
Property Testing and Its Connection to Learning and
Approximation

ODED GOLDREICH

Weizmann Institute of Science, Rehovot, Israel

SHAFI GOLDWASSER

Massachusetts Institute of Technology, Cambridge, Massachusetts, and Weizmann Institute of Science,
Rehovot, Israel

AND

DANA RON

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. In this paper, we consider the question of determining whether a function f has property P
or is e-far from any function with property P. A property testing algorithm is given a sample of the
value of f on instances drawn according to some distribution. In some cases, it is also allowed to query
f on instances of its choice. We study this question for different properties and establish some
connections to problems in learning theory and approximation.

In particular, we focus our attention on testing graph properties. Given access to a graph G in the
form of being able to query whether an edge exists or not between a pair of vertices, we devise
algorithms to test whether the underlying graph has properties such as being bipartite, k-Colorable,
or having a r-Clique (clique of density r with respect to the vertex set). Our graph property testing
algorithms are probabilistic and make assertions that are correct with high probability, while making
a number of queries that is independent of the size of the graph. Moreover, the property testing
algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct
partitions of the graph that correspond to the property being tested, if it holds for the input graph.

An extended abstract of this work appeared in Proceedings of 36th Annual IEEE Symposium of
Foundations of Computing Science. IEEE, New York, 1995, pp. 339 –348.
While this work was done, O. Goldreich was on sabbatical leave at Laboratory of Computer Science,
Massachusetts Institute of Technology.
D. Ron would like to acknowledge the support of a National Science Foundation (NSF) postdoctoral
fellowship and a Bunting Fellowship.
Authors’ present addresses: O. Goldreich, Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science, Rehovot, Israel, e-mail: oded@wisdom.weizmann.ac.id; S.
Goldwasser and D. Ron, Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Room 326, Cambridge, MA 02139, e-mail: {shafi, danar}@theory.lcs.mit.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0004-5411/98/0700-0653 $05.00

Journal of the ACM, Vol. 45, No. 4, July 1998, pp. 653–750.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—probabilistic computation; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems—computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, computational learning theory, graph
algorithms

1. Introduction

Property Testing is concerned with the computational task of determining whether
a given object has a predetermined property or is “far” from any object having
the property. A notion of Property Testing was first formulated by Rubinfeld and
Sudan [1996]. In their formulation, a property testing algorithm for property P is
given oracle access to the tested function f. The algorithm must distinguish the
case that f has property P from the case that f is far from any function having the
property. Distance between functions is measured in terms of the fraction of
arguments in the domain on which the functions disagree. Note that property
testing so defined is a relaxation of the standard decision task (of distinguishing
the case that f has property P from the case f does not have property P). Here we
are interested in testers that are far more efficient than the corresponding
decision procedure.

Property testing emerges naturally in the context of program checking and
probabilistically checkable proofs (PCP). Specifically, in the context of program
checking, one may choose to test that the program satisfies certain properties
before checking that it computes a specified function. This paradigm has been
followed both in the theory of program checking [Blum et al. 1993; Rubinfeld
and Sudan 1996], and in practice where often programmers first test their
programs by verifying that the programs satisfy properties that are known to be
satisfied by the function they compute. In the context of probabilistically
checkable proofs, the property tested is being a codeword with respect to a
specific code. This paradigm, explicitly introduced in Babai et al. [1991a], has
shifted from testing codes defined by low-degree polynomials1 to testing Had-
amard codes,2 and recently to testing the “long code.”3 All of these papers have
focused on property testing in the sense of Rubinfeld and Sudan [1996], and on
testing algebraic properties such as linearity, multi-linearity and being a low-
degree polynomial.

In this work we extend the scope of property testing in two ways:

(1) Working within the above framework, we venture into the domain of
combinatorial objects. In particular, we study property testing as applied to
graph properties, demonstrating its relevance to standard and dual notions of
approximation, and derive extremely fast algorithms for testing several
natural graph properties. These in turn yield results such as a constant-time
approximation scheme for Max-Cut in dense graphs. We believe that, in
general, property testing offers a new perspective on approximation problems.

1 See, for example, Babai et al. [1991a; 1991b], Feige et al. [1991], Arora and Safra [1992], and Arora
et al. [1992].
2 See, for example, Arora et al. [1992], Bellare et al. [1993; 1995a], Bellare and Sudan [1994], Kiwi
[1996], and Trevisan [1997].
3 See, for example, Bellare et al. [1995b], Håstad [1996a; 1997], and Trevisan [1998].

654 O. GOLDREICH ET AL.

(2) We generalize the above definition so as to allow an arbitrary probability
distribution D over arguments to the function f, as well as the consideration
of algorithms that only obtain random labeled examples, of the form (x,
f(x)), where x is selected according to D. Distance between functions is
measured, accordingly, with respect to D. This formulation is inspired by the
PAC learning model [Valiant 1984], and we indeed relate property testing so
formulated to various variants of the PAC model. We believe that property
testing offers new perspective with respect to computational learning theory.

We start with the second item.

1.1. GENERAL PROPERTY TESTING. We are interested in the following general
question of Property Testing:

Let P be a fixed property of functions, and f be an unknown function. Our goal
is to determine (possibly probabilistically) if f has property P or if it is far from
any function that has property P, where distance between functions is mea-
sured with respect to some distribution D on the domain of f. Towards this
end, we are given examples of the form (x, f(x)), where x is distributed
according to D. We may also be allowed to query f on instances of our choice.

Let ^ be the class of functions that satisfy property P. Then, testing property P
corresponds to testing membership in the class ^. The two most relevant
parameters to property testing are the permitted distance, hereafter denoted e,
and the desired confidence, denoted d. We require the tester to accept each
function in ^ and reject every function that is further than e away from any
function in ^. We allow the tester to be probabilistic, and make incorrect
positive and negative assertions with probability at most d. The complexity
measures we focus on are the sample complexity (the number of examples of the
function’s values that the tester requires), the query complexity (the number of
function queries made—if at all), and the running time of the tester.

We believe that property testing is a natural notion whose relevance to
applications goes beyond program checking, and whose scope goes beyond the
realm of testing algebraic properties. Firstly, in some cases, one may be merely
interested in whether a given function, modeling an environment (respectively, a
given program) possess a certain property rather than be interested in learning
the function (respectively, checking that the program computes a specific
function correctly). In such cases, learning the function (respectively, checking
the program) as a means of ensuring that it satisfies the property may be an
over-kill. Secondly, theoretical analysis of learning algorithms typically works
under the postulation that the function (representing the environment) belongs
to a particular class.4 It may be more efficient to test this postulation first before
trying to learn the function (and possibly failing when the postulation is wrong).5

We stress that the generalization of property testing to arbitrary distributions and

4 Here and throughout the introduction we refer to the standard PAC learning model. We shortly
discuss agnostic learning [Kearns et al. 1992], where no assumption is made on the target function,
towards the end of Section 3.
5 Similarly, in the context of program checking, one may choose to test that the program satisfies
certain properties before checking that it computes a specified function. As mentioned above, this
paradigm has been followed both in the theory and practice of program checking.

655Property Testing and Learning and Approximation

to algorithm that only obtain random labeled examples is essential to some of the
potential applications mentioned above.

1.1.1. Property Testing and Learning Theory. Our formulation of testing mim-
ics the standard frameworks of learning theory. In both cases one is given access
to an unknown target function (either in the form of random instances accompa-
nied by the function values or in the form of oracle access to the function). (An
insignificant semantic difference is that, for sake of uniformity, even in case the
functions are Boolean, we refer to them as functions rather than concepts.)
However, there are two important differences between property testing and
learning. Firstly, the goal of a learning algorithm is to find a good approximation
to the target function f [^, whereas a testing algorithm should only determine
whether the target function is in ^ or is far away from it. This makes the task of
the testing seem easier than that of learning. On the other hand, a learning
algorithm should perform well only when the target function belongs to ^
whereas a testing algorithm must perform well also on functions far away from ^.

We show that the relation between learning and testing is nontrivial. On one
hand, proper learning (i.e., when the hypothesis of the learning algorithm must
belong to the same class as the target function) implies testing. On the other
hand, there are function classes for which testing is harder than (nonproper)
learning (i.e., when the hypothesis is not required to belong to the same class as
the target function), provided 13 ÷ @33. Nonetheless, there are also function
classes for which testing is much easier than learning. In addition, the graph
properties discussed below provide a case where testing (with queries) is much
easier than learning (also with queries).

The above results as well as additional results regarding the relations between
property testing and learning appear in Section 3.

1.2. TESTING GRAPH PROPERTIES. Property testing is a natural notion of
approximation, and furthermore it is related to standard notions of approxima-
tion. This holds even with respect to the restricted notion of property testing
where one considers only the uniform distribution and allows the algorithm to
make queries of its choice. The above assertion is demonstrated within one of the
most basic domains of approximation algorithms—the one of graph algorithms.
But let us start with a general high level discussion.

1.2.1. Motivating Discussion. Throughout the rest of the introduction, we
refer to property testing in the restricted sense of Rubinfeld and Sudan [1996].
Recall that the definition of property testing is a relaxation of the standard
definition of a decision task: The tester is allowed arbitrary behavior when the
object does not have the property, and yet is “close” to an object having the
property. Thus, a property tester may be far more efficient than a standard
decision procedure (for the same property).

In case the object is huge, as when one thinks of a function and algorithms
which operate in time polynomial in the length of the arguments to the function,
there is actually no other alternative to approximation. That is, it is typically
infeasible (i.e., requires exponential time in the length of the arguments) to
decide whether such a function has the desired property. A property testing
algorithm which operates in time polynomial in the length of the arguments thus

656 O. GOLDREICH ET AL.

offers a feasible approximation to a problem that is intractable in the exact
formulation.

Property testers are valuable also in case one deals with objects of feasible size
(i.e., size for which scanning the entire object is feasible): If a property tester is
much faster than the exact decision procedure, then it makes sense to run it
before running the decision procedure. In case the object is far from having the
property, we may obtain an indication towards this fact, and save the time we
might have used running the decision procedure. In case the tester supplies
proofs of violation of the property (as in some of the testers discussed below), we
obtain an absolutely correct answer without running the decision procedure at
all. Thus, we may only need to run the decision procedure on objects which are
close to having the property. In some setting where typical objects are either
good (i.e., have the property) or very bad (i.e., are very far from objects having
the property), we may gain a lot. Furthermore, if it is guaranteed that objects are
either good or very bad, then we may not even need to run the decision
procedure at all. The gain in such a setting is enormous.

Being close to an object which has the property is a notion of approximation
which, in certain applications, may be of great value. In some cases, being close
to an object having the property translates to a standard notion of approxima-
tion. In other cases, it translates to a notion of “dual approximation”. This point
is clarified and exemplified below (by referring to specific properties). In both
cases, a fast property tester that is more efficient than the decision procedure is
of value, both if the decision procedure is feasible and more so if it is not.

Alternatively, we may be forced to take action, without having time to run a
decision procedure, while given the option of modifying the object in the future,
at a cost proportional to the number of modifications of the object. For example,
suppose you are given a graph which represents some design problem, where
Bipartite graphs correspond to a good design and changes in the design
correspond to edge additions/omissions. Using a Bipartiteness tester, you always
accept a good design and reject with high probability designs that will cost a lot
to modify. You may still accept bad designs, but then you know that it will not
cost you much to modify them later.

1.2.2. Representing graphs as functions. We view graphs as Boolean functions
on pairs of vertices, the value of the function representing the existence of an
edge. We mainly consider testing algorithms which use queries and work under
the uniform distribution. That is, a testing algorithm for graph property P makes
queries of the form “is there an edge between vertices u and v” in an unknown
graph G. Accordingly, distance between two N-vertex graphs is defined as the
fraction (over N2) of vertex-pairs that are adjacent in one graph but not in the
other. A testing algorithm for property P is required to decide whether G has
property P or is “e-away” from any graph with property P, and is allowed to err
with probability, say, d 5 1/3. (For simplicity, we assume throughout the
introduction that d 5 1/3. Standard error-reduction techniques are obviously
applicable to property testing. However, better dependencies on d may be
obtained in special cases as can be seen in the rest of the paper.)

A few comments are in place. Firstly, we note that this representation, as well
as our results, are applicable both in case the graph is huge and in case it is of
feasible size. The reader may thus choose whether to think of the graph as being

657Property Testing and Learning and Approximation

huge and so accessible only by such queries, or as being explicitly given and
inspected in a random-access manner. Secondly, the above adjacency predicate
representation is most appropriate for dense graphs, and so the reader may think
of the graph as being dense (e.g., having at least eN2 edges). An alternative
representation, appropriate for bounded-degree graphs, has been subsequently
considered in Goldreich and Ron [1997a].

1.2.3. Our Algorithms. We present algorithms of poly(1/e) query-complexity
and running-time6 at most exp(Õ(1/e3)) for testing the following natural graph
properties:

—k-Colorability, for any fixed k $ 2. (Here the query-complexity is poly(k/e),
and for k 5 2 the running-time is Õ(1/e3).)

—r-Clique, for any r . 0. That is, does the N-vertex graph have a clique of size
rN?

—r-Cut, for any r . 0. That is, does the N-vertex graph have a cut of size at least
rN2? A generalization to k-way cuts works with query-complexity poly((log
k)/e), and has running time exp(poly(log k/e)).

—r-Bisection, for any r . 0. That is, does the N-vertex graph have a bisection of
size at most rN2?

Furthermore:

(1) For all the above properties, in case the graph has the desired property, the
testing algorithm outputs some auxiliary information which allows to con-
struct, in poly(1/e) z N-time, a partition that approximately obeys the
property. For example, for r-Cut, we can construct a partition with at least
(r 2 e) N2 crossing edges.

(2) The k-Colorability tester has one-sided error: it always accepts k-Colorable
graphs. Furthermore, when rejecting a graph, this tester always supplies a
poly(1/e)-size subgraph that is not k-Colorable. All other algorithms have
two-sided error, and this is unavoidable within o(N) query-complexity.

(3) Our algorithms for k-Colorability, r-Clique and r-Cut can be easily extended
to provide testers with respect to product distributions: that is, distributions
C: V(G)2 ° [0, 1] of the form C(u, v) 5 c(u) z c(v), where c: V(G) °
[0, 1] is a distribution on the vertices, which is poly-time sampleable (by the
tester). In contrast, it is not possible to test any of the graph properties
discussed above in a distribution-free manner.

We comment that, except for Bipartite (2-Colorability) testing, running-time of
poly(1/e) is unlikely, as it will imply 13 # @33. Also, none of these properties
can be tested without queries when using o(=N) random examples.

1.2.3.1. GENERAL GRAPH PARTITION. All the above property testing problems
are special cases of the General Graph Partition Testing Problem, parameterized
by a set of lower and upper bounds. In this problem, one needs to determine
whether there exists a k-partition of the vertices so that the number of vertices in
each component of the partition as well as the number of edges between each

6 Here and throughout the paper, we consider a RAM model in which trivial manipulation of vertices
(e.g., reading/writing a vertex name and ordering vertices) can be done in constant time.

658 O. GOLDREICH ET AL.

pair of components falls between the corresponding lower and upper bounds (in
the set of parameters). We present an algorithm for solving the above problem.
The algorithm uses Õ(k2/e)2k1O(1) queries, runs in time exponential in its
query-complexity, and makes two-sided error. Approximating partitions, if exist-
ing, can be efficiently constructed in this general case as well. We comment that
the specialized algorithms perform better than the general algorithm with the
appropriate parameters.

1.2.3.2. OTHER GRAPH PROPERTIES. Going beyond the general graph parti-
tion problem, we remark that there are graph properties that are very easy to test
(e.g., Connectivity, Hamiltonicity, and Planarity). The reason is that for these
properties either every N-vertex graph is at distance at most O(1/N) from a
graph having the desired property (and so for e 5 V(1/N), the trivial algorithm
which always accepts will do), or the property holds only for sparse graphs (and
so for e 5 V(1/N) one may reject any non-sparse graph). On the other hand,
there are graph properties in 13 that are extremely hard to test; namely, any
testing algorithm must inspect at least V(N2) of the vertex pairs. In view of the
above, we believe that providing a characterization of graph properties, accord-
ing to the complexity of testing them, may be very challenging.

1.2.4. Testing versus deciding and approximating. We shortly discuss the rela-
tion between testing graph properties and some well-known computational tasks.

1.2.4.1. RELATION TO DECIDING (RECOGNIZING) GRAPH PROPERTIES. Our
notion of testing a graph property P is a relaxation of the notion of deciding
(recognizing) the graph property P, which has received much attention in the last
three decades [Lov́asz and Young 1991]. In the classical problem, there are no
margins oferror, and one is required to accept all graphs having property P and
reject all graphs which lack it. In 1975, Rivest and Vuillemin resolved the
Aanderaa–Rosenberg Conjecture [Rosenberg 1973], showing that any determin-
istic procedure for deciding any nontrivial monotone N-vertex graph property
must examine V(N2) entries in the adjacency matrix representing the graph. The
query complexity of randomized decision procedures was conjectured by Yao to
also be V(N2). Progress towards proving this conjecture was made in Yao
[1987], King [1991], and Hajnal [1991] culminating in an V(N4/3) lower bound.
This stands in striking contrast to the results mentioned above, by which some
nontrivial monotone graph properties can be tested by examining a constant
number of locations in the matrix.

1.2.4.2. APPLICATION TO THE STANDARD NOTION OF APPROXIMATION. The
relation of testing graph properties to the standard notions of approximation is
best illustrated in the case of Max-Cut. Any tester for the class r-Cut, working in
time T(r, e, N), yields an algorithm for approximating the maximum cut in an
N-vertex graph, up to additive error eN2, in time 1/e z T(r, e, N). Thus, for any
constant e . 0, using the abovementioned tester we can approximate the size of
the max-cut to within eN2 in constant time.7 This yields a constant time
approximation scheme (i.e., to within any constant relative error) for dense
graphs, improving over previous work of Arora et al. [1995] and de la Vega

7 We comment that due to the specific structure of our tester, the value of the maximum cut is
actually approximated in time T(r, e, N), rather than 1/e z T(r, e, N).

659Property Testing and Learning and Approximation

[1994] who solved this problem in polynomial-time (i.e., in O(N1/e2

)-time and
(exp(Õ(1/e2)) z N2)-time, respectively). In the latter works, the problem is
solved by actually constructing approximate max-cuts. Finding an approximate
max-cut does not seem to follow from the mere existence of a tester for r-cut;
yet, as mentioned above, our tester can be used to find such a cut in time linear
in N (i.e., (Õ(1/e2) z N 1 exp(Õ(1/e3)))-time).

One can turn the question around and ask whether approximation algorithms
for dense instances can be transformed into corresponding testers as defined
above. In several cases this is possible. For example, using some ideas of this
work, the Max-Cut algorithm of de la Vega [1994] can be transformed into a
tester of complexity comparable to ours. We do not know whether the same is
true with respect to the algorithms in Arora et al. [1995]. Results on testing
graph properties can be derived also from Alon et al. [1994].

1.2.4.3. RELATION TO “DUAL APPROXIMATION” (CF., [HOCHBAUM AND SHMOYS

1987; HOCHBAUM AND SHMOYS 1988]). To illustrate this relation, we consider
the r-Clique Tester mentioned above. The traditional notion of approximating
Max-Clique corresponds to distinguishing the case in which the max-clique has
size at least rN from, say, the case in which the max-clique has size at most
rN/ 2. On the other hand, when we talk of testing “r-Cliqueness”, the task is to
distinguish the case in which an N-vertex graph has a clique of size rN from the
case in which it is e-far from the class of N-vertex graphs having a clique of size
rN. This is equivalent to the “dual approximation” task of distinguishing the case
in which an N-vertex graph has a clique of size rN from the case in which any rN
subset of the vertices misses at least eN2 edges. To demonstrate that these two
tasks are vastly different we mention that whereas the former task is NP-Hard,
for r , 1/4 (see Bellare et al. [1995b], Håstad [1996a], and Håstad [1996b]), the
latter task can be solved in exp(O(1/e2))-time, for any r, e . 0. We believe that
there is no absolute sense in which one of these approximation tasks is more
important than the other: Each of these tasks may be relevant in some
applications and irrelevant in others.

As another illustration of the applicability to “dual approximation” problems,
we discuss our results regarding testing k-Colorability. It is known that it is
NP-Hard to distinguish 3-Colorable graphs from graphs in which every 3-parti-
tion of the vertex set violates at least a constant fraction of the edges [Petrank
1994]. In contrast, our k-Colorability Tester implies that solving the same
promise problem is easy for dense graphs, where by dense graphs we mean
N-vertex graphs with V(N2) edges. This is the case since, for every e . 0, our
tester can distinguish, in exp(k2/e3)-time, between k-Colorable N-vertex graphs
and N-vertex graphs which remain non-k-Colorable even if one omits at most
eN2 of their edges.8

Another application of our 3-Colorability Tester uses the fact that, for every
e . 0, in case the N-vertex graph is 3-colorable, the tester may retrieve in linear
time a 3-partition which violates at most eN2 edges. Thus, we may reduce the
general problem of coloring 3-Colorable graphs with few edges to the same
problem restricted to nondense graphs (i.e., N-vertex graphs with O(N2) edges).

8 As noted by Noga Alon, similar results, alas with much worse dependence on e, can be obtained by
using the results of Alon et al. [1994].

660 O. GOLDREICH ET AL.

(The reduction produces a coloring for dense graphs with 3 times more colors
than the number used by the coloring of the nondense graphs, but a factor of 3
seems small at the current state of art for this problem [Karger et al. 1994].) We
remark that some known algorithms for this task seem to perform better when
the maximum degree of vertices in the graph is smaller [Karger et al. 1994].
Furthermore, deciding k-Colorability even for N-vertex graphs of minimum
degree at least (k 2 3)/(k 2 2) z N is NP-complete (cf., [Edwards 1986]). On
the other hand, Edwards also gave a polynomial-time algorithm for k-coloring
k-colorable N-vertex graphs of minimum degree at least aN, for any constant a
. (k 2 3)/(k 2 2).

1.2.5. Our Techniques. Our algorithms share some underlying ideas. The first
is the uniform selection of a small sample of vertices and the search for a suitable
partition of this sample. In case of k-Colorability, certain k-Colorings of the
subgraph induced by this sample will do, and are found by k-Coloring a slightly
augmented graph. In case of the other algorithms, we exhaustively try all possible
partitions. This is reminiscent of the exhaustive sampling of Arora et al. [1995],
except that the partitions considered by us are always directly related to the
combinatorial structure of the problem. We show how each possible partition of
the sample induces a partition of the entire graph so that the following holds. If
the tested graph has the property in question then, with high probability over the
choice of the sample, there exists a partition of the sample which induces a
partition of the entire graph so that the latter partition approximately satisfies
the requirements established by the property in question. For example, in case
the graph has a r-Cut there exists a 2-way-partition of the sample inducing a
partition of the entire graph with at least (r 2 e) N2 crossing edges. On the
other hand, if the graph should be rejected by the test, then by definition no
partition of the entire graph (and in particular none of the induced partitions)
approximately obeys the requirements.

The next idea is to use an additional sample to approximate the quality of each
such induced partition of the graph, and discover if at least one of these
partitions approximately obeys the requirements of the property in question. An
important point is that since the first sample is small (i.e., of size poly(1/e)), the
total number of partitions it induces is only exp(poly(1/e)). Thus, the additional
sample must approximate only these many partitions (rather than all possible
partitions of the entire graph) and it suffices that this sample be of size poly(1/e).

The difference between the various algorithms is in the way in which partitions
of the sample induce partitions of the entire graph. The simplest case is in testing
Bipartiteness. For a partition (S1, S2) of the sample, all vertices in the graph that
have a neighbor in S1 are placed on one side, and the rest of the vertices are
placed on the other side. In the other algorithms, the induced partition is less
straightforward. For example, in case of r-Clique, a partition (S1, S2) of the
sample S with uS1u ' ruSu, induces a candidate clique roughly as follows. Consider
the set T of graph vertices each neighboring all of S1. Then the candidate clique
consists of the rN vertices with the highest degree in the subgraph induced by T.
In the Bisection and General Partition testing algorithms, auxiliary guesses that
are implemented by exhaustive search are used (to induce a partition on the
entire graph).

661Property Testing and Learning and Approximation

A simple observation that is useful in our analyses is that we do not need the
sample to approximate well all relevant quantities (e.g., the degree of all vertices
in the graph). It suffices to approximate well most of these quantities. This
observation may explain how we can manage with a sample of size independent
of the size of the graph.

1.3. OTHER RELATED WORK

1.3.1. Property Testers Implicit in Previous Works. As mentioned above, results
on testing graph properties can be derived from Alon et al. [1994]. That paper
proves a constructive version of the Regularity Lemma of Szemerédi, and obtains
from it a polynomial-time algorithm that given an N-vertex graph, e . 0 and k $
3, either finds a subgraph of size f(e, k) which is not k-Colorable, or omits at
most eN2 edges and k-Colors the rest. Noga Alon has observed that the analysis
can be modified to yield that almost all subgraphs of size f(e, k) are not
k-Colorable, which in turn implies a tester with query complexity f(e, k)2 for
k-Colorability. In comparison with our k-Colorability Tester, which takes a
sample of O(e23k2 log k) vertices, the k-Colorability tester derived from Alon et
al. [1994] takes a much bigger sample— of size equaling a tower of (k/e)20

exponents (i.e., log* f(e, k) 5 (k/e)20).

1.3.2. Property Testing in the Context of Program Checking. There is an
immediate analogy between program self-testing [Blum et al. 1993] and property-
testing with queries. The difference is that in self-testing, a function f (represented
by a program) is tested for being close to a fully specified function g, whereas in
property-testing the test is whether f is close to any function in a function class &.
Interestingly, many self-testers [Blum et al. 1993; Rubinfeld and Sudan 1996]
work by first testing that the program satisfies some properties that the function
it is supposed to compute satisfies (and only then checking that the program
satisfies certain constraints specific to the function). Rubinfeld and Sudan [1996]
defined property testing, under the uniform distribution and using queries, and
related it to their notion of Robust Characterization. Rubinfeld [1994] focuses on
property testing as applied to properties which take the form of functional
equations of various types.

1.3.3. Property Testing in the Context of Learning Theory. Departing from work
in Statistics regarding the classification of distributions (e.g., [Hoeffding and
Wolfowitz 1958; Cover 1973; Zeitouni and Kulkarni [1995]), Ben-David [1992]
and Kulkarni and Zeitouni [1993] considered the problem of classifying an
unknown function into one of two classes of functions, given labeled examples.
Ben-David studied this classification problem in the limit (of the number of
examples), and Kulkarni and Zeitouni studied it in a PAC inspired model. For
any fixed e, the problem of testing the class ^ with distance parameter e can be
casted as such a classification problem (with ^ and the set of functions e-away
from ^ being the two classes). A different variant of the problem was considered
by Yamanishi [1995].

1.3.4. Approximation in Dense Graphs. As stated previously, Arora et al.
[1995] and de la Vega [1994] presented polynomial-time approximation schemes
(PTAS) for dense instances of Max-Cut. The approach of Arora et al. uses
Linear Programming and Randomized Rounding, and applies to other problems

662 O. GOLDREICH ET AL.

which can be casted as “smooth” Integer Programs.9 The methods of de la Vega
[1994] are purely combinatorial and apply also to similar graph partition
problems. Following the approach of Alon et al. [1994], but using a relaxation of
the regularity Lemma (and thus obtaining much improved running times), Frieze
and Kanan [1996] devise PTAS for several graph partition problems such as
Max-Cut and Bisection. We note that compared to all the above results, our
respective graph partitioning algorithms have better running-times (not to
mention that we obtain constant-time approximation schemes for approximating
only the value of the partition). Like de la Vega, our methods use elementary
combinatorial arguments related to the problem at hand. Still our methods
suffice for dealing with the General Graph Partition Problem.

We note that Arora et al. [1995] showed that the “dense subgraph” problem, a
generalization of r-Clique, has a PTAS for dense instances. Our General Graph
Partition algorithm (with the appropriate setting of the parameters) improves on
their result.

1.4. SUBSEQUENT WORK. As mentioned above, our representation of graphs
by their adjacency predicate is most adequate for dense graphs. Another natural
representation, most adequate for bounded-degree graphs was subsequently
suggested in Goldreich and Ron [1997]: An N-vertex graph of degree bound d is
represented there by the incidence function, g: V 3 [d]° V ø {0}, so that
g(u, i) 5 v if v is the ith vertex incident at u, and g(u, i) 5 0 [y V if u has less
than i neighbors.

As usual, the choice of representation has a fundamental impact on the
potential algorithm. Here, the impact is even more dramatic since we seek
algorithms that only inspect a relatively small fraction of the object (graph
represented by a function). Furthermore, there is another fundamental impact of
the choice of representation on the task of property testing. This has to do with
our definition of distance, which is relative to the size of the domain of the
function. In particular, distance e in the adjacency predicate representation
(adopted in this paper) means a symmetric difference of 2e z N2 edges, whereas
in the incident function representation (of Goldreich and Ron [1997]) this means
a symmetric difference of 2e z dN edges. (In both cases, the extra factor 2 is due
to the redundant representation which is adopted for sake of simplicity.)

In contrast to our poly(1/e)-query Bipartite tester (for the adjacency predicate
representation), it was proven in Goldreich and Ron [1997] that testing Bipar-
titeness in the incident function representation requires V(=N) queries. Inter-
estingly, this bound is tight up to a polylogarithmic factor, as shown in Goldreich
and Ron [1998] which presents a Bipartite tester for the incident function
representation working in time O(poly(e21 log N) z =N). We mention that
Goldreich and Ron [1997] also presents poly(1/e)-time algorithms for testing
k-Connectivity, for k $ 1, Planarity and other properties (all in the incident
function representation).

In recent work, Kearns and Ron [1998] generalize our definition of property
testing, and present testing algorithms that use only random examples for classes
of functions that have been studied in the learning literature.

9 In Arora et al. [1996], the approach of Arora et al. [1995] is extended to other problems, such as
Graph Isomorphism, using a new rounding procedure for the Assignment Problem.

663Property Testing and Learning and Approximation

We also mention the work of Ergun et al. [1998], in which they propose the
study of Spot Checker, which in some contexts coincides with property testing.

1.5. ORGANIZATION. The paper is organized in two parts. The first part
focuses on property testing in general: A definition is given and discussed in
Section 2. In Section 3, we explore the relations between property testing and
learning. General observations regarding property testing appear in Section 4.

The second part of the paper focuses on testing graph properties: The basic
framework is presented in Section 5. In Section 6, we present the Bipartiteness
tester, and its generalization to a k-Colorability Tester. In Section 7, we present
our tester for r-Clique. In Section 8, we present our tester for r-CUT, and its
generalization to Bisection. The general graph-partition problem is treated in
Section 9. We conclude, in Section 10, with comments regarding extensions and
limitations of the above algorithms and problems, as well as discuss other graph
properties.

Appendix A contains a list of some recurring notation, and Appendix B recalls
standard probabilistic inequalities which are extensively used.

Part I: General Property Testing

2. Definitions

Let ^ 5 {^n} be a parameterized class of functions, where the functions10 in
^n are defined over {0, 1}n and let $ 5 {Dn} be a corresponding class of
distributions (i.e., Dn is a distribution on {0, 1}n). We use x ; Dn to denote
that x is distributed according to the distribution Dn. We say that a function f
defined on {0, 1}n is e-close to ^n with respect to Dn if there exists a function
g [^n such that

Prx;Dn
@ f~ x! Þ g~ x!# # e. (1)

Otherwise, f is e-far from ^n (with respect to Dn).
We shall consider several variants of testing algorithms, where the most basic

one is defined as follows:

Definition 2.1 (Property Testing). Let ! be an algorithm which receives as
input a size parameter n, a distance parameter 0 , e , 1, and a confidence
parameter 0 , d , 1/2. Fixing an arbitrary function f and distribution Dn over
{0, 1}n, the algorithm is also given access to a sequence of f-labeled examples,
(x1, f(x1)), (x2, f(x2)), . . . , where each xi is independently drawn from the
distribution Dn. We say that ! is a property testing algorithm (or simply a testing
algorithm) for the class of functions ^ if for every n, e and d and for every
function f and distribution Dn over {0, 1}n the following holds

—if f [^n, then with probability at least 1 2 d (over the examples drawn from
Dn and the possible coins tosses of !), ! accepts f (i.e., outputs 1);

—if f is e-far from ^n (with respect to Dn), then with probability at least 1 2 d,
! rejects f (i.e., outputs 0).

10 The range of these functions may vary and for many of the results and discussions it suffices to
consider Boolean functions.

664 O. GOLDREICH ET AL.

The sample complexity of ! is a function of n, e, and d bounding the number of
labeled examples examined by ! on input (n, e, d).

Though it was not stated explicitly in the definition, we shall usually also be
interested in bounding the running time of a property testing algorithm (as a
function of the parameters n, d, e, and in some case of a complexity measure of
the class ^). We consider the following variants of the above definition:

(1) Dn may be a specific distribution that is known to the algorithm. In
particular, we shall be interested in testing with respect to the uniform
distribution.

(2) Dn may be restricted to a known class of distributions (e.g., product
distributions).

(3) The algorithm may be given access to an oracle for the function f, which
when queries on x [{0, 1}n, returns f(x). In this case, we refer to the
number of queries made by ! (which is a function of n, e, and d), as the
query complexity of !.

(4) In some cases, the algorithm might have the additional feature that whenever
it outputs fail it also provides a certificate to the fact that f [y F. Certificates
are defined with respect to a verification algorithm that accepts a sequence of
labeled examples whenever there exists f [^n which is consistent with the
sequence. (We do not require that the algorithm reject each sequence which
is not consistent with some f [^n.) A certificate for f [y ^n is an f-labeled
sequence which is rejected by the verification algorithm.

(5) The algorithm may have only one-sided error. Namely, in case f [^ \, the
algorithm always accepts f.

(6) The algorithm is given two distance parameters, e1 and e2, and is required to
pass with high probability every f which is e1-close to Fn, and fail every f
which is e2-far from Fn.

3. On the Relation between Property Testing and PAC Learning

A Probably Approximately Correct (PAC) learning algorithm [Valiant 1984] works
in the same framework as that described in Definition 2.1 except for the
following (crucial) differences:

(1) It is given a promise that the unknown function f (referred to as the target
function) belongs to ^;

(2) It is required to output (with probability at least 1 2 d) a hypothesis function
h which is e-close to f, where closeness is as defined in Eq. (1) (and e is
usually referred to as the accuracy parameter).

Note that the differences pointed out above effect the tasks in opposite
directions. Namely, the absence of a promise makes testing potentially harder
than learning, whereas deciding whether a function belongs to a class rather than
finding the function may make testing easier.

In the learning literature, a distinction is made between proper (or representa-
tion dependent) learning and nonproper learning [Pitt and Valiant 1988]. In the
former model, the hypothesis output by the learning algorithm is required to
belong to the same function class as the target function f, that is, h [^, while in

665Property Testing and Learning and Approximation

the latter model, h [*, for some hypothesis class * such that ^ # *. We
assume that a proper learning algorithm (for ^) either halts without output or
outputs a function in ^, but it never outputs any function not in ^.11 There are
numerous variants of PAC learning (including learning with respect to specific
distributions, and learning with access to an oracle for the target function f
(which in the case of Boolean functions is referred to as a membership oracle)).
Unless stated otherwise, whenever we refer in this section to PAC learning we
mean the distribution-free no-query nonproper model described above. The same is
true for references to property testing. In addition, apart from one example, we
shall restrict our attention to classes of Boolean functions.

3.1. TESTING IS NOT HARDER THAN PROPER LEARNING

PROPOSITION 3.1.1. If a function class ^ has a proper learning algorithm !,
then ^ has a property testing algorithm !9 with sample complexity

m!9~n, e, d! 5 m!Sn,
e

2
,

d

2D 1 OS log~1/d!

e
D ,

where m!(z , z , z) is the sample complexity of !. Furthermore, the same relation
holds between the running times of the two algorithms.

PROOF. In order to test if f [^ or is e-far from any function in ^, we first
run the learning algorithm ! with confidence parameter d/2, and accuracy
parameter e/2, using random examples labeled by f. If ! does not output a
hypothesis, then we reject f. If ! outputs a hypothesis h (which must be in ^
since ! is a proper learning algorithm), then we approximate the distance
between h and f by drawing an additional sample of size O(e21 log(1/d)). If the
approximated distance is less than 3e/4 then we accept; otherwise, we reject.

In case f [^, with probability at least 1 2 d/2, !’s output, h, is e/2-close to f,
and an additive Chernoff bound (see Appendix B), tells us that with probability
at least 1 2 d/2 over the additional sample, we shall not reject it. In case f is e-far
from ^, any hypothesis h [^ is at least e-far from f, and with probability at
least 1 2 d/2 over the additional sample, f is rejected. e

In particular, the above proposition implies that if for every n, ^n has
polynomial (in n) VC-dimension [Vapnik and Chervonenkis 1971; Blumer et al.
1989],12 then ^ has a tester whose sample complexity is polynomial in n, 1/e, and
log(1/d). The reason is that classes with polynomial VC-dimension can be
properly learned from a sample of the above size [Blumer et al. 1989]. However,
the running time of such a proper learning algorithm, and hence of the resulting
testing algorithm might be exponential in n.

11 We remark that in case the functions in ^ have an easy to recognize representation, one can easily
guarantee that the algorithm never outputs a function not in ^, by simply checking the hypothesis’
representation. Standard classes considered in works on proper learning (e.g., Decision-Trees)
typically have this feature.
12 The Vapnik Chervonenkis (VC) dimension of a class ^n is defined to be the size d of the largest
set X [{0, 1}n for which the following holds. For each (of the 2d) partitions (X0, X1) of X there
exists a function f [^n such that for every x [X0, f(x) 5 0, and for every x [X1, f(x) 5 1. A
set X that has this feature is said to be shattered by ^n.

666 O. GOLDREICH ET AL.

COROLLARY 3.1.2. Every class that is learnable with constant confidence using a
sample of size poly(n/e) (and thus has a poly(n) VC dimension [Blumer et al.
1989]), is testable with a poly(n/e) z log(1/d) sample (in at most exponential time).

3.2. TESTING MAY BE HARDER THAN LEARNING. In contrast to Proposition
3.1.1 and to Corollary 3.1.2, we show that there are classes that are efficiently
learnable (though not by a proper learning algorithm) but are not efficiently
testable. This is proven by observing that many hardness results for proper
learning (cf. [Pitt and Valiant 1988; Blum and Rivest 1989; Pitt and Warmuth
1993]) actually establish the hardness of testing (for the same classes). Further-
more, we believe that it is more natural to view these hardness results as
referring to testing and derive the hardness for proper learning via Proposition
3.1.1. Thus, the separation between efficient learning and efficient proper
learning translates to a separation between efficient learning and efficient
testing.

PROPOSITION 3.2.1. If 13 ÷ @33, then there exist function classes that are not
poly(n/e)-time testable but are poly(n/e)-time (nonproperly) learnable.

PROOF. The proposition follows from the fact that many of the representation
dependent hardness results13 have roughly the following form. An NP-complete
problem is reduced to the following decision problem: Given a set S of labeled
examples, does there exist a function in ^ that is consistent with S? A learning
algorithm is forced to find a consistent function if one exists by letting the
support of the distribution D (which is allowed to be arbitrary) lie solely on S,
and setting e to be smaller than 1/ uS u. Actually, since the consistency problem is
that of deciding if there exists a consistent function and not necessarily of finding
such a function, it follows that the corresponding testing problem (using the
same D and e) is hard as well. Details follow.

Let ^ be a fixed class of functions and suppose that the following decision
problem is NP-complete

input. A sequence (x1, s1), . . . , (xt, s t), where xi [{0, 1}n, s i [{0, 1},
and t 5 poly(n).

question. Is there a function f [^n so that f(xi) 5 s i, for all i [[t] 5
def

{1,
. . . , t}.

Assuming that there exists a poly(n/e)-time property testing algorithm, de-
noted !, for the class ^, we construct a polynomial-time decision procedure for
the above problem (contradicting the assumption that NP ,y BPP). We invoke !
with parameters n, e and d, where e , 1/t (say e 5 1/(2t)), and say d 5 1/3.
Suppose that ! requires m 5

def
m!(n, e, d) samples. We uniformly select m

indices, denoted i1, . . . , im, (possibly with repetitions) out of [t] and feed !
with the labeled sample (xi1

, s i1
), . . . , (xim

, s im
). We decide according to !’s

output.
We analyze the performance of our algorithm by relating it to the performance

of the property testing algorithm on the uniform distribution over the set { xi ;

i [[t]}. Suppose first that there exists f [^n so that f(xi) 5 s i, for all i [[t].

13 See, for example, Gold [1998], Angluin [1978], Pitt and Valiant [1988], Blum and Rivest [1989],
and Pitt and Warmuth [1993].

667Property Testing and Learning and Approximation

In this case, we provide ! with a random sample labeled by a function in ^n and
thus with probability at least 1 2 d the test must accept. Thus, our decision
procedure accepts yes-instances with probability at least 1 2 d.

Suppose now that there exists no function f [^n such that f(xi) 5 s i, for all
i [[t]. This implies that the function f defined by f(xi) 5

def
s i, for all i [[t] (and

f(x) 5 0 for x [y { xi ; i [[t]}), is at distance at least 1/t . e from ^ (with
respect to the uniform distribution over { xi ; i [[t]}). Since we provide ! with
a random sample labeled by this f, the test must reject with probability at least
1 2 d. Hence, our decision procedure rejects no-instances with probability at
least 1 2 d.

This establishes, in particular, that testing the class of k-Term DNF (where k is
a constant) is NP-Hard (see Pitt and Valiant [1988]). On the other hand, k-Term
DNF (for constant k) is efficiently learnable (using the hypothesis class of
k-CNF) [Valiant 1984; Pitt and Valiant 1988]. e

We stress that whereas Proposition 3.1.1 generalizes to learning and testing
under specific distributions, and to learning and testing with queries, the proof of
Proposition 3.2.1 uses the premise that the testing (or proper learning) algorithm
works for any distribution and does not make queries.

3.3. TESTING MAY BE EASIER THAN LEARNING. We start by presenting a
function class that is easy to test but cannot be learned with polynomial sample
complexity, regardless of the running-time.

PROPOSITION 3.3.1. There exist function classes ^ such that:

—^ has a property testing algorithm whose sample complexity and running time are
O(e21 z log(1/d)) (i.e., independent of n);

—Any learning algorithm for ^ must have sample complexity exponential in n .

PROOF. It is possible to come up with quite a few examples of functions
classes for which the above holds. We give one example below. For each n let ^n

include all functions f over {0, 1}n, such that for every y [{0, 1}n21, f(1y) 5 1
(and if the first bit of the input is 0 then no restriction is made).

Given m 5 O(e21 log(1/d)) examples, labeled by an unknown f and drawn
according to an arbitrary distribution Dn, the testing algorithm will simply verify
that for all examples x whose first bit is 1, f(x) 5 1. If f [^n, it will always
accept it, and if f is e-far from Fn (with respect to Dn) then the probability that it
does not observe even a single example of the form (1y, 0) (and as a
consequence, accepts f) is bounded by (1 2 e)m , d. On the other hand,
the VC-dimension of ^n is 2n21 (since the set {0y ; y [{0, 1}n21} is
shattered by ^n). By Blumer et al. [1989], learning this class requires a sample of
size V(2n). e

The impossibility of learning the function class in Proposition 3.3.1 is due to its
exponential VC-dimension, (i.e., it is a pure information theoretic consider-
ation). We now turn to function classes of exponential (rather than double
exponential) size. Such classes are always learnable with a polynomial sample;
the question is whether they are learnable in polynomial-time. We present a
function class that is easy to test but cannot be learned in polynomial-time (even
under the uniform distribution), provided certain trapdoor one-way permutations

668 O. GOLDREICH ET AL.

exist (e.g., factoring is intractable). We start by defining this assumption, which in
some sense is weaker than the standard one (cf., Goldreich [1995, Sec. 2.4]). (We
comment that the standard term “trapdoor permutation” is somewhat misleading
since what is being defined is a collection of permutations.)

Definition 3.3.2. (Weak Trapdoor Permutations with Dense Domains). Let { pa:
Da ° Da}a[{0,1}* be a family of permutations. We say that this family has dense
domains if for some positive polynomial q[and all a’s, both Da # {0, 1}uau and
uDau $ 2 ua u/q(ua u) hold. The family is one-way if it satisfies

(1) (easy to evaluate). There exists a polynomial-time algorithm which given a
and x outputs pa(x).

(2) (hard to invert). No probabilistic polynomial-time algorithm can, given
uniformly chosen a and x, output pa

21(x) with, say, success probability at
least 1/n (where the probability is taken uniformly over the coin tosses of the
algorithm and all possible choices of a [{0, 1}n and x [Da).

The family is said to have weak trapdoors if for each a [{0, 1}* (equivalently,
for each pa) there exists a poly(uau)-size circuit which inverts pa.

The weak trapdoor condition is a relaxation of the standard condition which
requires also that one can efficiently generate (a, trapdoor)-pairs. The dense
domain condition is indeed nonstandard, but does hold for all popular candidates
(e.g., RSA and Rabin functions). See discussion in Canetti et al. [1996]. Another
nonstandard aspect of the definition is associating a permutation with each
string, whereas the standard definition associates permutations only with a subset
of all strings. Again, we note that in case of the popular candidates, permutations
are associated with a polynomial fraction of all strings of certain length, and so
we can modify these constructions so that a permutation is associated with each
string.14

PROPOSITION 3.3.3. If there exist weak trapdoor one-way permutations with
dense domains, then there exists a family of functions that can be tested in
poly(n/e)-time but cannot be learned in poly(n/e)-time, even with respect to the
uniform distribution. Furthermore, the functions can be computed by poly(n)-size
circuits.

PROOF. By Canetti et al. [1996], any collection of trapdoor one-way permuta-
tions with dense domains can be converted into a collection of trapdoor one-way
permutations where the domain of each pa is {0, 1}uau. Thus, we use such a
collection

$ pa: $0, 1% ua u°$0, 1% ua u%a[{0,1}*

We consider the function class 20 5 {20n}, where 20n consists of the
multivalued functions fa, so that fa(x) 5

def
(a, pa

21(x)) for every a, x [{0, 1}n.

14 One way of doing so proceeds in two steps, and is analogous to the Canetti et al. [1996]
transformation mentioned subsequently. First, one introduces dummy permutations for each string
that is not associated with a permutation in the original construction. This may weaken the one-way
property but still some “one-wayness” remains. Next, one amplifies the one-wayness by taking a
“direct product”—that is, for each a1, . . . , a t and x1, . . . , xt, we define a new function indexed by
the a-sequence that consists of the concatenation of the values of each function associated with an a i

evaluated at the corresponding xi.

669Property Testing and Learning and Approximation

Using the weak trapdoor condition, we know that the functions in 20n can be
computed by poly(n)-size circuits.

To test if f [20, we merely examine sufficiently many f-labeled examples.
Specifically, m 5

def
O(e21 log(1/d)) examples will do. For each labeled example,

(x, (a, y)), if pa(y) Þ x, then we reject f. In addition, we also reject if we see
two examples, (x1, (a1, y1)) and (x2, (a2, y2)), so that a1 Þ a2. Otherwise, we
accept f.

We show that this test works for any distribution on the examples and so the
class 20 is efficiently testable (in a distribution-free sense). Clearly, the test
always accepts fa [20n. Assuming that f is e-far from 20n, with respect to
some distribution D, we wish to show that f is rejected by the test with high
probability. We consider two cases.

Case 1. Suppose there exists an a such that the probability that the first
element of f(x) equals a is at least 1 2 e/2, where the probability is taken over
x ; D. Since f is e-far from 20n, we have in particular

Prx;Dn
@ f~ x! 5 fa~ x!# , 1 2 e

and so

q 5
def

Prx;Dn
@ x Þ pa~ y! and f~ x! 5 ~a, y! for some y#

5 Prx;Dn
@ f~ x! 5 ~a , y! for some y# 2 Prx;Dn

@ f~ x! 5 fa~ x!#

. S 1 2
e

2D 2 ~1 2 e! 5
e

2
.

Hence, the test accepts with probability at most (1 2 q)m , d.

Case 2. Suppose that for every a the probability that the first element of f(x)
equals a is at most 1 2 (e/2). Then, the probability that all m examples have a
label starting with the same a is at most

O
a

Prx;Dn
@?y such that f~ x! 5 ~a, y!#m,

which is bounded above by (1 2 (e/ 2))m21 , d.

Thus, in both cases, the test rejects e-far functions with sufficiently high
probability. We now turn to show that it is infeasible to learn the class 20 under
the uniform distribution. This is done by using any efficient learning algorithm,
!, in order to construct an algorithm that contradicts the one-way condition. The
inverting algorithm operates as follows, on inputs a and x, pa(x). First it
uniformly generates an fa-labeled sample {(xi, (a , yi))} for !. This is done by
uniformly selecting yi and setting xi 5 pa(yi). (Here we use the efficient
evaluation property of the collection.) Note that indeed fa(xi) 5 (a , pa

21(xi)) 5
(a, yi), and that xi is uniformly distributed. When the learning stage of ! is over,
the inverter supplies ! with x, asking for its label. With probability at least (1 2
d) z (1 2 e) . 1 2 d 2 e, taken uniformly over all possible x [{0, 1} ua u and the
internal coin tosses of both the inverter and !, algorithm ! returns the correct
label; that is, (a, pa

21(x)). Thus, an efficient learning algorithm is transformed

670 O. GOLDREICH ET AL.

into an efficient inverting algorithm for the family, in contradiction to the
one-wayness condition.15 e

The class presented in Proposition 3.3.3 consists of multi-valued functions. We
leave it as an open problem whether a similar result holds for a class of Boolean
functions.

3.4 VARIANTS

3.4.1. Learning and Testing with Queries (under the Uniform Distribution). Let
the class of parity functions, 3!5 5 {3!5n}, where 3!5n 5

def
{ fS: S #

{1, . . . , n}} and fS: {0, 1}n ° {0, 1} so that fS(x) 5 (i[S xi mod 2. Work on
linearity testing,16 culminating in the result of Bellare et al. [1995a], implies that
there exists a testing algorithm for the class 3!5, under the uniform distribu-
tion, whose query complexity is O(e21 log(1/d)). The running-time is a factor n
bigger, merely needed to write down the queries. On the other hand, any
learning algorithm for this class must use at least n queries (or examples). The
reason is that any query (or example) gives rise to a single linear constraint on
the coefficients of the linear function, and with less than n such constraints the
function is not uniquely defined. Furthermore, every two linear functions
disagree with probability 1/2 on a uniformly chosen input.

An example of a poly(n/e)-time testable (with queries) class which is not
learnable with poly(n/e) queries is the class of multi-variate (i.e., n-variate)
polynomials. Specifically, let 32+= 5 {32+=n}, where 32+=n consists of
n-variate polynomials of total degree n over the field GF(q), where q is the first
prime in the interval [n4, 2n4]. Work on low-degree testing [Babai et al. 1991a;
1991b; Gemmell et al. 1991], culminating in the result of Rubinfeld and Sudan
[1996], implies that there exists a testing algorithm for the class 32+=, under
the uniform distribution, whose query complexity is O(min {n3, n/e} z log(1/d)).
The running-time is a factor O(n log n) bigger, merely needed to write down the
queries and do some simple algebra. It is not hard to show that one cannot
possibly learn 32+=n, under the uniform distribution, using only poly(n)
queries. Again, the reason is that any query (or example) gives rise to a single
linear constraint on the coefficients of the polynomial. Since there are exponen-
tially (in n) many coefficients, this leaves the polynomial not uniquely defined.
Finally, one invokes Schwarz’s Lemma [Schwartz 1980], by which two such
degree n polynomials can agree on at most n/q , 1/n3 fraction of the domain.

3.4.2. Agnostic Learning and Testing. In a variant of PAC learning, called
Agnostic PAC learning [Kearns et al. 1992], there is no promise concerning the
target function f. Instead, the learner is required to output a hypothesis h from a
certain hypothesis class *, such that h is e-close to the function in * which is
closest to f. The absence of a promise makes agnostic learning closer in spirit to
property testing than basic PAC learning. However, we were not able to translate
this similarity in spirit to anything stronger than the relation between testing and
proper learning. Namely, since agnostic learning with respect to a hypothesis

15 Actually, the inverter is stronger than what is required to contradict one-wayness: It can invert any
pa on all but a small fraction of the range elements.
16 See, for example, Blum et al. [1993], Babai et al. [1991b], Feige et al. [1991], Bellare et al. [1993],
and Bellare and Sudan [1994].

671Property Testing and Learning and Approximation

class * implies proper learning of the class *, it also implies property testing of
*.

3.4.3. Learning and Testing Distributions. A distribution learning algorithm for
a class of distributions, $ 5 {$n}, receives (in addition to the parameters n, e
and d) an (unlabeled) sample of strings in {0, 1}n, distributed according to an
unknown distribution D [$n. The algorithm is required to output a distribution
D9 (either in form of a machine that generates strings according to D9, or in form
of a machine that on input x [{0, 1}n outputs D9(x)), such that with
probability at least 1 2 d, the variation distance between D and D9 is at most e.
(For further details, see Kearns et al. [1994].) In contrast, a distribution testing
algorithm, upon receiving a sample of strings in {0, 1}n drawn according to an
unknown distribution D, is required to accept D, with probability at least 1 2 d,
if D [$n, and to reject (with probability $ 1 2 d) if D is e-far from $n (with
respect to the variation distance).

The context of learning and testing distributions offers another demonstration
to the importance of a promise (i.e., the fact that the learning algorithm is
required to work only when the target belongs to the class, whereas the testing
algorithm needs to work for all targets that are either in the class or far away
from it).

PROPOSITION 3.1.5.1. There exist distribution classes that are efficiently learn-
able (in both senses mentioned above) but cannot be tested with a subexponential
sample (regardless of the running-time).

PROOF. Consider the class of distributions $ 5 {$n} consisting of all
distributions, Dn

p , which are generated by n independent tosses of a coin with
bias p. Clearly, this class can be efficiently learned (by merely approximating the
bias p of the target distribution). However, a tester cannot distinguish the case in
which a sample of subexponential size is taken from the uniform distribution
Dn

1/ 2 (and thus should be accepted), and the case in which such a sample is taken
from a ‘typically bad’ distribution Bn

S which is uniform over S , {0, 1}n, where
uSu 5 2n21. Formally, we consider the behavior of the test when given a sample
from Dn

1/ 2 versus its behavior when given a sample from Bn
S, where S is uniformly

chosen among all subsets of size 2n21. e

We note that the above proof holds for any distribution class that contains the
uniform distribution and is far from distributions such as the Bn

S’s.

4. General Observations

4.1. PROPERTY TESTING MAY BE VERY HARD

PROPOSITION 4.1.1. There exists a function class ^ 5 {^n} for which any
testing algorithm must inspect the value of the function at a constant fraction of the
inputs (i.e., on V(2n) inputs). This holds even for testing with respect to the uniform
distributions, for any constant distance parameter e , 1/2 and confidence parameter
d , 1/2, and even when allowing the algorithm to make queries and use unlimited
computing time.

PROOF. Suppose for simplicity that e 5 1/4 and d 5 1/5. The proof easily
generalizes to general constant e, d , 1/2 by appropriately modifying the size of

672 O. GOLDREICH ET AL.

^n (which is defined below). We will use the Probabilistic Method to demon-
strate the existence of a function class, ^ 5 {^n}, satisfying the claim, so that
^n consists of 2(1/10) z 2n

Boolean functions operating on {0, 1}n. We’ll show
that there exists a class ^ so that a uniformly selected function is both far from it
and indistinguishable from it when observing O(2n) values.

First we show that, with high probability, a uniformly selected function g:
{0, 1}n ° {0, 1} is e-far from any set, ^n, of 2(1/10) z 2n

functions. Let N 5
def

2n

and UN be uniformly distributed on {0, 1}N. Then,

Prg@ g is e-close to ^n#

Prg@? f [^n such that g~ x! Þ f~ x! for less than eN x’s#

u^nu z Pr@UN has at most eN 1’s#

2N/10 z 2 exp~2N/8!

5 exp~2V~N!! .

Thus, with overwhelmingly high probability (over the choices of g), the function g
is e-far from the class ^n. We now consider any fixed sequence, S, of T 5

def
N/ 20

inputs and compare the values assigned to them by (a random) g versus the
values assigned to them by a uniformly chosen function in ^n. Clearly, in the first
case the values are uniformly distributed. Let dS(^n) denote the statistical
difference between the uniform distribution and the distribution of function-
values (on the inputs in S) induced by a uniformly selected function in ^n. That
is,

dS~^n! 5
def 1

2
z O

a[{0,1}T

uPrf[^n
@ f~S! 5 a# 2 22Tu,

where for a sequence S 5 x1, . . . , xT, f(S) 5 f(x1) . . . f(xt). We consider the
probability, taken over all possible choices of ^n (consisting of 2(1/10) z2n

func-
tions), that dS(^n) . 1/ 2. By using a multiplicative Chernoff bound (with
multiplicative factors 1/2 and 3/2—see Appendix B), we get

Pr^nF dS~^n! .
1

2G
Pr^n

@?a [$0, 1%T such that uPrf[^n
~ f~S! 5 a! 2 22Tu . 22~T11!#

2T z 2 expS2
1

3
z S 1

2D
2

z 22Tu^nuD
5 2N/ 20 z 2 exp S2

1

12
z 2N/ 20D

5 exp ~22V(N)!

673Property Testing and Learning and Approximation

Summing the probabilities over all possible (N
T) , 2N sequences we conclude

that with overwhelmingly high probability, over the choice of ^n, all dS’s are
bounded above by 1/2. Let us fix such an ^n. Consequently, the difference
between the acceptance probability of a truly random g and the acceptance
probability of a uniformly selected f [^n is at most 1/2. This does not allow one
both to accept every f [^n with probability at least 0.8 and accept a random g
with probability at most 0.21 (and so to reject e-far functions with probability at
least 0.8 —the extra 0.01 over-compensates for the case that a random g is e-close
to ^n). e

4.2. THE ALGEBRA OF PROPERTY TESTING. Suppose that two function classes
are testable within certain complexity. What can we infer about their INTERSEC-
TION, UNION, and COMPLEMENT? Unfortunately, in general, we can only say that
their union is testable within comparable complexity. That is,

PROPOSITION 4.2.1. Let ^9 5 {^9n} and ^0 5 {^ 0n} be function classes testable
within complexities c9(n, e, d) and c0(n, e, d), respectively. Then, the class ^ 5
{^n}, where ^n 5 ^9n ø ^ 0n, is testable within complexity c(n, e, d) 5 c9(n, e,
(d/2)) 1 c0(n, e, (d/2)).

PROOF. The testing algorithm for ^ consists of testing for membership in
both ^9 and ^0 and accepting if and only if at least one of the tests has accepted.
The validity of this test relies on the fact that if f is e-far from ^ 5 ^9 ø ^0, then
it is e-far from both ^9 and ^0. e

The fact that a claim analogous to the one used in the above proof does not
hold for intersection is the reason that an analogous tester does not work for the
intersection class. That is, it may be the case that f is far from ^ 5 ^9 ù ^0 and
yet it is very close to both ^9 and ^0. Thus, a function (close to both ^9 and ^0),
may pass both the corresponding property tests, but still may be far from ^. In
particular

PROPOSITION 4.2.2. There exist function classes ^9 5 {^9n} and ^0 5 {^ 0n}
such that both are trivially testable under the uniform distribution (i.e., by an
oblivious algorithm that always accepts provided e . 22n), whereas the class ^ 5
{^n}, where ^n 5 ^9n ù ^ 0n is not testable under the uniform distribution with
query complexity o(2n) even for constant e, d , 1/2.

PROOF. Let ^ 5 {^n} be as guaranteed in Proposition 4.1.1, and let ^9n 5
def

^n ø { f ; f(0n) 5 0}, ^ 0n 5
def

^n ø { f ; f(0n) 5 1}. Clearly both ^9 and ^0
are testable as claimed since every function is 22n-close to both ^9 and ^0. On
the other hand, ^9n ù ^ 0n 5 ^n, and so the negative result of Proposition 4.1.1
applies. e

Finally, we observe that property testing is not preserved under complementa-
tion. That is,

PROPOSITION 4.2.3. There exists a function class & 5 {&n} such that for every

e $
1

2n 2 1

674 O. GOLDREICH ET AL.

the algorithm that accepts every function is a tester for &, while the class of functions
not in & is not testable in subexponential complexity.

PROOF. Consider the function class ^ used in the proof of Proposition 4.1.1.
As shown there, this class is not testable in subexponential complexity. Further-
more, as we show subsequently, ^ can be chosen so that for every n and for every
function f [^n, there exists at most one function f9 [^n, such that f and f9
differ on exactly one input. In other words, there exist at least 2n 2 1 functions
not in ^n that differ from f on exactly one input. Let & 5 {&n} consist of all
functions not in ^. Based on our additional claim (concerning differences
between functions in ^n), as long as e $ 1/(2n 2 1), the trivial algorithm which
accepts all functions constitutes a tester for &. This is true since for every f [y &n

(i.e., f [^n), and for every distribution, there exists some function g [&n that
is at distance less than 1/(2n 2 1) from f. Namely, the total probability mass of
the x’s for which there exists g [&n such that g and f differ only on x is at most
1, and there are at least 2n 2 1 such x’s.

To prove the claim regarding differences between functions in ^, we again use
the probabilistic method. Observe first that the probability that a particular
function f belongs to ^n, is 2N/10/ 2N 5 220.9 z N, where N 5

def
2n. Thus, for any

fixed function f, the probability that there exist two functions f1 and f2 in ^n

such that both f1 and f2 differ from f on exactly one input is bounded by N2 z
(220.9 zN)2 , 221.7 zN. Finally the probability that this event occurs for some f is
at most 2N z 221.7 zN 5 220.7 zN, which is extremely small. By adding the
negligible probability (bounded in Proposition 4.1.1) that the uniformly chosen
^n is not hard to test, Proposition 4.2.3 follows. e

PART II: Testing Graph Properties

5. Testing Graph Properties—Preliminaries

In the following sections, we concentrate on testing graph properties using
queries and with respect to the uniform distribution. In Section 10.1, we discuss
some extensions beyond this basic model. We start by defining the basic model
and giving an overview of our results.

5.1. GENERAL GRAPH NOTATION. We consider undirected, simple graphs (no
multiple edges or self-loops). For a simple graph G, we denote by V(G) its vertex
set and assume, without loss of generality, that V(G) 5 {1, . . . , uV(G)u}. Graphs
are represented by their (symmetric) adjacency matrix. Thus, graphs are associ-
ated with the Boolean function corresponding to this matrix (i.e., the value of a
pair (u, v) [V(G) 3 V(G) indicates whether (u, v) [E(G)). This brings us to
associated undirected graphs with directed graphs where each edge in the
undirected graph is associated with a pair of anti-parallel edges. Specifically, for
a graph G, we denote by E(G) the set of ordered pairs which correspond to edges
in G (i.e., (u, v) [E(G) iff there is an edge between u and v in G). In the
sequel, whenever we say say ‘edge’ we mean a directed edge, and the degree of a
vertex is the total number of edges incident to it (i.e., the sum of its in-degree
and out-degree). For two (not necessarily disjoint) sets of vertices, X1 and X2, we

675Property Testing and Learning and Approximation

let

E~X1, X2! 5
def

$~u, v! [E~G! ; u [X1, v [X2 or u [X2, v [X1% .

The distance between two N-vertex graphs, G1 and G2, is defined as the fraction of
entries (u, v) [[N]2 ([N] 5

def
{1, . . . , N }), among all N2 entries, which are in

the symmetric difference of E(G1) and E(G2). Namely,

dist~G1, G2! 5
def u~E~G1!\E~G2!! ø ~E~G2!\E~G1!! u

N2
.

This notation is extended naturally to a set, #, of N-vertex graphs; that is,

dist~G, #! 5
def

min
G9 [#

$dist~G, G9!%

Another notation used extensively in subsequent sections is the set of neighbors
of a vertex v; that is, G(v) 5

def
{u ; (v, u) [E(G)}. This notation is extended to sets of

vertices in the natural manner; i.e., G(S) 5
def

øv[SG(v).

5.2. OUR ALGORITHMS AND THEIR ANALYSES. We present testers for Bipar-
titeness, k-Colorability (for k $ 3), r-Clique, r-Cut (and r-k-Cut), r-Bisection
and the General Graph Partition property. The latter generalizes all the former
ones, but yields worse complexity bounds for the special cases. Also, the testers
for r-Cut and r-k-Cut, which actually work by approximating the size of the
maximum cut, generalize Bipartiteness and k-Colorability, respectively. However,
the former have two-sided error probability and higher complexity, whereas the
latter can be directly tested with one-sided error probability.

For all properties, we also present linear (in N) time algorithms that, given a
graph that has the property, find a partition that is approximately-good with
respect to that property (e.g., in the case of r-Clique, the algorithm finds a set of
size rN that misses few edges to being a clique). While these algorithm are
clearly beneficial when the corresponding approximation problems are known to
be hard, they are also meaningful in the case of Bipartiteness (where an exact
efficient algorithm is known). This is true since in order to partition a dense
bipartite graph, one has to work in time quadratic in N (i.e., linear in the number
of edges), while we offer an approximation algorithm that works in time linear in
N. The complexities of our algorithms are summarized in Figure 1.

5.2.1. Common Themes. As mentioned in the introduction, our algorithms
and their analyses share a few themes. In particular, all algorithms uniformly
select a set of vertices and perform edge-queries only on pairs of vertices in the
sample. In all cases the natural algorithm for the property, which checks whether
the property (approximately) holds on the subgraph induced by the sample of
vertices, is indeed a testing algorithm for the property. However, only in the case
of Bipartiteness and k-Colorability do we analyze directly the natural algorithm.
For the other properties, we present and analyze more complex algorithms.
However, the correctness of the natural algorithms follows from the correctness
of the algorithms that we present, and the resulting complexities of the former
are only slightly higher than those of the latter.

676 O. GOLDREICH ET AL.

For all our testers, the sample of vertices is viewed as consisting of two
parts— one part, denoted U, has the role of inducing partitions on V(G) (i.e., all
graph vertices), and the other part, denoted S, evaluates these partitions. In the
Bipartiteness and k-Colorability testers this view of the sample is only taken in
the analysis. In the other algorithms we explicitly use these two parts of the
sample differently. In particular, the latter algorithms consider all possible
partitions of U. For each such partition of U, the second part of the sample, S, is
partitioned according to a property-specific rule that uses the neighborhood
relations between vertices in S and vertices in U.17

In all cases we want U to be representative of certain good partitions of V(G),
which exist whenever G has the property that is being tested. The notion of a
good partition depends on the property being tested, and the sense in which U is
representative varies accordingly. For example, when testing r-Clique, a good
partition of a graph G is (C, V(G)\C), where C is a clique of size rN. In this case
U is representative if for almost all vertices v in the graph, if v neighbors all
vertices in U ù C, then it neighbors almost all vertices in C. Note that we do not
require that the above hold for all vertices v, and this feature is common to all
our definitions of a representative sample U. Consequently, U need be only of
size poly(e21 log(1/d)), and so independent of N. This is especially important
since most of our algorithms run in time exponential in uUu.

5.2.2. Specific Themes. Though the algorithms and their analyses have much
in common, there are several themes that are only shared by some of the
algorithms. Consider first the Bipartite and the k-Colorability testers. As noted
above, for both properties we directly analyze the natural algorithms, which
uniformly select a small sample of vertices and check whether the induced

17 In the r-Clique tester, we slightly deviate from the above formula by using an additional sample of
vertices that aids in partitioning S.

FIG. 1. Summary of Results. Here D and Dk denote logarithmic factors. Specifically, D 5
def

log(1/(ed))
and Dk 5

def
log(k/(ed)). For simplicity we use Dk also in cases where the dependency is slightly better

(e.g., in k-Colorability). We also note that in some of the cases and for certain values of d, one can
obtain slightly better complexities (in terms of the dependence on d). This is done by considering the
complexity for constant d, and then amplifying the confidence by repeating the execution of the
algorithm log(1/d) times.

677Property Testing and Learning and Approximation

subgraph is Bipartite (respectively, k-Colorable). These two algorithms have
one-sided error as they always accept graphs that have the property. To show
that, with high probability, the algorithms reject graphs that are far from having
the property, we prove the counterpositive. Namely, that if a graph is accepted
with probability greater than d, then it is close to having the property. We do so
by showing that the partition of the sampled vertices found by the algorithm
when accepting the graph can be used to define a good partition of all graph
vertices (where this definition is constructive.)

For all other properties, we first describe an algorithm that actually partitions
V(G). This graph-partitioning algorithm produces several (i.e., exp(poly(log(1/d)/
e))) partitions of V(G) and outputs the best one. The corresponding tester runs
the graph-partitioning algorithm on a small sample S and evaluates the resulting
partitions of S. Thus, S serves as a sample that approximates the quality of the
graph-partitions (determined by the corresponding graph-partitioning algo-
rithm). We will focus in this introductory discussion on the graph-partitioning
algorithms.

In the case of r-Clique, the graph-partitioning algorithm tries to find an
approximate r-clique (i.e., a set of vertices of size rN that is close to being a
clique). To this end, it selects a small sample of vertices U, and for each subset
U9 of U having size r/2 z uUu, it considers all vertices that neighbor every vertex in
U9. Assume first that G in fact has a clique C of size rN. The idea is that in such
a case, with high probability over the choice of U, the intersection of U and C
will be of size at least r/2 z uUu. Therefore, for some subset U9 of U, the set of
vertices, T, that neighbor every vertex in U9 contains the clique C. However, T
might contain many other vertices. Nonetheless, we can show that if we order the
vertices in T roughly according to their degree in the subgraph induced by T,
then the first rN vertices in this order will be close to being a clique. The above
implies that if G has a clique of size rN then with high probability the algorithm
finds an approximate clique. On the other hand, if every subset of size rN in G is
far from having a clique then no such approximate-clique exists.

The graph-partitioning algorithms for r-Cut, r-Bisection and the General
Partition property work in , 5 O(1/e) stages, and consider a fixed (standard)
equal-partition V1, . . . , V, of V(G).18 In the ith stage, the set Vi is partitioned.
The partition of Vi is determined by a partition of Ui (which is part of the sample
U), and possibly other varying parameters. For example, in the case of r-Cut
(where the partitioning algorithm actually finds a close-to-maximum cut) the
vertices in Vi are partitioned as follows: The vertices that have more neighbors
on side 1 of the partition of Ui are put on side 2 of the partition of Vi, and
vice-versa. The fact that the algorithms partition only a set of size O(eN) in each
stage (using a different sample Ui) is essential to the proofs of correctness of the
algorithms.

5.3. TWO TECHNICAL CONVENTIONS. As noted above, we represent N-vertex
graphs by their N 3 N adjacency matrix. This representation is redundant and
means that each edge appears twice. In some places, this convention simplifies

18 In particular, this partition is defined according to lexicographical order (i.e., where each vertex is
represented by a string of length log2 N). We stress that this partition is arbitrary and has nothing to
do with the desired partition determined by the property being tested.

678 O. GOLDREICH ET AL.

the analysis, but in others it results in the need to artificially double certain
natural quantities. Still we believe we made the right choice.

Our algorithms are presented as uniformly selecting sets of vertices of certain
sizes (without repetitions). However, the analysis refers to uniform and indepen-
dent selection of a number of vertices (with possible repetitions). Formally-
inclined readers are thus encouraged to consider the algorithms as selecting
multisets (rather than sets) of the prescribed size. Other readers may just ignore
this point.

6. Testing Bipartiteness and Vertex-Colorability

In Section 6.1, we describe an algorithm for testing the class, @, of bipartite
graphs. This is a special case of testing k-Colorability, considered in the Section
6.2. We choose to present the case of k 5 2 separately because it is both simpler
to describe, and it served as a good prelude to the general case. Moreover, the
algorithm presented for k 5 2 has lower complexity (in terms of its dependence
on the distance parameter, e) than the one described in the Section 6.2.

6.1. TESTING BIPARTITENESS. We start by describing a testing algorithm
whose query complexity is O(log2(1/(ed))/e4). We later point out how this
algorithm can be slightly modified so that its query complexity decreases to
O(log2(1/(ed))/e3).

Bipartite Testing Algorithm

(1) Choose uniformly a set, denoted X, of O(log(1/(ed))/e2) vertices.
(2) For every pair of vertices v1, v2 [X, query if (v1, v2) [E(G). Let GX be the induced

subgraph.
(3) If GX is a bipartite graph, then output accept; otherwise, output reject.

Before stating the main theorem of this section, we introduce the following
definitions. Recall that N is the number of vertices of G.

Definition 6.1.1. (Violating Edges and Good Partitions). We say that an edge
(u, v) [E(G) is a violating edge with respect to a partition (V1, V2) of V(G) if
either u, v [V1 or u, v [V2. If a partition (V1, V2) has at most eN2 violating
edges then we say that it is e-good. Otherwise, it is e-bad. A partition that has no
violating edges is called perfect.

Thus, if G is bipartite, then there exists a perfect partition of V(G), and if G is
e-far from bipartite then every partition of V(G) is e-bad.

THEOREM 6.1.2. The Bipartite Testing Algorithm is a property testing algo-
rithm for the class of bipartite graphs whose query complexity and running time are
O(log2(1/(ed))/e4). Furthermore, if the tested graph G is bipartite, then it is accepted
with probability 1, and, with probability at least 1 2 d (over the choice of the
sampled vertices), it is possible to construct an e-good partition of V(G) in
(additional) time O(log(1/(ed))/e z N),

PROOF. It is clear that if G is bipartite then any subgraph of G is bipartite and
hence G will always be accepted. Since it is possible to determine if GX is
bipartite by simply performing a breadth-first-search (BFS) on GX, the bound on
the running time of the testing algorithm directly follows. Note that if GX is

679Property Testing and Learning and Approximation

bipartite, then the BFS provides us with a perfect partition of X, while if it is not
bipartite, then it gives a certificate that G is not bipartate. This certificate is in
form of a cycle of odd length in GX (which is also a cycle in G). Thus, the heart
of this proof is to show that if G is e-far from bipartite then the test will reject it
with probability at least 1 2 d. To this end, we prove the counterpositive of the
previous statement: For any graph G, if the Bipartite Testing Algorithm accepts G
with probability greater than d, then V(G) must have an e-good partition.

We view the set of sampled vertices X as a union of two disjoint sets U and S,
where

t 5
def

uUu 5 OS log~1/~de!!

e
D , and m 5

def

uSu 5 OS t 1 log~1/d!

e
D .

The role of U, or more precisely of a given partition (U1, U2) of U, is to define a
partition of all of V(G). In particular, if the test accepts G, then we know that X
has a perfect partition, and we will be interested in the partition of U induced by
this perfect partition of X. The role of S is to test the partitions of V(G) defined
by the partition of U in the following sense. If a certain partition (V1, V2) of
V(G), defined by a partition (U1, U2) of U, is e-bad, then with very high
probability there is no partition (S1, S2) of S such that (U1 ø S1, U2 ø S2) is a
perfect partition of X. We next make the above notions more precise.

Given a partition (U1, U2) of U we define the following partition (V1, V2) of
V(G): let V1 5

def
G(U2), and V2 5

def
V(G)\G(U2). That is, V1 is the set of neighbors

of U2, and V2 contains all neighbors of U1 (which are not neighbors of U2), as
well as the rest of the vertices—namely those which do not have a neighbor in U.
Note that the partition of U is not relevant to the placement of vertices that have
no neighbor in U. Thus, we first ensure that most vertices in V(G) (or actually
most “influential” vertices in V(G)) have a neighbor in U.

Definition 6.1.3 (Influential Vertices and Covering Sets). We say that a vertex
v [V(G) is influential if it has degree at least (e/3) N. Recall that a degree of a
vertex is the sum of its in-degree and its out-degree (which is twice its degree in
the undirected representation of the graph). We call U a covering set for V(G) if
all but at most (e/6) N of the influential vertices in V(G) have a neighbor in U
(here each neighbor from which there is one outgoing edge, and one ingoing
edge, is counted once).

Note that in the above definition, we did not require of U that every influential
vertex have a neighbor in U, but rather that this hold for almost all influential
vertices. This slackness (which appears in various forms in our other algorithms
as well) is what allows our algorithm to use a sample size that is independent of
the size of the graph.

CLAIM 6.1.4. With probability at least 1 2 d/2, a uniformly chosen set U of size
t 5 O(log(1/(de))/e) is a covering set for V(G).

PROOF. Let t 5 (6 z log(12/(de))/e). For a given influential vertex v, the
probability that v does not have any neighbor in a uniformly chosen set U of size

680 O. GOLDREICH ET AL.

t is at most

S 1 2
e

6D
t

expS2t z
e

6D 5
e z d

12
. (2)

Hence, the expected number of influential vertices that do not have a neighbor in
a random set U is (d z e)/12 z N, and by Markov’s inequality (see Appendix B),
the probability that there are more than (e/6) N such vertices is less than d/2. e

Given a covering set U and a partition of U, we can concentrate on the
violating edges between vertices in G(Ui), for i 5 1, 2. The reason being that the
total number of edges incident to vertices not in G(U) is small. This motivates the
following definition, where a useful partition of U implies that G has a good
partition (see Lemma 6.1.8).

Definition 6.1.5 (useful partitions). Let U , V(G). A partition (U1, U2) of U
is called e-useful (or just useful) if

u$~v, v9! [E~G!: ?i [$1, 2% such that v, v9 [G~Ui!% u ,
e

3
z N2. (3)

Otherwise, it is e-unuseful.

In other words, a partition of U is unuseful if there are too many violating
edges among the neighbors either of U1 or of U2 in the corresponding partition
defined on V(G). As the following claim shows, if (U1, U2) is an unuseful
partition, then with high probability we shall see evidence of its unusefulness in
the sample S. The evidence is in form of an edge (v, v9) [S 3 S between
neighbors of vertices in, say, U1. Let u [U1 (respectively, u9 [U1) be a
neighbor of v (respectively, v9). In case u 5 u9, there is a triangle in GX (which
means that the test would reject). In case u Þ u9, due to the edge (v, v9), in any
perfect partition of X 5 U ø S, u and u9 must belong to different sides of the
partition (and so (U1, U2) cannot be used in the partition of X 5 U ø S).

CLAIM 6.1.6. Let U be a set of size t and let (U1, U2) be a fixed e-unuseful
partition of U. Then, for a uniformly chosen set S , V(G) of cardinality, m 5
O(t1log(1/d)/e),

PrS@@v, v9 [S, i [$1, 2% ; ~v, v9! [y E~G~Ui! , G~Ui!!# , d z 22~t11!.

The claim says that, if (U1, U2) is an e-unuseful partition of U, then with very
high probability there exists no partition of S so that the combined partition of
X 5 U ø S (respecting (U1, U2)) is a perfect partition of the subgraph induced
by X.

PROOF. If (U1, U2) is an e-unuseful partition, then by Eq. (3):

Prv ,v9@?i [$1, 2% such that ~v, v9! [E~G~Ui! , G~Ui!!# $
e

3
. (4)

681Property Testing and Learning and Approximation

Since S can be chosen by drawing m/ 2 independent random pairs of vertices
(v, v9),

PrS@@v, v9 [S, i [$1, 2% ; ~v, v9! [y E~G~Ui! , G~Ui!!#

S 1 2
e

3D
m/ 2

5 exp~2V~t 1 log~1/d!!!

, d z 22~t11! e

Since there are 2 t possible partitions of U, using Claim 6.1.6, we have

COROLLARY 6.1.7. For every set U of size t, if all partitions of U are e-unuseful,
then with probability at least 1 2 d/2 there is no perfect partition of X 5 U ø S,
where S is chosen uniformly. (In such a case GX is found to be nonbipartite, and the
test rejects G.)

On the other hand, if U has a useful partition, denoted (U1, U2), and U is a
covering set for V(G), then this partition induces a good partition of the entire
graph. More precisely,

LEMMA 6.1.8. For every graph G, if there exists a covering set U of V(G), which
has an e-useful partition (U1, U2), then G is e-close to bipartite. In particular, the
following partition (V1, V2) of V(G) is e-good: V1 5

def
G(U2), V2 5

def
V(G)\G(U2).

PROOF. Let us count the number of violating edges with respect to the
partition (V1, V2):

—Edges incident to noninfluential vertices: There are at most N such vertices
and by definition each has at most (e/3) N incident edges, giving a total of
(e/3) N2.

—Edges incident to influential vertices which do not have neighbors in U: Since
U is a covering set, there are at most (e/6) N such vertices and each has at
most 2N incident edges, totaling to (e/3) N2.

—Violating edges which are incident to neighbors of U. We consider two cases:

—Edges of the form (v, v9) [E(V1, V1). Since V1 5 G(U2), these edge have
both end-points in G(U2).

—Edges of the form (v, v9) [E(V2, V2). By definition of V2, both v and v9 are
not in G(U2). However, since v, v9 [G(U), it follows that these edges have
both end-points in G(U1).

By the e-usefulness of (U1, U2), there are at most (e/3) N2 such vertices.

Thus, we have a total of at most eN2 violating edges, as required. e

Combining Lemma 6.1.8 with Claim 6.1.4 and Corollary 6.1.7, we complete the
proof of Theorem 6.1.2, as follows: If G is accepted with probabifity greater than
d, then, by Claim 6.1.4, the probability that G is accepted and U is a covering set
is greater than d/2. Thus, there exists a covering set U [V(G), such that if U is
chosen, then G is accepted with probability greater than d/2 (where here the
probability is taken only over the choice of S). But in such a case it follows from

682 O. GOLDREICH ET AL.

Corollary 6.1.7 that (the covering set) U must have a useful partition, and we can
apply Lemma 6.1.8 to show that G must be e-close to bipartite.

Finally, let G be a bipartite graph, and let (V1, V2) be a perfect partition of
V(G). Then, for every covering set U of V(G) (where such a set is chosen with
probability at least 1 2 d/2), there exists a partition (U1, U2) of U, such that
U1 # V1 and U2 # V2. Thus, necessarily, (U1, U2) is a useful partition of U
which by Lemma 6.1.8 defines an e-good partition of V(G). Furthermore, given
such a partition of a covering set U, for every set S there exists a perfect partition
of U ø S, of the form (U1 ø S1, U2 ø S2). On the other hand, by Claim 6.1.6,
for any set U, with probability at least 1 2 d/2 over the choice of S, there will be
no perfect partition of U ø S that induces an unuseful partition of U. Therefore,
with probability at least 1 2 d over the choice of U and S, the testing algorithm
(using BFS) will find a perfect partition of U ø S that induces a useful partition
of U, which can then be used to construct an e-good partition of V(G) (as
defined in Lemma 6.1.8) in time O(uUu z N) 5 O(e21 log(1/(ed))) z N.

This completes the proof of Theorem 6.1.2. e

6.1.1. Improving the Query Complexity. We can save a factor of 1/e in the
query complexity and in the running time of the testing algorithm. This is done
simply by observing that we do not need to perform queries for all pairs of
vertices in S. Instead, we can choose S to be a uniformly distributed random
sample of m/ 2 pairs of vertices. We then need only to query which of these
m/ 2 5 O(log(1/(ed))/e2) pairs are edges, as well as query all m z t 5
O(log2(1/(ed))/e3) pairs (u, v) where u [U and v [S. Note that the proof of
Theorem 6.1.2 does not refer to any edges between vertices in S, except for the
m/ 2 pairs mentioned above (which are used for establishing Claim 6.1.6).

6.1.2. Impossibility of Testing Without Queries. A natural question that may
arise is whether queries are really necessary for testing bipartiteness, or perhaps
it might be possible to test this property from a random labeled sample (of pairs
of vertices) alone. We show that queries are in fact necessary in the sense that
any testing algorithm that uses only a random sample (of pairs of vertices) must
have very large sample complexity. More precisely:

PROPOSITION 6.1.2.1. Any property testing algorithm for the class of bipartite
graphs that observes only a random labeled sample, must have sample complexity
V(=N).

PROOF. Consider the following two classes of graphs: &1 is the class of all
complete bipartite graphs G in which both sides are of equal cardinality. That is,
V(G) 5 V1 ø V2, uV1u 5 uV2u 5 N/ 2, and E(G) 5 {(v1, v2) ; v1 [Vi, v2 [Vj,
i Þ j}. &2 is the class of graphs that consists of two disjoint cliques of size N/ 2.
That is, V(G) 5 V1 ø V2, uV1u 5 uV2u 5 N/ 2, and E(G) 5 {(v, v9) ; v, v9 [V1
or v, v9 [V2}. Clearly, all graphs in &2 are 1/4-far from bipartite. Note that all
graphs in both classes have the same edge density, since every vertex has degree
N. Intuitively, we want to show that if the edge-labeled sample is not large
enough then a hypothetical property testing algorithm cannot distinguish be-
tween random samples labeled by graphs in &1 and random sample labeled by
graphs in &2.

For simplicity, let us fix d to be 1/4. Then, by definition, a property testing
algorithm for the class of bipartite graphs should accept each G [&1 with

683Property Testing and Learning and Approximation

probability at least 3/4, and should accept each G [&2 with probability less than
1/4. Therefore, the difference in acceptance probability between an arbitrary
G [&1 and an arbitrary G [&2 must be greater than 1/2. Since the above should
be true for any pair of graphs taken from the two classes, it should hold for a
random pair of graphs chosen from the two classes. Suppose we first draw an
unlabeled random sample of m pairs of vertices, and then label it by a graph G
chosen randomly either from the class &1 or from the class &2. Assume first that
the sample is such that no vertex appears in more than one pair in the sample.
Then, regardless of whether G was chosen uniformly in &1 or in &2, each of the
2m possible labeling of the sample has equal probability. If the sample does
include two pairs that share a vertex, then we cannot make such a claim. Let us
say in this case that the sample is informative. However, the probability that a
random sample of size m is informative is at most (m

2) z 2/N , m2/N. By the
argument made above on noninformative samples, the difference between the
acceptance probability of a random graph in &1 and the acceptance probability of
a random graph in &2 is at most the probability that a random sample is
informative. But in order that this probability be greater than 1/2, the size of the
random sample must be greater than =N/ 2. e

6.2. TESTING K-COLORABILITY (K . 2). In this section, we present an
algorithm for testing the k-Colorability property for any given k. Namely, we are
interested in determining if the vertices of a graph G can be colored by k colors
so that no two adjacent vertices are colored by the same color, or if any
k-partition of the graph has at least eN2 violating edges (i.e., edges between pairs
of vertices that belong to the same side of the partition).

The test itself is analogous to the bipartite test described in the previous
section: We sample from the vertices of the graph, query all pairs of vertices in
the sample to find which are edges in G, and check if the induced subgraph is
k-Colorable. The query complexity of the algorithm is polynomial in 1/e, log(1/d)
and k. In lack of efficient algorithms for k-Colorability, for k $ 3, we use the
obvious exponential-time algorithm on the induced subgraph (which is typically
small). Note that the number of queries made is larger than in the (improved)
Bipartite Tester (i.e., by a factor of Õ(k4/e3)).

k-Colorability Testing Algorithm

(1) Choose uniformly set of O(k2(log(k/d)/e3) vertices, denoted X.
(2) For every pair of vertices v1, v2 [X, query if (v1, v2) [E(G). Let GX be the induced

subgraph.
(3) If GX is k-Colorable, then output accept; otherwise, output reject.

Similarly to the bipartite case, we define violating edges and good k-partitions.19

Definition 6.2.1 (Violating Edges and Good k-Partitions). We say that an edge
(u, v) [E(G) is a violating edge with respect to a k-partition p: V(G) 3 [k] if
p(u) 5 p(v). We shall say that a k-partition is e-good if it has at most eN2

violating edges (otherwise, it is e-bad). The partition is perfect if it has no
violating edges.

19 k-partitions are associated with mappings of the vertex set into the canonical k-element set [k].
The partition associated with p;V(G) 3 [k] is (V1 5

def
p21(1), . . . , Vk 5

def
p21(k)). We shall use the

mapping notation p, and the explicit partition notation (V1, . . . , Vk), interchangeably.

684 O. GOLDREICH ET AL.

THEOREM 6.2.2. The k-Colorability Testing Algorithm is a property testing
algorithm for the class of k-Colorable graphs whose query complexity and running
time are

OS k4 z log2~k/d!

e6 D and expSOS k2 z log2~k/d!

e3 D D ,

respectively. If the tested graph G is k-Colorable, then it is accepted with probability
1, and with probability at least 1 2 d, (over the choice of the sampled vertices), it
is possible to construct an e-good k-partition of V(G) in (additional) time
O(log(k/d)/e2) z N.

PROOF. If G is k-Colorable then every subgraph of G is k-Colorable, and
hence G will always be accepted. As in the bipartite case, the crux of the proof is
to show that every G which is e-far from the class of k-Colorable graphs, denoted
&k, is rejected with probability at least 1 2 d. Again, we establish this claim by
proving its counterpositive, namely, that every G that is accepted with probability
greater than d must be e-close to &k. This is done by giving a (constructive) proof
of the existence of an e-good k-partition of V(G). Hence, in case G [&k, we
also get an efficient probabilistic procedure for finding an e-good k-partition of
V(G). Note that if the test rejects G, then we have a certificate that G [y &k, in
form of the (small) subgraph induced by X which is not k-Colorable.

We view the set of sampled vertices X as a union of two disjoint sets U and S,
where U is a union of , (disjoint) sets U1, . . . , U,, each of size m. The size of S
is m as well, where m 5 O(, z e21 log(k/d)) and , 5 4k/e. The roles of U
and S are analogous to their roles in the bipartite case. The set U (or rather a
k-partition of U) is used to define a k-partition of V(G). The set S ensures that
with high probability, the k-partition of U which is induced by the perfect
k-partition of X 5 U ø S, defines an e-good partition of V(G).

In order to define a k-partition of V(G) given a k-partition of U, we first
introduce the notion of a clustering of the vertices in V(G) with respect to this
partition of U. More precisely, we define the clustering based on the k-partition
of a subset U9 , U (which is determined later), where this partition, denoted
(U91, . . . , U9k), is the one induced by the k-partition of U. The clustering is
defined so that vertices in the same cluster have neighbors in the same
components of the partition of U9. For every A # [k], the A-cluster, denoted CA,
contains all vertices in V(G) that have neighbors in U9i for every i [A (and do
not have neighbors in the other U9i’s). The clusters impose restrictions on
possible extensions of the partition of U9 to partitions (V1, . . . , Vk) of V(G),
which do not have violating edges incident to vertices in U9. Namely, vertices in
CA should NOT be placed in any Vi such that i [A. As a special case, CÀ is the
set of vertices that do not have any neighbors in U9 (and hence can be put in any
component of the partition). In the other extreme, C[k] is the set of vertices that
in any extension of the partition of U9 will cause violations. For each i, the
vertices in C[k]\{i} are forced to be put in Vi, and thus are easy to handle. In the
bipartite case we focused on the clusters C{1} and C{2}, where vertices in C{i}
were forced to the side opposite to i. (The cluster CÀ was explicitly shown to be
unimportant and the cluster C{1,2} was dealt with implicitly.) In the case of

685Property Testing and Learning and Approximation

k-Coloring the situation is more complex. In particular, the clusters CA where
uAu , k 2 1 do not force a placement of vertices.

Definition 6.2.3 (Clusters). Let U9 be a set of vertices, and let p9 be a perfect
k-partition of U9. Define U9i 5

def
{v [U9 ; p9(v) 5 i}. For each subset A # [k]

we define the A-cluster with respect to p9 as follows:

CA 5
def S ù

i[A

G~U9i!D 2 S ø
i[y A

G~U9i!D . (5)

The relevance of the above clusters becomes clear given the following defini-
tions of extending and consistent partitions.

Definition 6.2.4 (Consistent Extensions). Let U9 and p9 be as above. We say
that a k-partition p of V(G) extends a k-partition p9 of U9 if p(u) 5 p9(u) for
every u [U9. An extended partition p is consistent with p9 if p(v) Þ p9(u) for
every u [U9 and v [G(u)\C[k], where C[k] is the [k]-cluster with respect to p9.

Thus, each vertex v in the cluster CA (with respect to p9 defined on U9) is
forced to satisfy p(v) [A# 5

def
[k]\A, for every k-partition p which extends p9 in a

consistent manner. There are no restrictions regarding vertices in CÀ and vertices
in C[k] (the latter is guaranteed artificially in the definition and the consequences
will have to be treated separately). For v [C[k]2{i}, the consistency condition
forces p(v) 5 i, but unlike the bipartite case we cannot ignore the A-clusters
with uAu , k 2 1.

We now focus on the main problem of the analysis. Given a k-partition of U,
what is a good way to define a k-partition of V(G)? Our main idea is to claim
that with high probability the set U contains a subset U9 so that the clusters with
respect to the induced k-partition of U9 determine whatever needs to be
determined. That is, if these clusters allow to place some vertex in a certain
component of the partition, then doing so does not introduce too many violating
edges. The first step in implementing this idea is the notion of a restricting vertex.
A vertex v [CA is restricting if for every i [A# , adding v to U9i (and thus to U9)
will cause many of its neighbors to move to a cluster corresponding to a bigger
subset. That is, v’s neighbors in the B-cluster (with respect to (U91, . . . , U9k))
move to the (B ø {i})-cluster (with respect to (U91, . . . , U9i ø {v}, . . . , U9k)).
More precisely:

Definition 6.2.5 (Restricting Vertex). A pair (v, i), where v [CA, A Þ [k] and
i [A# is said to be restricting with respect to a k-partition p9 of U9 if v has at least
(e/4) N neighbors in øB;i[y BCB. Otherwise, (v, i) is nonrestricting. A vertex v [
CA, A Þ [k], is restricting with respect to p9 if for every i [A# , the pair (v, i) is
restricting. Otherwise, v is nonrestricting. As always, the clusters are with respect
to p9.

Given a perfect k-partition of U, we construct U9 , U in steps starting with
the empty set. At step j, we add to U9 a vertex u [Uj (recall that U 5 U1

˙ø . . . ˙ø U,), which is a restricting vertex with respect to the k-partition of the
current set U9. If no such vertex exists, the procedure terminates. When the
procedure terminates (and as we shall see it must terminate after at most ,
steps), we will be able to define, based on the k-partition of the final U9, an

686 O. GOLDREICH ET AL.

e-good k-partition of V(G). The procedure defined below is viewed at this point
as a mental experiment. Namely, it is provided in order to show that with high
probability there exists a subset U9 of U with certain desired properties (which
we later exploit). We later discuss how to implement this procedure when we are
actually interested in choosing U9 for the purposes of partitioning all of V(G)
efficiently.

Restriction Procedure (Construction of U9)
Input: a perfect k-partition of U 5 U1, . . . , U,.

(1) U9 4 À.
(2) For j 5 1, 2, . . . do the following. Consider the current set U9 and its partition p9

(induced by the perfect k-partition of U).
—If there are less than e/8 z N restricting vertices with respect to p9, then halt and

output U9.
—If there are at least e/8 z N restricting vertices but there is no restricting vertex in

Uj, then halt and output an error symbol.
—Otherwise (there is a restricting vertex in Uj), add the first (by any fixed order)

restricting vertex to U9 (and proceed to the next iteration).

CLAIM 6.2.6. For every U and every perfect k-partition of U, after at most , 5
4k/e iterations, the Restriction Procedure halts and outputs either U9 or error.

PROOF. If the procedure has not halted, then in each iteration a restricting
vertex is added to U9 causing at least e/4 z N vertices in V(G) to move to a
cluster corresponding to a bigger subset. Since each vertex can be moved at most
k times (before it belongs to C[k]), the maximal number of iterations before the
procedure halts is 4k/e. e

Before we show how U9 can be used to define a k-partition p of V(G), we
need to ensure that with high probability, the restriction procedure in fact
outputs a set U9 and not an error symbol. To this end, we first extend the notion
of covering set to the context of k-Coloring. Though the notion here may seem
somewhat remote from the one used in the Bipartite case, it can be shown that
the two are related.

Definition 6.2.7 (Covering Sets—for k-Coloring). We say that U is a covering
set for V(G), if for every perfect k-partition of U, the Restriction Procedure,
given this partition as input, halts with an output U9 , U (rather than an error
symbol).

In other words, U is such that for every perfect k-partition of U and for each
of the at most , iterations of the procedure, if there exist at least (e/8) z N
restricting vertices with respect to the current partition of U9, then Uj will
include at least one such restricting vertex.

LEMMA 6.2.8. With probability at least 1 2 d/2, a uniformly chosen set U of size
, z m 5 O(k2log(k/d)/e3) is a covering set.

PROOF. Let us first consider a single iteration of the Restriction Procedure. If
there are at least (e/8) z N restricting vertices with respect to the partition p9 of
the current U9, then the probability that in a uniformly chosen sample of size m
(5 uUju) there will be no restricting vertex with respect to p9, is at most (1 2
(e/8))m. By our choice of m 5 O(, z e21 log(k/d)), the latter is bounded by

687Property Testing and Learning and Approximation

(d/ 2)k2,. Thus, the lemma reduces to proving that, for every j, the number of
possible pairs (U9, p9) that we need to consider for the jth iteration is at most
kj21.

We shall prove the above claim inductively. Let the set U9 at the start of
iteration j (before adding a new restricting vertex to it) be denoted by U9(j 2
1), and let its partition be denoted by p9j21. For the base case, j 5 1, the set
U9(0) is empty and the claim trivially holds. Assuming the claim holds for j 2 1,
we now prove it for j. In the jth iteration, for each of the possible pairs (U9(j 2
1), p9j21), such that there exist at least (e/8) z N restricting vertices with respect
to p9j21, the vertex uj [Uj which is the first restricting vertex in Uj, is uniquely
defined.20 Hence, for each such pair (U9(j 2 1), p9j21), there is a single possible
extension U9(j) of U9(j 2 1), namely, U9(j) 5 U9(j 2 1) ø {uj}. The new
partition, p9j, which extends p9j21 can be one of at most k possibilities (depend-
ing only on p9j(uj)). e

Definition 6.2.9 (Closed Partitions). Let U9 be a set and p9 a k-partition of it.
We call (U9, p9) closed if there are less than e/8 z N restricting vertices with
respect to p9.

Clearly, if the Restriction Procedure outputs a set U9, then this set together
with its (induced) partition are closed. If (U9, p9) is closed, then most of the
vertices in V(G) are nonrestricting. Recall that a nonrestricting vertex v,
belonging to a cluster CA, A Þ [k], has the following property. There exists at
least one index i [A# , such that (v, i) is nonrestricting. It follows from
Definition 6.2.5 that for every consistent extension of p9 to p which satisfies
p(v) 5 i there are at most (e/ 2) N violating edges incident to v.21 However,
even if v is nonrestricting, there might be indices i [A# such that (v, i) is
restricting, and hence there may exist a consistent extension of p9 to p that
satisfies p(v) 5 i in which there are more than (e/ 2) N violating edges incident
to v. Therefore, we need to define for each vertex its set of forbidden indices that
will not allow to have p(v) 5 i for a restricting pair (v, i).

Definition 6.2.10 (Forbidden Sets). Let (U9, p9) be closed and consider the
clusters with respect to p9. For each v [V(G)\U9 we define the forbidden set of
v, denoted Fv, as the smallest set satisfying

—Fv $ A, where v [CA.
—For every i [A# , if v has at least e/4 z N neighbors in the clusters CB for which

i [y B, then i is in Fv. That is, if (v, i) is restricting, then i [Fv.

For u [U9, we artificially define Fu 5 [k]\{p9(u)}.

LEMMA 6.2.11. Let (U9, p9) be an arbitrary closed pair and Fv’s be as in
Definition 6.2.10. Then:

(1) u{v ; (v [y C [k]) ` (Fv 5 [k])} u # (e/8) N.

20 It may be the case that no such restricting vertex exists in Uj, but the probability for this event has
been bounded above.
21 First note that by definition of a consistent extension, no vertex in cluster CB, where i [B, can
have p-value i. Thus, all violated edges incident to v are incident to vertices in clusters CB so that
i [y B. Using the definition of a restricting pair (v, i), we are done.

688 O. GOLDREICH ET AL.

(2) Let p be any k-partition of V(G)\{v ; Fv 5 [k]} such that p(v) [y Fv, for every
v. Then, the number of edges (v, v9) [E(G) for which p(v) 5 p(v9) is at most
e/ 2 z N2.

The lemma can be thought of as saying that any k-partition which respects the
forbidden sets is good (i.e., does not have many violating edges). However, the
partition applies only to vertices for which the forbidden set is not [k]. The first
item tells us that there cannot be many such vertices which do not belong to the
cluster C[k]. We deal with vertices in C[k] at a later stage.

PROOF. The first item follows from the closeness of (U9, p9). Namely, if Fv 5
[k] and v [y C[k], then, by the second item of Definition 6.2.10, it follows that for
every i [A# , vertex v has at least (e/4) z N neighbors in clusters CB such that i [y
B. But in this case, it is a restricting vertex with respect to p9. By Definition 6.2.9,
as applied to (U9, p9), there are at most (e/8) z N such vertices.

For the second item, consider a vertex v such that p(v) 5 i and so v [CA
where i [y Fv $ A. All edges (v, u) and (u, v) such that u [CB and i [B
cannot be violating edges since i [Fu (by the first item in Definition 6.2.10). As
for edges (v, u) and (u, v) where u [CB and i [y B, and vertex v can have at
most (e/ 2) z N such edges (according to the second item in Definition 6.2.10).
The total of violating edges is hence at most (e/ 2) z N2. e

We next show that with high probability over the choice of S, the k-partition p9
of U9 (induced by the k-partition of U ø S) is such that C[k] is small. This
implies that the vertices in C[k] (which were left out of the partition in the
previous lemma) can be placed in any component of the partition without
contributing too many violating edges (which are incident to them).

Definition 6.2.12 (Useful k-partitions). We say that a pair (U9, p9) is e-useful if
uC [k]u , (e/8) N. Otherwise it is e-unuseful.

The next claim follows from our choice of m and the above definition.

CLAIM 6.2.13. Let U9 be a fixed set of size , and p9 be a fixed k-partition of U9
so that (U9, p9) is e-unuseful. Let S be a uniformly chosen set of size m. Then, with
probability at least 1 2 (d/2)k2,, there exists no perfect k-partition of U9 ø S which
extends p9.

PROOF. By definition, for C[k] defined based on (U9, p9), we have uC[k]u $
(e/8) z N, and so a uniformly chosen S contains a vertex in C[k] with the claimed
probability, in which case any extension of p9 to S is nonperfect. e

By the same argument applied in the proof of Lemma 6.2.8, we have that the
number of possible closed pairs (U9, p9) determined by all possible k-partitions
of U is at most k,. Therefore, we get the following corollary to the above claim:

COROLLARY 6.2.14. If all closed pairs (U9, p9) that are determined by all
possible k-partitions of U are unuseful, then with probability at least 1 2 d/2 over
the choice of S, there is no perfect k-partition of X 5 U ø S.

We can now wrap up the main part of the proof of Theorem 6.2.2. If G is
accepted with probability greater than d, then by Lemma 6.2.8, the probability
that it is accepted and U is a covering set is greater than d/2. In particular, there
must exist at least one covering set U, such that if U is chosen then G is accepted

689Property Testing and Learning and Approximation

with probability greater than d/2 (with respect to the choice of S). That is, (with
probability greater than d/2) there exists a perfect partition of U ø S. But in
such a case (by applying Corollary 6.2.14), there must be a useful closed pair (U9,
p9) (where U9 , U). If we now partition V(G) as described in Lemma 6.2.11,
where vertices with forbidden set [k] are placed arbitrarily, then from the two
items of Lemma 6.2.11 and the usefulness of (U9, p9) it follows that there are at
most eN2 violating edges with respect to this partition. This completes the main
part of the proof and the rest refers to the efficient procedure for finding e-good
partitions.

Similar to the bipartite case, if G [&k, then with probability at least 1 2 d
(over the choice of U and S), the k-Coloring of GX (recall that X 5 U ø S) is
such that the induced (perfect) coloring of U determines a useful pair (U9, p9)
which can be used to determine a partition of V(G). Details follow.

EFFICIENT CONSTRUCTION OF AN e-GOOD K-PARTITION OF V(G). For the
efficient implementation, we assume the testing algorithm is run with distance
parameter e/2 and confidence parameter d/2. The main point we need to address
is the question of efficiently implementing the Restricting Procedure (i.e.,
constructing U9 given U and a perfect k-partition of U), and the definition of
forbidding sets. We first observe, that in the Restricting Procedure we do not
actually need to determine (in each iteration) if there are more or less than
(e/8) z N restricting vertices. Since we know that with high probability Uj

contains a restricting vertex if many such vertices exist, we need only scan Uj in
search for such a vertex. Note that no harm is done when despite the fact that
there are too few restricting vertices in iteration j nevertheless Uj contains one.
This is true since the bound on the number of iterations performed by the
Restriction Algorithm, is unrelated to the actual number of restricting vertices in
each iteration.

In order to recognize restricting vertices, we do the following. We uniformly
select , sets of vertices, W1, . . . , W,, each of size Q(k log(k/(ed))/e2). Consider
the jth iteration of the restricting procedure, where we search for a restricting
vertex in Uj (with respect to the current U9 and p9). Using Wj, we approximate
for each u [Uj and each i [A# (where u [CA) how many neighbors u has in
B-clusters such that i [y B. To do so we simply perform queries on all pairs of
vertices in U9 3 Wj, and all pairs in Uj 3 Wj. For each u [Uj, let R(u, i) be the
set of neighbors of u in Wj that belong to B-clusters such that i [y B. If for some
u [Uj, uR(u, i) u/ uWju $ 3e/8 for every i [A# , then we conclude that u is a
restricting vertex, and we select the first such vertex in Uj to add to U9. By our
choice of the size of each Wj and an additive Chernoff bound, with probability at
least 1 2 d/4, for every j, if Uj contains a restricting vertex then it will be
detected. Furthermore, any vertex in Uj that is considered as restricting in fact
has at least (e/8) z N neighbors (in V(G)) that belong to B-clusters such that i [y
B, for every i [A# . Note that the first such vertex is uniquely determined by the
set Wj, and that the time for implementing the restriction procedure is negligible
with respect to the running time of the testing algorithm.

Once U9 is constructed, we cluster all vertices in V(G) according to U9 and p9.
To do so we simply perform all queries between vertices in V(G) and U9. As for
implementing the definition of forbidden sets, here each vertex v [V(G)
samples its neighbors to determine Fv. Namely, for each vertex v we select a

690 O. GOLDREICH ET AL.

sample of Q(log(k/(ed))/e2) vertices, and approximate, for each i [A# (where
v [CA), the number of neighbors that v has in B-clusters such that i [y B. The
expected number of vertices v for which these approximations differ significantly
from the expected value is O(ed z N), and hence with probability at least 1 2
d/4, there are (e/4) z N vertices for which these approximations are in fact far
from correct. Adding the contribution of these vertices to the number of
violating edges accounted by Lemma 6.2.11 and Claim 6.2.13, we get an e-good
partition. The running time is hence governed by the implementation of the
forbidden sets, and is O(log(k/(ed))/e2) z N.

This completes the proof of Theorem 6.2.2. e

7. Testing MAX-CLIQUE

Let v(G) denote the size of the largest clique in graph G, and #r 5
def

{G ; v(G) $ r z
uV(G)u} be the set of graphs having cliques of density at least r. Recall that N 5

def

uV(G)u. The main result of this section is:

THEOREM 7.1. There exists a property testing algorithm, !, for the class #r

whose query complexity and running time are

OS log2~1/~ed!!r2

e6 D and expSOS log~1/~ed!!r

e2 D D ,

respectively. In particular, ! uniformly selects O(log(1/(ed))r/e4) vertices in G
and queries the oracle only on the existence of edges between (some of) these
vertices. In case G [#r, one can also retrieve in time O(log(1/(ed))r/e2) z N a set
of r z N vertices in G, which is almost a clique (in the sense that it lacks at most e z
N2 edges to being a clique).

Theorem 7.1 is proven by presenting a seemingly unnatural algorithm/tester
(see below). However, as a corollary, we observe that the “natural” algorithm,
which uniformly selects poly(e21 log(1/d)) many vertices and accepts iff they
induce a subgraph with a clique of density r 2 e/2, is a valid #r-tester as well.

COROLLARY 7.2. Let q(z , z) be the query complexity of algorithm ! guaranteed
by Theorem 7.1 (i.e., q(e, d) 5 poly(e21 log(1/d))), and let r, e, d . 0. Let R be a
uniformly selected set of m 5

def
20 z q(e/2, d/5) vertices in V(G), and GR be the

subgraph (of G) induced by R. Then,

—if G [#r, then PrR[v(GR) # (r 2 e/ 2) z m] , d.
—if dist(G, #r) . e, then PrR[v(GR) $ (r 2 e/ 2) z m] , d.

7.1 PROOF OF COROLLARY. Our presentation presupposes that ! is given
oracle access to a graph whose vertices may be an arbitrary subset of [V(G)]. If
one insists that ! only tests graphs with uV(G)u vertices then another auxiliary
trick is needed. Instead of providing ! with oracle access to GR (as done below),
we provide it with oracle access to a graph in which each vertex of GR is
duplicated uV(G)u/uRu times and edges are duplicated in the natural manner.

With the above technicality being settled, let us present the underlying ideas of
the proof. The first item follows easily from the fact that q(e, d) 5 V(e22

log(1/d)) (as such a sample is likely to hit enough vertices of the clique). The

691Property Testing and Learning and Approximation

issue is the second item. The basic idea is that if GR has a clique of size r9 5
def

r 2 (e/2) and we were to run ! on it (with density parameter r9), then ! would
accept with high probability. On the other hand, when ! is invoked on G (with
density parameter r9 and distance parameter e/2), algorithm ! rejects with high
probability. Loosely speaking, these two facts stand in contradiction since the
samples that ! sees in the two cases are statistically close. (Here we use the
hypothesis that ! queries the graph only on edges between vertices in a
uniformly selected sample.) Actually, the above would be true if we were to set
m 5 O(q(e/ 2, d/5)2) (as done in preliminary versions of this paper), as in both
cases ! would be likely to see a uniformly distributed set of q(e/ 2, d/5) distinct
vertices. This, however, does not happen with m 5 O(q(e/ 2, d/5)), since when
sampling GR algorithm ! is likely to see several occurrences of some vertices
(whereas this is unlikely when sampling G). Thus, we start by presenting an
interface between the graph and algorithm !. Loosely speaking, the interface
obtains a sample 10 times bigger than what is required by !, and passes to ! a
uniformly chosen subset of the required size consisting of distinct vertices.

INTERFACE TO !. We use the fact that q(e/ 2, d/5) . 2 z log(5/d) (otherwise,
we would have needed to increase the size of m). Let q 5

def
q(e/ 2, d/5), and

suppose that q , N/ 2 (as, otherwise, we can just scan the entire graph). Given a
sample of 10q vertices (with possible repetitions), the interface passes on the
first q distinct vertices, and aborts if such elements do not exist. We adopt the
convention by which whenever the interface aborts, the (modified) algorithm
accepts.

Comment 7.1.1. Actually, we need to further modify the above interface so
that collisions may occur with small probability, as would be the case when
sampling independently q elements from V(G). This is easy to do (e.g., one
always passes the first vertex, and for i 5 2, . . . , q and j 5 1, . . . , i 2 1, one
repeats the jth element in the ith location with probability 1/N and otherwise
passes the ith element). In the rest of the proof, we ignore this modification of
the interface.

CLAIM 7.1.2. Suppose that q # m/2, and that S is a set of m distinct elements.
Then, the probability that the interface aborts when given a sample of 10q elements
uniformly and independently selected in S is smaller than d/5.

PROOF. It suffices to upper bound the probability that a random multiset of
10q elements selected in a set of size 2q contains less than q distinct elements.
Let z i represent the event that either the i 2 1 first multiset elements contain at
least q distinct elements or the ith element in the multiset is different from each of
the previous ones. Clearly, Pr[zi 5 1u(j,izj , q] $ 1/2, whereas Pr[zi 5 1u(j,izj $
q] 5 1. Note that Pr[(i51

10q zi , q] represents the probability of aborting.

PrF O
i51

10q

z i , qG , O
s51

q21 S 10q
s D z 0.510q2s

, 2q21 z exp~22 z ~0.5 2 0.1!2 z 10q!

, 22q/ 2,

692 O. GOLDREICH ET AL.

which is at most d/5, as required. e

Claim 7.1.2. will be applied both with respect to the set V(G), and with respect
to the subset R as in the statement of the corollary. The next claim refers to the
latter set R, and is quite obvious.

CLAIM 7.1.3. Suppose that q # m/2, and suppose that the interface is given a
uniformly selected set R , V(G) of size m. Then conditioned on not having aborted,
the interface passes on a set of q vertices that is uniformly distributed among all such
subsets of V(G).

We now turn to the actual claims of the corollary. As stated above, the first
item is obvious (given that q(e/ 2, d/5) 5 V(e22 log(1/d))). Our aim is to prove
the second item. Suppose that dist(G, #r) . e, and consider what happens if we
were to run !, through the interface, on GR with density parameter r9 5 r 2 e/2,
distance parameter e9 5 e/2 and confidence parameter, d9 5 d/5. In such a case,
algorithm ! requires a sample of size q 5 q(e9, d9), which is supplied by taking
a random sample of 10q vertices of R and passing them through the interface to
!. By Claim 7.1.2, the interface aborts with probability less than d/5. By Claim
7.1.3, for a uniformly selected R, conditioned on the abort event not happening,
algorithm ! obtains a sample which is identically distributed to the sample it
obtains when testing G under the same set of parameters, denoted p9 5

def
(r9, e9,

d9). Denoting by @ the composition of the interface with !, we conclude that

uPrR@@GR~p9! 5 1# 2 Pr@@G~p9! 5 1# u ,
d

5
. (6)

Observe that dist(G, #r9) . e/2 (as otherwise there exists G9 [#r9 so that
dist(G, G9) # e/2, whereas dist(G9, #r) # re/2 for all G9 [#r9 5 #r2(e/2)). Using
this fact, Eq. (6) and the fact that the interface increases the success probability
of ! by at most d/5, we have

PrR@@GR~p9! 5 1# , Pr@@G~p9! 5 1# 1
d

5

, Pr@!G~p9! 5 1# 1 2 z
d

5

,
d

5
1

2d

5

On the other hand, using the fact that @’s accepting probability is lower bounded
by that of !, we have,

PrR@@GR~p9! 5 1# $ PrR@v~GR! . r9 z m# z min
G9:v~G9!.r9 z m

$Pr@@G9~p9! 5 1#%

. PrR@v~GR! . r9 z m# z S 1 2
d

5D .

693Property Testing and Learning and Approximation

We conclude that

PrR@v~GR! . r9 z m# ,
PrR@@GR~p9! 5 1#

1 2 ~d/5!

,
2d

5
1

3d

5

as required. This completes the proof of Corollary 7.2. e

7.2. THE APPROXIMATE-CLIQUE FINDER. We start by presenting and analyz-
ing an algorithm that, given a graph G that has a clique of size rN, finds a set of
vertices of size rN that is close to being a clique. Namely, for any given e and d,
with probability at least 1 2 d, the algorithm finds a set of vertices of size rN,
such that there are at most eN2 pairs of vertices in this set that are not connected
by an edge. Our testing algorithm builds on this algorithm, which we call the
Approximate-Clique Finding algorithm. The Approximate-Clique Finding algo-
rithm (described in Figure 2) runs in time proportional to N2. We later show how
an approximate clique can be found in time linear in N as asserted in Theorem
7.1. Throughout the analysis, we assume that e , r2 (as otherwise dist(G, #r) #
r2 # e for every graph G).

Notation. Let CN
r denote the class of N-vertex graphs consisting of a clique of

size rN and (1 2 r) z N isolated vertices. In the sequel, we denote by dist(G9,
CN

r) the relative distance (as a fraction of N2) between a graph G9 and CN
r . In

case G9 contains less than N vertices we augment it by N 2 uV(G9)u isolated
vertices. In all cases uV(G9)u # N. With slight abuse of notation, for a set X #
V(G), we let dist(X, CN

r) denote the relative distance between the subgraph of G
induces by X and CN

r .

7.2.1. A Mental Experiment. To motivate our algorithm, we start with the
following mental experiment. Assume that G has a clique C of size rN. Suppose

FIG. 2. Approximate-Clique Finding Algorithm.

694 O. GOLDREICH ET AL.

we had an oracle that would tell us for every given vertex v whether v is a
neighbor of every vertex in C. By querying the oracle on each vertex in the graph,
we could determine the set of vertices, denoted T(C), that neighbor every vertex
in C. Note that since C is a clique, C is a subset of T(C). Unfortunately, there
might be many other vertices in T(C) that do not belong to C. However, assume
that we order the vertices in T(C) according to their degree in the subgraph
induced by T(C) (breaking ties arbitrarily), and let C9 be first rN vertices
according to this order. Then, we claim that C9 is a clique (though it might be
different from C). To see this, observe that by definition of T(C), each vertex in
C neighbors every vertex T(C) (except itself). Thus, each vertex in C has degree
2(uT(C)u 2 1) in the subgraph induced by T(C), which is the maximum possible.
(Recall that according to our convention, the degree of a vertex is the sum of its
in-degree and its out-degree, which is twice its degree in the undirected
representation of the graph.) Since uCu 5 rN, every vertex in C9 must have
degree 2(uT(C)u 2 1) as well (because the vertices in C are all candidates for the
set C9 whose size is rN as well). In other words, every vertex in C9 neighbors
every (other) vertex in T(C), and in particular it neighbors every other vertex in
C9, making C9 a clique.

Suppose next that instead of having an oracle to C, we were given a uniformly
chosen set U9 in C of sufficient size (i.e., of size Q(e22 z log(1/(ed)))). Let T(U9)
be the set of vertices that neighbor every vertex in U9. Then, with high
probability over the choice of U9, almost every vertex in T(U9) neighbors almost
all vertices in C. Similarly to the above, we could order the vertices in T(U9)
according to their degree in the graph induced by T(U9), and take the first rN
vertices. It can be shown (and we prove something slightly stronger later) that
the resulting set is close to being a clique.

7.2.2. The Actual Algorithm. Since a uniformly chosen set in C is not provided
to the algorithm, it instead “guesses” such a set. More precisely, it uniformly
selects a set U from all graph vertices, and it considers all its subsets U9 of size
r/2uUu. Since with high probability uU ù Cu $ r/2uUu, there exists a subset U9
contained in C. Furthermore, with high probability, for this U9, almost all
vertices in T(U9) (the set of vertices that neighbor every vertex in U9), neighbor
almost every vertex in C. The next idea is to approximate the degree of each
v [T(U9) in the subgraph induced by T(U9), instead of computing it exactly.
While this is not necessary for the efficiency of the Approximate-Clique Finding
algorithm (as it runs in time quadratic in N anyhow), it will be useful to apply
this modification here so as to simplify the analysis of the tester (which is
presented later).

To approximate the degree of vertices in T(U9), we uniformly select an
additional set, W, and let W(U9) # W contain all vertices in W that neighbor
every vertex in U9. Thus, W(U9) is effectively sampling from T(U9). We now
order the vertices in T(U9) according to the number of neighbors they have in
W(U9), and take the first rN vertices according to this order (if uT(U9)u , rN
then necessarily U9 #y C and we don’t need to consider this U9). Thus for every
subset U9 we obtain a set of rN vertices, and we output the one that misses the
fewest edges to being a clique. (We note that U and W together play the role
that the subset U of the sampled vertices plays in our other algorithms. Namely,
U and W together are used to determined partitions of V(G).)

695Property Testing and Learning and Approximation

The resulting Approximate-Clique Finding algorithm is given in Figure 2. In
order to establish the correctness of the algorithm, we first show that with high
probability, the set U has certain desired properties.

As before, let C be a clique of size rN in G. For e1 [[0, 1], we say that a set
U9 , C , V(G) is e1-clique-representative with respect to C, if for all but e1N of
the vertices, v [V(G),

if uG~v! ù Cu , ~r 2 e1! N then G~v! ù U9 Þ U9. (7)

That is, for most vertices v for which G(v) ù U9 5 U9, it holds that uG(v) ù Cu $
(r 2 e1) N. Note that for every v [C the above condition holds for all e1 $ 0
(since G(v) $ C . U9).

CLAIM 7.2.2.1. Let t 5 V(log(1/(e1d))/e1r), where e1 [[0, 1]. Let U be a
uniformly chosen set of t vertices in G. Then, with probability at least 1 2 d/2, the
set U contains an e1-clique-representative subset of size (r/2)t.

PROOF. Using a multiplicative Chernoff Bound (see Appendix B) we obtain
that uU ù Cu $

1
2rt with probability at least 1 2 exp(2V(rt)) . 1 2 d/4. Let us

now consider a uniformly selected subset U9 , C of cardinality t9 5
def

(r/ 2)t.
Clearly, for each v [C, Eq. (7) holds. For each v [V(G)\C

PrU9 [Eq. ~7! does not hold for v] 5 ~1 2 e1!
t9 ,

e1d

4
, (8)

where the last inequality is due to t9 5 (r/ 2)t and the hypothesis regarding t.
Thus, the expected number of vertices which violate Eq. (7) is bounded by d/4 z
e1N. Applying Markov’s Inequality (see Appendix B) we conclude that with
probability at least 1 2 d/4 there are at most e1N vertices that violate Eq. (7).
The lemma follows. e

We next show that for an e1-clique-representative U9, if we take a subset of
T(U9) of size rN which approximately contains the vertices that have highest
degree in the subgraph induced by T(U9), then we obtain an approximate clique.

LEMMA 7.2.2.2. Let e2 , e/r and e1 5 e2
2. Let U9 be e1-clique-representative

(with respect to C) and T 5 T(U9) 5
def

ùu[U9G(u). Let a be such that aN is the
degree of the (r 2 e2) z Nth vertex of highest degree in T. (We stress that we consider
degrees in the subgraph of G induced by T.) Let C̃ # T be a set of size r z N that
contains at least (r 2 3e2) z N vertices of degree at least (a 2 2e2) z N (in the
subgraph induced by T). Then, C satisfies dist(C̃, CN

r) # 8e2r.

The somewhat complicated formulation of the lemma is meant to fit its
application in the analysis of the Approximate-Clique Finding Algorithm. Specif-
ically, it addresses the fact that the algorithm uses approximations to the degrees
of vertices in T, and that these approximations are slightly inaccurate for most
vertices, and very inaccurate for few vertices.

PROOF. Clearly T $ C (as U9 is a subset of the clique C). Let H 5
def

{v [
V(G)\C ; uG(v) ù Cu $ (r 2 e1) z N } be the set of vertices outside of C having
many neighbors in C. Let R 5

def
T\(C ø H) (i.e., the rest of T). Since U9 is

e1-clique-representative, it follows that uRu , e1N (since a vertex not in C ø H

696 O. GOLDREICH ET AL.

may enter T only if it is adjacent to all vertices in U9 whereas it is adjacent to less
than (r 2 e1) N vertices in C). Let the degree of vertex v in the subgraph
induced by T be denoted by degT(v). (Recall that according to our convention,
the degree of a vertex is the sum of its in-degree and its out-degree, which is
twice its degree in the undirected representation of the graph.) We have,

O
v[C

degT~v! $ 2 z u$~u, v! ; u, v [C% u 1 2 z u$~u, v! ; u [C, v [H% u

$ 2 z ~ uCu2 1 uHu z ~r 2 e1! z N!

. 2rN z S rN 1 UHU 2
e1

r
ND (9)

Thus, the average value of degT(v) for v [C is at least 2 z (rN 1 uHu 2
(e1/r) N). On the other hand, the maximum value of degT(v) for v [C is
bounded above by 2uTu 5 2(uCu 1uHu 1 uRu) # 2(rN 1 uHu 1 e1N). Therefore,
the difference between the maximum value and the average value of degT(v) for
v [C is 2 z (e1 1 e1/r) z N. By a simple counting argument (which is essentially
a variant of Markov’s Inequality) we have that for every k,

UHv [C ; degT~v! , 2SrN 1 UHU 2
e1

r
ND 2 k~2e1 z ~1 1 r21! z N!JU ,

uCu

k
.

Setting k 5 r/e2, we get uCu/k 5 e2N, and k z 2e1(1 1 1/r) # 4e2. Thus, at
least (r 2 e2) z N vertices in C have degree (in the subgraph induced by T) of at
least 2rN 1 2 uHu 2 (2e1/r) 2 4e2N. Since (2e1/r) 5 (2e2

2/r), e2 , e/r, and e ,
r2, we have that a, as defined in the lemma, satisfies

a $ 2r 1
2 uHu

N
2 6e2 5 2r 1

2~ uTu 2 ~ uRu 1 uCu!!

N
2 6e2 $

2 uTu

N
2 8e2 .

(10)

By the lemma’s hypothesis, we have uC̃u 5 r z N. Also, denoting by Z # C̃ the set
of vertices v for which degT(v) $ (a 2 2e2) z N, we have by the lemma’s
hypothesis uZu $ (r 2 3e2) z N. By Eq. (10), we also have, for each v [Z,

degC̃~v! $ degT~v! 2 2 z uT\C̃u

$ @~2 uTu 2 8e2N! 2 2e2N# 2 2@ uTu 2 r z N#

5 2~r 2 5e2! z N.

Summing up the degrees (in C̃) of all vertices in C̃, we obtain

O
v[C̃

degC̃~v! $ O
v[Z

degC̃~v!

$ 2 z uZu z ~~r 2 5e2! z N!

$ 2 z ~r 2 3e2! z ~r 2 5e2! z N2

697Property Testing and Learning and Approximation

. 2 z ~r2 2 8e2r! z N2

5 2uC̃u2 2 16e2r z N2

It follows that C̃ is 8e2r-close to being a clique and so the subgraph induced by it
satisfies the claim of the lemma. e

For a fixed U9 (of cardinality r/ 2 z t), let T 5 T(U9) (5
def

ùu[U9G(u)). We first
prove that degW(U9)[(5 d̂[) provides a good estimate of degT[(where recall
that W9(U) 5 W ù T). For e2 [[0, 1], we say that a set W is e2-representative
(with respect to T), if for all but e2N of the vertices, v [V(G),

U degW ù T~v!

r
2

degT~v!

N
U , e2 , (11)

where for set of vertices Q, degQ(v) is the degree of v in the subgraph of G
induced by Q.

CLAIM 7.2.2.3. Let r 5 V(log(1/e2d)/e2
2r), where e2 [[0, 1]. Suppose that uTu $

rN and that W is a uniformly selected subset of r vertices in V(G). Then, with
probability at least 1 2 (d/4), the set W is e2-representative of T.

PROOF. By applying a multiplicative Chernoff Bound, we get

PrWF UW ù TU ,
r

2
rG 5 exp~2V~rr!! ,

d

8
.

We now consider a uniformly chosen W9 , T of size r9 $ (r/ 2)r. By applying a
Chernoff Bound, we get for any fixed v [V(G),

PrW9F U degW9~v!

r
2

degT~v!

N
U $ e2G 5 exp~2V~e2

2rr!! ,
e2d

8
.

Applying Markov’s Inequality, the claim follows. e

As a corollary to Lemma 7.2.2.2, we have,

COROLLARY 7.2.2.4. Let C be a rN-Clique in G, let e2 , e/r and e1 5 e2
2.

Suppose that U9 , C is e1-clique-representative with respect to C, and that W is
e2-representative with respect to T(U9). Then, the set of rN vertices of highest d̂[
value (in T(U9) $ C) is 8e2r-close to being a rN-Clique. Recall that d̂(v) 5

def
2 z

uG(v) ù W(U9)u 5 dW(U9)(v), and that W(U9) 5 W ù T(U9).

PROOF (OF COROLLARY 7.2.2.4). Let C̃ be the set of rN vertices with highest
d̂[value in T 5 T(U9) (where ties are broken arbitrarily). Let a be as defined in
Lemma 7.2.2.2, (i.e., degT(v) $ aN for at least (r 2 e2) N vertices in T). By the
hypothesis that W is e2-representative of T, it follows that at least (r 2 2e2) N of
the vertices v of T satisfy

1

r
d̂~v! $

1

N
degT~v! 2 e2 $ a 2 e2.

698 O. GOLDREICH ET AL.

Since C̃ contains vertices with highest d̂[value, it must contain at least (r 2
2e2) N vertices of d̂[value at least (a 2 e2)r. Using the hypothesis regarding
W, we conclude that C̃ contains at least (r 2 3e2) N vertices of degT[value at
least (a 2 2e2) N. Using the hypothesis that U9 is e1-clique-representative with
respect to C, we may now invoke Lemma 7.2.2.2 and the corollary follows. e

The correctness of the Approximate-Clique Finding Algorithm follows from
Claims 7.2.2.1 and 7.2.2.3, and Corollary 7.2.2.4, where e2 5 e/(8r). Note that W
need be e2-representative only with respect to T(U9) where U9 is e1-clique-
representative with respect to C.

7.3. THE CLIQUE-DEGREE TESTER. Given the correctness of the Approxi-
mate-Clique Finding algorithm, if we could sample from each C(U9) to tests
whether it is close to being a clique, then we would obtain a testing algorithm for
#r. Namely, if G [#r, then from the previous subsection we know that with high
probability over the choice of U and W, one of the sets C(U9) is close to being a
clique, and if G is far from #r, then every set of size rN, and in particular every
C(U9), is far from being a clique. What we would like to do is test each C(U9)
without actually first constructing it, that is without ordering all (the V(rN))
vertices in T(U9). To this end, we uniformly choose an additional set of vertices,
S, and essentially run the Approximate-Clique Finding algorithm on S. Namely,
for every subset U9 of U (of size r/2uUu) we let S(U9) be the subset of vertices in
S that neighbor every vertex in U9 (so that S(U9) 5 S ù T(U9)). We then order
the vertices in S(U9) according to the number of neighbors they have in W(U9).
Finally we check whether for some U9 the first ruSu vertices in S(U9) (according
to the above order) are close to being a clique. The resulting testing algorithm,
called the Clique-Degree Tester, is described in Figure 3.

FIG. 3. Clique-Degree Tester.

699Property Testing and Learning and Approximation

The correctness of the Clique-Degree Tester follows by two observations: (1)
with high probability there exists an iteration where the sets U and W are as
required in Corollary 7.2.2.4, and (2) the set S is a “good” sample of T(U9). We
start by formulating the second observation in the lemma below. We note that
when the lemma is applied, X is set to be T(U9), and the order on X is as
determined by d̂[(which is computed based on the number of neighbors each
vertex has in W(U9)—see Figure 3).

LEMMA 7.3.1. Let X be any subset of V, and assume uXu $ (r 2 e/40) N.
Consider a fixed ordering x1, . . . , xuXu of the vertices in X, and let X9 be the first
min(rN, uXu) vertices in X according to the above ordering. Let S 5 {s1, . . . , sm} be
a uniformly selected set in V of size m 5 V(t 1 log(1/d)/e2), and let S9 # S be the
first min(rm, uS ù Xu) vertices in S ù X according to the order defined on X.
Then

PrSF U u$~s2k21, s2k! [E~S9, S9!% u

m/ 2
2

uE~X9, X9! u

N2 U .
e

3G ,
d

8
z 22t.

Before proving Lemma 7.2.1, we state a simple claim that follows directly from
an additive Chernoff bound.

CLAIM 7.3.2. Let S 5 {s1, . . . , sm} be a uniformly selected set of vertices of size
m $ t 1 log(32/d)/2e3

2, where e3 [[0, 1]. Then, for any fixed set of vertices X,

PrSF U uS ù Xu

m
2

uXu

N
U . e3G ,

d

16
z 22t.

PROOF OF LEMMA 7.3.1. Let e3 5
def

e/40, and let X0 be the first (r 2 e3) N
vertices in X. (Throughout the proof, whenever we refer to a number of vertices
such that the number is not an integer, we mean the floor of that number.) By
Claim 7.3.2,

PrSF U uS ù X0 u

m
2 ~r 2 e3!U . e3G ,

d

16
z 22t.

Thus, assume from now on that S is such that:

(1) uS ù X0u # rm, from which it follows (by definition of S9) that S9 ù X0 5
S ù X0;

(2) uS ù X0u $ (r 2 2e3)m, from which it follows that is uS9 ù X0u $ (r 2
2e3)m.

Next observe that

$~s2k21, s2k! [E~S9, S9!% 5 $~s2k21, s2k! [E~S9 ù X0, S9 ù X0!%

ø $~s2k21, s2k! [E~S9\X0, S9!% . (12)

(Recall that for two sets of vertices A and B, we let E(A, B) denote the set of
edges with one end point in A and the other in B). By Item (1) above, and a

700 O. GOLDREICH ET AL.

Chernoff bound to get that

PrSF U u$~s2k21, s2k! [E~S9 ù X0, S9 ù X0!% u

m/ 2
2

uE~X0, X0! u

N2 U .
e

9G
5 PrSF U u$~s2k21, s2k! [E~S ù X0, S ù X0!% u

m/ 2
2

uE~X0, X0! u

N2 U .
e

9G
,

d

16
z 22t. (13)

By definition of X9 and X0, we have that

uE~X9, X9! u

N2
2

uE~X0, X0! u

N2
2e3r ,

e

9
. (14)

By Item (2) above, we know that uS9\X0u $ 2e3m, and so

u$~s2k21, s2k! [E~S9\X0, S9!% u

m/ 2

#
u$sk [S9\X0% u

m/ 2
4e3 ,

e

9
. (15)

Summing up the probabilities of errors and substituting the bounds of Eqs.
(14)–(15) in Eq. (13), the lemma follows. e

COROLLARY 7.3.3. Let ! be the algorithm of Figure 3.

(1) If G [#r then Pr[!(G) 5 accept] . 1 2 d.
(2) If dist(G, #r) . e, then Pr[!(G) 5 accept] , d.

The main part of Theorem 7.1 follows from Corollary 7.3.3. The construction of
an approximate clique in time linear in N is discussed following the proof of the
corollary.

PROOF (OF COROLLARY 7.3.3). Let e2 5 e/(24r) and let e1 5 e2
2. In proving

Part (1), we let C be an arbitrary rN-Clique in G. By Claim 7.2.2.1 (and our
choice of e1 and t), with probability at least 1 2 (d/2), the set U contains an
e1-clique-representative (with respect to C) subset of size (r/ 2)t. Let us denote
this subset by U9 and recall that U9 , C. We now consider the execution of Steps
(1)–(4) with this U9. By Claim 7.2.2.3 (and our choice of e2 and r), with
probability at least 1 2 (d/4), the set W is e2-representative of T(U9). Let C̃
denote the set of rN vertices of highest d̂[value in T(U9). By Corollary 7.2.2.4
and 8e2r 5 e/3, the set C̃ is e/3-close to being a rN-Clique. Applying Claim 7.3.2
to T(U9) with e3 5 e/80, Condition (a) of Step (4) holds with probability greater
than 1 2 (d/8). Applying Lemma 7.3.1 (with X 5 T(U9) and the order on X
determined by d̂[), Condition (b) of Step (4) also holds with probability greater
than 1 2 (d/8) (as the fraction of missing edges is at most (e/3) more than the

701Property Testing and Learning and Approximation

(e/3) loss of C̃). Summing up the error probabilities, Part (1) of this corollary
follows.

We now turn to prove Part (2). For any fixed choice of U9 and W, we consider
the set, denoted C(U9), of min(rN, uT(U9)u) vertices of highest d̂[value in T 5
T(U9). If uC(U9)u , (r 2 e/40) N, then necessarily T 5 C(U9). Applying Claim
7.3.2 to T, Condition (a) of Step (4) is violated with probability greater than 1 2
22t z d. Otherwise, we apply Lemma 7.3.1 (again (with X 5 T(U9) and the order
on X determined by d̂[). Since dist(C(U9), CN

r) $ e, with probability greater
than 1 2 22t z d, Condition (b) of Step (4) is violated. We conclude that for
every possible choice of U9 and W, Step (4) accepts with probability bounded by
22t z d. Recalling that U and W are selected at random and less than 2 t possible
U9 , U are tried, Part (2) follows. e

A LINEAR (IN N) TIME ALGORITHM FOR FINDING AN APPROXIMATE CLIQUE.
Given a graph G having a clique of size rN, we can find an approximate clique
(with high probability) as follows. We first run the Clique-Degree Tester (which
with high probability accepts G), and record the sets U9 and W(U9) which gave
rise to the set Ĉ(U9) # S(U9) that was close to being a clique. We then determine
the set T(U9) of vertices that neighbor every vertex in U9 and order them
according to d̂[(i.e., according to the number of neighbors they have in W(U9).
Finally, we take the first rN vertices according to this order. Thus, the running
time of this algorithm is the running time of the Clique-Degree Tester plus

O~ uU9 u z N 1 uWu z N! 5 O~e22r log~1/~ed!! z N!

as desired. The correctness of this algorithm follows by combining the arguments
used above in the proof of Corollary 7.3.3. This completes the proof of Theorem
7.1. e

8. Cut Problems

In this section, we present algorithms for testing r-Cut and r-Bisection. In both
cases, we start by describing an algorithm that actually finds a partition that
approximately maximizes the number of edges crossing the cut. In the case of the
Bisection algorithm, the two sides of the partition are of equal size. We then
show how these algorithms can be modified so as to approximate the size of the
maximum cut. These modifications directly yield testing algorithms for the
respective properties. Finally, we show how to achieve improved partitioning
algorithms by first running the approximation algorithms. In the Bisection
Subsection, we also describe how the algorithms can be easily modified to deal
with the case in which one seeks a bisection that minimizes the number of edges
crossing the cut.

8.1. TESTING MAX-CUT. For a given partition (V1, V2) of V(G), let m(V1, V2)
denote the edge density of the cut defined by (V1, V2). Namely,

m~V1, V2! 5
def u$~v, v9! [E~G! ; for j Þ j9, v [Vj & v9 [Vj9% u

uV~G! u2
.

702 O. GOLDREICH ET AL.

Let m(G) denote the edge density of the largest cut in G. Namely, it is the
maximum of m(V1, V2) taken over all partitions (V1, V2) of V(G). The main
results of this subsection are summarized below.

THEOREM 8.1

(1) There exists an algorithm that on input e and d and oracle access to a graph G,
with probability at least 1 2 d, outputs a value m̂ such that um̂ 2 m(G)u # e.
The algorithm has query complexity and running time

OS log2~1/~ed!!

e7 D and expSOS log~1/~ed!!

e3 D D ,

respectively.
(2) There exists an algorithm that on input e and d, and oracle access to G, runs in

time

expSOS log~1/~ed!!

e3 D D 1 OS log~1/~ed!!

e2 D z N

and with probability at least 1 2 d outputs a partition (V1, V2) of V(G) such
that m(V1, V2) $ m(G) 2 e.

For any given r, let }#r 5
def

{G ; m(G) $ r} be the class of graphs with cuts of
density r. Note that for r . 1/2, the class }#r is empty, and so the problem of
testing r-Cut for r . 1/2 is trivial. For r , 1/2, we get the following as a corollary
to Item (1) of Theorem 8.1.1.

COROLLARY 8.1.2. For every constant 0 # r , 1/2, there exists a property testing
algorithm for the class }#r whose query complexity and running time are

OS log2~1/~ed!!

e7 D and expSOS log~1/~ed!!

e3 D D ,

respectively.

Although very appealing, an approximation of m(G) does not directly translate
to a tester for the class }#r, for any r. The following proof provides the slightly
more subtle connection. In particular, the complexity of the property testing
algorithm asserted in Corollary 8.1.2 increases as a function of the inverse of
(1/2) 2 r (which is assumed to be a constant). When r is arbitrarily close to 1/2,
then we need to run a variant of the Bisection testing algorithm described in
Subsection 8.2.4.

PROOF. Let g 5
def =1 2 2r. The testing algorithm runs the approximation

algorithm referred to in Item (1) of Theorem 8.1, with approximation parameter
e9 5

def
(g z e)/3 and confidence parameter d (where e and d are the distance

parameter and confidence parameter, respectively, of the testing algorithm). It
accepts G if and only if m̂ $ r 2 e9.

If m(G) $ r, then by Item (1) of Theorem 8.1.1, G is accepted with probability
1 2 d, as required. Conversely, if the graph is accepted with probability greater

703Property Testing and Learning and Approximation

than d, then m(G) $ r 2 2e9. We claim that this implies that G is e-close to some
graph G9 in the class }#r. Details follow.

Let (V1, V2) be a partition of V(G) such that m(V1, V2) $ r 2 2e9. Then
necessarily, 2uV1u z uV2u $ (r 2 2e9) N2. If 2uV1u z uV2u $ rN2, then to obtain G9
we can simply add edges between vertices in V1 and vertices in V2 until m(V1,
V2) 5 r. In this case, dist(G, G9) # 2e9 , e. Otherwise, we cannot obtain G9 by
simply adding edges between V1 and V2, as the total possible number of edges
between V1 and V2 is less than rN2. Instead, we first move a sufficient number of
vertices from the larger set among V1 and V2 to the smaller set so as to “make
room” for the needed number of added edges. Assume without loss of generality
that uV1u , uV2u, and consider a partition (V91, V92) such that V91 . V1, and uV91u has
the minimum value such that 2uV91u z uV92u $ rN2. It is not hard to verify (by
solving two quadratic equations) that uV91u 2 uV1u # e/g z N, and so

m~V91, V92! $ m~V1, V2! 2
e9

g
$ r 2 e.

We can now proceed as in the first case by adding edges between V91 and V92 until
we obtain a cut of the desired density. e

A more natural property tester follows as in the case of r-Clique:

COROLLARY 7.1.3. Let r be any non-negative constant smaller than 1/2. Let
m 5 poly(e21 log(1/d)) and let R be a uniformly selected set of m vertices in V(G).
Let GR be the subgraph (of G) induced by R. Then,

—if G [}#r, then PrR[m(GR) . r 2 (e/2)] . 1 2 d.
—if dist(G, }#r) . e, then PrR[m(GR) # r 2 (e/2)] . 1 2 d.

Our algorithms can be easily generalized to approximate and test Max-k-way-
Cut for k . 2 (see Section 8.1.5). Furthermore, since maximizing the density of
cut edges effectively minimizes the density of edges inside the different compo-
nents of the partition, the approximation algorithm for Max-Cut (and Max-k-
way-Cut) can be used to test Bipartiteness (and respectively k-Colorability) as
well. However, as opposed to our Bipartite (respectively, k-Colorability) testing
algorithm, here we achieve a two-sided error (rather one-side error). That is,
even if the input graph is bipartite (respectively, k-Colorable) it might be
rejected (here) with probability greater than 0. Furthermore, for constant k, the
sample complexity and running time of the algorithms presented here are also
worse than those specifically intended to test bipartiteness and k-Colorability.

8.1.1. Organization. We start by presenting a quadratic-time partitioning
algorithm, which given a graph G constructs a cut (i.e., a partition the vertices of
the graph into two disjoint sets) of edge density at least m(G) 2 (3/4)e. This
algorithm runs in time exp(poly(log(1/d)/e)) z N2 and is the basis for the
approximation algorithm of Item (1) of Theorem 8.1.1. The algorithm claimed in
Item (2) follows by combining the two algorithms. The extension to k-way cuts is
presented in Section 8.1.5.

8.1.2. A Preliminary Graph Partitioning Algorithm. Let , 5 4/e, and let (V1,
. . . , V,) be a fixed partition of V(G) into , sets of (roughly) equal size (say,

704 O. GOLDREICH ET AL.

according to the order of the vertices in V(G)). In the Graph Partitioning
Algorithm given below, we describe how to construct a partition (V1, V2) of V(G)
in , iterations, where in the ith iteration we construct a partition (V1

i , V2
i) of Vi.

The algorithm is essentially based on the following observation.
Let (H1, H2) be any fixed partition of V(G). (In particular, we may consider a

partition that defines a maximum cut). Let v [H1 and assume that v has at least
as many neighbors in H1 as it has in H2 (i.e., uG(v) ù H1u $ uG(v) ù H2u). Then
by moving v from H1 to H2 we cannot decrease the edge density of the cut (and
we might even increase it). Namely,

m~H1 \ $v% , H2 ø $v%! $ m~H1, H2! .

Furthermore,

m~H1 \ $v% , H2 ø $v%! 2 m~H1, H2! 5
2 z ~ uG~v! ù H1u 2 uG~v! ù H2u!

N2
.

(16)

8.1.2.1. THE PLAN. Taking this observation one step further, we next show
how we can define a new partition of V based on some (little) information
concerning (H1, H2), where we move Q(eN) vertices between the components of
the partition. Although we cannot ensure that the size of the cut does not
decrease, as was the case when moving a single vertex, we can show that the size
of the cut decreases by O(e2N2). (Note that, in the worst case, by moving Q(eN)
vertices, the size of a cut may decrease by Q(eN2).) We then show how such a
process could be used by a graph partitioning algorithm given such information
(which can be viewed as access to certain oracles). The oracle-aided algorithm
will work in O(1/e) stages. It will be viewed as starting from a partition
corresponding to a maximum cut and moving O(eN) vertices in each stage. The
total decrease in the size of the cut will hence be bounded by O((1/e) z e2N) 5
O(eN). Finally, we show how the process can be implemented approximately
(without any additional information).

8.1.2.2. AN “IDEAL” PROCEDURE. Let X be a subset of V(G) of size N/,,
(where we assume for simplicity that , divides N), let W 5

def
V\X, and let (W1,

W2) be the partition of W induced by (H1, H2). That is, W1 5
def

H1 ù W, and
W2 5

def
H2 ù W. Recall that (H1, H2) is some fixed partition of V(G), and that in

particular, we may consider a partition that defines a maximum cut. Assume we
knew for every vertex x [X how many neighbors it has on each side of the
partition (W1, W2). In such a case, define XUB to be the set of unbalanced
vertices in X with respect to (W1, W2). That is, XUB is the set of vertices that
have significantly (say (1/8)eN) more neighbors on one side of the partition that
it has in the other. Analogously, define XB 5 X\XUB to be the set of balanced
vertices with respect to (W1, W2).

Assume we partition X into (X1, X2) as follows: Vertices in XUB which have
more neighbors in W1, are put in X2; vertices in XUB that have more neighbors in
W2, are put in X1; and vertices in XB are placed arbitrarily. Based on this
partition of X, we define a new partition of V: (H91, H92) 5 (W1 ø X1, W2 ø X2),
which differs from (H1, H2) only in the placement of vertices in X. Then the
difference between m(H91, H92) and m(H1, H2), is only due to the change in the

705Property Testing and Learning and Approximation

number of edges between vertices in X and vertices in W, and between pairs of
vertices in X. By definition of XUB, and the way it was partitioned, the number of
cut edges between vertices in XUB and vertices in W could not have decreased.
By definition of XB, the arbitrary placement of these vertices decreased the
number of cut edges between XB and W by at most uXBu z 2 z (1/8)eN #
(e/4,) N2, and the number of cut edges between pairs of vertices in X decreased
by at most uXu2 5 (1/,2) N2 # (e/4,) N2.

Now, let X be V1 (i.e., the first N/, vertices in lexicographical order), let (H1,
H2) define a maximum cut, and let the partition resulting from the process
defined above be denoted by (H1

1, H2
1). Assume we continue iteratively, where in

stage i we perform the above partitioning process for Vi, given the partition
(H1

i21, H2
i21) determined in stage i 2 1. That is, in stage i, we assume we know

which vertices in Vi are unbalanced with respect to the partition of V\Vi induced
by (H1

i21, H2
i21). Then we can apply the same argument used above to each pair

of consecutive partitions (H1
i , H2

i) and (H1
i11, H2

i11), and get that m(H1
,, H2

,) is
smaller than m(H1, H2) 5 m(G) by no more than an additive factor of , z e/2, 5
e/2.

8.1.2.3. THE ACTUAL ALGORITHM. The graph partitioning algorithm, de-
picted in Figure 4, approximately implements the iterative procedure described
above, starting from a partition (H1

0, H2
0), which defines a maximum cut. Clearly,

we do not have a clue as to what (H1
0, H2

0) is, and hence, in particular, we have no
direct way of determining for a given vertex v in V1 whether it is balanced or
unbalanced with respect to the partition (W1

0, W2
0) of W0 5

def
V\V1 induced by this

partition. However, we can approximate the number of neighbors v has on each
side of (W1

0, W2
0) by sampling. Namely, if we uniformly choose a set of vertices U1

of size t 5 poly(log(1/d)/e) in W0, then (as we later prove formally), with high
probability over the choice of U1 there exists a partition (U1

1, U2
1) of U1, which is

representative with respect to (W1
0, W2

0) and V1 in the following sense. For all but
a small fraction of vertices v in V1, the number of neighbors v has in U1

1 (U2
1),

relative to the size of U1, is approximately the same as the number of neighbors
v has in W1

0 (W2
0), relative to the size of V(G). Clearly such an approximation

suffices since what is important when deciding where to put the vertices in V1 is

FIG. 4. Graph Partitioning Algorithm for Max-Cut.

706 O. GOLDREICH ET AL.

to determine where to put the unbalanced vertices. If U1 has a representative
partition, then we say that U1 is good. Since we do not know which of the 2 t

partitions of U1 is the representative one (assuming one exists), we simply try
them all.

The choice of U1 together with each of its partitions determines a partition of
V1. While we must consider all partitions (U1

1, U2
1) of U1, we are only interested

in the (hopefully representative) partition for which U1
1 , W1

0 and U2
1 , W2

0.
Denote this partition by (U1

1, U2
1). Let (V1

1, V2
1) be the partition of V1 that is

determined by this partition of U1, and let (H1
1, H2

1) be the resulting partition of
V(G). Namely, (H1

1, H2
1) is the same as (H1

0, H2
0) except for the placement of the

vertices in V1, which is as in (V1
1, V2

1). If in fact (U1
1, U2

1) is representative
(with respect to (W1

0, W2
0) and V1), then m(H1

1, H2
1) is not much smaller than

m(H1
0, H2

0) 5 m(G). We continue in the same manner, where in stage i we
randomly pick a set Ui, and for each of its partitions we determine a partition of
Vi. Therefore, we are actually constructing (2 t), 5 2, z t possible partitions of
V(G), one for each partition of all the Ui’s. However, in order to show that at
least one of these partitions defines a cut that is not much smaller than the
maximum cut, we only need to ensure that for each i, with high probability, Ui is
good with respect to (W1

i21, W2
i21), where the latter partition is determined by

the choice of U1, . . . , Ui21, and their representative partitions, (U1
1, U2

1), . . . ,
(U1

i21, U2
i21). The actual code is depicted in Figure 4. In the following lemma,

we formalize the intuition given previously as to why the partitioning algorithm
works.

LEMMA 8.1.2.3.1. Let (H1, H2) be a fixed partition of V(G). Then with
probability at least 1 2 d/2 over the choice of U# 5 ^U1 . . . U,&, there exists a
sequence of partitions p(U#), such that m(V1

p(U#), V2
p(U#)) $ m(H1, H2) 2 (3/4)e.

PROOF. For a given sequence of partitions p(U#), we consider the following
, 1 1 hybrid partitions. The hybrid (H1

0, H2
0) is simply (H1, H2). The ith hybrid

partition, (H1
i , H2

i), has the vertices in Vi11, . . . , V, partitioned as in (H1, H2)
and the vertices in V1, . . . , Vi as placed by the algorithm. More precisely, the
hybrid partition (H1

i , H2
i) is defined as follows:

H1
i 5

def

W1
i21 ø V1

i

and

H2
i 5

def

W2
i21 ø V2

i ,

where for j [{1, 2},

Vj
i 5

def

Vj
p(U#) ù Vi, Wj

i21 5
def

Hj
i21 ù Wi21, and Wi21 5

def

V\Vi

Note, that in particular, (H1
,, H2

,) is the partition (V1
p(U#), V2

p(U#)). Since the
partition of each Vi is determined by the choice of Ui and its partition, the ith
hybrid partition is determined by the choice of U1, . . . , Ui and their partitions,
but not by the choice nor the partitions of Ui11, . . . , U,. We shall show that for
every 1 # i # ,, for any fixed choice and partitions of U1, . . . , Ui21, with

707Property Testing and Learning and Approximation

probability at least 1 2 (d/2,) over the choice of Ui, there exists a partition (U1
i ,

U2
i) of Ui such that

m~H1
i , H2

i ! $ m~H1
i21, H2

i21! 2
3e

4,
.

The lemma will directly follow.
For the i 2 1 hybrid partition (H1

i21, H2
i21), or more precisely, for the

partition it induces on Wi21, and a sample set Ui, let

U1
i 5

def

W1
i21 ù Ui

and

U2
i 5

def

W2
i21 ù Ui.

We say that Ui is good with respect to (W1
i21, W2

i21) and Vi if (U1
i , U2

i) is
representative with respect to (W1

i21, W2
i21) and Vi. That is, (U1

i , U2
i) is such that

for all but a fraction of (1/8)e of the vertices v in Vi, the following holds:

For each j [$1, 2% ,
uG~v! ù Uj

iu

t
5

uG~v! ù Wj
i21u

N
6

e

32
. (17)

(Recall that a 5 b 6 c is a shorthand for b 2 c # a # b 1 c.) Assume that in
fact for each i, the set Ui is good with respect to (W1

i21, W2
i21) and Vi. As was

previously defined, we say that a vertex v is unbalanced with respect to (W1
i21,

W2
i21) if

for j, j9 [$1, 2% , j Þ j9 uG~v! ù Wj
i21u $ uG~v! ù Wj9

i21u 1
1

8
eN.

(18)

Thus, if v [Vi is an unbalanced vertex with respect to (W1
i21, W2

i21) for which
Eq. (17) is satisfied, then uG(v) ù Uj

iu $ uG(v) ù Uj9
i u 1 (1/16)et. We are hence

guaranteed (by Steps (2.a.i) and (2.a.ii) of the algorithm) that, when the partition
(U1

i , U2
i) is used, then v is put opposite the majority of its neighbors in Wi21

(according to their position in (W1
i21, W2

i21)). If v is balanced, then it might be
placed on either side of the partition. The same is true for the (at most e/8 z
N/,) vertices for which Eq. (17) does not hold.

As was noted previously, the decrease in the size of the cut is only due to
changes in the number of edges between vertices in Vi and vertices in Wi21, and
between pairs of vertices in Vi. In particular:

(1) The number of cut edges between unbalanced vertices in Vi for which Eq.
(17) is satisfied and vertices in Wi21 can not decrease.

(2) The number of cut edges between unbalanced vertices in Vi for which Eq.
(17) is not satisfied and vertices in Wi21 decreases by at most e/8 z uViu z
2N # (e/4,) N2.

(3) The number of cut edges between balanced vertices in Vi and vertices in
Wi21 decreases by at most uViu z 2 z (1/8)eN # (e/4,) N2.

708 O. GOLDREICH ET AL.

(4) The number of cut edges between pairs of vertices in Vi decreases by at most
uViu2 5 (1/,2) N2 # (e/4,) N2.

The total decrease is bounded by (3e/4,) N2.
It remains to prove that with high probability a chosen set Ui is good (with

respect to (W1
i21, W2

i21) and Vi). We first fix a vertex v [Vi. Let Ui 5 {u1, . . . ,
ut}. Recall that Ui is chosen uniformly in Wi21 5

def
V\Vi. For j [{1, 2}, and for

1 # k # t, define a 0/1 random variable, j j
k, which is 1 if uk is a neighbor of v

and uk [Wj
i21, and is 0 otherwise. By definition, for each j, the sum of the j j

ks
is simply the number of neighbors v has in Uj

i (5 Ui ù Wj
i21) and the

probability that j j
k 5 1 is (1/N) uG(v) ù Wj

i21u. By an additive Chernoff bound
(see Appendix B), and our choice of t, for each j [{1, . . . , k},

PrUiFUuG(v) ù Uj
iu

t
2

uG~v! ù Wj
i21u

N
U .

e

32G 5 exp~2V~e2t!! #
ed

32,
.

By Markov’s inequality (see Appendix B), for each j [{1, 2}, with probability
at least 1 2 (d/4,) over the choice of Ui, for all but (1/8)e of the vertices in Vi,
Eq. (17) holds (for that j), and thus with probability at least 1 2 (d/2,), Ui is
good as required. e

Applying Lemma 8.1.2.3.1 to a maximum cut of G, we get:

COROLLARY 8.1.2.3.2. With probability at least 1 2 (d/2) over the choice of U# ,
we have m(V 1

p̃(U#), V 2
p̃(U#)) $ m(G) 2 (3/4)e, where (V1

p̃(U#), V2
p̃(U#)) is as defined in

Step (3) of the Graph Partitioning Algorithm (Figure 4).

8.1.3. The Max-Cut Approximation Algorithm. Given the graph partitioning
algorithm described above, the Max-Cut approximation algorithm is quite
straightforward. We uniformly choose a set S of vertices of size

m 5 QS , z t 1 log~1/d!

e2 D ,

and run the graph partitioning algorithm restricted to this set. The only small
difference from what might be expected is that we do not necessarily output the
size of largest cut among the cuts defined by the resulting partitions of S (i.e.,
those determined by the sequences of partitions p(U#)). Instead, we view S 5 {s1,
. . . , sm} as a multiset of m/ 2 (ordered) pairs of vertices, (i.e., {(s1, s2), . . . ,
(sm21, sm)}) and we choose the cut that maximizes the number of such pairs
that are edges in the cut. This is done for technical reasons since it ensures a
certain independence in the probabilistic analysis. The exact code is given in
Figure 5.

LEMMA 8.1.3.1. For any fixed U# , with probability at least 1 2 d/2 over the
choice of S, m̂(S1

p̃(U#), S2
p̃(U#)) 5 m(V1

p̃(U#), V2
p̃(U#)) 6 (1/4)e, where (S1

p̃(U#), S2
p̃(U#)) and

m̂(z , z) are as defined in Step (4) of the Max-Cut Approximation Algorithm.

PROOF. Consider first a particular sequence of partitions, p(U#). The key
observation is that for every s [S, and for j [{1, 2}, s [Sj

p(U#) if and only if
s [Vj

p(U#). Thus for each sequence of partitions p(U#), we are effectively
sampling from (V1

p(U#), V2
p(U#)). Furthermore, by viewing S as consisting of m/ 2

709Property Testing and Learning and Approximation

pairs of vertices (s2k21, s2k), and counting the number of such pairs that are on
opposite sides of the partition and have an edge in between, we are able to
approximate the density of the cut edges. For 1 # k # m/ 2, let jk be a 0/1
random variable which is 1 if (s2k21, s2k) [E(G), and for j Þ j9, s2k21 [Sj

p(U#)

and s2k [Sj9
p(U#). Then, by definition, m̂(S1

p(U#), S2
p(U#)) 5 (2/m) (k

m/ 2 jk, and the
probability that jk 5 1 is m(V1

p(U#), V2
p(U#)). Hence, by an additive Chernoff bound

and our choice of m,

PrSF U m̂~S1
p(U#), S2

p(U#)! 2 m~V1
p(U#), V2

p(U#)!U .
1

8
eG

5 exp~2V~e2m!!

5 O~d z 22, z t! (19)

Since there are 2, zt sequences of partitions of U# , with probability at least 1 2
(d/2), for every sequence of partitions p(U#), m̂(S1

p(U#), S2
p(U#)) 5 m(V1

p(U#), V2
p(U#)) 6

(1/8)e, and hence m̂(S1
p̃(U#), S2

p̃(U#)) 5 m(V1
p̃(U#), V2

p̃(U#)) 6 (1/4)e. e

Combining Corollary 8.1.2.3.2 and Lemma 8.1.3.1, Part (1) of Theorem 8.1.1
follows. Part (2) of the theorem is proved below.

8.1.4. An Improved Graph Partitioning Algorithm. The improved (in terms of
running time) graph partitioning algorithm starts by invoking the Max-Cut
Approximation Algorithm of Figure 5, and recording the sequence of sets U#
uniformly selected in Step (1) and the sequence of partitions p̃(U#) selected in
Step (4). Using this specific sequence p̃(U#), the algorithm executes a single
iteration of Step (2) of the Graph Partitioning Algorithm of Figure 4 and obtains
the partition (V1

p̃(U#), V2
p̃(U#)). Since this improved algorithm only partitions all

vertices according to p̃(U#) and does not even compute the size of the resulting

FIG. 5. Max-Cut Approximation Algorithm.

710 O. GOLDREICH ET AL.

cut (as the original algorithm did), its running time is linear in N instead of
quadratic. More precisely, it is O(t z N) 5 O(log(1/(ed)/e2)) z N. As for its
correctness, by Lemma 8.1.2.3.1, we have that with probability at least 1 2 d/2
over the choice of U# , there exists a sequence of partitions p(U#), such that
m(V1

p(U#), V2
p(U#)) $ m(G) 2 (3/4)e. From the proof of Lemma 8.1.3.1, we have

that for a fixed U# , with probability at least 1 2 (d/2) over the choice of S,
m̂(S1

p(U#), S2
p(U#)) is within e/8 from m(V1

p(U#), V2
p(U#)) for every sequence of partitions

p(U#). It follows that with probability at least 1 2 d, the recorded partition p̃(U#)
is such that m(V1

p̃(U#), V2
p̃(U#)) $ m(G) 2 e, as required. Part (2) of Theorem 8.1.1

follows.

8.1.5. Generalization to k-way Cuts. For a k-way partition (V1, . . . , Vk) of
V(G), we denote by mk(V1, . . . , Vk) the edge density of the cut defined by
(V1, . . . , Vk). Namely,

mk~V1, . . . , Vk! 5
def u$~v, v9! [E~G! ; for j Þ j9, v [Vj & v9 [Vj9% u

N2
.

Let mk(G) denote the edge density of the largest k-way cut in G.

THEOREM 8.1.5.1

(1) There exists an algorithm that on input k, e, and d, and oracle access to a
graph G, with probability at least 1 2 d, outputs a value m̂k such that um̂k 2
mk(G)u # e. The algorithm has query complexity and running time

OS log2~k/~ed!!

e7 D and expSOS log2~k/~ed!!

e3 D D ,

respectively.

(2) There exists an algorithm that on input k, e, and d, and oracle access to G,
runs in time

expSOS log2~k/~ed!!

e3 D D 1 OS log~k/~ed!!

e2 D z N

and with probability at least 1 2 d outputs a k-way partition (V1, . . . , Vk) of
V(G) such that mk(V1, . . . , Vk) $ mk (G) 2 e.

PROOF. The graph k-way partitioning algorithm (respectively, Max-k-way-Cut
approximation algorithm and testing algorithms), are obtained from the 2-way
partitioning algorithm by the following simple modifications

—Instead of considering all two-way partitions of each Ui, we consider all its
k-way partitions.

—For each such partition, (U1
i , . . . , Uk

i), we partition Vi (into k disjoint sets) as
follows. For each vertex v [Vi, and for 1 # j # k, let dj

i(v) 5 uG(v) ù Uj
iu,

and let jmin 5 argminj{dj
i(v)}. Then, we put v in Vjmin

i .

The following (minor) changes suffice for adapting the analysis to the modified
algorithm. Let (H1

0, . . . , Hk
0) be a k-way partition of V(G) that defines a

711Property Testing and Learning and Approximation

maximum k-way cut. For a given choice and k-way partitions of U1, . . . , Ui21, let
(H1

i21, . . . , Hk
i21) be the i 2 1 hybrid k-way partition (defined analogously to

the two-way cut case) which is determined by this choice and partitions of
U1, . . . , Ui21. Using the same notation introduced in the two-way cut case, for a
set Ui and for each j [{1, . . . , k} let Uj

i 5
def

Wj
i21 ù Ui where Wj

i21 5
def

Hj
i21\Vi.

We shall say that Ui is good with respect to (W1
i21, . . . , Wk

i21) and Vi, if for all
but (1/8)e of the vertices v in Vi,

For each j [$1, . . . , k% ,
uG~v! ù Uj

iu

t
5

uG~v! ù Wj
i21u

N
6

e

32
. (20)

It follows that in order to ensure that each Ui be good (with respect to (W1
i21,

. . . , Wk
i21) and Vi), we need to choose t 5 uUiu to be log k times larger than in

the two-way cut case.
The notion of balanced and unbalanced vertices is generalized as follows:

Consider a partition (W1
i21, . . . , Wk

i21) of V. For vertex v and j [{1, . . . , k},
let G j(v) 5

def
G(v) ù Wj

i21 be the subset of v’s neighbors that belong to Wj
i21. Let

min(v) 5
def

minj{ uG j(v) u} be the minimum size among these neighbor sets, and let

J~v! 5
def H j [$1, . . . , k% ; UG j~v!U # min~v! 1

e

16
NJ

be the balanced (index) set of v. Note that in particular, for k 5 2, either uJ(v)u 5
1, so that v is unbalanced, or uJ(v) u 5 k (5 2), so that v is balanced. Consider
the case in which Eq. (20) holds for v. In such a case, v is placed in a component
j9 of the partition such that j9 [J(v). Namely, it is placed in a component in
which its number of neighbors is not much far from the minimum, min(v). The
key point is that if v is moved from component j (in (H1

i21, . . . , Hk
i21) to

component j9 (in (H1
i , . . . ,Hk

i)), all edges that it has with vertices in components
j0 Þ j, j9 remain cut edges, and only the number of cut-edges between v and
vertices in components j and j9 might change. Thus, when j9 [J(v), the number
of cut edges between v and vertices in V\Vi does not decrease by much. As in the
case of k 5 2, we are essentially “giving up” on all cut edges between pairs of
vertices in Vi, and cut edges that are incident to vertices for which Eq. (20) does
not hold. Finally, since the number of k-way partitions of all the Ui’s is kt z ,, we
must choose m (the size of S in the Max-k-way-Cut approximation algorithm) to
be ' Q(,t/e2 z log k) rather than ' Q(,t/e2) (as our choice in the case of
two-way cuts). e

8.2. TESTING BISECTION. In this section, we study a variant of the Max-Cut
problem in which both sides of the partition are required to be of equal size.
Namely, using the notation presented in Section 8.1, let

m (1/ 2)~G! 5
def

max
V1,V~G! , uV1u5N/ 2

m~V1, V~G!\V1! .

A partition (V1, V2) of V(G), such that uV1u 5 uV2u 5 N/ 2 is called a bisection.22

For sake of the exposition (due to the similarity to Max-Cut), we first consider
22 We assume throughout this section that N is even. In case N is odd, one may require uV1u 5 uV2u 1
1 5 (N 1 1)/ 2.

712 O. GOLDREICH ET AL.

the less standard problem of maximizing the (number of edges crossing the)
bisection. The (more standard) case of minimization is handled analogously (see
Section 8.2.4). The main result of this section is

THEOREM 8.2.1

(1) There exists an algorithm that on input e and d and oracle access to a graph G,
with probability at least 1 2 d, outputs a value m̂(1/ 2) such that um̂(1/2) 2
m(1/2)(G)u # e. The algorithm has query complexity and running time

OS log2~1/~ed!!

e8 D and expSOS log~1/~ed!!

e2 D D ,

respectively.

(2) There exists an algorithm that on input e, and d, and oracle access to a graph
G, runs in time

expSOS log~1/~ed!!

e3 D D 1 OS log~1/~ed!!

e3 D z N

and with probability at least 1 2 d outputs a bisection (V1, V2) of V(G) such
that m(V1, V2) $ m(1/2)(G) 2 e.

Item (1) yields a property tester for the class }#r
(1/2) 5

def
{G ; m(1/2)(G) $ r}, for

every 0 # r # 1, with query complexity O(log2(1/(ed))/e8) and running time
exp(O(log(1/(ed))/e3)). If r . 1/2 then the tester rejects G since for r . 1/2 the
class }#r

(1/2) is empty. Otherwise the tester runs the approximation algorithm
referred to in Item (1) with approximation parameter e/2 and confidence
parameter d (where e and d are the distance and confidence parameters,
respectively, of the testing algorithm). The tester accepts G if and only if m̂(1/2) $
r 2 e/2. If G [}#r

(1/2) (i.e., m(1/2)(G) $ r), then by Item (1) it is accepted with
probability at least 1 2 d. Conversely, if G is accepted with probability greater
than d, then m(1/2)(G) $ r 2 e. That is, there exists an equal partition (V1, V2) of
G such that m(V1, V2) $ r 2 e. Therefore, dist(G, }#r

(1/2)) # e, since by adding
at most eN2 edges between V1 and V2 we can obtain a graph G9 [}#r

(1/2).
A more natural property tester follows as in previous cases:

COROLLARY 8.2.2. Let m 5 poly(e21 log(1/d)) and let R be a uniformly
selected set of m vertices in V(G). Let GR be the subgraph (of G) induced by R.
Then,

—if G [}#r
(1/2), then PrR[m(1/2)(GR) . r 2 e/2] . 1 2 d.

—if dist(G, }#r
(1/2)) . e, then PrR[m(1/2)(GR) # r 2 e/2] . 1 2 d.

Our proof of Theorem 8.2.1 follows the outline of the proof of Theorem 8.1.1
(i.e., the analysis of the Max-Cut algorithms). However, there is one crucial
difference between the problem of constructing (respectively, approximating the
size of) a maximum cut and the problem of constructing (respectively, approxi-
mating the size of) a bisection: In a bisection, both sides of the cut must be of
equal size. This has the following consequence. Recall that in case of Max-Cut, it
is always beneficial (and possible) to relocate a vertex so that it is on the side

713Property Testing and Learning and Approximation

opposite the majority of its neighbors. In contrast, when restricted to bisections,
this property no longer holds: a maximum size bisection may have vertices which
belong to the same side of the bisection as the majority of their neighbors. Thus,
when partitioning a subset Vi, we can not simply put all vertices (or all
unbalanced vertices) on the side opposite the majority of their neighbors.

However, we can still use information concerning the unbalance of vertices
with respect to a given bisection (and some additional information) in order to
define a new bisection whose cut is not much smaller. Consider an arbitrary
bisection (H1, H2), and an arbitrary set of vertices X of size O(eN). Assume we
are told how many neighbors each vertex in X has in W1 5

def
H1\X and how many

in W2 5
def

H2\X. Further assume that we know uH1 ù Xu and uH2 ù Xu. Let us
relate with each vertex in X an unbalance value, which is simply the fraction of
neighbors it has in W2 (among all N possible neighbors) minus the fraction of
neighbors it has in W1. This value (which ranges from 1 to 21) tries to capture
our “preference” of placing a vertex on side 1.

Assume we now repartition the vertices in X so that there are uH1 ù Xu
vertices on side 1 (and uH2 ù Xu on side 2) and all vertices on side 1 have
unbalance value which is greater or equal to the unbalance value of any vertex on
side 2. Then the resulting partition is clearly a bisection and the size of the cut
decreases by at most uXu2 5 O(e2N2). The latter is due to the fact that for any
other partition of X with uH1 ù Xu vertices on one side (and the rest on the
other), there cannot be more cut edges between vertices in X and vertices in V\X
than in the partition defined above. The decrease in the size of the cut is hence
due to the decrease in the number of cut edges between pairs of vertices in X.
Our graph bisection algorithm is based on this observation.

8.2.1. The Preliminary Bisection Algorithm. As was done in Section 8.1, we
start by describing an algorithm that is aided by certain oracles, and then show
how to simulate these oracles. Similarly to the (oracle-aided) graph partitioning
algorithm for Max-Cut, the (oracle-aided) graph bisection algorithm proceeds in
, 5 O(1/e) iterations where in the ith iteration the vertices in Vi are partitioned
into two subsets, V1

i and V2
i . Here too we think of the algorithm as defining

hybrid partitions. Starting from the zero hybrid partition *0 5 (H1
0, H2

0), which is
a maximum bisection, the ith hybrid partition *i 5 (H1

i , H1
i) is a hybrid of the

partition (V1
i , V2

i) of Vi (constructed in the ith iteration), and the partition
0i21 5 (W1

i21, W2
i21) of Wi21 5

def
V\Vi induced by the i 2 1 hybrid partition,

*i21 5 (H1
i21, H2

i21). However, differently from the Max-Cut graph partitioning
algorithm, here we might place vertices of Vi which are unbalanced with respect
to 0i21 on the same side of the partition as the majority of their neighbors. This
is done so to maintain the desired proportion (of vertices belonging to Vi) on
each side of the new hybrid. That is, for each i [{1, . . . , ,} let

b i 5
def uVi ù H1

i21u

N/,
(21)

be the fraction of vertices in Vi which belong to H1
i21. Assume we knew all b i’s.

If in each iteration, i, we make sure to put b i of the vertices in Vi on side 1 and
(1 2 b i) on side 2, then since *0 is a bisection, so will be each hybrid partition,
and in particular the final partition which the algorithm outputs.

714 O. GOLDREICH ET AL.

Further assume that in each iteration of the algorithm we knew exactly how
many neighbors each vertex in Vi has on each side of the partition. In such a
case, we could compute for each vertex v its unbalance value:

ub~v! 5
def uG~v! ù W2

i21u 2 uG~v! ù W1
i21u

N
. (22)

Let L 5
def

N/, (where for simplicity we assume , divides N), and v1, . . . , vL be
an ordering of the vertices in Vi according to their unbalance value; that is,
ub(vk) $ ub(vk11). Consider the following partition (V1

i , V2
i) of Vi: V1

i 5
def

{v1, . . . , vb iL}, and V2
i 5

def
Vi\V1

i . Let (H1
i , H2

i) 5
def

(W1
i21 ø V1

i , W2
i21 ø V2

i).
Then the number of cut edges in (H1

i , H2
i) between vertices in Vi and vertices in

Wi21 is at least as large as in (H1
i21, H2

i21). This is true since our partition of Vi,
by definition, maximizes the number of such cut edges among all partitions which
are a hybrid between (W1

i21, W2
i21) and a partition of Vi into two subsets of size

b iL and (1 2 b i) L respectively. The decrease in the size of the cut is hence at
most uViu2 5 (N/,)2 5 O((e/,) N2).

We next remove the assumptions that we know b i as well as ub(v), for every
i [{1, . . . , ,} and v [Vi. Firstly, we note that approximations (up to O(e)) to
these values are good enough. Actually, we can afford having bad approximations
of ub(v) for an O(e) fraction of the vertices in Vi. Similarly to the Max-Cut
partitioning algorithm, we use sample sets Ui to obtain approximations ub̂(v) to
ub(v). Namely, for v [Vi and for a partition (U1

i , U2
i) of Ui (where we consider

all such partitions), we let

ub̂~v! 5
def uG~v! ù U1

i u 2 uG~v! ù U2
i u

t
, (23)

where t is the size of each Ui. The approximations b̂ i 5 b i 6 O(e) are obtained
by simply trying all integer multiples of e/8 which sum up to 1/2.23 Each possible
setting of b̂1, . . . , b̂, and sequence of partitions of U1, . . . , U, gives rise to a
different bisection of V, and we choose the resulting bisection whose cut is
maximized.

We show that with high probability over the choice of the Ui’s, there exist
partitions of these sets, and there always exists a setting of the b̂ i’s, so that at
least one of the resulting bisection is close to having the maximum number of
crossing edges. In particular, let v̂1, . . . , v̂L be an ordering of the vertices in Vi

according to ub̂(v). As we prove in Lemma 8.2.1.1, if we put the vertices { v̂1,
. . . , v̂b̂ iL)} on side 1, and the vertices { v̂b̂ iL11, . . . , v̂L} on side 2, then the
number of crossing edges in the resulting hybrid partition is not much smaller
than that defined by the previous hybrid partition.

A detailed description of the graph bisection algorithm is given in Figure 6,
and its formal analysis is provided in Lemma 8.2.1.1.

23 This is always possible in case 1/e is an integer. Otherwise, we can try all integer multiples of e9/8
which sum up to 1/2, where e9 5 1/(1/e). Since e9 . e/2, for simplicity we assume that 1/e is in fact
an integer.

715Property Testing and Learning and Approximation

LEMMA 8.2.1.1. Let (H1, H2) be a fixed bisection of V(G). Then, with probabil-
ity at least 1 2 d/2 over the choice of U# , there exists a sequence of partitions P of U# ,
and an ,-tuple b̂, such that m(V1

P,b̂, V2
P,b̂) $ m(H1, H2) 2 (3/4)e.

PROOF. Let b̂ be such that for every i, b̂ i 5 b i 6 e/16, where b i 5
def uH1 ù

Viu. The existence of such b̂ i follows from the resolution of the values taken by b̂ i

and the fact that all possibilities (to within this resolution) were tried. For a fixed
U# , a fixed sequence of partitions P of U# , and the above choice of b̂, let the ith
hybrid partition (H1

i , H2
i) determined by P and b̂ be defined as follows. For i 5

0, the partition (H1
0, H2

0) equals (H1, H2). For i . 0 and j [{1, 2}, let Wj
i21 5

def

Hj
i21\Vi. As done in the Graph Bisection Algorithm (see Figure 6), let

v̂1, . . . , v̂L be an ordering of the vertices in Vi according to their ub̂[values.
Let V1

i 5
def

{ v̂1, . . . , v̂b̂ iL}, and V2
i 5

def
{ v̂b̂ iL11, . . . , v̂L}. Then Hj

i 5
def

Wj
i21

ø Vj
i.

Similarly to what was observed in Lemma 8.1.2.3.1, for b̂ fixed as above, an ith
hybrid partition is actually determined by the partitions of U1, . . . , Ui (which
determine the ub̂[values as in Eq. (23)), and does not depend on the partitions
of Ui11, . . . , U,. Similarly to the analysis of the graph partition algorithm for
Max-Cut, we shall show that for every 1 # i # ,, and for a fixed choice and
partitions of U1, . . . , Ui21, with probability at least 1 2 d/2, over the choice of
Ui, there exists a partition (U1

i , U2
i) of Ui such that

m~H1
i , H2

i ! $ m~H1
i21, H2

i21! 2
3e

4,
. (24)

FIG. 6. Graph Bisection Algorithm.

716 O. GOLDREICH ET AL.

By induction on i we have that the ,th hybrid partition (which is necessarily a
bisection since (i b̂ i 5 1/ 2) has a cut whose size is at most (3e/4) N2 smaller
than the 0th hybrid partition.

Let us define a good sample set Ui and a representative partition (U1
i , U2

i),
similarly to the way they were defined in Lemma 8.1.2.3.1 except that here we
make the stronger quantitative requirement that for all but e/32 of the vertices v
in Vi

For each j [$1, 2% ,
uG~v! ù Uj

iu

t
5

uG~v! ù Wj
i21u

N
6

e

64
. (25)

As was shown in the proof of Lemma 8.1.2.3.1 for our choice of t 5 uUiu, with
probability at least 1 2 d/2, U1, . . . , U, are good with respect to the respective
partitions. Assume from now on that U1, . . . , U, are good, and for each i let
ub̂(v) be defined with respect to the representative partition of Ui.

For a fixed i, we shall bound the difference between the size of the cut
determined by the ith hybrid partition and that determined by the (i 2 1) hybrid
partition via two auxiliary hybrid partitions. Let v1, . . . , vL be the ordering of
the vertices in Vi according to their (correct) unbalance value ub(v) with respect
to (W1

i21, W2
i21). Consider first the “ideal” partition (V1,id

i , V2,id
i) of Vi, where

V1,id
i 5

def
{v1, . . . , vb iL}, and V2,id

i 5
def

Vi\V1,id
i . (Namely, this partition uses both

the correct unbalance values and the correct b i). Let (H1,id
i , H2,id

i) be the
corresponding ideal hybrid partition (namely, Hj,id

i 5
def

Wj
i21 ø Vj,id

i). As was
noted previously, the size of the cut determined by this ideal hybrid partition is at
most uViu2 5 (e/4,) N2 smaller than the cut determined by the previous hybrid
partition (H1

i21, H2
i21).

Next consider the following “almost-ideal” partition (V1,id9
i , V2,id9

i) of Vi, where
V1,id9

i , 5
def

{v1, . . . , vb̂ iL}, and V2,id9
i , 5

def
Vi\V1,id9

i . Let (H1,id9
i , H2,id9

i) be the
corresponding almost-ideal hybrid partition (namely, Hj,id9

i 5
def

Wj
i21 ø Vj,id9

i). Since
ub̂ i 2 b iu # e/16, then the only difference between (H1,id9

i , H2,id9
i) and (H1,id

i ,
H2,id

i) is the placement of at most (e/16) L vertices. By the above, and applying
what we know about the ideal hybrid partition we have,

m~H1,id9
i , H2,id9

i ! $ m~H1,id
i , H2,id

i ! 2
e

16
L z 2N $ m~H1

i21, H2
i21! 2

3e

8,
N2.

(26)

In what follows, we bound the difference between the size of the cut
determined by the ith hybrid partition (in which Vi is partitioned by the
algorithm), and the size of the cut determined by the almost-ideal hybrid
partition. This difference is due to the algorithm’s use of approximate unbalance
values (i.e., the values ub̂[used by the algorithm induce a different order on Vi

than the “correct” order used in the almost-ideal partition). Let Yi be the set of
misplaced vertices in Vi which are put on a different side in (H1

i , H2
i) than in

(H1,id9
i , H2,id9

i). Namely, Yi 5
def

(V1,id9
i ù V2

i) ø (V2,id9
i ù V1

i).

CLAIM 8.2.1.2. There exists a value y [[21, 1] such that for all but at most
(e/16) L of the vertices v in Yi, ub(v) 5 y 6 (e/16).

717Property Testing and Learning and Approximation

We prove the claim momentarily, but first derive a bound on m(H1,id9
i , H2,id9

i) 2
m(H1

i , H2
i) based on the claim. By definition of the almost-ideal hybrid partition,

we know that in the actual algorithm we put exactly the same number of vertices
from Vi on each side of the partition as in the almost-ideal partition. It follows
that the number of misplaced vertices on each side of the partition is the same,
and we can pair the misplaced vertices and view these pairs as having switched
sides. Whenever we switch sides between pairs of vertices whose unbalance value
differs by at most e/8, the decrease in the number of cut edges between these two
vertices and vertices in Wi21 is at most (e/4) N. The contribution of all such
pairs is at most (L/ 2) z (e/4) N 5 (e/8,) N2. The number of cut edges between
Wi21 and the at most (e/16) L vertices in Yi which differ significantly in their
unbalance value from the rest, decreases by at most (e/16) L z 2N 5 (e/8,) N2.
Thus,

m~H1
i , H2

i ! $ m~H1,id9
i , H2,id9

i ! 2 2 z
e

8,
N2. (27)

Combining Eq. (26) and Eq. (27), we have

m~H1
i , H2

i ! $ m~H1
i21, H2

i21! 2
3e

8,
N2 2

e

4,
N2

5 m~H1
i21, H2

i21! 2
5e

8,
N2 (28)

and the lemma follows. e

PROOF OF CLAIM 8.2.1.2. Consider a grouping of the vertices in Vi into 2/e9
unbalance bins according to their (correct) unbalance value, where e9 5 e/32. For
k 5 2(1/e9), . . . , (1/e9) 2 1, the kth bin, denoted Bk, is defined as follows:

Bk 5
def

$v [Vi ; ub~v! [@k z e9 N, ~k 1 1! z e9 N!% .

Let g be the index of the bin which vb̂ iL belongs to. By definition of the bins, all
vertices in Bg have approximately the same unbalance value. Since we only have
approximations of the unbalance values we also group the vertices according to
their approximated unbalance values. Namely, for k 5 2(1/e9), . . . , (1/e9) 2
1,

B̂k 5
def

$v [Vi ; ub̂~v! [@k z e9 N, ~k 1 1! z e9 N!% .

By our assumption on the representativeness of (U1
i , U2

i), at most e/32 of the
vertices in Vi belong to a bin B̂k9 whose index differs by more than 1 from their
correct bin Bk (and vertices in the same, or in neighboring bins have approxi-
mately the same unbalance value).

Let v̂1, . . . , v̂L be an ordering of the vertices in Vi according to their
approximate unbalance value ub̂(v), and let ĝ be the index of the bin which v̂ b̂ iL

belongs to. We consider two cases.

718 O. GOLDREICH ET AL.

Case 1. ĝ 5 g 6 1. In this case all but at most 2 z (e/32) L of the misplaced
vertices (belong to the bins Bg and Bg) and have unbalance value ranging
between (g 2 i) z e9N 5 g z e9N 2 (e/32) N and (g 1 1) z e9 z N 1
(e/32) N 5 g z e9 z N 1 (e/16) N, as required.

Case 2. ĝ $ g 1 2 (the case ĝ # g 2 2 is analogous). In such a case,
necessarily, all but (e/32) L of the vertices v1, . . . , vb̂ iL (which belong to bins
B1, . . . , Bg), are put on side 1 (as they should). But since we put exactly b̂ iL
vertices on side 1, the total number of misplaced vertices is bounded by 2 z
(e/32) L, and the claim follows. e

Applying Lemma 8.2.1.1 to a maximum cut of G, we get:

COROLLARY 8.2.1.3. With probability at least 1 2 d/2 over the choice of U# ,
there exists a sequence of partitions P of U# , and an ,-tuple b̂ such that

m~V1
P ,b̂, V2

P ,b̂! $ m (1/ 2) ~G! 2
3

4
e.

Thus, with probability at least 1 2 (d/ 2), the Graph Bisection Algorithm (described
in Figure 6) outputs a bisection (V1

P̃,b̃, V2
P̃,b̃) such that m(V1

P̃,b̃, V2
P̃,b̃)$m(1/2)(G) 2

(3/4)e.

8.2.2. The Bisection Approximation Algorithm. Similarly to the Max-Cut Ap-
proximation Algorithm, the Bisection Approximation Algorithm (described in
Figure 7) performs the same steps as the algorithm described in Figure 6, but
does so only on a small sample S. The analysis of this Bisection Approximation
Algorithm, given the correctness of the Graph Bisection Algorithm, is similar to

FIG. 7. Bisection Approximation Algorithm.

719Property Testing and Learning and Approximation

that of the Max-Cut Approximation Algorithm (Lemma 8.1.3.1) except for the
following detail. Here we need to take into account that it is not necessarily the
case that for a given U# , a sequence of partitions P of U# and b̂, for each s [S,
s [Sj

P,b̂, if and only if s [Vj
P,b̂. This unfortunate phenomena is due to the

possibility that for some vertices v [Si, vertex v appears before (respectively,
after) the b̂ iNth vertex in the ordering of Vi, but after (respectively, before) the
b̂ imth vertex in the ordering of Si. To deal with this we prove the following
lemma using arguments analogous to Lemma 7.3.1 (which deals with an analo-
gous phenomena in the analysis of the r-Clique Tester).

LEMMA 8.2.2.1. For a fixed U# , P, and b̂, let (V1, V2) 5 (V1
P,b̂, V2

P,b̂) be as
defined in the Graph Bisection Algorithm. Let S be a uniformly chosen sample of
size

m 5 VS ,~,t 1 log~1/~ed!!!

e2 D
such that that for each i , uSiu $ m/(2,), and let (S1, S2) 5 (S1

P,b̂, S2
P,b̂) and m̂(S1,

S2) be as defined in the Bisection Approximation Algorithm. Then

PrSF U m̂~S1, S2! 2 m~V1, V2!U .
e

4G ,
d

2
z 22, z t z S e

16D
,

.

PROOF. Let d9 5
def

d/ 2 z 22, z t z (e/16),. For each i [{1, . . . , ,}, let V1
i and

V2
i be as defined in the Graph Bisection Algorithm, and let S1

i and S2
i be as

defined in the Bisection Approximation Algorithm (for the fixed U# , P and b̂
considered in the lemma). Let e1 5

def
e/40, and let V# 1

i be the first (b̂ i 2 e1) L
vertices in Vi, and V# 2

i the last (1 2 b̂ i 2 e1) L vertices in Vi. For each i, let
mi 5

def uSiu, where by the lemma’s hypothesis, mi $ m/(2,). By Claim 7.3.2, for
each i,

PrSF U uSi ù V# 1
i u

mi

2 ~b̂ i 2 e1!U . e1G ,
d9

4,

and similarly,

PrSF U uSi ù V# 2
i u

mi

2 ~1 2 b̂ i 2 e1!U . e1G ,
d9

4,
.

Note that the effects of rounding quantities such as b̂ i z L (and b̂ i z mi) are
negligible since they effect the placement of at most one vertex from each Vi

(respectively, Si), and since 1/mi (and certainly 1/L) are much smaller than e1 we
may ignore these effects. Thus, putting aside an error probability of d/2, assume
from now on that for each i:

(1) uSi ù V# 1
i u # b̂ i z mi, and uSi ù V# 2

i u # (1 2 b̂ i) z mi from which it follows (by
definition of S1

i and S2
i) that for each j [{1, 2}, Sj

i ù V# j
i 5 Si ù V# j

i;
(2) uSi ù V# 1

i u $ (b̂ i 2 2e1) z mi, and uSi ù V# 2
i u $ (1 2 b̂ i 2 2e1) z mi.

Combining this with Item (1) it follows that uS1
i ù V# 1

i u $ (b̂ i 2 2e1) z mi and
uS2

i ù V# 2
i u $ (1 2 b̂ i 2 2e1) z mi.

720 O. GOLDREICH ET AL.

Let V# 1 be the union of the V# 1
i ’s and let V# 2 be the union of the V# 2

i ’s. Then

$~s2k21, s2k! [E~S1, S2!% 5 $~s2k21, s2k! [E~S1 ù V# 1, S2 ù V# 2!%

ø $~s2k21, s2k! [~E~S1\V# 1, S2! ø E~S1, S2\V# 2!!% (29)

By Item (1) above and an additive Chernoff bound we get that

PrSF U u$~s2k21, s2k! [E~S1 ù V# 1, S2 ù V# 2!% u

m/ 2
2

uE~V# 1, V# 2!

N2
U .

e

10G ,
d9

2
.

(30)

By definition of V# 1 and V# 2, we have that

uE~V1, V2! u

N2
2

uE~V# 1, V# 2! u

N2
2e1 5

e

20
. (31)

By Item (2) above, we know that for each i [{1, . . . , ,} and j [{1, 2},
uSj

i\V# j
iu # 2e1 z mi, and so

u$~s2k21, s2k! [~E~S1\V# 1, S2! ø E~S1, S2\V# 2!! u

m/ 2

#
u$k ; s2k21 [S1\V# 1 or s2k [S2\V# 2! u

m/ 2
4e1 5

e

10
(32)

Summing up the probabilities of errors and combining the bounds of Eqs.
(30)–(32), the lemma follows. e

Part (1) of Theorem 8.2.1 follows by combining Corollary 8.2.1.3 and Lemma
8.2.2.1. We only need to observe that: (1) by a multiplicative Chernoff Bound,
with very high probability in fact uSiu $ m/(2,) for each i; and (2) the number of
sequences of partitions P is 2,t and the number of settings of b̂ is less than
(16/e),.

8.2.3. The Improved Graph-Bisection Algorithm. Similarly to the improved
graph-partitioning algorithm for Max-Cut, the improved graph-bisection algo-
rithm (whose running time is as stated in Theorem 8.2.1, Part (2)) starts by
invoking the Bisection approximation algorithm of Figure 7, and recording the
sequence of sets U# uniformly selected in Step (1), and the sequence of partitions
P̃ and the ,-tuple b̃, selected in Step (4). Using these specific P̃ and b̃, the
algorithm executes a single iteration of Step (2) of the Graph Bisection Algo-
rithm in Figure 6. Since it does not check the resulting partition, it saves a
multiplicative factor of N in its running time. More precisely, it has running time
O(t z N) 5 O(log(1/(ed)/e2)) z N (on top of the running time of the
approximation algorithm).

As for its correctness, by Corollary 8.2.1.3, we have that with probability at
least 1 2 d/2 over the choice of U# , there exists P and b̂ such that m(V1

P,b̂,
V2

P,b̂) $ m(G) 2 (3/4)e. From Lemma 8.2.2.1, we have that for a fixed U# , with
probability at least 1 2 d/2 over the choice of S, m̂(S1

P,b̂, S2
P,b̂) is within e/4 from

721Property Testing and Learning and Approximation

m(V1
P,b̂, V2

P,b̂) for every sequence of partitions P and U# , and every b̂. It follows
that with probability at least 1 2 d over the choice of U# and S, the recorded P̃
and b̃ (from the Bisection Approximation Algorithm) are such that m(V1

P̃,b̃, V2
p̃,b̃)

$ m(G) 2 e, as required.

8.2.4. Variations

8.2.4.1. BISECTION MINIMIZATION. An easy modification suffices for finding
(respectively, approximating the size of) a nearly minimum bisection rather than
a nearly maximum one. In each iteration of the algorithm(s), instead of placing in
side 1 the first b̂ i vertices in decreasing order of (approximate) unbalance, we
would do the opposite. Namely, since we would like to minimize the size of the
cut, we try and put vertices on the size opposite the minority of their neighbors.
Although we might not be able to do so for all vertices (since we are restricted to
constructing a bisection), analogously to the maximization problem, there exists
one side in which all vertices have a smaller (i.e., more negative) unbalance value
than all those on the other side. Thus, in the ith iteration, we order all vertices in
Vi (or Si in the approximation algorithm) according to increasing unbalance value
ub̂(v) (where ub̂(v) is as defined in the maximization algorithms), and put the
first b̂ i vertices on side 1 and the rest on side 2.

8.2.4.2. OTHER RESTRICTIONS ON THE PARTITION. We can also easily general-
ize the algorithms to construct (respectively, approximate the size of) partitions
with other predetermined proportion of vertices on each side. A key observation
is that the main steps of our algorithms are oblivious of the bisection require-
ment other than in asking that (ib̂

i 5 1/ 2. In fact, the main steps can produce
partitions with maximum (respectively, minimum) number of crossing edges per
each proportion of vertices on each side (up to some resolution). Therefore, all
we need to do is modify the restriction on the sum of the b̂ i’s to allow either a
different fixed proportion or a range of proportions. Thus, for example, we
can approximate quantities such as optuV1u5N/3{m(V1, V(G)\V1)}, or
optN/3# uV1u#2N/3{m(V1, V(G) \ V1)}, where opt [{max, min}.

Testing algorithms for properties corresponding to the above optimization
problems essentially follow from the approximation algorithms. In particular,
consider first properties corresponding to minimization problems. When the
property is defined as having a cut of density at most r (subject to certain
constraints on the partition defining the cut) then the corresponding class is
never empty (in particular, the empty graph belongs to the class). Furthermore,
for any a, if a graph G has a partition (V1, V2) such that uV1u 5 aN and m(V1,
V2) # r 1 e, then we can always remove at most eN2 edges to obtain m(V1, V2)
5 r. Therefore, in the case of cut-minimization problems of the type discussed in
this subsection, the corresponding testing algorithms follow directly from the
approximation algorithms.

The situation is slightly more involved when dealing with maximization
problems. For 0 # a # 1/2 and a graph G, let m(a)(G) denote the maximum edge
density among all cuts (V1, V(G)\V1) such that uV1u 5 aN. Let }#r

(a) 5
def

{G ;

m(a)(G) $ r}. To test whether a graph G belongs to the class }#r
(a), we first

check whether the class is empty, in which case we reject G. Namely, if 2a(1 2 a)
, r, then the class must be empty, since the maximum number of edges
connecting vertices in a set of size aN to vertices in a set of size (1 2 a) N is

722 O. GOLDREICH ET AL.

2a(1 2 a) N2. If 2a(1 2 a) $ r (and so the class is not empty), the testing
algorithm follows from the approximation algorithm mentioned above, analo-
gously to the way the r-Bisection algorithm follows from the Bisection approxi-
mation algorithm (see discussion following Theorem 8.2.1).

When the sizes of sides of the partition are not required to be fixed but rather
are allowed to be within a certain range, the testing algorithm is a little less
straightforward. For 0 # a1 # a2 # 1/2 and a graph G, let m(a1, a2)(G) denote the
maximum edge density among all cuts (V1, V(G)\V1) such that a1N # uV1u #
a2N. Let }#r

(a1,a2) 5
def

{G ; m(a1, a2)(G) $ r}. Note that the class of graphs having
a cut of size at least r (i.e., }#r 5 }#r

(0,1/2)), which was considered in Section
8.1, is indeed a special case. If 2a2(1 2 a2) , r then the class }#r

(a1,a2) is empty.
Otherwise, let a91 $ a1 be the minimum value such that 2a91 (1 2 a91) $ r. We run
the algorithm for approximating m(a1,a2)(G) as described above with approxima-
tion parameter e/2 (where e is the distance parameter of the testing algorithm),
while requiring that a91 # (ib̂

i # a2. We accept the graph if and only if the
approximate value obtained is at least r 2 e/2 (as in the proof of Corollary 8.1.2).

The following example best illustrates why we introduce the restriction that
(ib̂

i $ a91 instead of just using (ib̂
i $ a1. Consider the case in which a1 5 0,

a2 5 1/2, and r 5 1/2 (and so we are simply asking whether the graph G has any
cut of density 1/2). Suppose that G is a complete bipartite graph between a set of
vertices V1, and a set of vertices V2, such that uV1u 5 (1/2 2 =e/2) and uV2u 5
(1/2 1 =e/2). Thus, m(0,1/2)(G) 5 r 2 e, and so with fairly high probability the
approximation algorithm would output an approximate value that is close to r.
However, G is =e-far from having the desired property, and should be rejected.
Note that the difficulty is not with the approximation algorithm but rather with
the relation between approximation and testing. In this case, setting a91 5 a2 5
1/2 (as suggested above, since 2a92 z (1 2 a91) $ 1/2 implies a91 5 1/2), we restrict
our algorithm to consider only partitions for which (ib̂

i $ a91, and so the
algorithm will detect that the graph should be rejected.

9. The General Partition Problem

The following framework of a general partition problem generalizes all proper-
ties considered in previous sections. In particular, it captures any graph property
that requires the existence of partitions satisfying certain fixed density con-
straints. These constraints may refer both to the number of vertices in each
component of the partition and to the number of edges between each pair of
components.

Let F 5
def

{r j
LB, r j

UB} j51
k ø {| j, j9

LB , | j, j9
UB} j, j951

k be a set of non-negative
parameters so that r j

LB # r j
UB (@j) and | j, j9

LB # | j, j9
UB (@j, j9). (LB stands for

Lower Bound, and UB stands for Upper Bound.) Let &3F be the class of graphs
that have a k-way partition (V1, . . . , Vk) with the following conditions being
satisfied.

@j r j
LB z N # uVju # r j

UB z N (33)

and

@j, j9 | j, j9
LB z N2 # uE~Vj, Vj9! u # | j, j9

UB z N2, (34)

723Property Testing and Learning and Approximation

where recall that E(Vj, Vj9) is the set of edges between vertices in Vj and vertices
in Vj9 (where we include edges going in both directions). That is, Eq. (33) places
lower and upper bounds on the relative sizes of the various components of the
partition; whereas Eq. (34) imposes lower and upper bounds on the density of
edges among the various pairs of components.

Remark 9.1 (A Tedious One.) To avoid integrability problems, we consider
generalized (fractional) k-way partitions in which up to k 2 1 vertices may be
split among several parts. Had we not followed this convention, the set of
N-vertex graphs in &3F could be empty for some values of N and non-empty for
others. For example, if r1

LB 5 r1
UB 5 1/3 then only graphs with 3M vertices may

be in &3F. In such a case, the tester must reject any graph with 3M 1 1 vertices
(as the class of graphs with 3M 1 1 vertices having the property defined by the
parameters in empty), whereas it must accept some 3M-vertex graphs. Conse-
quently, such a tester must count the number of vertices in the graph. These
integrability problems have nothing to do with the combinatorial structure that
we wish to investigate and thus we avoid them by taking the above somewhat
unnatural convention.

In this section, we describe a testing algorithm for the class &3F (for any given
set of parameters F 5 {r j

UB, r j
LB} ø {| j, j9

UB, | j, j9
LB }). Similarly to the testing

algorithms described in Sections 7 and 8, the testing algorithm of this section is
based on a randomized partitioning algorithm for the related partition problem.
Namely, given a graph G, a set of parameters F, an approximation parameter e
and a confidence parameter d, so that G has a k-way partition which obeys Eqs.
(33) and (34), the partitioning algorithm constructs a partition (V1, . . . , Vk) of G
for which the following hold with probability at least 1 2 d:

@j, ~r j
LB 2 e! z N # uVju # ~r j

UB 1 e! z N, (35)

and

@j, j9, ~| j, j9
LB 2 e! z N2 # uE~Vj, Vj9! u # ~| j, j9

UB 1 e! z N2, (36)

A partition obeying (35) and (36) is called an e-approximation for the partitioning
problem defined by the set of parameters F.

As already indicated in the special case of r-Cut, and in the generalization of
the Bisections testing algorithm (Section 8.2.4), the relationship between having
an e-approximation for the general partitioning problem, and being e-close to the
class of graphs having the property is not completely straightforward. In particu-
lar, a graph may have a partition that is an e-approximation for the partitioning
problem defined by the set of parameters F, but is V(=e)-far from the class.
&3F. We shall deal with this difficulty when designing the testing algorithm.
Jumping ahead we mentioned that instead of checking whether the tested graph
has a partition that is an e-approximation for the partitioning problem (or an f(e,
k)-approximation, for some function f of e and k), we directly check whether the
graph is e-close to &3F.

As stated above, all properties considered in previous sections can be cast as
special cases of the general partition problem. For example, k-Colorability is
expressed by setting | j, j

UB 5 0 for every j (and placing no other constraints which
means setting r j

LB 5 0, r j
UB 5 1, and similarly setting the | j, j9

UB’s and | j, j9
LB ’s for

724 O. GOLDREICH ET AL.

j9 Þ j). In case we are interested in maximizing or minimizing a parameter (e.g.,
maximizing E(V1, V2) in the case of Max-Cut) we can simply run the general
partitioning (respectively, testing) algorithm on all values of this parameter
which are multiples of e, and find the maximum/minimum value attainable.24

However, as can be seen from our theorems below (and the table in Figure 1),
this generality has a price: The query complexity and running times of our
algorithms (for the general partition problem) are quite large. More efficient
algorithms for specific problems such as k-Coloring, Max-Clique, and Max-Cut,
were presented in previous sections. Although we cannot exploit the problem-
specific properties as done in the previous sections, we nonetheless apply some
of the ideas used in the above algorithms.

THEOREM 9.2. There exists an algorithm ! such that for every given set of
parameters F, algorithm ! is a property testing algorithm for the class &3F with
query complexity and running time

log2S 1

ed
D z SO~k2!

e
D 2k18

and expS logS 1

ed
D z SO~k2!

e
D k11D ,

respectively.

We note that in the running time of the algorithm, we ignore a factor that is
polynomial in the length of the description of F, as we view this length as a fixed
constant and not a parameter to the problem. Furthermore, in any reasonable
application, it is much smaller than all other factors. As in previous sections, we
also obtain an analogous graph partitioning algorithm.

THEOREM 9.3. There exists a graph partitioning algorithm that on input F, e,
and d, and oracle access to a graph G, runs in time

expS logS 1

~ed!
D z SO~1!

e
D k11D 1 OS log~k/~ed!!

e2 D z N

and if G has a k-way partition satisfying Eqs. (33) and (34), then with probability at
least 1 2 d the graph partitioning algorithm outputs a partition which satisfies Eqs.
(35) and (36).

We start by describing a less efficient graph partitioning algorithm with
running time exp(log(1/(ed) z (O(1)/e)k11) z N2. Based on this algorithm, we
shall obtain the tester postulated in Theorem 9.2 and finally derive the (more
efficient) graph partitioning algorithm (postulated in Theorem 9.3).

9.1. HIGH LEVEL DESCRIPTION OF THE PARTITIONING ALGORITHM. The algo-
rithm is based on the following observation, which generalizes an observation
applied in the Bisection algorithm (Section 8.2). Let * 5 (H1, . . . , Hk) be any
fixed partition of V. In particular, we may want to consider a partition which

24 Actually, our partitioning algorithm works by producing a set of partitions of the graph vertices and
then searching among them for one which is an e-approximation of the partitioning problem. The
testing algorithm runs a similar procedure on a sample set of vertices. The procedure for producing
these partitions depends on k, e, and d, but not on the particular set of parameters F, and, therefore,
we do not actually need to run the algorithm more than once.

725Property Testing and Learning and Approximation

obeys Eqs. (33) and (34). Let X be a set of vertices of small size (i.e., of size
O(eN)) and suppose that all but O(e uXu) of the vertices in X have approximately
the same (i.e., 6O(eN)) number of neighbors in each individual Hj\X. Namely,
for each j [{1, . . . , k}, there exists a value b j such that for all but O(e uXu) of
the vertices v in X, we have

uG~v! ù ~Hj\X! u

N
5 b j 6 O~e! . (37)

(Recall that a 5 b 6 c is a shorthand for b 2 c # a # b 1 c.) The observation
is that if we arbitrarily redistribute the vertices of X among the k components
(i.e., Hj’s) while maintaining the number of vertices in each component, then the
number of edges between every pair of components is approximately maintained.

More precisely, let (X1, . . . , Xk) be an arbitrary partition of X so that uXju 5
uX ù Hju 6 O(e uXu), and let H9j 5 (Hj\X) ø Xj. Let *9 5

def
(H91, . . . , H9k). Then by

our assumption on the Xj’s, we have uuHju 2 uH9juu 5 O(e uXu) for every j.
Furthermore, by our assumption concerning the “neighbor-profile” of vertices in
X (Eq. (37)), for every j, j9,

u u~E~Hj, Hj9! u 2 uE~H9j, H9j9! u u 5 O~ uXu2 1 uXu z eN! 5 O~ uXu z eN! (38)

where the second equality is due to the size of X. The first equality, namely the
bound on the difference of the number of edges, is proved in detail in Lemma
9.2.1. The first crucial observation is that edges with both endpoints not in X are
in the same component in *9 as they were in *, and thus are not effected by the
redistribution of X. As for edges with at least one endpoint in X, there are
O(uXu2) edges with both endpoints in X (accounted for in the first term of Eq.
(38)), and the changes in the number of edges with exactly one endpoint in X
(due to Eq. (37) and uXju 5 uXj ù Hju 6 O(e uXu)) can be bounded by O(uXu z
eN).

So far, we have dealt with a single set of vertices such that all vertices in the set
have approximately the same “neighborhood profile” with respect to a given
partition. In general, we wish to handle the case in where vertices have arbitrary
neighborhood profile with respect to the partition. The idea is to pack vertices
into clusters according to their neighborhood profile. Specifically, let * be as
defined above, let Y be any given set of vertices of size O(eN), and let 0 5
(W1, . . . , Wk) be defined by Wj 5

def
Hj\Y (for each j). We first cluster the vertices

in Y according to the approximate number of neighbors they have in each Wj.
That is, in each (disjoint) cluster all vertices have approximately the same
number of neighbors in each Wj. Suppose we now partition the vertices in each
cluster X into k parts, (X1, . . . , Xk) in an arbitrary way so that the number of
vertices in each Xj is approximately uX ù Hju, and add each Xj to Wj, defining a
hybrid partition, *9 5 (H91, . . . , H9k). Then, by the above discussion, which may
be viewed as concerning a single cluster, for every j,

u uHju 2 uH9ju u 5 O
clusters X # Y

O~e uXu! 5 O~e uYu! 5 O~e2N! (39)

726 O. GOLDREICH ET AL.

and for every j, j9,

u uE~Hj, Hj9! u 2 uE~H9j, H9j9! u u 5 O
clusters X # Y

O~ uXu z eN! 5 O~e2N2! . (40)

Similarly to the analysis of the graph partitioning algorithms for Max-Cut and
Bisection, we shall use the above observation to define a sequence of O(1/e)
hybrid partitions. It will follow that for the final hybrid, the differences in vertex
and edge densities as compared to the initial one (which obeys Eqs. (33) and
(34)) is at most e.

9.1.1. The Oracle-Aided Procedure. In view of the above observation, we are
almost ready to describe the partitioning algorithm. Similarly to the graph-
partitioning algorithms for Max-Cut and Bisection, we first describe a mental
experiment in which we assume the algorithm has access to certain oracles
(which it actually does not have direct access to). We later show how we can
approximately simulate these oracles. The algorithm works in , iterations, using
as before a fixed partition into , equal-size sets V1, . . . , V,, where , 5 4/e and
L 5 N/,. In the ith iteration, the algorithm partitions the set Vi into (V1

i , . . . , Vi
k).

Let *0 5 (H1
0, . . . , Hk

0) be a k-way partition that obeys Eqs. (33) and (34),
and for each i . 0, let * i 5 (H1

i , . . . , Hk
i) be the ith hybrid partition, where

Hj
i 5

def
(Hj

i21\Vi) ø Vj
i. Let 0i21 5 (W1

i21, . . . , Wk
i21) be the partition induced

on V\Vi by * i21. That is, for each j, Wj
i21 5

def
Hj

i21\Vi. For any given vertex
v [Vi and for every j [{1, . . . , k}, let g j

i(v) 5
def uG(v) ù Wj

i21u/N. The k-tuple
(g1

i (v), . . . , gk
i (v)) is called the neighborhood profile of v, referred to in the

above discussion.
We assume that the algorithm has an oracle that for each i, given a vertex v [

Vi and j [{1, . . . , k}, returns a value ĝ j
i(v) so that for all but O(eL) of the

vertices v in Vi it holds that for every j, ĝ j
i(v) 5 g j

i(v) 6 e/32. Using this oracle,
the algorithm clusters the vertices in Vi according to the number of neighbors
they have in each component of 0 i21 as approximated by the oracle: For every
possible aW 5 ^a1, . . . , ak& where each a j ranges over all integer multiples of
e/16, let

Vi,aW 5
def H v [Vi ; ; j, a j 2

e

32
, ĝ j~v! # a j 1

e

32J .

We refer to the aW ’s as the cluster names, since each aW uniquely defines a different
cluster of Vi.

Assume further that the algorithm also had access to an oracle which for every
cluster Vi,aW and for each j, returns an approximation, up to an error of e/16, of
the fraction of vertices in Vi,aW which belong to Hj

i21. Let this approximate
fraction be denoted b j

i,aW . That is,

b j
i ,aW 5

uVi ,aW ù Hj
i21u

uVi ,aW u
6

e

16
.

We refer to ^b1
i,aW , . . . , bk

i,aW & as the quantitative partition of Vi,aW , since it only
determines how many vertices from Vi,aW should be in each component of the
partition (and does not specify which vertices should be in each component).

727Property Testing and Learning and Approximation

However, by our observation concerning redistribution of vertices belonging to
the same cluster, the quantitative partition of Vi,aW , is all that matters, and we
may as well partition Vi,aW in an arbitrary way as long as the quantitative partition
is satisfied. Let (V1

i,aW , . . . , Vk
i,aW) be such a partition; that is, b j

i,aW uVi,aW u # uVj
i,aW u

b j
i,aW uVi,aW u, for every j.

Let (V1
i , . . . , Vk

i) be defined by Vj
i 5

def
øaW Vj

i,aW , for each j. By our previous
discussion we know that for each i, the changes in vertex and edge densities
between the i 2 1 and ith hybrid partitions is O(e2) (see Eqs. (39) and (40)).
Combining this with our hypothesis concerning *0 (i.e., that *0 obeys Eqs. (33)
and (34)) we conclude that *, 5 {ø iV1

i , . . . , ø iVk
i } is an O(e)-approximation

of the partitioning problem (as defined by Eqs. (33) and (34)).

9.1.2. Simulating the Oracles. We next get rid of the oracles used in each
iteration. It is not hard to see that we do not actually need an oracle to give us
the b j

i,aW ’s. Instead, we try all possibilities. Recall that i takes on , 5 O(1/e)
values, and for each i, there are O(1/e)k possible values of aW (i.e., clusters).
Finally, for each i, aW , and j [{1, . . . , k}, there are O(1/e) possible values of
b j

i,aW . Thus, we simply try all possible

O~~1/e!k!O(1/e)k
z, , exp~k z O~1/e!k11 z k log~1/e!!

, expS SO~1!

e
D k11

z log~1/e!D . (41)

(vectors of) values for the quantitative partitions of the clusters. Each one gives
rise to a different partition of V, and we can search among these partitions for an
e-approximation of the partitioning problem.

In order to approximately simulate the oracles for g j
i(v), we apply the same

technique used in previous sections. Namely, we uniformly select , sets, U1, . . . ,
U,, where Ui , V\Vi (each of size t 5 Q(e22 log(k/(ed))), and for each i we
consider all k-way partitions (U1

i , . . . , Uk
i), of Ui. For each possible sequence of

partitions (i.e., one partition per Ui), when we partition Vi, for each v [Vi

we use the approximation ĝ j
i(v) 5

def uG(v) ù Uj
iu/t for g j

i(v). As we prove in detail
in Lemma 9.2.1, with high probability over the choice of U1, . . . , U,, there exist
representative partitions of the Ui, such that ĝ j

i(v) is in fact a good approximation
of g j

i(v) for almost all vertices.

9.2. THE PRELIMINARY PARTITIONING ALGORITHM. A detailed description of
the graph partitioning algorithm is given in Figure 8, and its formal analysis is
provided in Lemma 9.2.1.

LEMMA 9.2.1. Let * 5 (H1, . . . , Hk) be a fixed partition of V(G). Then with
probability at least 1 2 d over the choice of U# , there exists a partition P 5 (U1, . . . ,
U,) of U# , and a setting of bW , such that

@j, U uVj
P ,bW u 2 uHju

N
U # e,

728 O. GOLDREICH ET AL.

and

@j, j9, U uE~Vj
P ,bW , Vj9

P ,bW ! u 2 uE~Hj, Hj9! u

N2 U # e.

PROOF. For a fixed partition P of U# and a fixed setting bW 5 ^bW 1, . . . , bW ,&, we
consider the following , 1 1 hybrid partitions: The hybrid *0 5 (H1

0, . . . , Hk
0) is

simply *; the hybrid partition * i 5 (H1
i , . . . , Hk

i) is defined as follows:

Hj
i 5

def

Wj
i21 ø Vj

i,

where the partition 0 i21 5 W1
i21, . . . , Wk

i21) of V\Vi, is defined by Wj
i21 5

def

Hj
i21\Vi, and Vj

i’s are determined as in Figure 8. We shall show that for every
1 # i # ,, for a given choice and partitions of U1, . . . , Ui21, and for a given
setting of bW 1, . . . , bW i21, there always exists a setting of bW i (referred to as the
correct setting), and with probability at least 1 2 d/, over the choice of Ui, there
exists a partition (U1

i , . . . , Uk
i) of Ui such that

@j, U uHj
iu 2 uHj

i21u

N
U #

e

16,
, (42)

FIG. 8. Graph Partitioning Algorithm.

729Property Testing and Learning and Approximation

and

@j, j9, U uE~Hj
i, Hj9

i ! u 2 uE~Hj
i21, Hj9

i21! u

N2 U #
e

,
. (43)

The lemma follows by induction on i.
Let (U1

i , . . . , Uk
i) be the partition of Ui induces by 0 i21. Namely, for each j,

Uj
i 5

def
Wj

i21 ù Ui. We say that Ui is good with respect to (W1
i21, . . . , Wk

i21) and
Vi if the following holds. For all but at most an e/8 fraction of the vertices v in
Vi,

For each j [$1, . . . , k%
uG~v! ù Uj

iu

t
5

uG~v! ù Wj
i21u

N
6

e

32
. (44)

If the above holds then we say that (U1
i , . . . , Uk

i) is representative with respect to
(W1

i21, . . . , Wk
i21) and Vi.

9.2.1. Proving Eqs. (42) and (43) for a Good Ui. Assume first that (U1
i , . . . ,

Uk
i) is representative with respect to (W1

i21, . . . , Wk
i21) and Vi, and let the

clusters Vi,aW be as defined in Figure 8, Step (2.a.ii), where ĝ j
i(v) (for every v [Vi

and j) is defined based on Vj
i as in Step (2.a.i). Let bW i 5 ḃ1

i,aW , . . . , bk
i,aW &aW [L be

such that for every a [L, and for each j,

b j
i ,aW 5

uHj
i21 ù Vi,aW u

uVi ,aW u
6

e

16
.

Since each b j
i,aW takes on all values which are multiples of e/8, there is indeed such

a setting of bW i’s. It follows that when the vertices in Vi are partitioning using this
(approximately correct) bW i, then Eq. (42) holds. That is,

u uHj
iu 2 uHj

i21u u 5 uO
aW

uHj
i21 ù Vi ,aW u 2 O

aW

b j
i ,aW z uVi ,aW u u

O
aW

e

16
z uVi,aW u

5
e

16
z

N

,
.

We now show that Eq. (43) holds as well. Towards this end, we fix arbitrary j, j9
and consider the contribution of three types of edges to the left-hand side of Eq.
(43):

(1) The contribution of edges with both endpoints NOT in Vi. Since v [Hj
i iff

v [Hj
i21, for every v [y Vi, such edges do not contribute to the difference

(i.e., to the left-hand side of Eq. (43)).
(2) The contribution of edges with both endpoints IN Vi. There are at most uViu2

such edges. Using uViu 5 N/, 5 (e/4) N, the potential contribution of these
edges is bounded by (e/4,)N2.

730 O. GOLDREICH ET AL.

(3) The contribution of edges with exactly ONE endpoint in Vi. We distinguish
two cases.
(a) Edges incident to vertices in Vi for which Eq. (44) does NOT hold. Since

(U1
i , . . . , Uk

i) is representative with respect to (W1
i21, . . . , Wk

i21) and Vi,
there are at most (e/8,) N such vertices. Thus, the contribution of these
edges to the left-hand side of Eq. (43) is bounded above by (e/8,) N z
2N 5 (e/4,) N2

(b) Edges incident to vertices in Vi for which Eq. (44) DOES hold. The
contribution of these edges is due to two types of approximation errors.
The first approximation error is due to the clustering itself. That is,
vertices in Vi that belong to the same cluster, might differ by (e/8) N in
the number of neighbors they have in each Wj

i21. Specifically, for every
v, v9 which belong to the same cluster Vi,aW and for each j, we have

ug j
i~v! 2 g j

i~v9! u # uĝ j
i~v! 2 ĝ j

i~v9! u 1 uĝ j
i~v! 2 g j

i~v! u 1 uĝ j
i~v9! 2 g j

i~v9! u

#
e

16
1 2 z

e

32

5
e

8

The second approximation error is due to the fact that the fractional
partition is specified with bounded precision (i.e., b j

i,aW 5 uVj
i21 ù

Vi,aW u/uVi,aW u 6 e/16), and so at most (e/16,) z N vertices might be
misplaced, contributing at most (e/8,) z N2 edges. Thus, the contribu-
tion of both cases to the left-hand side of Eq. (43) is bounded above by
(3e/8,) N2.

Summing all cases we get a contribution bounded above by (1/4 1 1/4 1
3/8) z (e/,) N2 , (e/,) N2.

9.2.2. Bounding the Probability that Ui is not Good. We first fix a vertex v [
Vi. Let Ui 5 {u1, . . . , ut}. For j [{1, . . . , k}, and for 1 # s # t, define a
0/1 random variable, j j

s, which is 1 if us is a neighbor of v and us [Wj
i21, and is

0 otherwise. By definition, for each particular j, the sum of the j j
s’s is simply the

number of neighbors v has in Uj
i, and the probability that j j

s 5 1 is 1/N uG(v) ù
Wj

i21u. By an additive Chernoff bound (see Appendix B) and our choice of t, for
each j [{1, . . . , k},

PrUiFUuG(v) ù Uj
iu

t
2

uG~v! ù Wj
i21u

N
U .

e

32G 5 exp~2V~e2t!! 5
ed

8k,
.

By Markov’s inequality (see Appendix B), for each j [{1, . . . , k}, with
probability at least 1 2 d/k, over the choice of Ui, for all but (1/8)e of the
vertices in Vi, Eq. (44) holds (for that j), and thus with probability at least 1 2
(d/,), Ui is good as required. This concludes the proof of Lemma 9.2.1. e

By considering a partition * for which Eqs. (33) and (34) hold, Lemma 9.2.1
implies that if G [&3F, then with high probability the Graph Partitioning

731Property Testing and Learning and Approximation

Algorithm described in Figure 8 will find an e-approximation for the partitioning
problem defined by F. As noted previously, the number of sequences of
partitions considered is bounded by k,t 5 exp(,t log k) 5 exp(O(logk/e3)
log(k/ed))), and the number of settings of bW is exp(O(1/e)k11 z log(1/e)) (see
Eq. (41)). Hence, the number of iterations (in Step (2)), is exp(O(1/e)k11 z
log(1/(ed)). In each iteration, the running time is governed by Step (2.c) that
takes O(N2) time. As was mentioned previously, we later show how to produce
such a partitioning in a more efficient way by first running the testing algorithm
for &3F.

9.3. THE TESTING ALGORITHM. The testing algorithm for &3F (described in
Figure 9) essentially performs the same steps as the graph partitioning algorithm
on a small sample, S, and it is analyzed below. An important technical detail is
that (in Step (4)) the tester checks whether the sampled densities are close to an
admissible set of densities (defined below), rather than testing if they satisfy
inequalities analogous to Eqs. (35) and (36). As noted previously, a graph may
have a partition that satisfies Eqs. (35) and (36), but still be more than e-far from

FIG. 9. Testing Algorithm for &3F.

732 O. GOLDREICH ET AL.

the class &3F. By checking whether the sampled densities are close to an
admissible set, we are verifying directly whether the tested graph is close to the
class &3F.

In the following definition, for each j, a j corresponds to the fraction of
vertices in the jth component of the partition (so in particular the a j’s must sum
to 1), and for each j, j9, bj, j9 corresponds to the fraction of edges (among all
vertex pairs) between components j and j9. The first two items in the definition
merely state conditions on these a j’s and bj, j9’s that must hold in any graph. The
last item refers to the desired bounds with respect to F itself.

Definition 9.3.1. (Admissible Set of Densities). A set of (non-negative) reals,
{aj} ø {bj, j9}, is called admissible with respect to F (5 {r j

LB, r j
UB} ø {| j, j9

LB ,
| j, j9

UB}) if it satisfies the following inequalities

O
j51

k

aj 5 1 and O
j, j951

k

bj, j9 # 1 (45)

bj, j # aj
2 ~@j! and bj, j9 # 2 z aj z aj9 ~@j Þ j9! (46)

and

r j
LB # aj # r j

UB ~@j! and | j, j9
LB # bj , j9 # | j , j9

UB ~@j, j9! . (47)

In Step (4) of Figure 9, we check that a set of densities {rj
P,bW} ø {|j, j9

P,bW} is 2e9-close
to an admissible set where e9 5

def
e/3k2. That is, given the r j

P,bW ’s and | j, j9
P,bW ’s, we

ask whether there are nonnegative ajs and bj, j9s which, in addition to the above
admissibility conditions, also satisfy

uaj 2 r j
P ,bW u # 2e9 ~@j! and ubj, j9 2 | j, j9

P ,bW u # 2e9~@j, j9!

We note that the problem of whether a set of densities is 2e9-close to an
admissible set for F can be solved in exp(poly(k) z L)-time, where L is the
length of the encoding (in binary) of F and e (see Appendix C). Note that this
time-bound is dominated by the number of partitions examined in Step (4) (of
Figure 9).

PROOF OF THEOREM 9.2. Recall that e9 5 e/3k2. We first note that if G [
&3F, then by Lemma 9.2.1, with probability 1 2 (d/2) over the choice of U# , there
exist P and bW such that 9P,bW is an e9-approximation of the partition problem.
Furthermore, the densities related to this partition are e9-close to an admissible
set for F (that is, to the set of densities defined by a partition (H1, . . . , Hk) for
which Eqs. (33) and (34) hold). On the other hand, if G is e-far from &3F, then
no k-way partition of V has densities which are 3e9-close to an admissible set
with respect to F.25

25 Here is where the notion of admissible solution plays an important role. As noted in the beginning
of this section, it would not suffice to check whether no k-way partition of V is an O(e/k2)-good
approximation (of the partition problem). This is true since the existence of a good approximation
does not ensure that the distance of G to the class is of the same order as the approximation.

733Property Testing and Learning and Approximation

Suppose, on the contrary, that V has a k-way partition with densities that are
3e9-close to an admissible set with respect to F. Then we can modify this
partition in two steps as follows:

Step 1. We move up to 3ke9 z N vertices (according to the guaranteed admissible
vertex densities), so that two conditions hold. First, the number of
vertices in each component of the partition is between the required lower
and upper bounds. Second, for each j, j9, the number of vertex pairs, one
in component j and one in component j9, is at least as required by the
edge-density lower bound |j, j9

LB .

Step 2. We omit/add up to 3k2e9 z N2 5 eN2 edges (according to the required
edge-densities upper and lower bounds). Hence, we obtain a graph in
&3F in contradiction to the hypothesis.

Theorem 9.2 follows from the lemma below, which analogously to Lemmas
7.3.1 and 8.2.2.1 deals with the performance of the partitions of S as an
“approximation” to the corresponding partitions of V. For a fixed U# (which we
assume is good, as defined in the proof of Lemma 9.2.1), we now consider the
partitions 9P,bW ’s which would result in running the Graph Partitioning Algorithm
with an approximation parameter e9 5 e/3k2, and a confidence parameter d/2.
We relate these partitions to the partitions 6P,bW ’s that are generated by the
Testing Algorithm when using the same U# . Let np, na, and nb be upper bounds
on the number of sequences of partitions P, number of clusters (one per each i
and each setting of aW), and the number of settings of bW , respectively. Thus,

np 5 k,t,

na 5 , z S 16

e9
D k

5 SO~1!

e9
D k11

,

and

nb 5 S 8

e9
D k zna

5 expS logS 1

e9
D z SO~1!

e9
D k11D .

Note that np z nb is the number of partitions considered by each algorithm.

LEMMA 9.3.2. For a fixed U# , P, and bW , let 9P,bW be defined as in the Graph
Partitioning Algorithm, when executed with approximation parameter e9 5 e/3k2. Let
S be a uniformly chosen sample of size

m 5 VSna

e9
z

log~k z np z na z nb!/d

~e9!2 D
and let 6P,bW , {rj

P,bW}, and {| j, j9
bW } be as defined by the Testing algorithm. Then

PrSF?j ; U r j
P ,bW 2

uVj
PbW u

N
U . e9G ,

d

4 z np z nb

734 O. GOLDREICH ET AL.

and

PrSF?j, j9 ; | j, j9
P ,bW 2

uE~Vj
P ,bW , Vj9

P ,bW ! u

N2
. e9G ,

d

4 z np z nb

.

PROOF. Let d9 5
def

d/(4 z np z nb) and let e1 5
def

e9/24. For each i [{1, . . . , ,}
and aW , let Vi,aW and Vj

i,aW be as defined in the Graph Partitioning Algorithm, and
let Si,aW and Sj

i,aW be as defined in the Testing algorithm (for the fixed U# , P and bW

considered in the lemma). By an additive Chernoff bound, for each cluster,

PrSF U uSi ,aW u

m
2

uVi,aW u

N
U .

e9

2 G , exp~2V~m z ~e9!2!! ,
d9

4na

. (48)

Let Vj be the union of the Vj
i,aW ’s and let Sj be the union of the Sj

i,aW ’s (as defined
by the algorithm). Recall that for each j, bW i,aW z uVi,aW u # uVj

i,aW u # bW i,aW z uViaW u,
and similarly, bW i,aW z uSi,aW u # uSj

i,aW u # bW i,aW z uVi,aW u. Thus the effects of
rounding can be taken into account by assuming an arbitrary placement of 2 z na

vertices. Equation (48) together with this bound on the rounding effects implies
that for every j, with probability at least 1 2 d9/4,

uSju

m
5 O

i,aW

b j
i,aW z

uSi,au

m
6

na

m
5 O

i,aW

b j
i,aW z S uVi,au

N
6

e9

2 D 6
2na

m
5

uVju

N
6 e9,

so we have proved the first part of the lemma.
We say that a cluster Vi,aW , is significant, if it contains at least e1 z N/na vertices.

Otherwise, it is insignificant. Note that the total number of vertices belonging to
insignificant clusters is at most e1 z N. For each significant cluster and each j, let
V# j

i,aW be the same as Vj
i,aW except that it does not contain the first and the last e1 z

uVj
i,aW u vertices in the cluster (where first and last are with respect to the

lexicographic order on vertices). For each i and aW , let mi,aW 5
def uSi,aW u. By a

multiplicative Chernoff bound, with probability at least 1 2 d9/12, for every
significant cluster,

mi,aW $
1

2
z m z

uVi,aW u

N
$

1

2
z m z

e1

na

5 VS log~k z nb/d9!

~e9!2 D .

Therefore, by an additive Chernoff bound, for each significant cluster, and each
j,

PrSF U uSj
i,aW ù V# j

i,aW u

mi,a

2 ~bW j
i 2 2e1!U . 2e1G ,

d9

12 z k z na

. (49)

Thus, putting aside an error probability of d9/12, assume from now on that in fact
for every significant cluster and every j,

(1) uSj
i,aW ù V# j

i,aW u # bW j
i,aW z mi,aW from which it follows (by definition of Sj

i,aW) that
for every j, Sj

i,aW ù V# j
i,aW 5 Si,aW ù V# j

i,aW ;
(2) uSj

i,aW ù V# j
i,aW u $ (bW j

i,aW 2 4e1) z mi,aW , from which it follows that uSj
i,aW ù

V# j
i,aW u $ (bW j

i,aW 2 4e1) z mi,aW .

735Property Testing and Learning and Approximation

Next observe that for each j, j9,

$~s2k21, s2k! [E~Sj, Sj9!% 5 $~s2k21, s2k! [E~Sj ù V# j, Sj9 ù v# j9!%

ø $~s2k21, s2k! [~E~Sj\V# j, Sj9! ø E~Sj, Sj9\V# j9!!% . (50)

By Item (1) above and an additive Chernoff bound we get that for each j, j9

PrSF U u$~s2k21, s2i! [E~Sj ù V# j, Sj9 ù V# j9!% u

m/ 2
2

uE~V# j, V# j9! u

N2
U .

e9

4 G
,

d9

12k2
(51)

By definition of V# j and V# j9, we have that

uE~Vj, Vj9! u

N2
2

uE~V# j, V# j9! u

N2
4e1 ,

e9

4
(52)

By Item (2) above, we know that for every significant cluster and every j,
uSj

i,aW \V# j
i,aW u # 4e1mi,aW . By a multiplicative Chernoff bound, with probability at

least 1 2 d9/12, the sum of mi,aW taken over all insignificant clusters is at most
2e1 z m. Thus,

O
i,aW

uSj
i,aW \Vj

i ,aW u # re1 z O
i,aW

mi,aW 1 2e1 z m 5 6e1m.

Therefore,

u$~s2k21, s2k! [~E~Sj\V# j, Sj9! ø E~Sj, Sj9\V# j9!!% u

m/ 2

#
u$k ; s2k21 [Sj\V# j or s2k [Sj9\V# j9% u

m/ 2
12e1 5

e9

2
(53)

Summing up all the probabilities of errors and combining the bounds of Eqs.
(51)–(53), the lemma follows. e

PROOF OF THEOREM 9.3. In order to get a partitioning algorithm whose
running time is as stated in the theorem, we first run the Testing Algorithm and
find a choice of P and bW (in time independent of N) for which Step (4) of the
Testing Algorithm accepts. Next we use this choice to partition all of V by
running Step (2) of the Partition Algorithm only on this choice. As we have
shown in the proof of Theorem 9.2, with high probability, a partition 6P,bW will
cause the test to accept if 9P,bW is an e9-approximation of the partitioning
problem, and if 9P,bW is not an 3e9-approximation, then 6P,bW will cause the test to
reject. Thus, with high probability if the testing algorithm accepted G due to a
certain setting of P and bW , then 9P,bW is an e-approximation of the partitioning
problem. e

736 O. GOLDREICH ET AL.

10. Extensions, Limitations and Beyond

10.1. EXTENSIONS AND LIMITATIONS OF THE ABOVE ALGORITHMS. We have
presented several Graph Property Testers that use queries and are evaluated
with respect to the uniform distribution (on pairs of vertices). We now comment
on several extensions, variations and considerations.

10.1.1. Impossibility of Testing without Queries. Proposition 6.1.2.1 shows that
(edge) queries are essential for testing Bipartiteness. The construction used in
the proof actually establishes the same for testing the class of graphs having
cliques of density at least 1/2, and for approximating the Max-Cut (of dense
graphs up to an N2/8 additive term). Furthermore, the proof can be easily
modified to yield the same result for testing k-Colorability, for any k $ 3.

10.1.2. Extension to Directed Graphs. Some of the problems we study have
analogues in directed graphs. In particular this is true for a directed version of
r-Cut, where we are interested in testing whether a directed graph has a two-way
partition (V1, V2) such that the number of edges crossing from V1 to V2 is at least
rN2. Note that directed graphs in general do not have a symmetric adjacency
matrix and the existence of a directed edge from v1 to v2 does not necessarily
imply the existence of an edge from v2 to v1. For any two disjoint sets of vertices,
W1 and W2, let m(W1, W2) denote density of the edges crossing from W1 to W2
(i.e., the number of edges crossing divided by N2). Similarly to the undirected
case, the algorithm is essentially based on the following observation. Consider a
vertex v and a partition (W1, W2) of V\{v}. Let E(v, W2) be the set of edges
going from v to vertices in W2, and let E(W1, v) be the set of edges going from
vertices in W1 to v. In case uE(v, W2)u . uE(W1, v)u, it is preferable to put v on
side 1, that is, m(W1 ø {v}, W2) . m(W1, W2 ø {v}), and in case uE(W1, v)u .
uE(v, W2)u, we should put v on side 2. The notion of unbalance is hence slightly
modified, but as in the case of undirected cuts, the above observation generalizes
to sets of vertices of size O(eN). Thus the r-Directed-Cut testing algorithm is
very similar to the r-Cut testing algorithm, the only difference is that when
deciding where to put a vertex v [Vi given a fixed partition (U1, U2) of the
uniformly selected set U, we compare the number of edges going from v to
vertices in U2 to the number of edges going from U1 to v. The algorithms for
k-way-Cut and Bisection are modified similarly.

It is also possible to extend the definition of the general partition problem to
directed graphs by allowing the bounds |j, j9

LB , and |j, j9
UB, to differ from |j9, j

LB and
|j9,j

UB, respectively for j Þ j9. That is, there are separate requirements on the
number of edges crossing from Vj to Vj9 and the number of edges crossing from
Vj9 to Vj. In such a case, the graph partitioning and testing algorithms for
directed graphs differ from the algorithms for undirected graphs only in their
definition of clusters (but the clusters are partitioned by the algorithms as in the
undirected case). A cluster of vertices, defined with respect to a fixed partition
(W1, . . . , Wk), is a set of vertices Z such that for all v1, v2 [Z, and for every j [
{1, . . . , k}, E(v1, Wj) ' E(v2, Wj), and E(Wj, v1) ' E(Wj, v2).

10.1.3. Extension to Product Distributions. Our algorithms for k-Colorability,
r-Clique, and r-Cut can be easily extended to provide testers with respect to
“product distributions.” We call the distribution C ; V(G)2 ° [0, 1] a product
distribution if there exists a distribution on vertices c ; V(G) ° [0, 1] so that

737Property Testing and Learning and Approximation

C(u, v) 5 c(u) z c(v). Recall that each of our algorithms takes a uniform
sample of vertices, and queries the graph only on the existence of edges between
these vertices. Instead, in case we need to test G with respect to the product
distribution C, we sample V(G) according to the distribution c. Note that the
algorithm need not “know” c; it suffices that the algorithm has access to a source
of vertices drawn from this distribution (or to a source of pairs drawn according
to C). To prove that this extension is valid consider an auxiliary graph G9
consisting of vertex-components so that each component corresponds to a vertex
in G. Complete bipartite graphs will be placed between pairs of components
which correspond to edges in G. The size of the component will be related to the
probability measure of the corresponding vertex in G. Thus, uniform distribution
on V(G9) is almost the same as distribution C on V(G). For the analysis of the
r-Clique tester, we also add edges between vertices residing in the same
component. (This is certainly NOT done in analyzing the k-Colorability and
Max-Cut testers.) It can be shown that testing G for any of the above mentioned
properties with respect to the product distribution C corresponds to testing G9
(for the respective property) under the uniform distribution. Suppose, for
example, that G is k-Colorable. Then so is G9, and thus, the k-Colorability Tester
will always accept G9 (and thus always accept G). On the other hand, if the
k-Colorability Tester, run with parameters e, d, accepts G9 with probability 1 2 d,
then there is a k-Coloring of G9 which violates less than an e fraction of vertex
pairs. To obtain a k-Coloring of G we randomly assign each vertex in G a color
according to the proportions of colors assigned to the corresponding vertices in
G9. It follows that the expected probability mass (according to C) assigned to
violated edges is less than e.

10.1.4. Impossibility of Distribution-Free Testing. In contrast to the above
extension, it is not possible to test any of the graph properties discussed above in
a distribution-free manner (even with queries). For simplicity, let us consider the
case of Bipartite Testing. Consider the following class of distributions on pairs of
vertices of an N-vertex graph. Each distribution is defined by a partition of
{1, . . . , N } into N/4 4-tuples. The distribution assigns probability 1/3N to each
(ordered) pair of distinct vertices which belong to the same 4-tuple. Pairs
residing in different 4-tuples are assigned probability 0. For each distribution, we
consider two graphs. The first graph consists of N/4 paths of length 3, each
residing in a different 4-tuple; whereas the second graph consists of N/4
triangles, each residing in a different 4-tuple. Clearly, the first graph is bipartite
whereas the second is not. Furthermore, the second graph is 1/6-far (with respect
to the above distribution) from being bipartite. Still, no tester which works in
o(=N) time can tell these two graphs apart, even if it gets samples drawn from
the distribution and is allowed queries. The reason is that t samples drawn from
the distribution will, with probability at least 1 2 4t2/N, come from different
4-tuples. Furthermore, in this case, any query made by the tester, except if it is
on a pair which has appeared in the sample, is likely to be on a pair which is not
from the same 4-tuple and thus a nonedge (in both graphs).

10.1.5. On the Possibility of Working in poly(1/e) Time. The algorithm for
Bipartite Testing works in poly(1/e)-time (see Theorem 6.1.2), whereas all the
other testers presented in this paper work in time exponential in poly(1/e). In
fact, it seems that one cannot hope for much better. For example, we claim that

738 O. GOLDREICH ET AL.

if one can test 3-Colorability with distance parameter e in time poly(1/e) then
13 # @33. To decide if a graph G is 3-Colorable, simply set e 5 1/uV(G)u2 (and
d 5 1/3) and run the property testing. Clearly, if G is 3-Colorable then the test
will accept with probability at least 2/3, whereas if G is not 3-Colorable it must be
e-far from being 3-Colorable and thus be rejected by the test with probability at
least 2/3. We remark that a similar argument can be made when using a relatively
bigger value of e. For example, to decide if G is 3-Colorable consider an auxiliary
graph, G9, with 2uV(G)u vertices which are grouped into n 5

def uV(G)u components
each consisting of 2n/n vertices. These huge components will correspond to
vertices in G and complete bipartite graphs will be placed between pairs of
components that correspond to edges in G. Thus, we can set e 5 1/n2 and apply
the same reduction as above this time showing that deciding 3-Colorability of G
reduces to 3-Colorability testing of G9 with distance parameter e 5 1/poly
loguV(G9)u.

10.1.6. On One-Sided Failure Probability. The testers for Bipartite and k-
Colorability always accept graphs which have the property. In contrast, all other
testers presented in this paper may fail to accept a yes-instance (yet, with
probability at most d). We claim that non-zero failure probability, in these cases,
is inevitable. Consider for example the execution of a potential Clique Tester
given access to a graph with no edges at all. Clearly, the tester must reject with
probability at least 1 2 d. Fix any sequence of coin tosses (for the tester) which
makes it reject. This determines a sequence of queries into the graph (all queries
are answered by 0). Assuming that the number of queries is less than (1 2 r) N,
there exists an N-vertex graph having a clique of size rN in which all the queried
pairs are non-edges. It follows that the Clique Tester rejects this yes-instance
with positive probability.26 We conclude that there is a fundamental difference
between testing k-Colorability and testing r-Clique.

10.1.7. Impossibility of Learning with Queries. All the above classes of (graph-)
functions are not learnable, not even under uniform distribution and when
allowing (membership) queries. Furthermore, this holds also if we allow unlim-
ited computing power as long as we restrict the number of queries to o(N).
Intuitively, there are “too” many graphs (functions) in each class. Formally, we
may consider attempts to learn a random bipartite N-vertex graph and may even
fix the 2-partition, say, place vertices {1, . . . , N/ 2} on one side. Then, each
uninspected pair (i, j), with i # N/ 2 and j . N/ 2, is equally likely to be either
an edge or a non-edge (i.e., be labeled 1 or 0 by the corresponding function).

10.1.8. Extension to Weighted Graphs (with Bounded Weights). Let G 5 (V, E)
be a (simple undirected) graph, and v ; E ° [0, B] be a weight function
assigning each edge e [E a non-negative value (bounded by B). We assume
that B, the bound on the weights of the edges, is known. We associate with G a
function fG,v ; V 3 V 3 [0, B], where fG,v(v1, v2) 5 0 if (v1, v2) [y E and is
v(v1, v2) otherwise. When performing a query on a pair of vertices, (v1, v2), our
testing algorithms receive the value of fG(v1, v2). The notion of distance between
graphs is slightly different from the unweighted case: We define the distance

26 An analogous argument can be used to show that any Clique Tester must accept some no-instance
with positive probability. (Start by considering an execution on the complete graph.)

739Property Testing and Learning and Approximation

between two weighted graphs (G, v) and (G9, v9), or equivalently between fG,v
and fG9,v, to be 1/N2 (v1,v2[Vu fG,v(v1, v2) 2 fG9,v(v1, v2)u. The distance between a
weighted graph and a class of weighted graphs is defined in the obvious manner.
The generalization to weighted graphs may affect the testing problems in two
ways:

10.1.8.1. AFFECT ON THE OBJECTIVE. Consider, for example, a generalization
of r-Cut to weighted graphs. A weighted graph G 5 (V, E, v) has a cut of weight
at least r, if there exists a partition (V1, V2) of V such that 1/N2 (v1[V1,v2[V2

2fG(v1, v2) $ r. Thus, the class r-Cut is a class of weighted graphs (rather than of
graphs). Still, our algorithms for unweighted r-Cut are easily adapted to the
weighted case; yet, the query complexity (respectively, running-time) of our
tester will depend polynomially (respectively, exponentially) on the bound B.27

The k-Cut, Bisection, and General Partition properties and algorithms generalize
similarly.

10.1.8.2. AFFECT ON DISTANCE. Consider, for example, testing k-Colorability
of weighted graphs. Clearly, the property of being k-Colorable has nothing to do
with the weights of the edges; yet, the distance from the class of k-Colorable
graph does depend on these weights. However, the latter dependency can be
easily waived by replacing each nonzero weighted edge by an edge with weight B.
Note that this replacement does not affect k-Colorability and that it only
increases the distance of non-k-Colorable weighted graph from the class of
k-Colorable weighted graphs. We stress that in the resulting graph all edges have
weight B. Thus, testing a weighted graph for k-Colorability with distance
parameter e, reduces to testing the underlying (unweighted) graph (for k-
Colorability) with distance parameter e/B. Again, the bound B turns out to affect
the query complexity and running-time as in the first case.

10.2. TESTING OTHER GRAPH PROPERTIES. The following remarks and obser-
vations are meant to indicate that providing a characterization of graph proper-
ties according to the complexity of testing them may be quite challenging.

We first recall that testing k-Colorability seems to be fundamentally different
from testing r-Clique since the first can be done without ever rejecting yes-
instances whereas the second cannot be done without two-sided failure probabil-
ity.

10.2.1. Easy to Test Graph Properties. Next, we observe that any graph
property which can be made to hold by adding or omitting few edges from any
graph can be tested very easily. Namely,

27 Specifically, all that need be changed is the notion of balanced vertices: We say that a vertex v is
unbalanced with respect to a partition (W1, W2) if 1/N u(w1[W1

fG(v, w1) 2 (w2[W2
fG(v, w2) u is

non-negligible. Similarly to the unweighted case we shall use partitions (U1, U2) of a uniformly
selected sample U to approximate this difference (and use an additional sample S to approximate
weights of cuts). The only difference in the analysis is that instead of using sums of 0/1 random
variables to approximate expected values, we are using sums of random variables whose value lies in
[0, B], and hence we’ll get a polynomial dependence on B in the sample complexity, and an
exponential dependency in the running time.

740 O. GOLDREICH ET AL.

PROPOSITION 10.2.1.1 (TESTING ALMOST TRIVIAL CLASSES). Let a . 0 be a
constant and # a class of graphs so that for every graph, G,

dist~G, #! # uV~G! u2a.

Then, # can be tested by using at most poly(e21 log(1/d)) labeled random
examples, where e is the distance parameter. Furthermore, the test always accepts
graphs in #.

Classes that satisfy the hypothesis of the proposition include: Connected
Graphs (add # uV(G)u 2 1 edges), Eulerian Graphs (make connected and add #
uV(G)u/2 edges), Hamiltonian Graphs (add # uV(G)u 2 1 edges), Graphs with
k[-vertex Dominating Set, for a given k[(add # uV(G)u 2 k(uV(G)u) edges),
Graphs having Perfect Matching (add # uV(G)u/2 edges), and Graphs containing a
subgraph H (add # uE(H)u edges).28 We remark that the above also holds with
respect to some of the complementing classes such as UnConnected Graphs,
Non-Hamiltonian Graphs, Non-Eulerian Graphs, Graphs without k[-vertex Dom-
inating Set, and Graphs not having Perfect Matching (e.g., by removing edges to
make one vertex isolated).

PROOF. Let D(N) 5
def

maxG;uV(G)u5N{dist(G, #)} and suppose that D(N) or a
good upper bound on it is known. (One may always use D(N) 5 N2a.) Given
oracle access to an N-vertex graph G (and a distance parameter e), if e . D(N),
then the tester always accepts. Otherwise, the tester inspects all N2 5 poly(1/e)
edges and decides accordingly. Actually, we may take a sample of O(log(N/d) z
N2) labeled random examples and accept iff either the sample does not cover all
possible vertex pairs or the sample “reveals” a graph in #. The main point is that
in case e . D(N) every N-vertex graph is e-close to #. e

We stress that as long as the distance parameter (i.e., e) is not too small, the
tester is trivial (i.e., it accepts any graph without performing any checking).
Slightly more is required in order to check any graph property which holds only
on very sparse graphs. Here, as long as e is not too small, the tester need only
check that random examples of vertex-pairs have no edge between them (i.e., the
graph is sufficiently sparse).

PROPOSITION 10.2.1.2 (TESTING CLASSES OF SPARSE GRAPHS). Let a . 0 be a
constant and # a class of graphs so that # # {G ; uE(G)u , uV(G)u22a}. Then, #
can be tested by using at most poly(e21 log(1/d)) labeled random examples; where e
and d are the distance and confidence parameters.

Classes that satisfy the hypothesis of the proposition include: Trees, Forests,
and Planar Graphs (all with uE(G)u 5 O(uV(G))u).

PROOF. Let r(N) 5
def

maxG[#;uV(G)u5N{uE(G)u/N2} and suppose that r(N) or
a good upper bound on it is known. (One may always use r(N) 5 N2a.) Given
oracle access to an N-vertex graph G (and parameters e, d), if e . 6r(N),
then the tester takes a sample of t 5

def
O(e22 log(1/d)) labeled random examples

and accepts iff it has seen at most (r(N) 1 (e/3)) z t edges. Otherwise, the

28 The latter can be generalized to Graphs containing a subgraph that can be contracted to one of the
graphs in {H1, . . . , Ht}. The Non-Planar Graphs are a special case.

741Property Testing and Learning and Approximation

tester inspects all N2 5 poly(1/e) edges and decides accordingly. (Again, the
actual implementation is by a sample of O(log(N/d) z N2) edges that is very
likely to cover all vertex pairs.) The main point is that the graphs in # have edge
density at most r(N), whereas graphs that are e-away from # have edge density
at least e 2 r(N) which for e . 6r(N) is more than r(N) 1 2e/3. We conclude
by noting that, with probability at least 1 2 d the number of edges seen by the
tester provides a good estimate (i.e., e/3 deviation) to the density of the graph. e

We stress that both the above testers make no queries. In contrary, the
following slightly more involved tester does make queries in order to check that
vertices drawn at random have about the same degree. This algorithm is a tester
for the class of Regular Graphs, and its correctness is established based on a
theorem due to Noga Alon (private communication).

PROPOSITION 10.2.1.3 (TESTING REGULAR GRAPHS). The class of regular
graphs can be tested by using at most poly(e21 log(1/d)) queries, where e and d are
the distance and confidence parameters.

PROOF. Given oracle access to an N-vertex graph G (and parameters e, d),
the test takes a sample, S, of O(e21 log(1/d)) many vertices and for each v [S
makes O(e22log(1/(ed))) queries of the form “is (v, w) [E(G)”, where v [
V(G) is uniformly chosen. Thus, the test estimates the degrees of all vertices in S.
The test accept iff all the estimated degrees (divided by N) are within e/3 of one
another.

Clearly, if G is regular then, with probability at least 1 2 d, the test accepts it.
Assume, on the other hand, that the test accepts with probability greater than d.
Then, for some r and e9 5 e/13, it must be the case that all but an e9 fraction of
the vertices in G have degree (r 6 e9) N. By omitting/adding edges to the few
vertices with degree outside the above interval, we obtain a graph G9 so that

(1) dist(G, G9) # e9.
(2) every vertex in G9 has degree (r 6 2e9) N.

At this point, we invoke a theorem due to Noga Alon (see Appendix D) which
asserts that a graph G9 in which the difference between the maximum and
minimum degree as bounded above by e0uV(G9)u is at most (3 1 o(1)) z e0-away
from the class of regular graphs. Thus, G is at most e-away from this class, and
the proposition follows. e

Estimating vertex degree also suffices to test that the minimum cut in the
graph is above some threshold. That is,

PROPOSITION 10.2.1.4 (TESTING MIN-CUT). The class of graphs G with mini-
mum cut at least k 5 k(uV(G)u) can be tested by using at most poly(e21 log(1/d))
queries, where e and d are the distance and confidence parameters.

PROOF. If e 5 O(log(N)/N), then we examine the entire graph. Otherwise,
we merely test via a poly(1/e)log(1/d) sample that all vertices seem to have
degree (approximately) above k 5 k(N). That is, to test that the minimum cut is
at least k, we sample sufficiently many vertices, approximate their degree
according to the sample, and accept iff all estimated degrees are above, say, k 2
(e/ 2) N. The analysis utilizes the observation that at most O(N log N) edges

742 O. GOLDREICH ET AL.

must be added to an N-vertex graph of minimum degree d in order to make it
have min-cut at least d. This observation is proved by a random construction.

The basic idea is to consider the immediate neighborhoods of each of the N
vertices in the graph. We get a collection of subsets, each having cardinality at
least d. Thus, all that is needed is to guarantee d edge-disjoint paths between
each pair of such subsets. This can be done easily, by designating d special
vertices in the graph, and randomly connecting each vertex in the graph to the
designated set by O(log N) random edges. Consider one specific neighborhood
(out of the N). With probability greater than 1 2 (1/N), the random edges
(from its vertices to the designated set) contain a d-matching. Thus, we obtain d
edge-disjoint paths between each pair of neighborhoods, which implies that the
augmented graph is d-edge-connected. e

10.2.2. Testing Graph Properties Using the Regularity Lemma. As noted above,
much less efficient testers for k-Colorability and other graph properties can be
obtained by using the Regularity Lemma of Szemerédi [1978]. Interestingly, the
Regularity Lemma yields the following result about testing, which we do not
know to obtain without it. Let H be an arbitrary fixed graph (e.g., the triangle
K3) and consider the class of graphs which have no H subgraphs. Using the
Regularity Lemma, Noga Alon (private communication) observed that there exist
testers for H-freeness, with query complexity which is a tower of poly(1/e)
exponents. Recall that e is our distance parameter (i.e., Alon’s tester rejects a
graph if it is e-far from being H-free). Alon expressed the opinion that proving a
result like this without the Regularity Lemma (and hence probably getting better
bounds) would be, indeed, very challenging, and would probably have some very
nice combinatorial applications.

10.2.3. Hard to Test Graph Properties. Analogously to Proposition 4.1.1, we
show that there are graph properties requiring inspection of a constant fraction
of all possible vertex-pairs.

PROPOSITION 10.2.3.1. There exists a class of graphs, &, for which any testing
algorithm must inspect a constant fraction of the vertex pairs. This holds even for
testing with respect to the uniform distributions, for any distance parameter e , 1/2
and confidence parameter d , 1/2, and when allowing the algorithm to make
queries and use unlimited computing time.

PROOF. In adapting the proof of Proposition 4.1.1, we introduce for each N a
random subset of 2(1/ 20) N2

N-vertex graphs. Each graph is specified by the lower
triangle of the corresponding adjacency matrix. This allows at most N! represen-
tations of the same graph (i.e., all its automorphism). The multiple representa-
tion only affects the first part of the proof; that is, the bound on the probability
that a uniformly selected graph is e-close to &. However, the extra factor of N! is
easily eliminated by the probability exp(2V(N2)) that a random graph is e-close
to a specific graph. The second part of the proof (i.e., the distance between the
two observed distributions) remains almost unchanged. e

Actually, a similar result holds with respect to graph properties which are in
13; that is, classes of graphs that constitute 13 sets.

PROPOSITION 10.2.3.2. There exists an NP set of graphs, &, for which any testing
algorithm must inspect at least V(N2) of the vertex pairs, where N is the number of

743Property Testing and Learning and Approximation

vertices in the graph. This holds even for testing with respect to the uniform
distributions, for any constant distance parameter e , 1/2 and confidence parameter
d , 1/2, and when allowing the algorithm to make queries and use unlimited
computing time.

This proposition subsumes Proposition 10.2.3.1.

PROOF. We adapt the proof of Proposition 10.2.3.1, by considering, for each
N, all graphs which arise for particular “pseudorandom” sequences. Specifically,
we consider (N

2)-long sequences taken from a 1/ 2 z 22t-biased sample space (cf.,
Naor and Naor [1993] or Alon et al. [1992]), where t 5

def
(1/100) N2. Efficiently

constructible sample spaces of size (2 t z N)5 having the above property can be
found in Naor and Naor [1993] and Alon et al. [1992]. Graphs are now specified,
as before, by letting each such sequence define (the lower triangle of) the
corresponding adjacency matrix, and so there are there are exp((1/ 20) N2) such
graphs and each graph is specified by a sequence of length O(t 1 log N) 5
poly(N). The first part of the proof remains unchanged (since all that matters is
the number of graphs in the class). The second part of the proof is actually
simplified since any t observed bits in the random sequence as above deviates
from the uniform distribution by at most 1/2 (i.e., using the notation of
Proposition 4.1, dS(&) , 1/2 for every S of size t). All which remains is to be
convinced that we have constructed an NP set. This follows by letting the
NP-witness of the membership of a graph in the set be the isomorphism to the
canonical representation (i.e., the representation corresponding to the almost
unbiased sequence). e

Appendix A. Recurring Notation

For an integer b, we let [b] 5
def

{1, . . . , b}.
For any three rational numbers, a, b, and g, we let a 5 b 6 g stand for b 2

g # a # b 1 g.
A graph is typically denoted G 5 (V, E) and N typically denotes the number of

vertices in G. Furthermore, typically V 5 {1, 2, . . . , N }.

Appendix B. Useful Inequalities

Below are several important inequalities that are used throughout the paper.

THEOREM B1 (MARKOV’S INEQUALITY). Let X be a random variable assuming
only non-negative values. Then for all k [R1,

Pr@X $ k z Exp@X## #
1

k
.

THEOREM B2 (CHERNOFF BOUNDS). Let X1, X2, . . . , Xm be m independent
random variables where Xi [[0, 1]. Let p 5

def
(1/m)(i Exp[Xi]. Then, for every g [

[0, 1], the following bounds hold:

744 O. GOLDREICH ET AL.

—(Additive Form [Hoeffding 1963])

PrF 1

m
z O

i51

m

Xi . p 1 gG , exp~22g2m!

and

PrF 1

m
z O

i51

m

Xi , p 2 gG , exp~22g2m! .

—(Multiplicative Form [Chernoff 1952])

PrF 1

m
z O

i51

m

Xi . ~1 1 g! z pG , expS2
g2pm

3 D
and

Pr3 1

m
z O

i51

m

Xi , ~1 1 g! z p4 , exp12
g2pm

3 2
Appendix C. Determining Closeness to an Admissible Set

In this appendix, we consider the computational problem of determining whether
a sequence of densities is 2e9-close to an admissible set for F. That is,

Input:

—parameters r1
LB, . . . , rk

LB, r1
UB, . . . , rk

UB, |1,1
LB, . . . , |k,k

LB, |1,1
UB, . . . , |k,k

UB, and e9.
—densities: r1, . . . , rk and |1,1, . . . , |k,k.

Question. Does the following system of inequalities in xi’s and yi, j’s have a
solution?

O
i51

k

xi 5 1 and O
i , j51

k

yi, j # 1 (54)

r i
LB # xi # r i

UB~@i! and | i, j
LB # yi, j # | i, j

UB~@i, j! (55)

yi,i # xi
2~@i! and yi, j # 2 z xi z xj~@i Þ j! (56)

uxi 2 r iu # 2e9 and uyi, j 2 | i, ju # 2e9~@i, j! . (57)

We first observe that the corresponding lower and upper bounds in Eqs. (55) and
(57) can be combined. We also observe that the above system has a solution if
and only if it has a solution in which the yi, j are set to be as small as possible.
That is, a solution in which each yi, j has the minimum value that obeys the lower
bounds in Eqs. (55) and (57). This yields the following system of inequalities,

745Property Testing and Learning and Approximation

where Li 5 max{r i
LB, r i 22e9}, Ui 5 min{r i

UB, r i 1 2e9}, Li,i 5 max{| i,i
LB,

| i,i 2 2e9}, and Li, j 5 1/ 2 z max{| i, j
LB, | i, j 2 2e9} (i Þ j):

O
i51

k

xi 5 1 (58)

Li # xi # Ui ~@i! (59)

xi z xj $ Li, j ~@i, j! (60)

We first observe that Eqs. (58)–(60) constitute a Convex Program; furthermore,
its feasibility region, in case it is not empty, is a t-dimensional convex set, where
t # k 2 1. Next, we observe that this convex set contains any simplex defined by
t 1 1 points of general position inside the convex set. This holds, in particular,
for points which are on the intersection of t of the boundaries/inequalities (i.e.,
“vertices” of the body). It can be easily verified that for any such two points and
for any coordinate, if the points are different along this coordinate, then their
difference is bounded below by 22k zL, where L is the length of the encoding (in
binary) of F and e. It follows that the feasibility region, if not empty, contains a
t-dimensional ball of radius 22poly(k) zL (and is contained in [0, 1] t). Thus, the
feasibility problem can be solved by exhaustive search in exp(poly(k) z L)-time:
First, we reduce the problem to t dimensions, by guessing k 2 t (“independent”)
inequalities which are satisfied at equality. Next, we search the resulting t-
dimensional space for a feasible solution, by examining all points which reside on
a cubic integer lattice spanned by vectors of length 22poly(k) zL.

Remark C1. The feasibility problem may be solvable by the Ellipsoid Method
(cf., Grötschel et al. [1988]) in poly(k z L)-time, but this saving has little effect
on our application.

Appendix D. A Note on Regular Graphs (by Noga Alon)

The following theorem is due to Noga Alon. We stress that the theorem refers to
simple undirected graphs (i.e., with no self-loops and no parallel edges).

THEOREM D1. Let G 5 (V, E) be a graph on N vertices with maximum degree
D and minimum degree d, where D 2 d # eN. Then, there is a regular graph on N
vertices obtained from G by omitting and adding at most 3eN2 1 2N edges.

PROOF. By replacing G, if needed, with its complement, we may and will
assume that D # (1/ 2)(1 1 e) N. It is convenient to first reduce to the case in
which the maximum degree is a bit smaller than 0.5N. This can be done as
follows. Delete the maximum possible number of edges from G subject to
keeping its minimum degree d. Let us denote the resulting graph by G9 and the
maximum degree in it by D9. In case D9 5 d we are done. Otherwise, we
consider the set of vertices of degree D9 and observe that it is an independent set
(since the existence of an edge between two vertices of degree greater than d
violates the definition of G9). Thus, for each set A of vertices of degree D9 in G9,
uG(A) u . uA u, since the number of edges from A to G(A) equals uA u z D9 as well
as is bounded above by uG(A) u z (D9 2 1). Therefore, by Hall’s theorem, there

746 O. GOLDREICH ET AL.

is a matching in G9 that saturates all vertices of degree D9. Omitting such a
matching, we obtain a graph, denoted G1, of maximum degree D1 5 D9 2 1 and
minimum degree d1 [{d, d 2 1}. Iterating this procedure (of first omitting
edges between vertices of maximum degree and then omitting an appropriate
matching) we obtain a sequence of graphs G1, G2, . . . , Gt, stopping if either Gt is
regular or if t 5 (e/ 2) N 1 2. Let (D1, d1), . . . , (Dt, dt) be the corresponding
sequence of maximum and minimum degrees in the Gis. Clearly, Dt # D 2 t,
and Dt 2 dt # eN. Since dt $ d 2 t, we conclude that during this process we
have omitted at most (D 2 (d 2 t)) z N # 1.5eN2 1 2N edges. In case Gt is
regular, we are done. Otherwise, we have Dt # 0.5N 2 2. We let H 5

def
Gt, D9 5

def

Dt, d9 5
def

dt, and let D0 be the smallest even integer which is at least D9 (i.e.,
D0 5 D9 1 (D9/ 2 2 D9/ 2) [{D9, D9 1 1}).

To complete the proof we show how to modify H by omitting and adding to it
at most O(en2) edges so that the resulting graph will be D0-regular. For each
vertex v of H, define s(v) 5 D0 2 d(v), where d(v) is the degree of v in H.
Thus the sum S 5 (v[V s(v) is even, and we have to increase the degree of each
vertex v by s(v). We do so in S/ 2 steps, where in each step we increase by 1 the
degrees of two (not necessarily distinct) vertices with positive s values, and keep
the other degrees invariant. Specifically, in each step, we either add one edge or
add two edges and remove one edge. In either case, we update the relevant s
values. Since S # (D0 2 d9) N # eN2 the desired result follows. Following is a
description of a typical step:

Case 1. There is a vertex v for which s(v) $ 2. Let Y denote the set of all its
non-neighbors. If some member of Y has a positive s value, we connect it to v
and update their s values to complete the step. Else, each member of Y has
degree D0. Note that uY u .N/ 2 (since uY u $ N 2 (D0 2 2) $ N 2 D9 1 1 $
0.5N 1 3). Hence, there must be an edge between two members of Y, since
otherwise uY u z D0 # (N 2 uY u) z D0. Let (u, w) be such an edge. Then we omit
(u, w) from the graph, add the two edges (v, u) and (v, w) to the graph, update
the s value of v, and complete the step.

Case 2. The only vertices v with positive s values have s(v) 5 1. Since the sum
of the s-values is even, there are at least two such vertices, say, u and v. Let Y be
the set of all non-neighbors of u and Z the set of all non-neighbors of v. Note
that, as before, if some vertex in either Y or Z has a positive s value, then we can
connect it to either u or v and complete the step. We now claim that there must
be an edge yz in the graph with y [Y and z [Z, since otherwise all edges from
Y lead to vertices in V\Z, implying that uY u z D0 # (N 2 uZ u) z D0, which is
impossible, since both uY u and uZ u are greater than N/ 2. We can now add the
edges uy and zv, remove the edge yz, and update the s values of u and v,
completing the step.

Observing the the maximum number of edge modifications in these S/ 2 steps
is (3/ 2)S # (3/ 2)eN2, the theorem follows. e

ACKNOWLEDGMENTS. We wish to thank Noga Alon, Michel Goemans, Ravi
Kannan, David Karger and Madhu Sudan for useful discussions. We are also
grateful to two anonymous referees for their helpful comments.

747Property Testing and Learning and Approximation

REFERENCES

ALON, N., DUKE, R. A., LEFMANN, H., RODL, V., AND YUSTER, R. 1994. The algorithmic aspects of
the regularity lemma. J. Algorithms 16, 80 –109.

ALON, N., GOLDREICH, O., HÅSTAD, J., AND PERALTA, R. 1992. Simple constructions of almost
k-wise independent random variables. J. Rand. Struct. Algorithms 33, 289 –304.

ANGLUIN, D. 1978. On the complexity of minimum inference of regular sets. Inf. Cont. 39,
337–350.

ARORA, S., FRIESE, A., AND KAPLAN, H. 1996. A new rounding procedure for the assignment
problem with applications to dense graph arrangement problems. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 21–30.

ARORA, S., KARGER, D., AND KARPINSKI, M. 1995. Polynomial time approximation schemes for
dense instances of NP-hard problems. In Proceedings of the 27th Annual ACM Symposium on the
Theory of Computing (Las Vegas, Nev., May 29 –June 1). ACM, New York, pp. 284 –293.

ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and
intractability of approximation problems. In Proceedings of the 33rd Annual IEEE Symposium on
Foundations of Computer Science. IEEE, New York, pp. 14 –23.

ARORA, S., AND SAFRA, S. 1992. Probabilistic checkable proofs: A new characterization of NP. In
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science. IEEE, New
York, pp. 1–13.

BABAI, L., FORTNOW, L., LEVIN, L. A., AND SZEGEDY, M. 1991a. Checking computations in
polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing
(New Orleans, La., May 6 – 8). ACM, New York, pp. 21–31.

BABAI, L., FORTNOW, L., AND LUND, C. 1991b. Non-deterministic exponential time has two-prover
interactive protocols. Computat. Complex. 1, 1, 3– 40.

BELLARE, M., COPPERSMITH, D., HÅSTAD, J., KIWI, M., AND SUDAN, M. 1995a. Linearity testing in
characteristic two. In Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer
Science. IEEE, New York, pp. 432– 441.

BELLARE, M., GOLDREICH, O., AND SUDAN, M. 1995b. Free bits, PCPs, and nonapproximability—
Towards tight results. In Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 422– 431. (Full version available from ECCC, http://
www.eccc.uni-trier.de/eccc/.

BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. 1993. Efficient probabilistically
checkable proofs and applications to approximation. In Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp.
294 –304. (Erratum in Proceedings of the 26th Annual ACM Symposium on the Theory of Computing.
ACM, New York, 1994, p. 820.)

BELLARE, M., AND SUDAN, M. 1994. Improved non-approximability results. In Proceedings of the
26th Annual ACM Symposium on the Theory of Computing (Montréal, Que., Canada, May 23–25).
ACM, New York, pp. 184 –193.

BEN-DAVID, S. 1992. Can finite samples detect singularities of real-valued functions? In Proceed-
ings of the 24th Annual ACM Symposium on the Theory of Computing (Victoria, B.C., Canada, May
4 – 6). ACM, New York, pp. 390 –399.

BLUM, A., AND RIVEST, R. 1989. Training a 3-node neural network is NP-complete. In Advances in
Neural Information Processing Systems I. Morgan-Kaufmann, San Mateo, Calif., pp. 494 –501.

BLUM, M., LUBY, M., AND RUBINFELD, R. 1993. Self-testing/correcting with applications to numer-
ical problems. J. Comput. Syst. Sci. 47, 549 –595.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1989. Learnability and
Vapnik–Chervonenkis dimension. J. ACM 36, 4 (Oct.), 929 –965.

CANETTI, R., FEIGE, U., GOLDREICH, O., AND NAOR, M. 1996. Adaptively secure multi-party
computation. Tech Rep. TR-682. Laboratory of Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass. Extended abstract in Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (Philadelphia, Pa., May 22–24) ACM, New York, pp.
639 – 648.

CHERNOFF, H. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Ann. Math. Stat. 23, 493–507.

COVER, T. M. 1973. On determining the rationality of the mean of a random variable. Ann. Stat. 1,
862– 871.

748 O. GOLDREICH ET AL.

DE LA VEGA, W. F. 1994. MAX-CUT has a randomized approximation scheme in dense graphs.
Rand. Struct. and Algorithms. 8, 4, 187–198.

EDWARDS, K. 1986. The complexity of colouring problems on dense graphs. Theoret. Comput. Sci.
43, 337–343.

ERGUN, F., KANNAN, S., KUMAR, S. R., RUBINFELD, R., AND VISWANTHAN, M. 1998. Spot-checkers.
In Proceedings of the 30th Annual ACM Symposium on the Theory of Computing. ACM, New York,
to appear.

FEIGE, U., GOLDWASSER, S., LOVÁSZ, L., SAFRA, S., AND SZEGEDY, M. 1991. Approximating Clique
is almost NP-complete. In Proceedings of the 32nd Annual IEEE Symposium on Foundation of
Computer Science. IEEE, New York, pp. 2–12.

FRIEZE, A., AND KANAN, R. 1996. The regularity lemma and approximation schemes for dense
problems. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, New York, pp. 12–20.

GEMMELL, P., LIPTON, R., RUBINFELD, R., SUDAN, M., AND WIGDERSON, A. 1991. Self-testing/
correcting for polynomials and for approximate functions. In Proceedings of the 23rd Annual ACM
Symposium on the Theory of Computing (New Orleans, La., May 6 – 8). ACM, New York, pp. 32– 42.

GOLD, M. E. 1978. Complexity of automation identification from given data. Inf. Cont. 37,
302–320.

GOLDREICH, O. 1995. Foundations of Crytography—Fragments of a Book. Available from ECCC,
http://www.eccc.uni-trier.de/eccc/.

GOLDREICH, O., AND RON, D. 1997. Property testing in bounded degree graphs. In Proceedings of
the 29th Annual ACM Symposium on the Theory of Computing (El Paso, Tex., May 4 – 6). ACM, New
York, pp. 406 – 415.

GOLDREICH, O., AND RON, D. 1998. A sublinear bipartite tester for bounded degree graphs. In
Proceedings of the 30th Annual ACM Symposium on the Theory of Computing. ACM, New York, to
appear.

GRÖTSCHEL, M., LOVÁSZ, L., AND SCHRIJVER, A. 1988. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, New York.

HAJNAL, P. 1991. An V(n4/3) lower bound on the randomized complexity of graph properties.
Combinatorica 11, 2, 131–144.

HÅSTAD, J. 1996a. Testing of the long code and hardness for clique. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (Philadelphia, Pa., May 22–24). ACM, New
York, pp. 11–19.

HÅSTAD, J. 1996b. Clique is hard to approximate within n12e. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 627– 636.

HÅSTAD, J. 1997. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM
Symposium on the Theory of Computing (El Paso, Tex., May 4 – 6). ACM, New York, pp. 1–10.

HOCHBAUM, D. S., AND SHMOYS, D. B. 1987. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. J. ACM 34, 1 (Jan.), 144 –162.

HOCHBAUM, D. S., AND SHMOYS, D. B. 1988. A polynomial approximation scheme for machine
scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17, 3,
539 –551.

HOEFFDING, W., AND WOLFOWITZ, J. 1958. Distinguishability of sets of distributions. Ann. Math.
Stat. 29, 700 –718.

KARGER, D. R., MOTWANI, R., AND SUDAN, M. 1994. Approximate graph coloring by semidefinite
programming. In Proceedings of the 35th Annual IEEE Symposium on the Foundation of Computer
Science. ACM, New York, pp. 2–13.

KEARNS, M. J., MANSOUR, Y., RON, D., RUBINFELD, R., SCHAPIRE, R. E., AND SELLIE, L. 1994. On
the learnability of discrete distributions. In Proceedings of the 25th Annual ACM Symposium on the
Theory of Computing (Montréal, Que., Canada, May 23–25). ACM, New York, pp. 273–282.

KEARNS, M., AND RON, D. 1998. Testing problems with sub-learning sample complexity. In
Proceedings of the 11th Annual ACM Symposium on Computational Learning Theory. ACM, New
York, to appear.

KEARNS, M. J., SCHAPIRE, R. E., AND SELLIE, L. M. 1992. Toward efficient agnostic learning. In
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (Pittsburgh, Pa.,
July 27–29). ACM, New York, pp. 341–351.

KING, V. 1991. An V(n5/4) lower bound on the randomized complexity of graph properties.
Combinatorica 11, 1, 23–32.

749Property Testing and Learning and Approximation

KIWI, M. 1996. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. Ph.D.
dissertation. Massachusetts Institute of Technology, Cambridge, Mass.

KULKARNI, S. R., AND ZEITOUNI, O. 1993. On probably correct classification of concepts. In
Proceedings of the 6th Annual ACM Conference on Computational Learning Theory (Santa Cruz, Ca.,
July 26 –28). ACM, New York, pp. 111–116.

LOVÁSZ, L., AND YOUNG, N. 1991. Lecture notes on evasiveness of graph properties. Tech. Rep.
TR-317-91. Computer Science Department, Princeton Univ., Princeton, N.J.

NAOR, J., AND NAOR, M. 1993. Small-bias probability spaces: Efficient constructions and applica-
tions. SIAM J. Comput. 22, 4, 838 – 856.

PETRANK, E. 1994. The hardness of approximations: Gap location. Computat. Complex. 4, 133–157.
PITT, L., AND VALIANT, L. G. 1988. Computational limitations on learning from examples. J. ACM

35, 4 (Oct.), 965–984.
PITT, L., AND WARMUTH, M. K. 1993. The minimum consistent DFA problem cannot be approxi-

mated within an polynomial. J. ACM 40, 1 (Jan.), 95–142.
ROSENBERG, A. L. 1973. On the time required to recognize properties of graphs: A problem.

SIGACT News 5, 15–16.
RUBINFELD, R. 1994. Robust functional equations and their applications to program testing. In

Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. IEEE, New
York, pp. 288 –299.

RUBINFELD, R., AND SUDAN, M. 1996. Robust characterization of polynomials with applications to
program testing. SIAM J. Comput. 25, 2, 252–271.

SCHWARTZ, J. T. 1980. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM 27, 4, (Oct.), 701–717.

SZEMEŔEDI, E. 1978. Regular partitions of graphs. In Proceedings of the Colloquim International
CNRS. pp. 399 – 401.

TREVISAN, L. 1998. Recycling queries in PCPs in linearity tests. In Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing, ACM, New York, to appear.

VALIANT, L. G. 1984. A theory of the learnable. Commun. ACM 27, 11 (Nov.), 1134 –1142.
VAPNIK, V. N., AND CHERVOENKIS, A. Y. 1971. On the uniform convergence of relative frequencies

of events to their probabilities. Theory Prob. Applic. 17, 2, 264 –280.
YAMANISHI, K. 1995. Probably almost discriminative learning. Mach. Learn. 18, 23–50.
YAO, A. C. C. 1987. Lower bounds to randomized algorithms for graph properties. In Proceedings

of the 28th Annual IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp.
393– 400.

ZEITOUNI, O., AND KULKARNI, S. R. 1995. A general classification rule for probability measures.
Ann. Stat. 23, 1393–1407.

RECEIVED NOVEMBER 1996; REVISED DECEMBER 1997; ACCEPTED FEBRUARY 1998

Journal of the ACM, Vol. 45, No. 4, July 1998.

750 O. GOLDREICH ET AL.

