is
less than r(c)? - ¢ - n~5|Y7|.

Next, consider some maximal 1:1 relation between Q~1({j}) and X]P’S NY7"; we
can think of the sources of this relation as tuples being replaced by tuples of similar
type (with the rest of the tuples being removed-only or added-only). Consider such
a pair of s-tuples, y and ¢/, and assume that both have a type which is &’-compatible
with 7. This replacement effects Hy(c) through r(c)-tuples in which either y or o’
appears at least once. Consider some A € Dom(¢) of length s, and let ¢’ € Pr(e)A
be the corresponding (r(c), A)-NTD (obtained by removing A — j from ¢). We have

TPY(A, e, ¢') — 1PV (A, ¢, ¢’)‘ < ¢/, s0 Hy(c) gains or loses at most &'n”(9)=% tuples by
replacing H’yY(c) with H:;/’yl(c). Summing over all possible choices of A € Dom(¢) (at
most r(c)/s < r(c) of these) and all pairs y, y" in the matching, we find that Hy(c) gains
or loses at most r(c)-&’ -n"(©=5.|Y7|, i.e. its density changes by at most r(c)-&’-n~*|Y7|.

In this last estimate we have disregarded the effect of r(c)-tuples with more than one
s-subtuple from Y7 taking the place of some A € ¢ — these may behave differently than
what the type of an individual Y7 s-tuple suggests, but the aggregate contribution of

all such tuples to the change in density has already been accounted for with the bound
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involving ¢ above. We have also disregarded the effect of tuples with incompatible type,
which will be considered below.

Now consider those s-tuples in Q~!({j}) or X})’S NY" which are neither sources
nor targets in the above-mentioned 1:1 relation. Their number is at most the difference
in size between Q~1({j}) and XJP’S NY7", which by our assumptions does not exceed
n|Y"|; thus the fraction of r(c)-tuples in which they take the role of some A € Dom(¢),
and their effect on the density of Hy(c), is at most r(c) -n-n=*|Y7|.

Finally, for every A € Dom(¢), there are at most & -|Y7|-n"(©) =5 r(¢)-tuples in which
the role of A is taken by a Y7 element whose type is incompatible with 7. The total
contribution of these tuples over all A € Dom(¢) to the change in Hy(c) density is at
most r(c) - &-nF|Y7|.

All other r(c)-tuples do not involve s-tuples from Y7, are neither introduced into
H(c) nor removed from it by the redistribution of Y7, and do not affect changes in its
density.

Summing up the above (and recalling that r(c) < k) yields the claim regarding the
edge density u(c, @), for any possible choice of ¢ and ¢. O

6.3.2 Generating type estimators and partition oracles

The first two of the following three lemmata each requires the next one in its proof; the
proofs appear after the statement of all three. Note that the complexity bounds in all

these lemmata treat k and m as constants rather than parameters.

Lemma 6.3.2. Let ¥ be a set of density characteristics, and let §,&' > 0. One may
generate a set Sorgeles 0f exp(poly(1/e’) -1n(1/9)) partition oracles for H with shared
query complezity g.3.2(c") = poly(1/¢’)-O(In(1/6)), such that if the hypergraph satisfies
W, then with probability at least 1 — & at least one of these oracles induces partition
functions which %E'ﬂpproximately satisfy V. This, without making any queries to H,

and independently of V.

Lemma 6.3.3. Let P be partition functions for a hypergraph H, let Y C [, X be

Y

a set of normalized size at most 1/¢ and let &' > 0. One may generate a set S} . 1o

of exp(poly(£)In(1/8")) partial oracles for s-tuples in'Y , with shared query complexity
g6.3.3(¢) = poly(¢) - O(In(1/d")), so that with probability at least 1 — &', at least one of
these oracles (say, 7) is such, that the partition functions Pon (6k2/£2)-appr0mmately

satisfy ¢H’73. This, without making any queries to the hypergraph and independently of
P.

Lemma 6.3.4. Let P be partition functions for a hypergraph H, let Y C [, X and
let §",&" € > 0. One may generate a set of at most exp(poly(1/&”) -In(1/6"¢)) type
estimators for the tuples in Y, all using a single uniformly-sampled sequence U of
poly(1/e”) - O(In(1/8"€)) wertices, such that at least one of these oracles suggests a
compatible cluster with respect to TypeNet, .» and P for all but a &-fraction of the tuples

121



in each of the clusters induced by TypeNet and such that all oracles only query

s,
tuples involving vertices from the input tuple and from U, for a shared query complexity
of O(|U|). This, with probability at least 1 — 6" over the choice of U, independently of

P, and with no queries made in advance so as to obtain the oracles.

Proof of Lemma 6.3.2. Set £ = 12k3/5’. Assume that H does indeed satisfy the density
characteristic ¥ with partition functions P. At every arity s < k, we choose an arbitrary
partition of the s-tuples into ¢ equal-size sets: {Ys1,...,Y5/}.

We generate small-set oracles as described in Lemma 6.3.3, with §&' = §/2k¢,

obtaining sets SY

racles Of Partial oracles for each subset at each arity.

We will now transition from the initial partition functions P through a sequence of
intermediary partition functions, up to the final partition functions P**, which will still
approximately-satisfy W, even though their assignment of cells to tuples is based wholly
on the partitions into Y; ; sets. At every subsequent transition, we apply Lemma 6.3.3
regarding one of the Y ; sets, to obtain partial oracles for this set — but with respect
to the previous intermediary partition functions, rather than with respect to the initial
partitions P. This is possible due to the fact that Lemma 6.3.3 applies regardless of the
partition for which partial oracles are sought.

Indeed, set P%* to P, satisfying ¥ exactly. With probability at least 1 — & /2k0,
one of the oracles for Y7 1, call it 7y 1, is such that PL1 k2 / ¢?-approximately satisfies
wﬁo’z (specifically, P o w11 &'/2kl-approximately satisfies ¥*7; and this will hold
for subsequent partition functions at any arity, not just arity 1, by our choice of
¢). Similarly, with probability at least 1 — §/2k¢, one of the oracles for Yj o is such
that P12 = Pllo T2 €' /2kl-approximately satisfies wﬁl’l (thus &'/kf-approximately
satisfying wﬁo’é), and so on until P which ¢’ /2k-approximately satisfies wﬁo’e. We
implicitly construct similar partition functions P51, ..., P5¢ for the sets of 2-tuples,
3-tuples, and every arity s — beginning each time with P*~%¢ from the previous phase.
Eventually, with probability at least 1 — 6/2, some sequence of oracles (71,1, ..., 7xyr)
yields a complete partition Pkt which %5’ -approximately satisfies POL =P,

Consequently, our set of oracles for the entire hypergraph is the set of all combi-
nations of Y5 1,...,Y; , oracles for all s € [k], constituting (exp(poly(¥) - In(1/6")))* =
exp(poly(1/¢’) - In(1/4)) oracles in total. Their shared query complexity is the same
as for the small-set partial oracles — as in order to get the oracles’ output for a given

vertex tuple, one in fact uses only the small-set oracles ‘covering’ the tuple in question.[]

Proof of Lemma 6.5.3. Our partition oracles will be based on the principle of ‘low-
damage’ small-set redistribution, embodied in Lemma 6.3.1: We will estimate the types
of the various tuples of Y, and redistribute them accordingly.

Assume initially that P is known to us; we will later forego this assumption.

First, we choose one of the type estimators of Lemma 6.3.4 — with parameters
E=1/t,6" =40 and &’ = 1/¢; the estimator induces a clustering of the s-tuples in Y’
by their estimated type, which we denote {YT ‘ TE TypeNetsﬁu}. Our redistribution
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will respect the lexicographic order of s-tuples, so that all tuples in Y up to some tuple
x1 are reassigned to cell 1, tuples between x; and xo are reassigned to cell 2 etc. This
will later allow us to forego the knowledge of P; for now note that the decision of how
to redistribute tuples with a similar type does not have any affect on the applicability
of Lemma 6.3.1.

We must this decide, for each Y7 and each partition cell j < m, at which tuples
to make the transition from cell j to cell j + 1. This is clearly dictated by the size of
the intersection of Y7 with each cell j; but instead of using the exactly appropriate

tuple range, we set the ranges differently: We only choose as boundary tuples for

cell reassignment such tuples whose positions are multiples of n® /63‘TypeNet57a// ,
between 0 and n®. For each cell j the choice is either of the highest multiple of
P,
n® /63| TypeNet, .n| below ‘Xj nyr
xXPsay”
J

so that the ranges cover all n® tuples exactly. (This choice is possible, since we can

(the original intersection size), or the lowest

multiple above . The decision of which of these options to choose is made

for the differences

begin by always choosing the lower multiple of n?® / Eg‘TypeNetsﬁu
in boundaries, ending up not covering all n® tuples, and then gradually increasing the

differences to the higher multiples; at some point we will hit n® exactly).

We now redistribute Y7 according to the boundaries we have set. If Y7 is very
small, it is possible that we’ve changed the intersection sizes by a significant fraction of
the size of Y7 — perhaps even placed all of it in a single partition cell. But for most
Y7 this is not the case: Denoting by T*™2ll the set of types 7 € TypeNet, .» for which
Y7 < n5/€2|TypeNet57€// , we have }U {y7|re Tsmall}| < n*/02, as T5™! has no

elements. For a 7 ¢ T5™8!l the size of each of its intersections

more than |TypeNet

8,6”
with each partition cell changes by at most |Y7|/¢ relative to the original partition.

This redistribution has in general an adverse effect on P’s satisfaction of ¥: Even
if Y7 is not very small, and if the types of all tuples in Y7 were exactly 7, and the
redistribution would not be changing the sizes of partition cells’ intersections with Y™
sets at all — there would still be the effect of tuples involving multiple elements from Y™
which have now changed cells. And of course, the type estimators may not be perfectly
exact; and the types in Y7 are only close to 7; and the redistribution intersection sizes
are only close to the original sizes. Still, we can apply Lemma 6.3.1, to bound the
effect of the redistribution on the the density characteristic: For a Y7 with 7 € Tsmall,
sen], =€ =1/l and n < 1;
and for Y7 with 7 ¢ T2l the lemma applies with ( =& =n=¢ = 1/¢.

Lemma 6.3.1 applies with parameters ¢ = 1 / EﬂTypeNet

Let us sum up the total effect of these redistributions as a bound on the distance
from the original partition (using the triangle inequality). The contribution of the
redistribution of Y7 with 7 € T*™! is at most k?(1/¢| TypeNet, .| + 1/¢ + 1+ 1/¢)-
n~%|Y7| < 2k?>n~%|Y7|; over all such sets Y7 the total contribution is at most 2k%n~* -
(n®/€?) = 2k? /(2. The contribution of the redistribution of a Y7 set with 7 ¢ Tsmall is
at most k2(1/¢ + 1/¢ + 1/ 4+ 1/€) -n=5|Y™|, and over all such Y7, at most 4k?/¢2.
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Thus, if one of the type estimators of Lemma 6.3.4 clusters most vertices in each
cluster into compatible clusters (which happens with probability at least 1 — ¢’), then
the choice of this type estimator yields a partition P o 7 (our initial partition following
the redistribution of the Y7s) which 6k? / /2 -approximately satisfies 1#7{,75.

We need, however, to achieve the above without foreknowledge of P. We note
that the only use of the knowledge of P in the argument above was the choice of
boundary values for the redistribution of each Y7, and even those were only multiples
of Y] / €2|TypeNets’€}. Thus instead of relying on our knowledge of the partition,
we will have multiple oracles, one for every possible setting of boundary values for

Y7, for every type 7 € TypeNet and every one of the m partition cells in 75(5)

5,e’
(Note that each such oracle for Y can readily compute the redistribution cell for a
given tuple using the type estimate and its predefined boundary values.) The total
number of such configurations is less than (EﬂTypeNetS@‘ + 1)m'|TypeNet5*5", so the
total number of oracles for establishing the claim is this number, times the number of
possibilities for a choice of the type estimator from Lemma 6.3.4. By Lemma 6.2.23,
the first multiplicand is O(exp(poly(¢))); by Lemma 6.3.4, the second multiplicand is
p6.3.4(1/4,0',1/¢) = exp(poly(¥) - In(¢/d8")) = exp(poly(¢) -In(1/4d")), so the product is
exp(poly () - In(1/4")) oracles overall, as claimed. With probability at least 1—¢’, at least
one of the choices of the type estimator and one of the choices of rounded intersection
values correspond well enough to the actual partition so that Lemma 6.3.1 applies with
the above parameters. The oracles maintain the same shared query complexity as that
of a single oracle, since they do not differ with respect to the queries made for a given
tuple, so the same queries can be used by all oracles; this query complexity is, in turn,
merely that of using the type estimator, i.e. O(In(¢/4")) - poly(£) = poly(¢) - O(In(1/4"))

as claimed. O

Proof of Lemma 6.5.4. Our type estimators will base their output on the clustering

induced by TypeNet, .» — applied to an estimate of a tuple’s type rather than its actual

s,
type. We assume initially that the partition functions P are known, and describe a
single oracle clustering the tuples.

Let y € Y be the tuple to have its type clustered. Set

2
where N9 is the number of density values in a density characteristic (see Observa-

tion 6.2.12).
Let (A,c,¢) € TypeDom (s). The estimator samples, uniformly, a sequence of

1
t= ln<5//5 - Nde. ‘TypeNet&E,/

r(c) — s vertices from X, which complete y into an r(c)-tuple x with z(A) = y. Using its
knowledge of the partition, the estimator determines whether or not this tuple observes
the NTD ¢, and queries the hypergraph to determine whether x is an edge of H(c).

This is repeated ¢ times, independently, and the density value estimate 7U¥(A, ¢, ¢) is
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the fraction of samples x in Hy(c).

This estimate is made for all (4, ¢, ¢) € TypeDom (s). As we will be union-bounding
the probability of any of the estimates deviating overmuch, we have the estimator
use the same samples for all choices of (A, ¢, ¢), that is, a sequence of k — s vertices
is sampled ¢ times, with only the first r(c¢) — s vertices in each sample are used for

TUY(A, ¢, ¢) estimates. This entire sequence of ¢ - (k — s) vertices is our choice of U.

The estimation of a tuple’s type may fail (with the estimator suggesting an incom-
patible cluster) only if one of the estimated density values is %5” -far from the actual
value. The probability that a uniformly sampled completion of x into an r(c)-tuple will
be in Hy(c) is, by definition, 7Py (A, c, ), and the estimate 7VY(A4, ¢, ¢) is an average of
t independent indicators with this probability. We may therefore apply a large deviation

bound to conclude that

- e e 2 (5”§
TUY(A, e, ¢) — 7Y (A, c, qb)’ > —| <2-exp| 2= | t]=
2 2 Nde . | TypeNet, .

Union-bounding over all density values in the tuple’s type, we conclude that the

|

3¢”-far from the real value, i.e. the probability of failure

to output a compatible cluster, is less than §”¢/ ’TypeNetSﬁ//

probability that any estimate is

We wish to ensure a high enough probability of outputting compatible clusters for

most vertices in each cluster induced by TypeNet Consider some such cluster. The

sl
expected fraction of Y tuples from this cluster, for which the estimator outputs an

incompatible cluster, is less than §”¢/ ‘ TypeNet, .»|. Applying Markov’s inequality to the

tuples in this cluster, we conclude that with probability greater than 1—4§"/ ‘TypeNet st

the estimator outputs a compatible cluster for all but a &-fraction of them. We now

union-bound again, this time over all clusters in TypeNet to conclude that with

s,
probability greater than 1 — ¢”, the clustering is indeed correct for all but a ¢-fraction

of the tuples in each cluster.

Finally, we must contend with the fact that the estimator does not actually know P.
Instead of using the (single) estimator’s knowledge of P to decide which tuples within
every sample originate in which partition cell in P, we will have multiple estimators:
There will be one estimator for every possible assignment of each subtuple of each (k — s)-
tuple used in the type estimation sample — each of these estimators assumes knowledge
of a different P. Now, the number of possible choices of partition cells for subtuples of a
single (k — s)-tuple is at most m2" . and over all ¢ tuples, the number pe.3.4(e”, 0", &) of
such choices is less than m2" ™7t = pO(n(1/5"€)-poly(1/e") — exp(poly(1/e”) - In(1/6"¢)),

thus the total number of type estimators is as claimed.

The estimators all share the same sequence U of sampled vertices as the single
estimator assuming knowledge of the partition: ¢ - (k — s) = O(In(1/6"¢)) - poly(1/€”)

vertices are sampled, as claimed. ]
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6.3.3 Distinguishing good and bad partition oracles

We have established that an unknown partition satisfying a certain density characteristic
can be replaced with a (large) set of partition oracles of our construction, one of whose
induced partitions satisfies the density characteristic approximately. If no approximately-
satisfying partition exists, our construction will still yield a set of oracles, but they will
be useless — none of them will satisfy the density characteristic even approximately;

we need to be able to tell these two cases apart.

Lemma 6.3.5. Suppose one is given a set S of (q¢,m,k) partition oracles for a hy-
pergraph H, with shared query complexity q. There exists a probabilistic algorithm
making at most qs.35(¢’,9,q) = O(E’_zlog(l/é) -log(|S]) - q> queries to H for which the
following holds:

e If one of the oracles’ induced partitions %5’-approximately satisfies U, then the

algorithm outputs accept with probability at least 1 — 9.
e If none of the oracles’ induced partitions €' -approximately satisfy ¥, then the

algorithm outputs reject with probability at least 1 — 4.

Proof. Essentially, we can obtain good estimates of the density characteristic of each
oracle, and decide accordingly.

Consider a single oracle w € S, inducing partitions P™; our estimate of its density
characteristic shall be denoted ¥V. Set, with foresight,

t=8-log(2) - 8% . <log <<15) +log (N*) + log(|S|)>

(recalling that N9¢ is the number of density values in a density characteristic; see
Observation 6.2.12). We sample ¢ sequences of k vertices each: ((zp1,... 7$h,k))221? let
zj, denote the A" k-tuple.

Now, for the partition set vertex density estimates, and for s < k, we use the first s
elements of each sampled tuple to estimate the densities for that arity — we set (abusing

notation somewhat)

o (5,5) = 7I{h € [] | m(an) = )]

As for the edge density estimates, for every color ¢ € C(H) and ¢ € d7(9) we let

wY (e, ¢) = %]{h € [t] | z,, € H(c) and observes ¢}|

{he [t]

that is, u¥(c, ¢) is the fraction of the ¢ samples whose first r(c) elements support an H (c)

xp, € H(c) and }|
for every A = (ji1,...,Js) € Dom(¢), m(zn(A)) = ¢(A)

hyperedge and have sub-tuples which the oracle places in the partition cells indicated
by ¢.
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To bound the probability of the estimates being overly far from the actual density

values, note that, for every sample-set index j, we have

Prr((zp1,...,2hs)) = Jj = o (s,])
Pr{(zni,---,7ns) € H(c) and observes ¢] = u”" (¢, )

since the tuple vertices, and hence also the tuples, are sampled uniformly and indepen-
dently. The estimates pY (s, j) and pY(c,¢) each admit, therefore, a large deviation
bound:

Pr|| Yls,5) —p" (s )’>€—, <2-exp| -2 < 275 __ 0
p ) p ) 4 p 4 _NdC|S|

and the bound for pY(c, ¢) is the same. Union-bounding over all N9¢ density values in
the characteristic, we find that with probability greater than 1 — ¢/|S|, our estimates
will indeed all be within less than €’/4 of the correct values, Union-bounding again over
all oracles in S, we find that, with probability greater than 1 — §, all oracle density
characteristic estimates are correct to within less than &’/4 — independently of which
density characteristic these are.

Conditioning on this event, if any of the oracles’ partition &’/2-approximately satisfies
¥ this oracle’s estimate will be at distance under 3¢’/4 from W; while if no oracle’s
partition even ¢’-approximately satisfies ¥, all estimates’ distances from ¥ will be higher
than 3¢’ /4. In the former case, we accept, while in the latter, we reject. This completes
a valid algorithm meeting the requirement of the claim, with probability of success
greater than 1 — 4.

Finally, the number of (single) oracle invocations in making the estimate is ¢ times
the number of subsequences of elements of the k-tuples, which is less than k!- 2¥. An
additional ¢ - [C(H)| queries to the hypergraph are made. As the oracles have shared
query complexity ¢, the total number of queries made for estimating all of their density
characteristics is: ¢ - (k!- 2% ¢+ [C(H)|) = O(E’leog(l/é) : q), as claimed. O

With the ability to generate an appropriate set of oracles, and to distinguish whether
any of them induces an acceptable partition, we can now proceed to prove the upper
bound:

Proof of Theorem 6.1. Set 6 = 1/6 and ¢’ = £. Our algorithm acts as follows: The test
generates a set S of oracles as described in Lemma 6.3.2, applies the distinguishing
algorithm of Lemma 6.3.5 to these oracles, and accepts if and only if the algorithm
accepts.

If the hypergraph satisfies ¥, then by Lemma 6.3.2, with probability at least 5/6,
one of the oracles induces a partition which %s—approximately satisfies ¥; such an oracle
will be accepted by the algorithm of Lemma 6.3.5 with probability at least 5/6, so with
probability at least 2/3 overall, the test accepts.
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If the hypergraph does not e-approximately satisfies ¥, then no oracle is such that
its induced partition e-approximately satisfies ¥, so all the oracles will be rejected with
probability at least 5/6.

The oracles’ shared query complexity is ¢ = poly(1/e) - O(In(1/6)) = poly(1/e), and
the number of oracles is |S| = exp(poly(1/e)) - 6-91/9) so the total number of queries
made by the distinguishing algorithm of Lemma 6.3.5is O (¢ “2log(|S]) - ¢) = poly(1/¢).00

6.4 A lower bound on testing partition properties

In this section we show that Theorem 6.1 of the previous section cannot be strengthened

from polynomial pseudo-testing to polynomial testing, by the following:

Theorem 6.2. There exists a density characteristic W for hypergraphs of mazximum
arity 3, such that testing Ily requires as many queries as testing a digraph for being
triangle-free, up to a constant factor (specifically, Q((c’ / a)cl'ln( ¢/ g)) queries are required

for some global constant ).

The combination of the upper bound Theorem 6.1 and this lower bound implies

immediately that pseudo-testing is significantly weaker than actual testing:

Corollary 6.3. The testing query complexity of some partition properties is not a

polynomial function of their pseudo-testing query complexity.

The lower bound Theorem 6.2 will be proven via a reduction (in the sense of Defini-
tion 2.4.1) from testing triangle-freeness to testing a partition property which we shall
construct. Our construction will use the density characteristic to ‘align’ a partition
of the vertex pairs with a partition of the 2-tuples into edges and non-edges; having
done so, we will constrain every 3-tuple to contain at least one pair of vertices which
is a non-edge, that is, a pair that resides in the 2-tuple partition cells containing only
non-edges. This will make for a straightforward reduction from triangle-freeness testing
to testing the satisfaction of the set of density characteristics corresponding to the above

constraints.

6.4.1 Expressing basic constraints with density characteristics

To express the constraints necessary for the reduction from triangle-freeness, we shall

explore the expressive power of partition properties, gradually establishing its expansion.

The first obvious constraints that we can express using a density characteristic
set are the equality of a density value, for single (vertex or edge) density values, e.g.
p(c, @) = a, where @ = 0 means “there are no edges respecting a certain NTD” and
« = 1 means ‘all tuples are edges respecting this NTD”. One can also constrain the sum
of several density values. An important example of this would be 3 SEDs p(c, @) = a,

constraining the total density of the edge relation of color ¢ to be a.
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We may also constrain relations of p values or p values to each other, thus expressing
the constraint of partition sets having certain sets of equal size, or sizes which are
functions of each other.

We would like to make finer and more elaborate constraints regarding the hypergraph

edge relations. Efforts in this direction may bear some fruit, e.g.:

Observation 6.4.1. If two (sets of) constraints on hypergraphs (without loss of gener-
ality, having the same set of colors) are partition-expressible, then so is their disjunction
— using the union of the density characteristic sets expressing each of them (and perhaps
promoting first the density characteristics for one of the constraints to a higher value of

m, by constraining the gratuitous sets to be empty).

But it may not be possible to achieve much more than the basics described above.
However, this section focuses on a lower bound rather than expressivity in general,
and for this purpose we may avail ourselves of ‘easy’ auxiliary relations, added to our
hypergraphs, to increase the expressive power using combinations of density constraints.
It will later become clear how such relations are useful for our lower bound construction;
for now let us describe the mechanism for their use:

A partition cell X;)’T(C) with respect to (m, k,C)-partition functions P is said to
capture the color ¢ € C if X]P’s = H(c), i.e. the partition cell contains exactly those
r(c)-tuples which are edges of color ¢. A set of partition cells is said to capture c if their

union contains exactly those tuples being edges of color c.

Lemma 6.4.2. Assume m > 1. Fiz a color ¢ and let S C [m]. There exists a density
characteristic set Wy (respectively, Wo) expressing the constraint of {X]P’T(C) |j € S}
capturing H(c) (respectively, capturing H(c)* =T1[;2; X \ H(c)).

Proof. For any j € S, let ¢; be the NTD mapping [r(c)] 2y j, with ¢ not being defined
for any other subsequence of [k]. We make the constraints p(c, ¢;) = p(r(c), j) for every
j €S, and pu(c,¢;) =0 for all j € [m] \ S. This ensures that all tuples in each Xf’r(c)
are in H(c), and that prevents any tuples in H(c) from originating in other cells of arity
r(c), thus achieving the desired overall constraint.

For capturing H(c)®, we constrain u(c,¢;) = 0 for all j € S, and use the sum

constraint ngés ple,dj) =1 =3 s p(r(c). ). =

In essence, the above describes a ‘sacrifice’ of an edge relation, as it will not hold
any ‘information’ other than our choice of a partition cell, or union of cells, at the
appropriate arity. Having made this sacrifice, however, we have increased our expressive

power regarding the captured partition cells:

Observation 6.4.3. One may constrain intersections of NTD-respecting tuple sets

not merely with edge relations (i.e. constrain the density of Hy(c) sets) but also the
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intersections of NTD tuple sets with other partition cells (or unions of partition cells).
Thus the set

P7
ye | J X" |VBeDom(¢) [y(B) € ¢(B)]
JES
can be constrained by adding a color ¢4 g with r(ce s) = s, constraining {X]P’S ‘ je S}
to capture ¢4 g, and then using constraints on Hg(c, ;) (which can be made ‘directly’

through the density characteristic set).

6.4.2 FOL constraints and density characteristic composition

Definition 6.4.4. For a hypergraph #H with colors C(#), the vocabulary 7¢ consists
of a symbol R, for every color ¢ € C(H), with arity r(c), and no constants or function

symbols.

Throughout the rest of the section, we refer to formulae and sentences of First-Order
Logic without equality, with some fixed vocabulary 7¢; hypergraphs having color set C

are said to respect 7¢.

Definition 6.4.5. Consider some partition functions P of a hypergraph H, some
formula ¢(z1,...,25) and some S C [m]. The set of partition cells {XJP’S |j €S} is
said to capture ¢ if | {XJP’S } jes } contains exactly those s-tuples which satisfy .

Definition 6.4.6. Consider a function f from the labeled hypergraphs of order s with
color set C to {0,1}. We denote by D the set of all hypergraphs with color set C U {¢'},
and with r(¢’) = s, such that for every H € Dy, H(c') contains exactly those tuples
x = (x1,...,x5) for which f returns 1 when applied to the labeled hypergraph of H
induced by {z1,...,2zs}. For such hypergraphs we call f a deriving function for color
. Similarly, for a color set C and a set of functions F = {f. | ¢ € C'}, Dr is the set
of hypergraphs with color set C U C’ for which each f. is a deriving function for the
hypergraph’s ¢ relation.

Definition 6.4.7. A formula ¢(z1,...,zs) (with respect to vocabulary 7¢) said to be
partition-expressible with auxiliary color set C' if C’ contains relations of arity at most
s, and if there exists an integer m, a set S C [m], and a set ¥ of (m, k,C U ') density
characteristics, such that the following holds. First, the hypergraphs satisfying ¥ have
uniform deriving functions for the colors in C’ — that is, there exists a set of functions
{fe | ¢ € C'}, such that a hypergraph with color set C’ U C satisfies ¥ if and only if it is
in Dr. Second, for a hypergraph H satisfying W, the partitions with which it satisfies ¥
are those in which S captures . A formula is said to be partition-expressible if there

exists an auxiliary color set C’ with which it is partition expressible.

The first requirement for partition-expressibility is of importance to us, as we are

considering hypergraphs in which only the C relations are known, not any auxiliary
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relations. With deriving functions, we are able to complete the missing relations using

the existing ones.

Observation 6.4.8. If a formula ¢ (with at least one free variable) is partition-
expressible, then so is its negation, with the same number of partition sets per arity
and the same auxiliary color set: If ¥ is a density characteristic set expressing the
constraint of S capturing ¢, then S€ = [m] \ S captures —¢ with respect to ¥, with the

same auxiliary color set and deriving functions.

We would ideally like to establish the partition-expressibility of as large a fragment
of FOL as possible; we come up against a problem, however, already for mere atomic
formulae, before considering connectives or quantifiers: When we capture a relation
with a partition cell index (or a set of indices), we are able to set aside those tuples
satisfying, say, R¢(x1,x2,x3) or Re.(x1,x3,x2); but what about R.(x1,x1,x3)7 Density
constraints do not allow us to distinguish tuples with element repetitions. Bearing
in mind that our objective is merely expressing triangle-freeness, we shall choose to

circumvent the issue and express formulae which are free of such repetition:

Definition 6.4.9. A repeat-free FOL formula is one in which no variable appears twice

within the tuple of arguments for a relation symbol.

Lemma 6.4.10. A repeat-free atomic FOL formula ¢(z1,...,xs) (with respect to 1¢)
is partition-expressible by a partition with m = 2 with an auziliary color set C' = {c,},

with r(c,) = s.

Proof. As 7¢ has no function symbols or constants, the repeat-free atomic formulae
are all of the form R, (mjl, . ,ij(c)), for some color ¢, with the j;’s all distinct. (Note,
however, that it may be the case that r(c) < s, i.e. some variables may be unused.)
Fix some such formula ¢. By Lemma 6.4.2, there exists a set of density characteristics
Uy (with our choice of m = 2 and vocabulary 7¢.c) constraining X f O =g (¢); there
similarly exists Wy constraining X7 * = H(c,).

Now, consider the set &, = {(Z) € o° } (jl, .. ,jr(c)) >2> E}. This is set of NTDs is
satisfied by those s-tuples whose subtuples corresponding to ¢ originate in XZD’T(C). We
impose the sum constraints >, H(cy, @) = p(s,1) and Y g, p(cp, @) = 0 (recall
that m = 2, so ® = ®; U ®5). The combination of these implies that H(c,) contains
exactly the set of s-tuples respecting some NTD from ®;. We now conjunct our
constraints with those of Wa (that is, take the intersection of the density characteristic
sets), so that the s-tuples in Xf * are exactly those respecting some NTD from ®;
finally, we conjunct our constraints with those of Wy, so that respecting an NTD in
®; means having (z;,,... ,ZE]'T(C)) € H(c) — and the s-tuples in Xf’s are exactly those
with (zj,,. .. 7%}(@) € H(c). Thus X ZD * captures ¢ exactly (without having imposed
any other constraint on other sets X]P’S for j #1).
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Finally, a deriving function for ¢4, would be the function which returns 1 if a hyper-

graph M’ with vertex set z1,...,z, satisfies (zj,,..., xjr(c)) € H'(c¢), and 0 otherwise.[]

Note. The ‘formal’ number of variables of ¢ is significant: It is a different thing to
express, say, F(x1,x2) as a formula of 2 or of 3 variables. In the former case, in fact,
one does not even need an auxiliary relation, as the same set of 2-tuples constrained to

capture E also captures the atomic formula E(x1,x2).

Lemma 6.4.11. If formulae pi(x1,...,2s,) and @a(z1,...,Ts,) are both partition-
expressible with partitions of size m1 and ma, respectively, and (disjoint) auziliary color
sets C1 and Cy, respectively, then the formulae (1 V v2), (p1 A @2) are also partition-

expressible, with m = my - mo and auziliary color set C' = Cy U Cs.

To prove this, we will require the ability to refine the constraints inducing any set of

density characteristics with the constraints inducing any other set:

Definition 6.4.12. Let 9; and 13 be (m1,k,C U Cy) and (mg, k,C U Cq2) density char-
acteristics (C; and Cq are disjoint). The composition of the two density characteristics,
denoted Wy, gy, is an (m, k) = (mq - ma, k) density characteristic set with respect to the
color set C U Cy U Ca. Abusing our earlier definition somewhat, denote P(s) = P1 x Pa
and think of the partition functions for an (m, k)-partition as though the m; - ma cells
have pairs of indices rather than a single index: (P1 x P2)(s) : [[;_; X — [ma] x [ma].
Now let Pi(s) : [[;_; X — [m1] and Pa(s) : [[;_; X — [m2] be the projections of P(s)
onto the first and second coordinates, respectively, i.e. x L), ((P1(9))(x), (Pa(s))(x)).
Now, partition functions P satisfy W, ., if the projected Py and P, partition functions
satisfy 11 and 1o respectively. In other words, ¥, @y, contains all density characteristics
1 meeting sum constraints on p and p ‘gathering’ the refined partition cells in an entire

cell of Py or of Po. For p, these constraints are:

S (K, G d2) = 0¥ (K, j2) > K Gri2) = o (K )

J1€[ma] J2€[ma]

for every j1 € [mi] and jo € [ma] respectively. For p values, We need a bit more
machinery. Every NTD ¢ in ®F with respect to m; - ms corresponds to two NTDs
b¢' 1, By 2 With respect to my and my respectively, with the same domain as ¢', such
that ¢'(A) = (A 1(A), ¢y 2(A)) — the projections of ¢ onto the first and second
coordinates. Now, for some ¢1, let ®| be the set of all NTDs ¢’ in dF with respect
to my - my for which ¢y 1 = ¢1, and let @) be defined similarly for any ¢2. The sum

constraints on Wy, ¢y, for p values are:

Z :uw (Ca (b/) = /ﬁm (Ca ¢1)

¢'edy
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for every ¢ € C U Cy and ¢ in ®F with respect to m1, and

Z /Jw (C: ¢/) = MwQ (07 ¢2)

S D)

for every ¢ € C U Cy and ¢o in ®F with respect to mo.

Definition 6.4.13. Let ¥; and ¥y be (my,k,C U C1) and (mag, k,C U C2) density
characteristic sets (with C; and Cy disjoint). The composition of the two density
characteristics, denoted ¥ ® Wo, is the set of all compositions of pairs of characteristics

from ¥y and Wy, i.e. U1 @ Uy = Uw1€\lf1 U¢2€\I,2 \ij1®7/12'

Proof of Lemma 6.4.11. Let W1, ¥y be the density characteristic sets expressing the two
formulae (and their negations), respectively, with capturing cell index sets S1 C [my]
and Sz C [mg] respectively. Consider the composition ¥; ® Wy and some partition
functions P with respect to this composition: x € [[;_; X satisfies ¢; if and only if

x € Xg,l’j,,) for some j; € Sy and some jj € [mo]; x € []7_; X satisfies ¢ if and only if
1,J2

reX 61,;) for some ja € So and some ji € [my]. Thus, the composed partition cells
with in(iléx set S1x Sy capture (p1 A ¢2); and by De-Morgan’s law, the cells with index
set (S1°% (S2)°)° capture (¢1 V ¢2). The expressibility is maintained, as the auxiliary
relations with colors in C; and Cs are unaffected by the composition (we simply keep

the deriving functions for the relations in both auxiliary relation sets). O

Lemma 6.4.14. If a formula p(x1,...,xq) is partition-expressible with auxiliary color
set C', and with deriving functions F, then there exists density characteristic sets W, 3
and Vv, which are only satisfied by hypergraphs in Dx, and their satisfying graphs are

those whose sub-hypergraph obtained by considering the C relations only, satisfies

Vai...Vzq [gp(:z:l,...,a:d)] Jzy...324 [cp(xl,...,a:d)]

respectively. In other words, at least one of the sub-hypergraph’s s-tuples satisfies ¢ if
the graph satisfies U, 3, and all of the sub-hypergraph’s s-tuples satisfy ¢ if the graph
satisfies W, y.

Proof. Constrain a set S of partition cells to capture @i (x1,...,24); now constrain the
set {ij’d | j € S} to be non-empty (for an 3 constraint) or full (for a V constraint),
i.e. constrain either } . ¢ p(d,j) > 0or > . .¢p(d,j) = 1. The density characteristic
set U for these constraints is indeed a set satisfied by exactly those pairs of a hypergraph
‘H with auxiliary relations as per the deriving function, with partition functions with
which S captures ¢, and with a tuple of H satisfying ¢ (or with all tuples of H satisfying

¢ in the case of a V constraint). Thus the two sentences are partition-expressible [
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6.4.3 The reduction from testing triangles

Let C = {c} with r(c) = 2. The property of the binary relation H(c) being triangle-free
(in other words, 3-cycle free) is the property of all hypergraphs which satisfy the following
FOL sentence:

Ptriangle-free = vxlv x2,T3 [_‘(Rc,Q(xh x2) A Rc,Z («7327 x3) A Rc,?(ir& 131))]

with this fact at hand, we can proceed to prove our lower bound.

Note. The formula above forbids degenerate triangles as well, i.e. ones in which two
or more of the vertices are the same. Regarding these we can either use the fact
that the known lower bound of [AS04a] uses a tri-partite graph with no degenerate
triangles, or better still, note that a degenerate triangle must contain a self-loop, while
non-degenerate triangles do not contain them; thus if a graph is free from having non-
degenerate triangles, then it is 1/n-close to being altogether triangle-free, and a graph
is at least as far from being triangle-free as it is from being non-degenerate-triangle free.
Consequently, a test for degenerate-triangle-freeness in digraphs making ¢ queries is a
valid test for triangle-freeness for n = 2(1/¢). We may therefore disregard the issue of

degenerate triangles.

Proof of Theorem 6.2. By Lemma 6.4.14, Qtriangle-free 1S @ partition-expressible con-
straint, if we add three auxiliary relations of arity 3 (one for each of the relation symbol
appearing in the sentence), each of which with a deriving function. Let ¥ denote the
density characteristic set guaranteed by the lemma (expressing this constraint using the
above-mentioned auxiliary relations) and consider some hypergraph test for Iy making
q(g) queries.

Given oracle access to a digraph input with edge set E, we simulate an oracle to a
hypergraph with the color set of W, as follows: Queries to H(c) are answered as queries
to the digraph; when a query to an auxiliary relation is made about a certain tuple,
the oracle queries the subgraph induced by the tuple vertices, and reports whether a
hyperedge of the auxiliary relation exists by applying the appropriate deriving function to
the (labeled) queried subgraph. If the input digraph is triangle-free, then the simulated
hypergraph satisfies IIy; if the input digraph is e-far from being triangle-free, then the
simulated hypergraph is at least e-far from Ily, as, in particular, one must alter at least
an e-fraction of E in order to satisfy ¢iriangle-free-

This oracle meets the requirements of Definition 2.4.1, with f(¢) = ¢, h(n) = n
and g(n) = 9 (as each query to an auxiliary relation requires at most 3% queries to E).
The property of testing triangle-freeness is therefore reducible to testing an (arbitrary)
hypergraph partition property; we now apply Lemma 2.4.2: Since, by [AS04a], the
triangle-freeness of a digraph cannot be tested using less than (¢// 6)Cl'ln( /¢) for some
global constant ¢, so is the case for hypergraph partition properties (up to a constant
factor). O
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Chapter 7
Open Questions

Some of the research work resulting in this thesis has fully resolved the questions it had
set out to address; other questions were given essential answers with a gap between
what has been established and a potential for future improvement or tightening; and
others have been given only partial answers indicating a way for future research. All
of these, however, bring up additional questions, either regarding their continuation
and extension, or on issues only touched upon which may have independent interest.
Additionally, some questions reflect objects of the author’s research efforts, in the
context of the previous chapters, which have not yielded concrete results as of yet. All
such question have been concentrated in this chapter, mostly grouped by the chapter

which inspired them.

7.1 Natural testing and inflatable properties

Naturalization without canonization. Chapter 3 explores natural tests entirely
through the prism of canonical (and more generally, non-adaptive) testing; so much
so that it can be seen as a further study of canonical tests rather than of naturalness
in testing. What can be said regarding the naturality of non-canonical and possibly
adaptive tests? Can such tests be made natural without incurring the double penalty of

canonization followed by naturalization of a canonical test?

‘Natural’ testing with an n-dependent number of queries. What kind of prop-
erties have tests whose number of queries depends on n, but whose decision, in some
sense, does not? For example, we might consider a test which accepts if the query
results satisfy a sentence in some appropriate logic (e.g. First-Order Logic or Monadic

Second-Order Logic, with a vocabulary allowing for unqueried edges).

Note that the above two issues are particularly relevant to the question of natural testing
in the sparse graph model, in which non-adaptivity is costly to impose, and where many

interesting properties investigated thus far actually have n-dependent query complexity.
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The “heredity and inflatability gap” for natural testing. Owur test natural-
ization procedure requires much stronger approximate heredity and approximate in-
flatability than we can deduce in the reverse direction from the existence of a natural
test. Can the requirements be somehow relaxed, or alternatively, can it be shown that
naturally-testable properties have stronger approximate inflatability and approximate
heredity?

Testing a large graph by testing small subgraphs. Goldreich and Trevisan posed
in [GTO05] the question of whether any test for a hereditary property can be replaced
with merely ensuring that a random small induced subgraph (not much larger than the
subgraph queried by the original test) has the property — as was originally claimed in
[GT03, Proposition D.2]. We’ve shown that being hereditary and inflatable, or having
an original test with one-sided error, is a sufficient condition for this to hold. Are these
conditions, or similar ones, also necessary? (Note that this question differs from the
previous one, at least in that such a test need not be natural and the tested subgraph

size might depend on 7.)

The benefit of non-natural testing. Some testable properties have a non-constant-
factor gap in query complexity between their adaptive and non-adaptive tests; Such a
gap may also exist between natural and n-dependent tests. As with adaptivity, it will
be bounded by the penalty of naturalizing the test when at all possible. Can one find
specific properties exhibiting such a gap, or ‘non-contrived’ properties for which there is

no gap (similarly to Goldreich and Ron’s work in [GR10] regarding adaptivity in tests)?

A more appropriate notion of inflatability. Our choices for the definition of a
blowup and of (perfect) inflatability are somewhat arbitrary. For example, the property
of being the empty graph is inflatable, but the property of being the complete graph is
not — since the clusters in a blowup are empty rather than, say, supporting a clique.
Also, the property of being H-free, when H itself is a (generalized) blowup of a smaller
graph, is not inflatable. However, these properties are all (s(d),d)-inflatable on the
average (even though for the case of subgraph freeness, s(9) is exceedingly high). Can
one devise a more appropriate, perhaps more relaxed notion of inflatability, which covers
such properties as well, while still allowing for naturalization with the same polynomial
penalty as in Theorem 3.17 We are uncertain whether one can devise a useful notion of
graph blowups under which all such properties would be considered ‘perfectly’ inflatable.
Of course, this is not much of an issue with regard to (s, d)-inflatability, as at high

orders the edges within the clusters have a negligible effect on the distance.

Testability of inflatable graph properties. Alon and Shapira have shown in
[ASO8a] that any hereditary property is testable (albeit with a prohibitively high query

complexity). Is this also the case for properties which are only known to be inflatable?
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That is, can one use the closure to blowups, rather than the closure to taking induced
subgraphs, to devise a test? Perhaps Goldreich and Avigad’s recent work in [AG11] can

shed some light on this question.

7.2 Hard properties and complexity hierarchies

Hard functions with a combination of desirable features. The two construc-
tions of hard properties in Chapter 4, namely, in Section 4.2 and Subsection 4.6.1,
immediately beg the question of whether one can combine the desirable features of two
or all three of the constructed properties. Specifically, are there hard graph properties

(requiring Q(nQ) queries) which are

e both monotone and decidable in PTIME?

e monotone, and with a test whose running time is polynomial in n?

Note that one-sided-error testing is a feature of all hard properties, since reading the
entire input constitutes a one-sided test with a minimum number of queries up to a
constant. Also, it seems likely that the use of an NPTIME-decidable small sample
space for constructing a hard-to-test property, as in [GGR98, Proposition 10.2.3.2], can
yield a monotone property decidable in NPTIME at least.

Complexity hierarchies with a combination of desirable features. Assuming
that appropriate hard properties can be constructed, is it also the case that the desirable
feature of the three query complexity hierarchy results can be combined? Specifically,

for any reasonable g(n), is there a dense graph property requiring ©(q(n)) queries which

e is both monotone and one-sided-testable with O(g(n)) queries?

e is monotone, and has a test making ©(g(n)) queries with running time polynomial
in qg(n)?

e has a O(g(n))-query, poly(g(n))-time test which is also one-sided?

Towards this end, it may be useful to consider whether one can use a permutation-

invariant LDPC code in the initial construction (see Subsection 4.2.2).

Decoupling the dependence on n and . For the case of generic functions, Chap-
ter 4 establishes the existence of properties with query complexity ¢ - ¢(n) 4+ f(¢) where
¢ is independent of €. Can this be established in other models? A discussion of this
possibility for the case of bounded-degree graphs (with no answer) can be found in the
conclusion of Section 4.4. What about properties of dense graphs? This question can be
asked, of course, for any combination of the desirable features in the different hierarchy

theorems.

Hard properties that are ‘self-similar’ at different values of n. The construc-

tions in Chapter 4 make no guarantees regarding the relation between II,,, and II,, for
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n1 < ng — not even if n; = ny £ 1. Can hard properties be constructed, and hierarchies
be shown to exist, for properties in which the property is ‘similar’ for different values of
n? e.g. where adding or removing a vertex from a satisfying graph puts it at a relatively
small distance from the property? This question can be asked also for any combination

of the desirable features in the different hierarchy theorems.

Tighter bounds on the effect of graph blowups on distances. As mentioned
in Chapter 3 and Chapter 4, the distance between graphs does not change overmuch
when applying an exactly-balanced blowup: It does not increase (an easy observation)
and does not drop by a factor higher than 3 (the result of [Pik10, Lemma 14]). An
example by Arie Matsliah shows that the distance can drop to as low as 10/11 of the
original distance. It would be interesting to tighten both the upper and lower bound
on the potential drop in distance, and to gain a better understanding of this drop in

distance.

The effect of hypergraph blowups on distances. Does Pikhurko’s result regard-
ing the preservation of distance under blowup carry to hypergraphs? Also, what about
an extension to hypergraphs of the similar lemma for the case of dispersed graphs and
imperfectly-balanced blowups (Lemma 4.5.13)? One tends to believe that both of these
should hold. Establishing the latter should also allow proving hierarchy theorems for

hypergraphs, or any dense structure.

7.3 Partite and multi-colored dense structures

Subgraph-freeness testing in partite vs general graphs. The state-of-the-art
lower bounds on induced subgraph freeness testing (specifically, triangle testing) are
based on using the arithmetic-progression-free set constructions in a partite graph
(tri-partite for the case of triangles); the fixed number of parts is what allows us to
apply this lower bound to the case of colored bipartite graphs or matrices, which can
simulate a higher number of parts — but not a general graph. Do better lower bounds
hold for testing induced subgraph freeness in general graphs, rather than for testing in
partite ones? Can constructions rely specifically on the “non-partiteness” of a graph? It
seems that this can be answered negatively, so that lower bounds in the general settings
are translatable to partite graph and colored bipartite graph lower bounds (by methods
similar to those used in Chapter 5), and partite graph tests can translate to tests of
general graphs (through the partitioning of general graphs and the testing of partite
subgraphs).

Expressive power of subgraph-freeness with multiple colors. The results pre-
sented in this thesis mean that three colors are more expressive than two in bipartite

graphs, in that properties which are harder to test can be expressed as freeness of
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certain induced subgraphs. What about three-vs-two colors in three-dimensional tensors
(i.e. 3-partite 3-uniform hypergraphs)? Perhaps it can it be shown that tensors can be
carved up into test-identifiable regions, so as to simulate additional colors (in which case
the query complexity of testing freeness of an arbitrary family of subtensors will not
be higher when allowing multiple cell colors). Also, is there additional such expressive

power in allowing more than three different colors in bipartite graphs?

7.4 Hypergraph partition properties

In studying tuple partition properties, the initial hope was to obtain a proof that a
wider class of tuple partition properties is pseudo-testable — rich enough to essentially
capture the property of a hypergraph having a certain regular partition. To express
the constraints necessary for representing such a regular partition, it is necessary to
cross-constrain elements and subtuples of a single tuple (see discussion in Section 6.1).
Attempts to establish the pseudo-testability of such properties have not met with success
thus far; had they succeeded, a test for a regular partition would be at hand, due to the

following lemma, which we present informally and without proof here:

Lemma 7.4.1. Consider the property of a (uniform) hypergraph having an e-reqular
partition with a fized mazimum number of partition sets m'. If a hypergraph has a
partition with m' sets, whose densities (with respect to the appropriately expressive
definitions of partition densities) are close to those densities corresponding to a regular

partition, then the graph is f(e)-close to having a g(e)-regular partition with m’' sets.

Efficiently testing for regular partitions in hypergraphs. Is the specific prop-
erty of a hypergraph having a regular partition, with a fixed maximum number of
partition sets, testable with poly(1/e) queries? If not, what lower and upper bounds
can one establish for the query complexity of this property? We note that the super-
polynomial lower bound, established for testing a partition property even with limited

expressibility, does not necessarily apply to this particular property.

Pseudo-testing vs. actual testing of rich-constraint partition properties.
With the limited expressibility imposed in this work, we’ve shown that testing a
hypergraph partition property is harder than pseudo-testing it. Does this hold for
rich-constraint partition properties? That is, can one show that pseudo-testing is, say,
polynomial in €? Or more generally, establish that the query complexity of pseudo-
testing is ¢1(g,m) and find a rich-constraint partition property requiring go(g,n) queries

with ¢1 = 0(q2)?

Possible hardness of non-rich partition properties. We've established that hy-
pergraph partition properties, even without ‘rich’ constraints, can capture a property

with query complexity super-polynomial in €. But this construction was not overly
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complex, and only utilized a maximum arity of 3. Can a more involved construction
be shown to require a super-polynomial number of queries in 1/e, significantly higher
than the bound due to the reduction from triangle-freeness testing? We have not even
ruled out the possibility that there exist partition properties of this kind whose query
complexity must depend on n: This would seem unlikely, as a small random subgraph
should exhibit about the same partition as the large graph, and such properties are

clearly inflatable; but this is not much more than intuition.

7.5 Expanding the testing model via ‘plugging’

Expanding the testing model via ‘plugging’ testable relations and functions
Consider questions of the following type: “Let E’ be all vertex tuples of a certain arity,
which satisfy a certain condition. Now, given a set of tuples, what fraction of it intersects
E'?” or “what is its distance from E’?”. One can think of this as a “formula-type
property” rather than a “sentence-type property” as in formal logic. Now, suppose one
has an oracle which answers questions of this type with certain query complexity to
the input structure. It would be interesting to consider property tests which use such
oracles as subroutines; in the case of such a subroutine giving an “is in E’ / is not in
E" answer, one could think of the test having temporarily or locally added a new edge
relation to the structure (in the same way as when quantifying over a relation variable
in formal logic, it is used as relation symbols from the vocabulary would be used).

In fact, this is done implicitly by many tests in the literature and some in this
work, e.g. when obtaining an approximate clustering of vertices using a signature
(Algorithm 4.3 in Chapter 4). One could think of such a test as constructing or learning
a probably-approximately-correct partition function, and then applying another test to
a structure which has both an edge relation and a partition function. If the construction
is valid and the richer-vocabulary structure test is valid, then so is the test of the
original structure. This conceptual approach links different testing models in a more
general way than mere reductions (Definition 2.4.1), and its study may yield some
“meta-results” regarding testing. Thus when given a property whose query complexity is
to be ascertained, one could approach the problem by augmenting the input structure
with “testable relations” or “testable functions”, and only need to consider the modified
problem as though these relations or functions were provided perfectly rather than

through a test.

7.6 Ordered structures

The dense structure testing models studied in this work all share the requirement that
properties be invariant to permutations of the vertices — that is, that properties not
relate to any ordering of the vertices. (An alternative definition of a test is proposed

in this work — Definition 2.1.4 — explicitly adopting the implications of this fact.)
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Testing models in which vertices are ordered, with no permutation possible, have not

been the object of much study thus far.

Efficient testing of induced (ordered) submatrices. [AFNO07] show that it is easy
to test a matrix for being free of a fixed set of small submatrices and their permutations.
What about a set of forbidden submatrices not closed to permutations? The answer to
this question regards testing matrices without ignoring the coordinate order. As part of
the research work leading to this thesis, efforts were made to apply the upper bounds
of [AFNO7] in this context, using a ‘conditional regularity’ lemma for forbidden small
submatrices (see Section 5.1); unfortunately, these efforts have not met with success. On
the other hand, there seems to be indication against the unordered-case result carrying

to ordered matrices.

Applicability of unordered results to the ordered settings. Generalizing the
previous questions, which results carry over from the unordered to the ordered-vertex
setting? Some can be seen to easily carry over, such as lower bounds on testing
forbidden subgraph freeness — using closure under permutations and a reduction to the
unordered case. What about results such as regularity-based (and other) upper bounds?
Canonization, adaptivity gaps, etc.? Also, what kind of upper and lower bounds can
one obtain in the ordered setting for specific properties with known n-dependent query

complexity in the unordered setting?
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