PSEUDORANDOMNESS
AND
COMPUTATIONAL DIFFICULTY

RESEARCH THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF SCIENCE

HUGO KRAWCZYK

SUBMITTED TO THE SEMATE OF THE TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY
SHVAT 5750 HAIFA FEBRUARY 1990

A mis padres, Auraa y Bernardo,
a quienes debo mi camino.

A Leonor compadiera inseparable.

A Liat, dulzua y continuidad.

This research was carried out in the Computer Science Department under the supervision of Pro-
fessor Oded Goldreich.

To Oded, my deep gratitude for being both teacher and friend.
For the innumerable hosrof gimulating conversations.
For his invaluable enco@gement and support.

| am gateful to all the people who have contributed to tleseach and given
me their support and help throughout these years.

Special thanks to Benny Ché&hafi GoldwasseEyal Kushilevitz, Jacob Ukl-
son and Avi \igderson. D Mike Luby thanks for his collaboration in the work
presented in chapter 2.

| also wish to thank the Wolf Foundation for their generous financial support.

Finally, thanks to Leonomithout whom
all this would not have been possible.

Table of Contents

Abstract
1. Introduction . e e . . . Coe
1.1 Sufficient Conditions for the Existence of Pseudorandom Generatars.
1.2 The Existence of Sparse Pseudorandom Disitilis .
1.3 The Predictability of Congruential Generators . .
1.4 The Composition of Zero-Knowledge InteraetProofs . .
2. On the Existence of Pseudorandom Generators
2.1. Introduction.o
2.2. The Construction of Pseudorandom Generators . Ce e
2.3. Applications: Pseudorandom Generators base@icitar IntractabilityAssump-
tions : o
3. Sparse Pseudorandom D|str|but|ons
3.1. Introduction.
3.2. Preliminaries . .
3.3. The Existence of Sparse Pseudorandom Ensembles .
3.4. The Complexity of Approximating Pseudorandom Ensembles .
3.5. Evasre PFseudorandom Ensembles.
3.6. Non-Uniform Evase (ollections . .
4. How to Predict Congruential Generators
4.1. Introduction. .
4.2. Definitions and Notation
4.3. The Predicting Algorithm .
4.4. Vector-Valued Recurrences . .o
5. The Composition of Zero-Knowledge | nteractive Proofs
5.1. Introduction. . o S
5.2. Sequential Composition of Zero- Knowledge Protocols.
5.3. Parallel Composition of Zero-Knowledge Protocals .
6. On the Round Complexity of Zero-Knowledge I nter active Proofs
6.1. Introduction.
6.2. Secret Coins Help Zero- Kwtedge
References

""Qeoomm-h

I P8 UEHTaNEE®®NBNGQYEWN

-1-

Abstract

In recent yearg,andomness has become a central notion ivelse fields of computer sci-
ence. Randomness used in the design of algorithms in fields as computational number,theory
computational geometryarallel and distribted computing, and it is crucial for cryptogrgph
Since in most cases the interest is in the Wwehaf efficient algorithms (modeled by polyno-
mial-time computations), the fundamental notionpséudorandomness arises. Pseudorandom
distributions are probability distributions on sets of strings that cannot be efficiently distin-
guished from the uniform distribution on the same sets. In other wongdsffiament probabilis-
tic algorithm performs essentially as well when substituting its source of unbiased coins by a
sequence sampled from a pseudorandom disiitn. Inthis thesis we westigate the ristence
of pseudorandom distributions and the computational difficulty of generating them.

Pseudorandomness is practically beneficial if pseudorandom sequences can be generated
more easily than "truly random" oneghis gwes rise to the notion of pseudorandom generator
- an dficient deterministic algorithm whiokxpands truly random strings into longer pseudoran-
dom sequences. The existence of pseudorandom generators is novget @acha proof of
existence wuld imply the solution of the most important open problem in theoretical computer
science. ltwould imply the aistence of one-way functions and, in particukhat P # NP.
Thus, as long as we cannot settle these questions, the existence of (polynomial-time) pseudoran-
dom generators can be pen only under intractability assumptionsn this thesis, we present a
new sufficient condition for the existence of such generatdve. s1ow that pseudorandom gen-
erators can be constructed usmegular one-way functions. Regular functions are functions that
map the same number of elementsvaryeelement in the range of the function (the actual condi-
tion is more general)The nwelty of our work is both in weakening previous sufficient condi-
tions for constructing pseudorandom generators, and in presentingt@ch@ique for iterating a
(regular) one-way function while preserving its onaywess during the repeated iteratiois.
particular this result allavs the construction of pseudorandom generators based on specific
intractability assumptions that were not known to be sufficient for this task. Examples are the
(conjectured) intractability of generadtoring, the (conjectured) intractability of decoding ran-
dom linear codes, and the (conjecturedrage-case difficulty of some combinatorial problems
(e.g. subset-sum).

We dso investigate the existence of pseudorandom distributions when decoupled from the
notion of efficient generationWe prove, without relying on ay unproven assumption, theas-
tence and samplability adparse pseudorandom distributions, which are substantiallferint
from the uniform distribtion. We demonstrate thexestence of non-polynomial generators of

-2-

pseudorandomness achieving optimapansion rate. These algorithmsvladso "optimal”
complity measures (as running time or circuit size), in the sense that improving these measures
would lead to major breakthroughs in Complexity Theory.

We prove the existence of pseudorandom distributions whicheaasive, that is, ag effi-
cient algorithm trying to find an element in the support of the digioib (i.e. elements assigned
with non-zero probability), will succeed to do so with only negligible probabilityis result
allowed us to resokv two gpen problems concerning the composition of zero-knowledge proof
systems. W prove that the original definition of zero-knowledgev@lving uniform \erifiers
without no auxiliary input) is not raist under sequential composition, and tha&nhehe strong
formulations of zero-knowledge are not closed under parallel composition. Other results on the
round compleity of zero-knowledge interae® proofs, with significant implications to the par
allelization of zero-knowledge protocols, are also presented.

Finally, we investigate whether some classical number generators, cediegtuential
number generators, are pseudorandom generators. These algorithmsxéeastons of the well-
known linear congruential generatand are of interest because of their simplicity anfdt ef
cieng. We pove that these number generators are not pseudorandom sigceathbe dfi-
ciently predicted. W present an efficient algorithm which, on input a prefix of the generated
sequence, guesses thextnelement in the sequence with a good probability of succEss.
extends previous results on the predictability of congruential generators and, in particular
implies an dirmative answer to the open question of whether mattate polynomial recur
rences are efficiently predictable.

Chapter 1:

Introduction

In recent yearsandomnessias become a central notion in the theory of computaifitwe.
ability of algorithms to "toss coins" enables them to break the limitations of determinism and
allows finding more efficient solutions to maproblems. Br some applications, randomness is
even more essential A traditional example is the field of computer based simulations. Another
such a field, central to this thesis, is cryptogyaph

The amount of randomness consumed by an algorithm is measured in terms of the number
of coins tossed by the algorithm. These coin flips are represented by a string of random bits fed
into the algorithm. Generating such bits is in pn@ases anxpensve pocess, and thus ran-
domness becomes aweesource, in addition to classical resources as time and shaoao-
mizing on the amount of random bits required by an application becomes a natural concern.

It is in this light that the notion gfseudorandomnesmd, in particulgrof a pseudoran-
dom g¢enerator arises. Pseudorandogenerators are deterministic algorithms whictpasd
short random strings into much longer "pseudorandom” sequeilmfegnally, the concept of a
pseudorandom sequence means that such a sequence, which is clearly not really random, is "as
good" as truly random bits for computational purpodes. mary years the concept of pseudo-
randomness was treated as a vague notion lacking clear definltiathsit approach, most of the
effort was concentrated on skimg that for specific families of sequences, some statistical prop-
erties of random sequences do holkddrawback of this approach is that in practice one must
analyze these sequences for each aaplication according to the characteristics and needs of
that application.From the theoretical point of wiethis approach is unsatisfactory as it does not
suggests a uniform definition of pseudorandomness.

A breakthrough in the study of pseudorandomness wasvadhrethe works by Blum and
Micali [BM] and Yao [Y]. These works present a uniform treatment of the concept of pseudoran-
domness, suitable fany efficient (i.e. polynomial-time) application. In this approach a proba-
bility distribution is associated to the set of binary strings ofvandiength. Looselyspeaking,
this distribution is callegpseudorandonf it cannot be dfciently distinguished from the uniform
distribution on strings of the same length. In other words, efficient probabilistic algorithms per
form essentially as well when substituting its source of unbiased coins by a pseudorandom
sequence. Thu$or ary practical purposes there is no difference between an ideal source of ran-
domness and the pseudorandom souMereover, dgorithms can be analyzed assumingythe

-4-

use unbiased coin tosses, and later implemented using pseudorandom sequences. In this
approach a pseudorandom generator is an efficient deterministic algorithm wpectd® ran-
dom strings into longer ones and which induces on its output a pseudorandom distribution.

The abwe definition of pseudorandomness is the strongest possible as lonficestef
computations are concerned. But, do such sources of pseudorandomises€anthey be
effectively generated?n this thesis we westigate the existence of pseudorandom distidms
and the computational difficulty of generating theAm application of our results on pseudoran-
domness to the theory of zero-kvledge interactie proofs is also presented. The following sec-
tions overview our results.

1.1 Sufficient conditions for the existence of pseudorandom generators.

The existence of (B€ient) pseudorandom generators is not yev@ro A limitation in our
actual capability to pre such a claim follows from the fact that the existence of pseudorandom
generators implies the existenceoofe-way functiongfunctions which are easy tovauate lut
infeasible to imert). Whethersuch functions do exist is an outstanding open problem in Com-
plexity Theory In particular it implies that B NP. Thus, as long as we cannot settle these ques-
tions we also cannot pre the existence of pseudorandom generators without relying on some
intactability assumptions.

A basic question is what are the minimal assumptions we need in orderé¢otpraxis-
tence of pseudorandom generators, as well as to be able to construct these generators. The study
of this question was initiated in the works by Blum and Micali [BM] aad ¥Y]. They showed
that the existence of one-way permutations is a sufficient condition. (A permutation is a length-
preserving bijectie function). Morewer, given a me-way permutation one can use it foqpec-
itly constructing a pseudorandom generafine basic scheme for this construction, proposed in
[BM], repetitively applies the one-ay permutation, outputting one pseudorandom bit per each
application. Thebasic property of permutations in this cottes that thg presene the uniform
distribution on the domain of application of the function. This property guarantees fibeltif
of inverting the permutationven ater repeated iterations.

Levin [L] proposed a weaker sufficient condition, namely the existence of functions which
are "one-way on the iterates" (i.e., functions that remain one-way after repeated applications).
Although this condition (for thexéstence of pseudorandom generators) is also a necessary one,
it is somewhat cumbersome andidiilt to check for specific functions (not being permutations).
Furthermore, it did not lead to findingm@atural functions on which one can base the construc-
tion of pseudorandom generators.

-5-

In this thesis we presentwesufficient conditions for the existence of pseudorandom gen-
erators. W present a construction of pseudorandom generators based on the existence of an
one-way function which is one-to-onevioreover, a wider family of one-way functions called
regular functions do suffice. These are functions in whieéryeimage of am-bit string has the
same number of preimages of length(Actually, an ezen weaker condition suffices).

Our condition has seral significant implications garding the construction of pseudoran-
dom generatorsFirst, it constitutes a mesufficient condition for the existence of pseudorandom
generators, which is weaker than the one-way permutations condition. In parii@eéss rid of
the length-preservation propertgecond, it is the first construction that successfuly deals with
functions that are not necessarily one-way on the iterates (recall that one-way permutations
always have this property). Our construction transformsyaegular one-way function into a
function which is one-way on the iterateBhird, the ne condition allows basing the construc-
tion of pseudorandom generators on specific functions which were nehkrefore to be suit-
able for this task.We show how to construct pseudorandom generators based darelit
intractability assumptions. Examples are the intractability of genact&bring, the conjectured
intractability of decoding random linear codes, and the assuweeaba-case difficulty of some
combinatorial problems (e.g. subset-surainally, our results and techniques inspired tharks
by Impagliazzo, Levin and Luby [ILL] and Hastad [Ha] (which yme the suficiencgy of any
one-way function for constructing pseudorandom generators), and the work by Naoumgd Y
(which based digital signatures on one-way permutations [NY]).

1.2 The existence of sparse pseudorandom distributions.

As long as we cannot pre the conjectures on which the construction of pseudorandom
generators has to be based, we canna gickfinite proof of existence of such generatofs.
natural question is what can be y#0 if we renounce to the requirementefficientgeneration.

A prime concern is whether tha&istence of pseudorandom distributions can b&garevithout
relying on unprgen assumptions.

The abwe question must be carefully formulated since trivial examples of pseudorandom
distributions do ®ist. Uniformdistributions (i.e., truly random sources) are such a case. On the
other hand, distributions produced by pseudorandom generators are much more "interesting".
These distributions argparseas thg concentrate their mass on ary small subset of strings.

For example, consider a generator whictpandsn-bit strings inta2n-bit sequences. The support

(i.e. the set of elements assigned non-zero probability) of the induced distribution contains at
most2" strings, which is a negligible fraction of tB& possible strings of lengtin. Clearly,

these distributions are essentially different from the uniform distribution.

-6-

In this thesis we pre the existence adparsepseudorandom distributions, independently
of ary intractability assumptionMoreover, we show that sparse pseudorandom distributions can
be uniformly generated by probabilistic algorithms (that run in non-polynomial tifiedse
generating algorithms use less random coins than the number of pseudorandony Imts-the
duce. \fewing these algorithms as generators which expand randomly selected short strings into
much longer pseudorandom sequences, we xhibie (non-polynomial) generators achieg
subexponential expansion rate. Thigpansion is optimal as we shidhat no generatorxpand-
ing strings into exponential longer ones can induce a pseudorandom distribution (which passes
non-uniform tests). On the other hand, we use the subexponential expansion property in order to
construct non-uniform generators of size slightly sygmdynomial. An impreement to this
result, namelya proof of eistence of non-uniform polynomial-size generators would separate
non-uniform-P (P/poly) from non-uniform-NP (NP/poly), which would be a major breakthrough
in Complexity Theory.

We dso prove the existence of sparse pseudorandom distributions that cannot be generated
or even gpproximated by dicient algorithms. Namejythere exist pseudorandom distritons
that are statistically far from grdistribution which is induced by grprobabilistic polynomial-
time algorithm. In other wordsyen if efficiently generable pseudorandom disitibns eist,
they do not exhaust (norneen in an gproximatve ense) all the pseudorandom distributions.

Finally, we introduce the notion ahasiveprobability distritutions. Thes@robability dis-
tributions hae the property that anefficient algorithm will &il to find strings in their support
(except with a negligible probability)Certainly evasive pobability distributions are sparse, and
cannot be efficiently approximated by probabilistic algorithive. show the existence cdvasive
pseudorandondistributions.

Interestingly we haveapplied the abee "abstract-flaored” results in order to res@wuwwo
open questions concerning the sequential and parallel composition of zeredg® interactie
proofs. This application is described in section 1.4.

1.3 The predictability of congruential generators.

In section 1.1 we h& ®en that the construction of pseudorandom generators running in
polynomial-time is possible under some intractability assumptions. As pointed out, these
assumptions are not a weakness of the specifiazvikrapnstructions but are wwadable for
achieving the requirements of pseudorandomness. On the other hand, fopraetical applica-
tions the proposed generators work toavlo This fact calls for finding more efficient pseudo-
random generators. Natural candidates to be considered are some well-known and simple gener
ators as the linear congruential generator (see bellow) and its generaliz&ign®ime concern

-7-

is whether these generators produce pseudorandom sequences.

A natural requirement from a pseudorandom sequence is to papsethetability test
This means that seeing a prefix of the generated sequence should not help guessing its continua-
tion. More precisely no dficient algorithm should predict the next bit in the sequence with a
probability which is significantly better than 1/mterestingly Yao [Y] has shan that this prop-
erty, which is crucial for cryptographic applications, is not only a natural requirement from pseu-
dorandom sequences but it is eglént to the indistinguishability condition in the definition of
pseudorandomness. bther words, a distriliion of strings is pseudorandom if and only if it
passes the predictability test.

In this part of the thesis we deal wilnmbergenerators which produce, from an initial
input, a sequence of ilger numbers. In this setting, we consider predicting algorithms which
interact with the generatofor every element in the sequence, the predictor outputs its guess of
the next number before it gets the corredtig from the generatoiThe eficiengy of the predict-
ing algorithm is measured both by the number of prediction neistakd the time it takes to
compute each predictiorClearly, an dficient predicting algorithm in this sense implies atne
bit predictor as referred ab@

An example of a number generator is timear congruential gneratorwhich on input
integersa, b, m, s, outputs a sequencg, s,,--- wheres; = as+b(mod n) . Boyar [B] proved
that this generator is efficiently predictablegrewhena, b andm are unknan. Shepresented a
predicting algorithm which errs on at maxiog m) elements and computes each guess in poly-
nomial-time. Hermethod was extended to deal with more general cases. In pastBoyar
proved the predictability of the multilinear congruential generator
(s =15+ +ak sS4 (mod n)) and Lagarias and Reeds [LR] peal a smilar result for poly-
nomial recurrencessi(= p(s4)(mod n) for an unknown polynomiap of fixed degjree). Anatu-
ral generalization of the abe examples arenultivariate polynomiale@currencesthat is, genera-
tors for whichs = P(s_,,...,s-1)(mod n) for a polynomialP in n variables. Findingefficient
predictors for these generators remained an open problem.

In this thesis we study a wide family of humber generators cghedral congruential
generators This family, introduced by Byar, includes as special cases all thevabexamples.
These generators are defined by modular recurrences consisting of a linear combination of arbi-
trary functions working on the past sequence elements (e.g., in the case \@riama@tpolyno-
mial recurrences the functions are the corresponding monomials). The predictor knows these
basis functions but not the coefficients of the linear combination or the modulus of the recur
rence. Bgar's predicting method applies to a subclass of these generators. Herafend e
these results showing Wwoto predict aly efficient congruential generatokVe require that the

-8-

basis functions are computable in polynomial time wherking over the intgers. Inparticular,
we shaev that multvariate polynomial recurrence generators are efficiently predictable.

Our predicting technique is based on ideas fromaBs method, but our approach to the
prediction problem is somewhat féifent. Bgar's method tries to simulate the generator by
"discovering” its secrets, that is, the modulus and thefmiefts that the generator works with.
Instead, our algorithm uses only the knowledge that thesécoemts exist, but does not try to
explicitly find them.

1.4 The composition of zero-knowledge interacte-proofs.

We present an application of our results on thistence of sparse andasive pseudoran-
dom distributions (see section 1.2) to the theory of zero-knowledge proof systepssticular
we resole two gpen problems concerning the sequential and parallel composition of zevb-kno
edge interactie poofs.

Zero-knavledge proof systems, introduced by Goébser Micali and Rackff [GMR1],
are efficient interaote proofs which hae the remarkable property of yielding nothing but the
validity of the assertion.Namely whaterer can be diciently computed after interacting with a
zero-knavledge proer, can be efficiently computed on input a valid assertion. Thus, a zero-
knowledge proof is computationally egdient to an answer by a trusted oracle.

A natural requirement from the notion of zero-knowledge proofs is that the information
obtained by the verifier during th&eeution of a zero-knowledge protocol will not enable him to
extract ary additional knowledge from subsequemneeutions of the same protocol. That is, it is
desirable that theequential compositionf zero-knowledge protocolsould yield a protocol
which is itself zero-knwledge. Such a property is crucial for the utilization of zeroatedge
proof systems as subprotocols inside cryptographic protocols (otherwise, the security of the
entire protocol would be compromised by the seriatetion of these subprotocols).

Soon after the introduction of the notion of zero-knowledgeerakresearchers noticed
the importance of the preservation of zero-knowledge under sequential composition. It was con-
jectured that the original formulation of zero-knowledge is probably not closed under sequential
composition. Consequentlgtronger formulations of zero-kmtedge were proposed for which
the preservation property was ped to hold (see [FGMR2, O, TW]). Feige and Shamir [F]
suggested a protocol which supports thevalmonjecture. Herewe use ideas from this protocol
and our results orvesive pseudorandom distributions, to peothat indeed the original formula-
tion of zero-knowledge is not closed under sequential composition.

The parallel compositionof two (or more) interactie proofs is a protocol resultant from
the concurrent>acution of these proofsPaallel composition of interaate poofs is widely

-9-

used as means for decreasing the error probability of proof systems, while maintaining the num-
ber of iterations theinvdve. Ofcourse one would be interested to apply thesaradges of
parallelism also to zero-knowledge protocols. This would be possible if the parallel composition
of interactve poofs preserves zero-kwtedge. Unfortunatelywe $how that this is not the case.

We pesent tw protocols which are (computational) zero-knowledge with respect to the
strongest known definitions, yet their parallel composition is not zenat&dge (not een in the

"weak" sense of the original [GMR1] formulationJhese protocols use pseudorandom collec-
tions which are esive gyanst non-uniform polynomial-time machines, and whasstence is

proven in this thesis.

The abee result rules out the possibility of proving that particular intevacgroofs are
zero-knavledge by merely arguing that there the result of parallel composition canous
zero-knavledge protocols. But this does not resolve question whether concrete cases of com-
posed interacte poofs are zero-kneledge. Inparticular snce the early works on zero-kmb
edge it vas repeatedly asked whether the "parallel versions" of the zero-knowledge proofs pre-
sented for Quadratic Residuosity [GMR1], Graph Isomorphism and folaaguage in NP
[GMW1] are also zero-knowledge.

Our results concerning this question are reported in chapter 6 of this M&sjsove that
these "parallel" interaste roofs cannot be pr@n zero-knavledge usingladk-box simulation
unless the corresponding languages are in BM#Psy that an interaate proof is proven zeo-
knowledg wsing black-box simulatioif there exists a umersal simulator which using grveri-
fier V' as a black box, successfully simulates thevemations of (the sama) with the proer.
Not only thatall knownzero-knavledge interactie proofs are preen zero-knavledge using a
black-box simulation, but it is hard to congzin dternatve way of proving the zero-kndedge
property of such an interae#i proof.

The "parallel versions" of the ab® examples constitute interaeé poofs of 3 rounds.
The impossibility to pree them black-box zero-knowledge follows from our general result stat-
ing thatonly BPP languges have 3-round interactive proofs whiare back-box simulation
zero-knowledg. Moreover, we prove that languages having constant-round Artheierlin
proofs whit are black-box simulation zerknowledg are in BPP. (Arthur-Merlin proofs [Ba]
are interactie proofs with "public coins”, i.e. in which all the messages sent by the verifier are
the outcome of his coin tosses).

Other consequences of these results are a proof of optimality for the round complexity of
various known zero-knowledge protocols, and a structure theorem for the hyeo&rginthur-
Merlin zero-knowledge languages. In particuthese results can be viewed as a support to the
conjecture that "secret coins" help in the zero-knowledge setting.

-10-
Chapter 2:

On the Existence of Pseudorandom Generators

2.1. INTRODUCTION

In this chapter we present our results concerning tHeisaky of reqular one-way func-
tions in order to construct pseudorandom generators.

Pseudorandom generators are efficient deterministic algorithms wpahd short seeds
into longer bit sequences which are polynomially-indistinguishable from the uniform probability
distribution. Formally, we havethe following definition.

Definition 2.1.1 A pseudorandom generator G is a deterministic polynomial time algorithm
which on input a string of lengthoutputs a string of lengtki > k such that for eery polynomial
time algorithm (distinguishing test), any constantc > 0, and sulfficiently largek

|Prob(T(G(UL) =1) - Prob(TUy) =1)| < K,

whereU,, is a random variable assuming as values strings of lengthth uniform probability
distribution.

It follows that the strings output by a pseudorandom genggatan substitute the unbiased coin
tosses used by wampolynomial time algorithmA, without changing the behavior of algorith¥n

in ary noticeable &shion. Thisyields an eqwialent polynomial time algorithmA', which ran-
domly selects a seed, use$o expand it to the desired amount, and then Aaiasing the output
of the generator as the random source requirefl by

The notion of a pseudorandom generatas iirst suggested andve®ped by Blum and
Micali [BM] and Yao [Y]. The theory of pseudorandomness was furtheglojged to deal with
function generators and permutation generators and additional important applications to cryptog-
rapty haveemepged [GGM, LuUR, N]. The existence of such seemingly stronger generaisrs w
reduced to the existence of pseudorandom (string) generators.

In light of their practical and theoreticahlue, constructing pseudorandom generators and
investigating the possibility of such constructions is of major importacaecessary condition
for the existence of pseudorandom generators is the existence ofhgrfengtions (since the
generator itself constitutes a one-way functio@n the other hand, stronger versions of the one-
wayness condition were shown to be sufficient. Befoveewang these results, let us recall the
definition of a one-way function.

-11-

Definition 2.1.2 A function f:{0,1}" - {0,1}" is calledone-way if it is polynomial time com-
putable, but not "polynomial timevartible”. Namely there exists a constaat> 0 such that for
ary probabilistic polynomial time algorithm, and sufficiently largek

ProbEA(f(x),lk) i f‘l(f(x))g> ke, (2.1.1)

where the probability is takerver al x’s of lengthk and the internal coin tosses A&fwith uni-
form probability distribution.

(Remark: The role df in the abwe cefinition is to allev algorithm A to run for time polynomial
in the length of the preimage it is supposed to find. Otherwigefuaction which shrinks the
input by more than a polynomial amount would be considered one-way.)

2.1.1. Pevious Results

The first pseudorandom generator was constructed amddpralid, by Blum and Micali,
under the assumption that the discrete logarithm problem is intractable on aghgitleefrac-
tion of the instances [BM]. In other words, iBgvassumed that exponentiation modulo a prime
(i.e. the 1-1 mapping of the trip{e, g, x) to the triple(p, g, g* mod p), wherep is prime andy is a
primitive dement inz’;,) iIs cne-way Assuming the intractability of factoring integers of the form
N =plh, wherep andq are primes angp=g=3mod 4, a 3Imple pseudorandom generatoists
[BBS, ACGS].! Under this assumption the permutation, defineet the quadratic residues by
modular squaring, is one-way.

Yao has presented a much more general condition which suffices foxishenee of pseu-
dorandom generators; namglye existence of one-way permutations fY].

Levin has weakenedao’s condition, presenting a necessary andigeht condition for
the existence of pseudorandom generators [gvin’s condition, hereafter referred to ase-
way on iterates, can be dekied from Definition 2.1.2 by substituting the folang line instead of
line (2.1.1)

(Oi,1<i <k®*?) ProbgA(f(i)(x),l") i f'l(f(‘)(x))g> K,

where f0(x) denotesf iteratively appliedi times onx. (As before the probability is taken uni-
formly over al x’s of lengthk.) Clearly any one-way permutation is one-way on its iteratés.

LA slightly more general result, concerning integers with all prinvisdis congruent to 3
mod 4, also holds [CGG].

2In fact, Yao’s condition is slightly more general. He requires tifats 1-1 and that there
exists a probability ensemblé which is irvariant under the application df and that imerting
f is "hard on thearage" when the input is chosen accordinflto

-12-

is also easy to use yapseudorandom generator in order to construct a function which satisfies
Levin’s condition. Unfortunately this condition is somewhat cumbersomie particular it

seems hard to test the plausibility of the assumption that a particular function is one-way on its
iterates.

2.1.2. Our Results

In this thesis we consider "regular” functions, in whighrg element in the range has the
same number of preimages. More formalle wse the following definition.

Definition 2.1.3: A function f is calledregular if there is a functiorm(() such that for eery n
and for eery x 0{0,1} " the cardinality off I(f(x)) n {0,1}" is m(n).

Clearly,every 1-1 function is regular (witlm(n) =1, On). Ourmain result is

Theorem 2.1.1:If there exists a regular one-way function then there exists a pseudorandom gen-
erator.

A special case of interest is of 1-1 one-way functions. Thicgricy of these functions
for constructing pseudorandom generators does noifdhHom previous works. In particular
Yao’s result concerning one-way permutations does not extend to 1-1 one-way functions.

Regularity appears to be a simpler condition than the intractabilityelfting on the func-
tion’s iterates. Furthermorejary natural functions (e.g. squaring modulo an integer) ayelae
and thus, using our result, a pseudorandom generator can be constructed assumigigothat an
these functions is oneay. In particular if factoring is weakly intractable (i.evesy polynomial
time factoring algorithm fails on a non-negligible fraction of the integers) then pseudorandom
generators doxest. Thisresult was not known before. (It was only known that the intractability
of factoring a special subset of the integers implies the existence of a pseudorandom generator
Using our results, we can construct pseudorandom generators based on the (widedg) belie
conjecture that decoding random linear codes is intractable, and on the asserage case dif-
ficulty of combinatorial problems as subset-sum.

Theorem 2.1.1 is pxed essentially by transforming smgiven regular one-way function
into a function that is one-way on its iterates (and then applying kaesuilt [L]).

It is interesting to note that novery (regular) one-way function is "one-way on its 4ter
ates". D emphasize this point, consider the following example of a one-way fundtjamhich
is trivially invertible on the distribution obtained by iterating the functismce: Let f be aly
one-way function and assume for simplicity thétis length preserving (i.6f (x)|=|x|). Let

-13-
Ix|=]y] and define f(xy)=0"f(x) . Clearly, f is one-vay. On the other hand, forvery
xy 00,132, f(f(xy))=0"f (0" and0"f(0") O f (0" f(0"). Also notice that iff is regular then so
is f.

The nwelty of our work is in presenting direct way to construct a function which is one-
way on its iterates from any regular one-way function (which is not necessarily one-way on its
iterates).

2.1.3. Subsequent Results

Recent results of Impagliazzo, Levin and Luby [ILL] and Hastad [Ha] extend our results
shaving the suficiengy, for constructing pseudorandom generators, gf @re-way function.
Thus, the equalence of pseudorandom generators and one-way functions is stated.

2.2. THE CONSTRUCTION OF PSEUDORANDOM GENERATORS

2.2.1. Preliminaries

In the sequel we makuse of the following definition otrongly one-way function.
(When referring to Definition 2.1.2, we shall call the functiaak one-way or simply one-ay).

Definition 2.2.1: A polynomial time computable function:{0,1" - {0,1}" is calledstrongly
one-way if for any probabilistic polynomial time algorithm, any positive mnstantc, and sufi-
ciently largek,

ProbETA(f(x),lk) 0 f‘l(f(x))g< KC,

where the probability is takerver al x’s of lengthk and the internal coin tosses &fwith uni-
form probability distribution.

Theorem (Yao [Y]): There gists a strong one-way function if and only if there exists a (weak)
one-way function. Furthermore vgh a cne-way function, a strong one can be constructed.

It is important to note that ab’s construction preserves the regularity of the function.
Thus, we may assume without loss of generdlitgt we are gen a function f which is strongly
one-way and regular.

For the sak of gmplicity, we assumef is length preserving (i.e. Ox,|f(x)|=|x]). Our
results hold also without this assumption (see subsection 2.2.7).

-14-

Notation: For a finite setS, the notations Oz S means that the elemestis randomly selected
from the se with uniform probability distribution.

2.2.2. Levin's Criterion: A Modified Version

The proof of Theorem 2.1.1 relies on the transformation of a function which isane-w
and regular into a function which satisfiesaiant of Le&vin’s ane-way on iterates condition.
The modified condition relates to functions whichvieahe first part of their gument
unchanged. Itequires that the function is one-way on a number of iterates which exceeds the
length of the second part of itgament. (Lein requires that the function is one-way on a num-
ber of iterations exceeding the length of ¢hre argument.)

More preciselywe aonsider function$ (1) defined as
F(h, x) =(h, Fq(h, X))

That is,F applies a functiorF, on its aguments and concatenates the firguarenth to this
result. W prove the following condition.

Lemma 2.2.1:A sufficient condition for the existence of a pseudorandom generator igifhie e
tence of a functiofF of the form

F(h, x) = (h, Fo(h, x))

such thaf is strongly one-way fgi|+1 iterations.

Before proving Lemma 2.2.1, let us recall Blum-Micali scheme for the construction of
pseudorandom generators [BMThis scheme uses tnbasic elements. The first is a (strongly)
one-way functionf, and the second is a boolean predidgfgcalled a "hard-core" of the func-
tion f. (Roughly speaking, a Boolean functib(ilis ahard-core predicate of f, if it is polyno-
mial time computable, but no polynomial time probabilistic algorithwergif (x), for randomly
selectedx, can compute the value df(x) with a probability significantly better tham). A
pseudorandom generai@ris constructed in the followingay. On inputx (the seed), the gener
ator G applies iteratiely the one-way functionf() on x for t (= poly(x]) times (i.e.

f(x), fP(x),..., f9(x)). In each application off, the predicateb(f?(x)) is computed and the
resultant bit is output by the generafbhat is,G outputs a string of length Blum and Micali

shav that the abee fquence of bits is unpredictable when presentedvierse order (i.e.
b(fO(x)) first andb(f®(x)) last), provided that the boolean functib) is a hard-core predicate

on the distribution induced by the iteraté8,0<i<t. The unpredictability of the sequence is
proved by showing that an algorithm which succeeds to predict the next bit of the sequence with
probability better than one half can be transformed into an algorithm for "breaking” the hard-core

-15-

of the functionf. Finally applying Yao’s result [Y] that unpredictable sequences are pseudoran-
dom we get that the abeG is indeed a pseudorandom generator.

The crucial ingredient in the proof of ia’s condition, as well as of our modifie@nsion,
is the existence of a hard-core predicate fgr (ghghtly modified) one-way functionA recent
result of Goldreich and M [GL] greatly simplifies the original proof in [L]. This result states
that ary function f'(x,r)=(f(x),r), where|x| =|r|, has a hard-core predicate for the uniform distri-
bution onr and awy distribution onx for which f is strongly one-wy. This hard-core predicate
is the inner product modulo 2 ofindx (viewed as vectorsver Z,).

Finally, we recall the following notable property of pseudorandom generators: in order to
have a gnerator which expands strings ty g@olynomial length, it suffices to construct a gener
ator which expands strings of lengthnto strings of lengttk +1. This generator can be itera-
tively applied for polynomially mantimes without harming the pseudorandomness of its output
[GrM]. We now prove Lemma 2.2.1.

Proof of Lemma 2.2.1:Note thatF®(h, x)=(h, F{(h, x)). Thus, the condition in the Lemma
implies thatFy(h, x) is hard to inert for |x|+1 iterations gen whenh is given to the inverter. We
construct the following generat@, which expands its input by one bitet s be the seed fas,
so thats=(r, h, x), where|x|=n, |r|=n. Then, we define

G(s)=G(r,h,x) =(r,h, by, I0b,)

where fori =0,.., n, b; is the inner product modulo 2 ofandF{(h, x). (We denoteFQ(h, x) = x).

We daim that this generator is pseudorandom. This isqordy roting that the output string is
unpredictable. Thiss true for ther andh part as the were chosen as truly random string=or
the other bits this is guaranteed by Goldreich-Levin result and the fa&tisdtard to inert for
n+1 iterations (gen whenh is given to the inverter). o

2.2.3. Main Ideas

We pove Theorem 2.1.1 by transformingyaregular and (strongly) one-way function
into a nev strongly one-way functio for which the conditions of Lemma 2.2.1 hold.

The following are the main ideas behind this constructiince the functiorf is strongly
one-way any dgorithm trying to ivert f can succeed with only negligible probabilitylere the
probability distribution on the range dfis induced by choosing a random element from the
domain and applying. Howeve, this condition says nothing about the capability of an algo-
rithm to invert f when the distribtion on the range is substantiallyfdient. For example, there
may be an algorithm which is able tovért f if we consider the distribution on the range ele-
ments induced by choosing a random element from the domain and applixige or more

-16-

(see example in section 2.1.2o prevent this possibilitywe "randomly” redistrilate, after each
application off, the elements in the range to locations in the domdia.prove the validity of
our construction by slang that the probability distribution induced on the rangd dfy our
"random" transformations (and the applicationfdfis dose to the distribution induced by the
first application off .

The functionF we construct must be deterministic, and therefore the "random" redlistrib
tion must be deterministic (i.auniquely defined by the input #®). To achieve this, we use high
guality hash functions. More specificallye uise hash functions which mapbit strings ton-bit
strings, such that the locations assigned to the strings by a randomly selected hash function are
uniformly distributed anah-wise independentfor properties and implementations of such func-
tions see [CWJ, GG, Lu]. We cenote this set of hash functions Hyn). Elements ofH(n) can
be described by bit strings of length In the sequeh(OH(n)) refers to both the hash function
and to its representation.

2.2.4. The Construction ofF

We view the input string td= as containing tew types of information. The first part of the
input is the description of hash functions that implement the "random" redistributions and the
other part is interpreted as the input for the original function

The following is the definition of the functida

F(hOl""ht(n)—l’ivx) :(h01"'1 ht(n)—lii+!hi(f(x)))

where x 0{0,1}", h; OH(n), O<i<t(n)-1. The functiont(n) is a polynomial inn, and i* is
defined agi +1) modt(n).

The rest of this section is d#ed to the proof of the following theorem.

Theorem 2.2.2:Let f be a regular and strongly one-way function and(fgtbe ary polynomial.
Then the functiorr defined abee is 4rongly one-way fot(n) iterations on strings of lengthn.

Theorem 2.1.1 follows from Theorem 2.2.2 and Lemma 2.2.1 by chags)mrgn.

Let hg,hy, -, hyma bet(n) functions from the sek(n). For r=1,--,t(n), let g, be the
functiong, =f h,4 f h,, f---hy f acting on strings of length, let G,(n) be the set of all such
functionsg,, letg be g, and letG(n) be the set of such functiogs From the abwe descrip-
tion of the functiorF it is apparent that theversion of an iterate of boils down to the problem
of inverting f when the probability distribution on the rangefaf g,(x) wherex 0z {0,1}". We
shav that, for mostg 0G(n), the number of preimages undgfor each element in its range is
close (up to a polynomiah€tor) to the number of preimages for the same range element under

-17-

f. This implies that the same statement is true for moSiG, (n) for all r =1,---,t(n). The proof
of this result reduces to the analysis of the combinatorial game that we present ixt gigne
section.

2.2.5. The game

Consider the following game played wikh balls andM cells wheret(n)<M<2". Ini-
tially each cell contains a single ball. The game tij@siterations. Ineach iteration, cells are
mapped randomly to cells by means of an independently and randomly selected hash function
h Oz H(n). This mapping induces a transfer of balls so that the balls residing (before an iteration)
in cell o are transferred to celi(o). We ae interested in bounding the probability that some
cells contain "too mai balls when the process is finishedle show that aftert(n) iterations,
for t(n) a polynomial, the probability that there isyacell containing more than some polynomial
in n balls is negligibly small (i.e. less thanygoolynomial inn fraction).

We first proceed to determine a bound on the probability that a specific sddadif is
mapped aftet(n) iterations to a single cell.

Lemma 2.2.3 The probability that a specific set mballs is mapped aftegn) iterations to the

(n) ™
OM O

same cell is bounded almly p(n) =

Proof: Let B={b;,b,,---,b,} be a set oh balls. Noticethat each xecution of the game defines

for every ball b; a path througlht(n) cells. Inparticular fixing t(n) hash functionsyg, by ,- -+, hyp,

a path corresponding to eathis determined.Clearly, if two such paths intersect at some point
then thg coincide beyond this pointWe nodify these paths in the follong way. The initial
portion of the path fob; that does not intersect the path ofy aamaller indexed ball is left
unchanged. Ithe path forb; intersects the path fdr; for somej<i then the remainder of the
path forb; is chosen randomly and independently of the other paths from the point of the first
such intersection.

Because the functiong are chosen totally independently of each other and because each of
them has the property of mapping cells innandependent manngit follows that the modified
process just described is e¢plent to a process in which a totally random path is selected for
each ball inB. Consider the modified path$Ve say that tvo balls b; andb; join if and only if

their corresponding paths interseEtefinemerge to be the refleive and transitve dosure of the
relation join (wer B). Themain observation is that , hy,---, hyn4 map the balls oB to the

same cell, them,,b,,---,b, are all in the same emalence class with respect to the relation
meige. Inother words, the probability that the balls Biend up in the same cell in the original
game is bounded albe by the probability that the merge relation has a singlevelguice class

-18-

(containing all ofB). Letus nav consider the probability of the lattevent.

If the merge relation has a single agieénce class then the join relation defines a connected
graph with then balls as ertices and the join relation as the set of edges. The "join graph” is
connected if and only if it contains a spanning tr€eus, an upper bound on the probability that

the "join graph” is connected is obtained by the sum of the probabilities of each of the possible
spanning trees which can be embedded in the graph. Each patrticular tree has probability at most
(t(n)/M)"? to be embedded in the graph(f)/M is an upper bound on the probability of each
edge to appear in the graph). Multiplying this probability by the (@aylember of diferent
spanning treesr("? cf. [E, Sec. 2.3]), the lemma follows!

A straightforward upper bound on the probability that there is some setafls which
are merged is the probability thaspecific balls are mged multiplied by the number of possi-
ble distinct subsets af balls. Unfortunatelythis bound is worthless (E(SI\:) Op(n) >1 (This
phenomena is independent of the choice of the paramgténstead we use the following tech-
nical lemma.

Lemma 2.2.4:Let S be a finite set, and I€t denote a partition o6. Assume we ha a poba-
bility distribution on partitions ofs. For every A0S, we cefine y(M)=1if Ais contained in a
single class of the partition and y (M) =0 otherwise. Leh andn’ be integers such that<n'.
Let p(n) be an upper bound on the maximuweraall A0 S such thatA|=n of the probability that
xa=1. Let g(n') be an upper bound on the probability that there exists €®im®e such that
|Bl=zn" and yg=1. Then

q(n')s(lil)Fp(n)
()

Proof: For BO Swe definesg(M) =1 if B is exactly a single class of the partitidrand (M) =0
otherwise. Fixa partition M. Obsene that eery B, |B|=n', for which &g(M)=1, contributes at

least(:) different subsetsA of sizen for which y,=1. Thus we get that

(M0 3 &Mms 5 xaM

BOS|Blzn AOSJAI=n

Dividing both sides of this inequality h{)):]), and averaging according to the probability distri-
bution on the partition§l, the left hand side is an upper boundd@r), while the right hand side
(e

(")

n

is bounded abee by

-19-

Remark 2.2.1:Lemma 2.2.4 is useful in situations when the r%% is smaller tharf 'r?':rr:).

Assuming that' <« |5, this happens whep(n) is greater thaig[™". Lemma 2.2.3 is such a case,
and thus the application of Lemma 2.2.4 is useful.
Combining Lemmas 2.2.3 and 2.2.4, we get

Theorem 2.2.5:Consider the game played fign) iterations. Thenthe probability that there is
4t(n) Ch?+ n balls which end up in the same cell is bounded/aliyp 2.

Proof: Let S be the set oM balls in the abee game. Eaclyame defines a partition of the balls
according to their position aften) iterations. The probability distribution on these partitions is
induced by the uniform choice of the mappihgsTheorem 2.2.5 follows by using Lemma 2.2.4
with n’ =4t(n) Ch? + n, and the boundp(n) of Lemma 2.2.30

2.2.6. Proof of Theorem 2.2.2

We row goply Theorem 2.2.5 to the analysis of the functonAs kefore, letG(n) be the
set of functions of the formg= f hy,4 f---hy f. The functionsh=h; are hash functions used to
map the range of to the domain off. We lethy,--, hy4 be randomly chosen uniformly and
independently fromH(n), and this induces a probability distution onG(n). Denote the range
of f (on strings of lengtm) by R(n) ={z, z,...,zy}. Let eachz represent a cell. Consider the
functionh as mapping cells to cells.&¥ay thath maps the cel; to the cellz; if h(z) O f™(z)),
or in other vords f(h(z))=z;. By the regularity of the functioti, we havethat the size of *(z)
(which we hae denoted bym(n)) is equal for allz; OR(n), and therefore the mapping induced on
the cells is uniform. It is n@ apparent that Uz G(n) behaes exactly as the random mappings
in the game described in Section 2.2.5, and thus Theorem 2.2.5 can be appligd.

Lemma 2.2.6:There is a constamyg, such that for ayp constantc > 0 and sufficiently large
Probgjz with [g(2)] n Cm(n) < L
- T nc’

whereg Og G(n).

Let us denote by'(n) the set of functiong 0G(n) such that for alk in the range off,
lg(2)] <n% Cm(n). By the abee lemma,G'(n) contains almost all o6(n). It is dear that if
g OG'(n) then for allz in the range of and for allr =1,---, t(n) the functiong, defined by the first
r iterations ofg satisfiegg;*(z)] <n% Cm(n).

Lemma 2.2.7:For any probabilistic polynomial time algorithm, for ary positive constantc and
sufficiently largen and for allr =1,---, t(n),

Prob(A(g,,2) OfY2) <n®

-20-

whereg, g G,(n) andz=g,(x), x Oz {0,1}".

Proof: We prove the claim for =t(n) and the claim for =1,---, t(n) follows in an analogousay.
Assume to the contrary that there is a probabilistic polynomial time algoAthnd a constant
ca such thaProb(A(g, 2) O f Y(2)) > n™°*, whereg Os G(n) andz=g(x), x Oz {0,1}".

By using A, we an demonstrate an algorithtthat inverts f, contradicting the one-wayness of
f. The input toA is z= f(x) wherex [0z{0,1}". A chooseg [z G(n) and outputsA(g, z2). We
shav that A" inverts f with non-ngligible probability By assumption there is a nongimgible
subsetG"(n) of G'(n) such that, for eaclg JG"(n), A succeeds with significant probability to
compute ay O f Y(z) wherez=g(x) andx 0z {0,1}". Sinceg OG'(n), for all zin the range of the
probability induced by on z differs by at most a polynomial factor mfrom the probability
induced by f. Thus, for g JG"(n), A succeeds with significant probability to compute a
y 0 f(2) wherez= f(x) andx 0z {0,1}". This is exactly the distribution of inputs £, and thus

A’ succeeds to wert f with non-negligible probabilitycontradicting the strong one-wayness of
f. O

The meaning of Lemma 2.2.7 is that the functfois hard to inert on the distrintion
induced by the functiong, ,r =1,...,t(n), thus proving the strong one-wayness of the fundtion
for t(n) iterations. Theorem 2.2.2 follows.

2.2.7. Extensions

In the abwe exposition we assumed for simplicity that the functiors length preserving,
i.e. x 0{0,1}" implies that the length of(x) is n. This condition is not essential to our proof and
can be dispensed with in the followingyv If f is not length preserving then it can be modified
to have the following property:For every n, there is am' such thatx 0{0,1}" implies that the
length of f(x) is n". This modification can be carried out using a padding technique that pre-
senes the regularity of. We can then modify our description &fto use hash functions map-
ping n'-bit strings ton-bit strings. Alternatively, we an transform the abe f into a length pre-
serving and regular functiohby definingf(xy) = f(x), wherelx| = n,|y| = n' - n.

For the applications in Section 2.3, and possibly for other cases, theifglextension
(referred to asemi-regular) is useful. Let{ f,}, o, be a family of regular functions, then our
construction can be still applied to the functibrdefined asf (x,y) =(x, f,(y)). The idea is to
use the construction for the application of the funcfigrwhile keepingx unchanged.

Another extension is a relaxation of the regularity conditidruseful notion in this con-
text is the histogram of a function.

-21-

Definition 2.2.2: The histogram of the functionf:{0,1}" - {0,1}" is a functionhist;: NxN - N
such thatist¢(n, k) is the cardinality of the set

{x0{0.13": Hogy | H(F ()| =K}

Regular functions hee tivial histograms.Let f be a regular function such that for ali1{0,1} ",
|f2(f(x))]=m(n). The histogram satisfigsst(n, k) =2" for k =og,(m(n))andhist¢(n, k) =0 oth-
erwise. Veakly regular functions ka dightly less dramatic histograms.

Definition 2.2.3: The functionf is weakly regular if there is a polynomiap(jland a functiorb()
such that the histogram éfsatisfies (for alh)

) hist;(n, b(n)) = pz(n)

.. n 2"

I hist;{(n,K) < ———

N 0);

Clearly, this definition extends the original definition ofuarity. Using our techniques one can
shav that the existence of weakly regular strongly one-way functions impliesxisterece of

pseudorandom generators.

Obserne that if theb(n)-th level of the histogram contains all of tl2é strings of lengtm
then we can apply a similar analysis as done for thelae case. The only difference is that we
have o analyze the game of subsection 2.2.5 not for cells of equal size, but for cellsfeérandif
their size by a multiplicate factor of at most two. Similar arguments hold when considering the
case where the(n)-th level of the histogram contains at leagt(n) of the strings and the rest of
strings lie belw this level (i.e. hist;(n, k)=0, for k>b(n)). Notethat the "small" balls of lw lev-
els cannot cause the cells of ti{e)-th level to grow significantly. On the other hand, for balls
bellow levd b(n) nothing is guaranteedThus, we get that in this case the functfornve con-
struct is weakly one-way on its iterates. More precjselg hard to irvert on its iterates for at
least al/p(n) fraction of the input stringsln order to use this function for generating pseudoran-
dom bits, we hee t transform it into a strongly one-way function. This is aetefollowing
Yao’'s construction [Y] by applying- in parallel on may copies. er the present case the num-
ber of copies could be wriunction ofn which grows &ster tharc Cp(n) Oog n, for ary constant
c. This increases the number of iterations for whichas to remain one-way by a factor equal
to the number of copies used in theab@ansformation. Thais, the numbet(n) of necessary
iterates increases from the original requirement of (see section 2.2.2) to a quantity which is
greater thare Cp(n) Ch Oog n, for ary constantc. Choosing this way the functiartn) in the defi-
nition of F in section 2.2.4, we g&t which is one-way for the right number of iterations.

-22-

Finally, consider the case in which there exist stringsvaldoe b(n)-th level. Whencon-
sidering the game of subsection 2.2.5 we want tavghat, also in this case, most of the cells of
the b(n)-th level do not growv considerably This is guaranteed by condition (ii) in Definition
2.2.3. Considethe worst case possibility in which imeey iteration the total weight of the "big"
balls (those abee levd b(n)) is transferred to cells of thig(n)-th level. After t(n) iterations this
causes a concentration of "big" balls in th@)-th level having a total weight of at most

2") . .) 2"
t(n)b——. Choosingt(n)=% p(n) n® this weight will be at mo . But then one half of
(n) (NP2 gt(n)=%2p(n) g Shp(n)

the weight in théb(n)-th level remains concentrated in balls that were not effected by the "big"
balls. In other words we get that the functi®rso constructed is one-way fn) iterations on

of the input strings. Applying &b’s construction , as explained alwe et a functionF

2 p(n)
which satisfies the criterion of Lemma 2.2.1 and then suitable for the construction of pseudoran-

dom generators.

Further Remarks:

1) Thedenominator in condition (ii) of Definition 2.2.3 can be substituted lyyfanction
growing faster tharc (0p?(n) Ch, for ary constantc. This follows from the abee analysis
and the fact that the construction of a hard-core predicate in [GMjsafidractinglog n
secure bits with each application of the one-way function.

2) Theentire analysis holds when defining histograms with polynomial base (instead of base
2). Namelyhist¢(n, k) is the cardinality of the set

{x0{0,13": Hogogn I (F (K}

whereQ(n) is a polynomial.

2.3. APPLICATIONS : Pseudorandom Generators Based on Particular Intractability
Assumptions

In this section we apply our results in order to construct pseudorandom genétia@s$ (
based on the assumption that one of the following computational problems is "hard on a non-
negligible fraction of the instances".

-23-

2.3.1. PRGBased on the Intractability of the General Factoring Problem

It is known that pseudorandom generators can be constructed assuming the intractability of
factoring integers of a special form [Y]. More specificalty[Y] it is assumed that grpolyno-
mial time algorithm dils to factor a non-negligible fraction of integers that are the product of
primes congruent to 3 modulo ¥Vith respect to such an iger N, squaring moduldN defines a
permutation wer the set of quadratic residues megdand therefore the intractability o€toring
(suchN’'s) yields the existence of a oneaypermutation [R]. It was not known\wdo construct
a me-way permutation or a pseudorandom generator assuming that factoring aghgibiee
fraction ofall the integers is intractable. In such a case modular squaring is aagrfeswtion,
but this function does not necessarily induce a permutati@ntunately modular squaring is a
semi-regular function (see subsection 2.2.7), so we can apply our results.

Assumption IGF (Intractability of the General Factoring Problem): There exists a constant- 0
such that for anprobabilistic polynomial time algorithm, and sufficiently largek

ProbSA(N) does not spliN E> k™,

whereN Og{0,1}X.
Corollary 2.3.1: The IGF assumption implies the existence of pseudorandom generators.

Proof: Define the following functiorf (N, x) =(N, x* modN). Clearly, this function is semi-igu-
lar. The one-wayness of the function felle from IGF (using Rabis’agument [R]). Using an
extension of Theorem 2.2.2 (see subsection 2.2.7) the corollary foltows.

Subsequentlyd. (Cohen) Benaloh has found a way to construct a one-way permutation
based on the IGF assumption. This yields an altesnatoof of Corollary 2.3.1.

2.3.2. PRGBased on the Intractability of Decoding Random Linear Codes

One of the most outstanding open problems in coding theory is that of decoding random
linear codes. Of particular interest are random linear codes with constant information rate which
can correct a constant fraction of errofm (n, k, d)-linear code is ank-by- n binary matrix in
which the bit-by-bit XOR of ansubset of the nes has at least ones. TheGilbert-Varshamov
bound for linear codes guarantees tkistence of such a code provided that <1-Hy(d/n),
whereH, is the binary entropfunction [McS, ch. 1, p. 34]. The same argument can be used to
shaw (for every £>0) that if k/n <1-Hy((+) (d/n), then almost alk-by- n binary matrices con-
stitute(n, k, d)-linear codes.

-24-

We suggest the follwing function f:{0,1}" - {0,1}". LetC be ank-by- n binary matrix,
x 0{0,1}%, and e DE! 1{0,1} " be a binary string with at most ({d - 1)2200ones, wherel satisfies
the condition of the Gilbertafshamu bound (see ah@). ClearlyE{ can be uniformly sampled
by an algorithms running in time polynomial im (i.e. S:{0,3*Y™ _ EM. Letr 0{0,1} PY™
be a string such th&r) OE. Then,

f(C,x,1r) =(C,C(x) +5(r)),

whereC(x) is the codeord of x (i.e. C(x) is the vector resulting by the matrix producf). One
can easily verify that just defined is semi-regular (i.€¢(x,r)=C(x)+ S(r) is regular for all tut
a redigible fraction of theC’s). Thevector xC +e (e = S(r)) represents a coderd perturbed by
the error vectoe.

Assumption IDLC (Intractability of Decoding Random Linear Codes): There exists a constant
¢ > 0 such that for anprobabilistic polynomial time algorithm, and sufficiently largek

Prob(A(C,C(x)+e)#zx) > kS,

whereC is a randomly selectddby- n matrix, x Og{0,1} ¥ ande OgE.

Now, dther assumption IDLC isalse which would be an earth-shaking result in coding
theory or pseudorandom generators do exist.

Corollary 2.3.2: The IDLC assumption implies the existence of pseudorandom generators.

Proof: The one-wayness of the functidnfollows from IDLC. Using an extension of Theorem
2.2.2 (see subsection 2.2.7) the corollary follows.

2.3.3. PRGBased on the Aerage Difficulty of Combinatorial Problems

Some combinatorial problems which are bedéeto be tard on the werage can be used to con-
struct a rgular one-way function and hence be a basis for a pseudorandom geQenasater,
for example, th&ubset-Sum Problem.

Input: Modulo M, [M|=n, and n+1 integersay, a, -+, a, of lengthn-bit each.

Question:Is there a subsétO {1, ..., n} such thaty a = ag(modM)
idl

Conjecture: The abee poblem is hard on theverage, when they’s and M are chosen uni-
formly in[2"?, 2" -1].

Under the abee mnjecture, the function

fg(ay, @, -, a,, M, 1)=(a, @, -, a,,M,(2 a modM))
igdl

is both weakly-regular and one-way.

-25-
Chapter 3:

Sparse Pseudorandom Distributions

3.1. INTRODUCTION

Most of the previous work on pseudorandomness, as well as the results presented in chap-
ter 2 of this thesis, lwva focused on the construction of (efficient) pseudorandom generatoes.
natural requirement that these generators work in polynomial time enforces/ésitgation to
be based on some intractability assumptions.

In this chapter we study the notion of pseudorandomness when decoupled from the notion
of efficient generation. This westigation is carried out using no unpen assumptions. The
first question we address is the existence of non-trivial pseudorandomutistisb Thatis,
pseudorandom distributions that are neither the uniform distribution nor statistically close to it
(see Definition 3.2.5 belNw). Yao [Y] presents a particular example of such a digioh. Fur
ther properties of such distributions aredeped here.

We prove the existence ofparse pseudorandom distmitions. A distribution is called
sparse if it is concentrated on a negligible part of the set of all strings of the same kangth.
example, gven a psitive onstants <1 we construct a probability distribution concentrated on
2% of the strings of lengtk which cannot be distinguished from the uniform distribution on the
set of allk-bit strings (and hence is pseudorandom).

We dow that sparse pseudorandom distributions can be uniformly generated by proba-
bilistic algorithms (that run in non-polynomial timeQ@n the other hand, we @ the &istence
of effectively generable pseudorandom distributions which canmeh é&e gproximated by
probabilistic polynomial-time algorithmaMoreover, we fhow the existence oévasive pseudo-
random distributions which are not only sparse &iso hae the property that no polynomial-
time algorithm may find an element in their support, except for a negligible probability.

An application of these results to the field of zero-knowledge inteeaptoofs is pre-
sented in chapter 5.

3.2. PRELIMINARIES

In chapter 2 we hee cefined the concept of a pseudorandom generator (definition 2.1.1).
Here we define the general concept of a pseudorandom wlistnib Thisdefinition is stated in
asymptotical terms, so we shall not discuss single distributions but rather collections of

-26-

probability distributions called probability ensembles.

Definition 3.2.1: A probability ensemble M is a collection of probability distriiions{ 7}y 1«
such thak is an infinite set of indices (norgetive integers) and forery k UK, 7 is a proba-
bility distribution on the set of (binary) strings of length

In particular an exsemble{ 7}, ok in which 7 is a uniform distribution or0,1}* is called a
uniform ensemble.

Next, we gve a brmal definition of a pseudorandom ensemflkis is done in terms of polyno-
mial indistinguishability between ensembles.

Definition 3.2.2: Let M ={m} andN’' ={m} be two probability ensemblesLet T be a proba-
bilistic polynomial time algorithm outputting or 1 (T is called astatistical test). Denoteby
pr(k) the probability thaT outputsl when fed with an input selected according to the distrib
tion .. Smilarly, py(k) is defined with respect tg;. The tesfT distinguishes betweerm andrn’

if and only if there exists a constartt 0 and infinitely mag k’s such that|pr(k) - p(k)| > k™°.
The ensembleR andn' are calledpolynomially indistinguishable if there &ists no polynomial-
time statistical test that distinguish between them.

Definition 3.2.3: A probabilistic ensemble is callegseudorandom if it is polynomially indis-
tinguishable from a uniform ensemble.

Remark 3.2.1:Some authors define pseudorandomness by requiring that pseudorandom ensem-
bles be indistinguishable from uniform distributionsreby non-uniform (polynomial) tests.We
stress that the results (and proofs) in this chapter also hold for these stronger definitions.

We ae interested in the question of whether non-trivial pseudorandom ensembles cat-be ef
tively sampled by means of probabilistic algorithms. The following definition capture the notion
of 'samplability’.

Definition 3.2.4: A sampling algorithmis a probabilistic algorithm that on input a string of the
form 1", outputs a string of length. The probabilistic ensemble M* = {7}, induced by a sam-

pling algorithm A is defined byz:(y) = Prob(A(L") =y), where the probability is takerver the

coin tosses of algorithmA. A samplable ensemble is a probabilistic ensemble induced by a sam-
pling algorithm. If the sampling algorithm uses, on inpltless tham random bits then we call
the ensembletrongly-samplable.

Note that using the ake terminology one can we pseudorandom generators asicednt
strong-sampling algorithms (the seed is viewed as the random coins for the sampling algorithm).

We onsider as trivial, pseudorandom ensembles that are "close" to a uniform ensemble. The
meaning of "close" is formalized in the next definition.

-27-

Definition 3.2.5: Two probabilistic ensemblds andn' arestatistically close if for any positive ¢

and awy sufficiently largen, > |m,(X) = 7,'(x)] <n®.
x 0{0,1}"

A special case of non-trivial pseudorandom ensembles are those ensembles we call "sparse".

Definition 3.2.6: A probabilistic ensemble is callegparse if (for sufficiently large n’s) the sup-
port of 7z, is a set ofegligible size relatre © the set{0,1}" (i.e for every ¢c>0 and suficiently
largen, |{x 0{0,1}": 77,(x)>0}| < n"2").

Clearly, a arse pseudorandom ensemble cannot be statistically close to a uniform ensemble.

Our proof of the existence of sparse pseudorandom distniis applies counting gu-
ments. A central ingredient is the follmmg inequality from Probability Theory due to.W
Hoeffding [H].

Hoeffding Inequality: Suppose a urn containsdalls of whichw are white andi - w are black.
Consider a random sample oballs from the urn (without replacingyaballs in the urn at gn
stage). Hodlling inequality states that the proportion of white balls in the sample is close, with
high probability to its expected value, i.e. to the proportion of white balls in the urn. More pre-
cisely let x be a random variable assuming the number of white balls in a random sample of size
s. Then, for any, 0O<e<1

X W _
Probﬂf——|25D< 2 288
S O

: (3.2.1)

This bound is oftenly used for the case of binomial distributions (i.e when drawn balls are
replaced in the urn).The inequality for that case is due to H. Chefrj&f]. More general
inequalities appear in Hdding’s paper [H], as well as a proof that these bounds apply also for
the case of samples without replacement.

3.3. THE EXISTENCE OF SPARSE PSEUDORANDOM ENSEMBLES
The main result in this section is the following Theorem.
Theorem 3.3.1:There exist strongly-samplable sparse pseudorandom ensembles.

In order to pree this theorem we present an ensemble of sparse distributions which are pseudo-
random &en aganst non-uniform distinguishers. These distributions assign equal probability to
the elements in their supporte\ke the following definitions.

Definition 3.3.1: Let C be a (probabilistic) circuit witlk inputs and a single outputWe sy that
a ®tS0{0,1}" is g(k) - distinguished by the circuitC if

-28-

|pc(S) = Pc({0.3Y)| < &(K)

wherepc(S) (resp. pc({0,1}¥)) denotes the probability that outputsl when gven dements ofS
(resp. {0,1} %), chosen with uniform probability.

Definition 3.3.2: A set SO{0,1}* is called(r(k), e(k))-pseudorandom if it is not s(k))-distin-
guished by aycircuit of sizer(k).

Note that a collection of uniform distributions on a sequence ofSseds, ... where eacls, is a

(7(k), e(k))-pseudorandom set, constitutes a pseudorandom ensemble, provided that both func-
tions r(k) and (k) are super-polynomial (i.e. grofaster than anpolynomial). Ourgoal is to

prove the existence of such a collection in which the &ie* is negligibly small.

Remark 3.3.1:In the folloving we consider only deterministic circuits (tests). The ability to
toss coins does not add power to non-uniform tedEng a standardvaraging argument one
can shw that whateer a probabilistic non-uniform distinguish€ can do, may be achied by a
deterministic circuit in which the "best coins"®fare incorporated.

The next Lemma measures the number of sets which(lgrdistinguished by a gen drcuit.
Notice that this result does not depend on the circuit size.

Lemma 3.3.2:For any k-input Boolean circuiC, the probability that a random s8f1{0,1}* of
sizeN is e(k)-distinguished by is at most2 e 2N (K),

Proof: Let Lq(k) be the set {x0{0,1}*:C(x)=1}. Thus, pc({o,]}k)zll‘;(kk)l and
=150 Le(k)|
Pc(S) = S

Consider the set of strings of lendtras a urn containing® balls. Letthose balls in_c(k) be
painted white and the others black. The proportion of white balls in the urn is giedys} ©),
and the proportion of white balls in a samplef N balls from the urn i9:(S). (We onsider
here a sampleithout replacement, i.e. sampled balls are not replaced in the urn).

Lemma 3.3.2 follows by using Hoeffding inequality (3.2.1)
_ k O -2 N (k)
Prob {pc(S) - pe({0. 31> e(k)) < 22N,

where the probability is takerver all the subset${0,1}¥ of sizeN, with uniform probability
O

Corollary 3.3.3: For any positive integersk and N, and functionsz()) and £(0)} the proportion of
subsets of0, 1} ¢ of sizeN which are(7(k), £(k))-pseudorandom is at least 270 ~2Ne*k)

-20-

Proof: The number of Boolean circuits of siz&) is at most2”®. Therefore, using Lemma
3.3.2 we get that the proportion of s&ts{0,1}* of size N which aree(k)-distinguished by an
k-input Boolean circuit of size(k) is at most

or(K) [p g2NEAK) < or?(K)=2NeX(K)

O

The following Corollary states thecistence of pseudorandom ensembles composed of uniform
distributions with very sparse support.

Corollary 3.3.4: Let k(n) be ary subexponential function of (i.e. k(n)=2%"). ! There aist
superpolynomial functionsz() and £(), and a sequence of se&,S,,... such thats, is a
(7(k(n)), (k(n)))-pseudorandom subset{of1}*™ and|S,|=2".

Proof: Using Corollary 3.3.3 we get that(a(k(n)), e(k(n)))-pseudorandom se&0{0,1}*™ of
size2" exists provided that

2Me2(k(n)) > 72(k(n)) (3.3.1)

It is easy to see that foryasubexponential functiork(n) we can find super-polynomial functions
ePandr(such that inequalit{d 31) holds for each value of o

The folloving Lemma states that the sparse pseudorandom ensembles preseméedeabo
strongly-samplable. Thisroves Theorem 3.3.1.

Lemma 3.3.5:Let k(n) be ary subexponential function oh. There exist (non-polynomial) gen-
erators which expand random strings of lengthto pseudorandom strings of lengtm).

Proof: Let r(land gl be as in Corollary 3.3.4We mnstruct a generator which on input a seed
of lengthn finds the(r(k(n)), e(k(n)))-pseudorandom s&, 0{0,1} ™ whose existence is guaran-
teed by Corollary 3.3.4, and uses thmput bits in order to choose a random element f&m
Clearly, the output of the generator is pseudorandom.

To se that the sef, can be dkctively found, note that it is &ctively testable whether agn
setS of size2" is (r(k), £(k))-pseudorandom. Thisan be done by enumerating all the circuits of
sizer(k) and computing for each circuitthe quantitiepc(S) and pc({0,1}%). Thus, our genera-
tor will test all the possible seg§1{0,1}* of size2" until S, is found. o

Remark 3.3.2:Inequality(3.3.1) implies a trade-dfbetween the expansion functiém) and the
size of the tests (circuits) resisted by the generated ensefti@egpseudorandom ensembles we
construct may be ‘&ry" sparse, in the sense that the expansion funktigrcan be chosen to be

1 o(n) denotes anfunction f (n) such thaﬂim f(n)/n=0

-30-

very large (e.g.2'"). Onthe other hand if we consider "moderatzpa&nsion functions such as
k(n) = 2n, we @n resist rather powerful tests, e.g. circuits of 2¥Ze

Remark 3.3.3: The subexponential expansion, as allowed by our construction, is optimal since
no generatorxsts which expands strings of lengthinto strings of lengttk(n)=2°". To see

this, consider a circui of sizek(n)°® (=(2")°Y) which incorporates the (at mogt) strings of
length k(n) output by the generatorOn input a string of lengtlk(n) the circuitC looks up
whether this input appears in the incorporated list of strings output by the gen€tatoly, this

circuit C constitutes a (non-uniform) test (of size polynomiak{n)) which distinguishes the
output of this generator from the uniform distribution{ey} <™.

Remark 3.3.4: The subexponential expansion implies that the supports of the resultant pseudo-
random distributions are very sparse. More preciseily construction implies the existence of
generators which induce on strings of lengjlhnsupport of sizeslightly superpolynomial (i.e. of
sizek“® for an arbitrary non-decreasing unbounded functi(d)). Thus,by wiring this support

into a Boolean circuit, we are able to constmmt-uniform generators of size slightly super
polynomial. (Oninput a seed the circuit (generator) outputs tkeh element in this "pseudo-
random" support).Let us point out that an imprement of this result, i.e. a proof of theige

tence of non-uniform pseudorandom generators of polynomial size, will imply that non-uniform-
P # non-uniform-NP 1. This follows by considering the language
{x0{0,1}*: xisintheimage of G }, where G is a pseudorandom generator in non-uniform-P
Clearly, this language is in non-uniform-NBut not in non-uniform-Potherwise a decision pro-
cedure for it can be transformed into a test distinguishing the outgufroin the uniform distri-
bution on{0, 1} .

Remark 3.3.5: The (uniform) complexity of the generators constructed in Lemma 3.3.5 is

ke(K)

slightly superexponential, i.e.2“ ", for unboundedu()l (The complexity is, up to a polynomial

k
factor, 27°® [{2”+2")[(§n), and 2" is, as in Remark 3.3.4, slightly super-polynomiakjn We
stress that the existence of pseudorandom generators runnkmgpmeastial time, and with arbi-

trary polynomial expansion function, wouldveainteresting consequences in Comle The-
ory as BPPO n ODTIME(Z”E) [Y, NW].

3.4. THE COMPLEXITY OF APPR OXIMATING PSEUDORANDOM ENSEMBLES

In the previous section weYashown sparse pseudorandom ensembles which can be sam-
pled by probabilistic algorithms running in sugponential time. Whether is it possible to sam-
ple pseudorandom ensembles by polynomial-time algorithmeenreeponential ones, cannot be
proven today without using complexity assumptions. On the other hand, do such assumptions

-31-

guarantee that each samplable pseudorandom ensemble can be sampled by polynmenal, or e
exponential means®e gve here a ngaive aaswer to this question, proving that foryasom-

plexity function g)J) there exists a samplable pseudorandom ensemble which cannot be sampled
nor ezen "approximated" by algorithms inTRME(¢). Thenotion of approximation is defined

next.

Definition 3.4.1: A probabilistic ensemblél is approximated by a sampling algorithna if the
ensemblé1” induced byA is statistically close tol.

The main result of this section is stated in the following theorem.

Theorem 3.4.1:For any complexity (constructve) function ¢} there is a strongly samplable
pseudorandom ensemble that cannot be approximatedybgigamithm whose running time is
bounded byy.

Proof: We s;ay that tvo probability distributionsr and on a seiX are% -close if

S In(x)-7(3)| <}

xOX

We sy that a sampling algorithmd 1-approximates a se&0 {0,1} if the probability distrilo-
tion 7z}" induced bym on{0,1}* and the uniform distributiod s on Sare}-close.

We dhow that for aly sampling algorithmM most subsets db, 1} of size2" are not;-approxi-
mated byM (for k sufficiently large with respect t9. This follows from the next Lemma.

Lemma 3.4.2:Let 7 be a probability distribution of0,1}%. The probability thatr andUg are
1-close, fors randomly chosenwer the subsets db, 1} ¥ of size2", is less tharfl/2)<" .

Proof: Notice that if tvo different setsS andT are%-close torr, then the tw sets are close them-

seles. Morepreciselywe havethat > |Ug(x)— (X)| <; and > |Ut(X)-m(x)| <;. Using

x 0{0,1}% x 0{0, 13
the triangle inequality we conclude thad |Ug(x)-U+(x)| <1. Denoting the last sum hyand
x 0{0,1} ¥

the symmetric difference &andT by D, we havethat|D| E% < g <1 (this follows from the &ct

thatUg andU+ assign uniform probability to th# elements ofs andT, respectrely). But this
implies thaiD|<2", and then (usings|+|T|=|D|+20Sn T|) we get|Sn T|>2"/2.

Let T be a particular subset {if, 1} ¥ of size2" which is-close torr. From the abwve agument
it follows that the collection of subsets of sZewhich are}-close tor is included in the collec-
tion {SO{0,1}¥:|9=2",|Sn T|>2"/2}. Thus, we are able to bound the probability thais
3-close to a random s&of size2", by the probability of the following»periment. Fixa st

T 040,13 of size2", and tale at mndom a ses of 2" elements among all the strings{in1}.
IS T]

We ae interested in the probability thHain T|>2"/2. Clearly, the expectation d6n T|is T

-32-

Using Marlov inequality for nonnggtive random variables we fa

S
Prob ESn T|>—§Zﬁ | |2i]ﬂ'|

and then
Prob (|Sn T|>2"/2) < 2/2¥™" (3.4.1)

The lemma follows $

We row extend the pseudorandom generator constructed in Lemma 3.3.5, in order to obtain a
generator for a pseudorandom ensemble which is not approximatey pyime sampling algo-

rithm. Oninput a string of lengtm, the generator proceeds as in Lemma 3.3.5. Once a
(r(k(n)), e(k(n)))-pseudorandom subsgf is found, the generator checks whetBers %-approx-

imated by some of the firstTuring machines, in some canonical enumeration, by running each
of them as a sampling algorithm fefk(n)) steps. Clearlyit is effectively testable whether a

given machineM %-approximates aygen £t S. If the setS, is %-approximated by some of these
machines, it is discarded and thexn®{0,1}*, |S|=2" is checked (first for pseudorandomness
and then for approximation).

By Corollary 3.3.3 we hae that for a suitable choice of the functiqn@) and s()the probability

that a seBis (7(k(n)), e(k(n)))-pseudorandom is almost 1. On the other hand, the probability that
a ®tSis -approximated by sampling machines is, using Lemma 3.4.2, less fsty "1, For
suitablek()} e.g. k(n)=2n, this probability is negligible. Thus, we are guaranteed to find &,set
which is(7(k(n)), e(k(n)))-pseudorandom as well as ripapproximated by the first sampling
algorithms running-time. The resultant ensemble is as stated in the thearem.

Remark 3.4.1: The result in Theorem 3.4.1 relies on thetfthat the sampling algorithms we

have mun are uniform onesNevertheless, if we use Hoeffding inequality (3.2.1) to bound the
left side in(3.4.1), we cerive a nuch better bound, which implies that foryasonstanta <1, there

exist strongly-samplable pseudorandom ensembles that cannot be approximated by Beolean cir
cuits of size2”".

3.5. EVASIVE PSEUDORANDOM ENSEMBLES

In this section we pre the existence of pseudorandom ensembles whigh tha property
that no polynomial-time sampling algorithm will output an element in their suppogpefor a
negligible probability.

-33-

Definition 3.5.1: A probability ensemblél={r},« IS calledpolynomial-time evasive if for
ary polynomial-time sampling algorithm, any constantc and sufficiently largé,

0 O -
ProbdA(lk) 0 support(m) < K ¢

(support(r) denotes the s¢i 0{0,1} % m(x)>0}).

Notice that gasiveness does not imply pseudorandomness. For examplevasive ensemble
remains easive if we add to each string in the support a leading '0’, while the resultant distrib
tions are obviously not pseudorando@®n the other hand, awvasive pseudorandom ensemble is
clearly sparse.

Fadlowing is the main result of this section. An interesting application of this result appears in
chapter 5.

Theorem 3.5.1: There exist (strongly-samplable) polynomial-timgastve pseudorandom
ensembles.

Proof: The proof outline is similar to the proof of Theorem 3.4Me ayan extend the generator

of Lemma 3.3.5 by testing whether {hek(n)), (k(n)))-pseudorandom s&, found by that gen-
erator on input of length, evades the firsh Turing machines (run as polynomial-time sampling
algorithms). V& haveto shav that for each sampling algorithm there is a small number of
setsS{0,1} ¥ of size2" for which machineM outputs an element & with significant probabil-

ity. Throughout this proof we shall consider as "significant” a probability that is greater than
2%1/2%. (This choice is motiated by an application of this Theorem in chapte”ABy nedigible
portion suffices here. Thus, we are assurkingn). We reed the following technical Lemma.

Lemma 3.5.2:Let 7 be a fixed probability distriiion on a set of sizeK. For ary SOU
denoten(S) = > n(s). Then

sOS
Prob(rz(S) > ¢) < N
m & K

where the probability is takever al the setsSOU of sizeN with uniform probability.

Proof: Consider a random sample Wfdistinct elements from the sét. Let X;,1<i< N, be
random variables so that assumes thealue (u) if the i-th element chosen in the sampleauis

N
Define the random variabbe to be the sum of th¥’s (i.e. X =3 X).
i=1

Clearly each X; has &pectation1/K and then the expectation of is N/K. Using Marlov
inequality for nonngdive random variables we get

-34-

E(X) _

Prob(X>¢) < N

eK

proving the Lemma¢

Let 7' be the probability distribution induced by the sampling algorithran {0,1}%. Consider
a randomly choses{0,1} ¥ of size2". Lemma 3.5.2 states that

20 1

Sl (3.5.1)

HRY
PrOdek (S > ?D < 22n

Thus, we get that only2?" of the subsets fail the evasivity test for a single machine. Running
such tests the portion odifing sets is at most/2?". Therefore, there exists a set passing all the
distinguishing andwasivity tests. (Actuallyusing Corollary 3.3.3, we get that most of the sets of
size2" pass these tests). This completes the proof of the Thearem.

Remark 3.5.1: Actually, we have proven that for aly uniform time-complexity clas€, there

exist pseudorandom ensembles whighdes ag sampling algorithm of the clags. Notice that

no restriction on the running time of the sampling machines is required. It is interesting to note
that we cannot find ensemblegaging the output of non-uniform circuits of polynomial-size,
since for each s&there aists a circuit which outputs an elementofvith probability 1. Thus,

the results in this section imply the results of section 3.4 on unapproximability by uniform algo-
rithms, but not the unapproximability by non-uniform circuits (see Remark 3.4.1).

Remark 3.5.2:In the pre@ious remark we stressed the impossibility of the existence of ensem-
bles eading the output of non-uniform machines with a polynomially long aduievertheless,

if we restrict the length of the advice our construction of Theorem 3.5.1 stitlw Indeedfor
the results in chapter 5, we need a slightly stronger result than the one stated ivehbeabo
rem. Thisapplication requires a pseudorandom ensemble tlades not only sampling algo-
rithm receving 1% as the only input, but also algorithms having an additional input of length
(the parameterk andn are as defined ale). Theproof of Theorem 3.5.1 remainalid also in
this case. This folls by observing that each such algorithm def@tfedistributions, one for
each possible input of length Thus, then algorithms we run in the abe poof contritute
n[2" distributions. Usingthe abee ound(3.5.1) we can guarantee the existence of setsat
evade ary of these distributions.

3.6. NON-UNIFORM EVASIVE COLLECTIONS

In Remark 3.5.1 we lva pinted out that esive ensembles (in the sense of Definition
3.5.1) cannotwade non-uniform machines, since such a machine eaysilbe supplied with an
element in the ensemble suppdfor the application of pseudorandom arvdsa/e dstributions
presented in chapter 5, we need a notion ebskeness” which also resists non-uniform

-35-

adwersaries. Irorder to formalize this notion we use a collection of sets (or distributions) for
each input length, rather than a single probability ensemble as in the uniform case.

Definition 3.6.1: A collection S={S,S;,..., S} of subsets of0,1}¥ is called(z(k), (k)) - eva-
sive if for every (probabilistic) circuitC of sizer(k) with log minputs andk outputs

Prob(C(i) 0S) < &(k)

where the probability is takenver the random coins of andi uniformly distributed wer

(The setsS can be viewed as supports of distributions on thgosBt).

Remark 3.6.1:In the aboe cefinition it is equralent to consider deterministic circuits. Such a
circuit may hae wired in a sequence of "random coins" which maximizes the probability
Prob(C(i) OS).

Definition 3.6.2: For n=1,2,... let S” be a(z(n), &(n))-evasive mllection of subsets db,1} A",
for a fixed polynomialQ. The sequenc&®,S?...is callednon-uniform polynomial-time eva-
sive (denotedP/poly-evasive) if r(n) and s*(n) are both functions which gnofaster than an
polynomial.

That is, a sequenc®”, S? | ...is P/poly-@asive if any drcuit of size polynomial im, which gets
a randomly selected ineteof one of the sets i$"”, cannot succeed to output an element in that
set, except for a negligible probability.

In this section we shwothe existence (and samplability) of P/polxegive quences. Fur
thermore, we pne the «istence of such families composed of "pseudorandom™ ¥eésise
the notion of g 7(k), (k))-pseudorandom set as defined in Definition 3.R&call that a collec-
tion of uniform distributions on the se$g, S,,..., where eacls, is a(r(k), e(k))-pseudorandom
set, constitutes a pseudorandom ensemble, provided that both fun¢tipasid s(n) grow
faster than aypolynomial.

Fdlowing is the main result concerning P/polasive and pseudorandom collections.

Theorem 3.6.1:There exists a P/polyasive mllection SV, S?,... with parameter(n)=4n,
r(n)=¢&7(n)=2", such that for eery n, S”={s" ...}, where eacts” is a(2"*, 2™"4-pseu-
dorandom set of cardinalit3”. Furthermore, there exists a Turing machine which on idput
outputs the collectio®".

Proof: Denote by R™ the collection of setsS{0,1}*" of cardinality 2" which are
(2"4 27"4-pseudorandom. @will show that there exists a posiéi probability to choose at ran-
dom 2" sets fromR™ which form a@2"*, 2"-evasive mllection. Thisimplies the existence of

-36-

such a collection.

Let C™ denote the set of (deterministic) circuits of s##& havingn inputs and4n out-
puts. for a fiedC 0C™ and a fiedi,1<i < 2" consider the probabilityrob (C(i) US), for S
uniformly chosen wer all subsets 0f0,1}*" of size2". Clearly,

G NP
2n
We dall call a setS{0,1}*", |S|=2", C-bad if there exists somg 1<i < 2" such thatC(i) OS.

Fixing a circuitC, we havethat forS uniformly chosen wer all subsets 0{0,1}*" of size2",
2n
Prob(SisC—-bad)< S Prob(C(i) 0S) <2"22"=2",
i=1

On the other hand, using Corollary 3.3.3 we get that the proportion ofSsetsch are
(2V4, 27"4-pseudorandom is at ledst22". Therefore, for each circut TC™ the probability
hereafter denoted ag, to choose fromR™ a et Swhich isC-bad is

—N

pe = Prob(SisC-bad | SOR™) < 1_222,
We row proceed to compute the probability that for a fixed cireuitC™, a ollection of
2" randomly chosen sets froR" contain a significant portion @f-bad sets.We cefine as "sig-
nificant” a fractionoc +,. (The quantitys, will be determined later). Let us introduce a random
variable p assuming as its value the fraction@bad sets on a random sample2bkets from
R, Clearly, the expected value @fis pc. Using Hoeffding inequality (see 3.2.1) we get

Prob(p= pc +3,,) < € 229

Recall that we are interested to cho@%sets which are good fatl the circuitsC oCc®.
That is, we require that for ai€ the number o€-bad sets among tl28 sets we choose is gie
gible. Inorder to bound the probability thalt randomly selected sets do not satisfy this condi-

tion, we multiply the abee probability, computed for a single circuit, by the total number of cir

-n/4
cuits inC™ which is2”™ = 22" putting s, =

we get

n
---1
ot (N) (22" 0% = 92" [22'2 27 _ 2" 2™ 4

We monclude that there exists a pogtiprobability that2" setsS,,...,S,» chosen at random from
R™ have the condition that for ancircuit C 0C™ the fraction ofc-bad sets among,...,Sy is

-37-

less tharnpc +4,,. Therefore, such a collection of sets does exist.

It remains to shw that the collectiors,...,S, satisfies the conditions stated in the Theo-
rem. Clearlyeach set in the collection @"4, 2"4-pseudorandom as it was selected friff.

In order to she the evasiveness condition we bound, foryagircuit C 0C™, the probability
Prob(C(i) OS), fori randomly chosen frori,...,m}. We have

Prob(C(i) 0S) = Prob(C(i) 0S|S isC —bad) [Prob(S isC — bad)
+ Prob(C(i) O0S]|S is not C —bad) [Prob(S is not C — bad)

2—n 2—n/4 M
— N,
S1lpo+o) + 0% oo + = <2

Thus, we hee $own for every circuit C of size 27"* that Prob(C(i) 0S) <24, and then
S,...,Sxis a2, 2"4-evasive mllection.

Such a collection can be generated byiang machine by considering all possible collec-
tions{s,...,Sx»} and checking whether thevade all the circuits in the sa™,

-38-
Chapter 4.

How to Predict Congruential Generators

4.1. INTRODUCTION

In this chapter we present our proof that congruential number generatorficaeatkyf
predictable.

A number gneratoris a deterministic algorithm thatvgn a fquence of initial alues,
outputs an (infinite) sequence of numbefsr cryptographic applications a crucial property for
the sequences generated is thwipredictability That is, the next element generated should not
be efficiently predictable,ven given the entire past sequence. Thécefngy of the predicting
algorithm is measured both by the number of prediction nastakd the time taken to compute
each prediction. (A formal definition of afficient predictois given in section 4.2).

A pseudorandom number generator that hasvedenuch attention is the so calléidear
congruential gnerator an dgorithm that on input inggers a, b, m, s, outputs a sequeneg s,,-: -
where

S =as4+b(mod n).
Knuth [K1] extensrely studied some statistical properties of these generators.

Boyar [P] proved that linear congruential generators are efficiently predictatse when
the coefficients and the modulus are unknown to the predictder Boyar [B] extended her
own method, proving the predictability of a large family of number generators. She considered
general congruential generatosghere the elemers is computed as

k
S = JE:LO’J CDJ(So, S_]_,"',S_l) (mOd n) (411)

for integers m and a;, and computable intger functionsd;, j =1,...,k. She showed that these
sequences can be predicted, for some class of funabigr®y a pedictor knowing these func-
tions and able to compute them, but notegithe coeficients ; or the modulusm. Boyar’s
method requires that the functioms have the unique etrapolation poperty The functions
d, D,,---, d, have theunique atrapolation property with length, if for every pair of generators
working with the abwe st of functions, the same modulusand the same initial values, if both
generators coincide in the finstvalues generated, then theutput the same infinite sequence.
Note that these generators need not be identical (iyerthg have dfferent coefficients).

-30-

The number of mistakes made byyRds predictors depends on the extrapolation length.
Therefore, her method vyields efficient predictors provided that the funcbiphsve asmall
extrapolation length.The linear congruential generator is an example of a generator having the
extrapolation property (with length 2Boyar proved this property also for twextensions of the
linear congruential generatoNamely the generators in which the elemeansatisfies the recur
rence

S = a;S§-k+--tagsq (mod n)
and those for which
S = a1 S+ a2 S +ag(mod n)
The first case with lengtk+1, the second with length She also conjectured the predictability
of generators having a polynomial recurrence:
S = p(si-) (mod m)
for an unknown polynomiagp of fixed (and known) degree.

A natural generalization of the aexamples is a generator havingraltivariate poly-

nomial recurrencgethat is a generator outputting a sequexcs, ... where

S = P(Si-n,.--,Si4) (mod m)
for a polynomialP in n variables. Notethat for polynomialsP of fixed degree and fd n, the
recurrence is a special case of the general congruential geneladgesias and Reeds [LR]
shaved that multrariate polynomial recurrences e the unique extrapolation propertyur-
thermore, for the case of a one-variable polynomial gfeskd, they proved this property with
lengthd +1, thus settling Bgar’s anjecture concerning the efficient predictability of such gener
ators. Havever, for the general case thelid not gve a lmund on the length for which these
recurrences arexgrapolatable (neither a way to compute this length). Thus, unfortunately
Boyar’s method does not seem to yield an efficient predicting algorithm for generavanata
polynomial recurrences (since it is not guaranteed teeraakallnumber of mistakes but only a
finite number depending on the length of the extrapolation).

In this thesis we slwhow to predict ary general congruential generatoe. aly generator
of the form(4.1.1). The only restriction on the functiows is that thg are computable in poly-
nomial time when working\@r the intgers. Thiscondition is necessary to guarantee the ef
cieng/ of our method. (The same is required in Bar’'s method). Thuswe remae the necessity
of the unique extrapolation properand extend the predictability results to a very large class of
number generators. In particulave show that multvariate polynomial recurrence generators
are dficiently predictable

Our predicting technique is based on ideas fromaBs method, but our approach to the
prediction problem is somewhat féifent. Bgar's method tries to simulate the generator by
"discovering” its secrets: the modulus and the codicients «; that the generator avks with.

-40-

Instead, our algorithm uses only the knowledge that thesé@coemts exist, but does not try to
find them. Some algebraic techniques introduced by Boyar when compuénthe inteers,
are extended by us to work also when computirgg the ring of integers modula.

Our prediction results concern number generators outputting all the bits of the generated
numbers, and does not apply to generators that output only parts of the numbers generated.
Recent works treat the problem of predicting linear congruential generators which output only
parts of the numbers generated [FHKLS, K2, S].

4.2. DEFINITIONS AND NOTATION

Definition 4.2.1 A number gnerator is an algorithm that gen n, integer numbers, called the
initial valuesand denoted_ ,---, s, outputs an infinite sequence of ig&ss,, s;,... where each
elements; is computed deterministicly from the previous elements, including the initial values.

For example, a generator of the form= a; s +---+ay, s1 (mod n) requires a set ok
initial values to bgin computing the first elememndg s;,--- of the sequence. Thus, for thisaen-
ple ng=k.

Definition 4.2.2 A (genenl) congruential @neratoris a number generator for which théh
element of the sequence ifa. ..,m-1}-valued number computed by the congruence

k
S = jélaj cDj(S—no!"'!S—lv S)y"'aS—l) (mOd rr)
wherea; and m are arbitrary integers amb;, 1< j<k, is a computable integer functiofror a

given st of k functions®={®;,d,,...,®,} a wmngruential generator working with these func-
tions (and arbitrary coefficients and modulus) will be callédgenerator

Example: Consider a number generator which outputs a sequence defined by \ariatdti
polynomial recurrence, i.es, = P(s_,,...,S4)(mod n), whereP is a polynomial inn variables
and fixed dgreed. Such a generator is @-generator in which each functiep, represents a
monomial inP anda; are the corresponding coefficients. In this case we ka(”;d), and the
functions (monomialsp; are applied to the lastelements in the sequence.

Note that in the abv@ general definition, the functions; work on sequences of elements,

so the number of arguments for these functions mayabable. Somenatrix notation will be
more corenient.

41-

Notation: s(i) will denote thevectorof elements (including the initialalues) until the element
s, I.e.

S(|) =(3—non"'13—1- SOI!S) i =-1,01,2---

Thus,®j(sp,, -+ S4, S, -+, Si4) Will be written asb;(s(i —1)).
Let a denote the vectofay, as,- -+, ay) and B;,i =0, denote the column vector

O®y(s(i —1))

g, = oS ~1)

o - 0
P (s(i —1)) O
Then we can rewrite the-generatoss recurrence as
s = a B; (mod m) (4.2.1)

Here, and in the sequelj denotes matrix multiplication.
Finally, B(i) will denote the matrix

B(i) = B0 B, B J

For complexity considerations we refer to the size of the prediction problemvas by
the size of the modulusm and the numbek of coeficients the generator actually works with.
(Note that the coefficients as well as the elements output by the generasoszkaat most
log m). We consider afficient congruential generators for which the functiensi< j<k, are
computable in time polynomial iftog m and k. Also the eficiency of a predictor will be mea-
sured in terms of these parameters, which can be seen as measuring the amount of information
hidden from the predictor.

We dhall be concerned with the complexity of the functiensvhen acting on theectors
s(i), but computed wer the integers (and not reduced modukp This will be referred to as the
non-reduced compiaty of the functionsd;. The performance of our predicting algorithm will
depend on this complexity.

Definition 4.2.3 ®-generators having non-reduced time-complexity polynomiabgm and k
are callechon-reduced polynomial-time-generators

Next we define the basic concept, throughout this chagtapredictor.

Definition 4.2.4 A predictorfor a®-generator is an algorithm that interacts withdhgenerator
in the following way. The predictor gets as input the initi@lves that the generator i®fking

-42-

with. For i=0,1,2,...the predictor outputs its prediction for the elemgntaind the generator
responds with the true value gf

An efficient pedictor for a family of congruentialegeratorss an algorithm which gen a st of

k functions® ={®,, ®,,...,®,} corresponding to @-generator in theaimily, behares as a pedic-
tor for this®-generatgrand there exist polynomial® andQ for which

1) the computation time overy prediction is bounded by(k, log m)

2) the number of prediction mistakes is bounde@®gl; log m)

In the abee cefinition we may consider the functiodg as gven to the algorithm by
means of "black-boxs" or oracles to these functions. In this case the output of such an oracle is
the integer value of the function before it is reduced according to the secret modulus.

Obsere that when computing its prediction fgy the predictor has seen the entire segment of
the sequence beforg, and the initial \alues. Theonly secret information kept by the generator
is the coefficients and the moduluH. the predictor is not gen the initial values then our
method cannot be applied &wbitrary ®-generators. Heever, in typical cases (including the
multivariate polynomial recurrence) generatorséngecurrences depending only on the last
elements, for some constamgt In this case the predictor may consider the figgtlements gen-
erated as initial values, and begin predicting after the generator outputs them.

4.3. THE PREDICTING ALGORITHM

The predictor tries to infer the elemenfrom knowledge of all the previous elements of
the sequence, including the initiahlues. Itdoes not kne the modulusm the generator is
working with, so it uses different estimates for thisIts first estimate igh=oo0, i.e. the predictor
begins by computing \&er the integers. Aftersome portion of the sequence isaaed, and tak-
ing advantage of possible prediction mistakes, & (imite) estimatern, for m is computed.
Later on, ne values form are computed in such a way that edcls a (non-twvial) divisor of
the former estimate, and all are multiples of the actudEventually rm may reach the truealue
of m. (For degenerate cases, gka generator producing a constant sequence, it may happen that
m will never be reached but this will not effect the prediction capabilities of the algorithm).

We dall divide the predicting algorithm into twsteges . The first stage is whenasking
ove the integers, i.em=00. The second one is after the first finite estim@égewas computed.
The distinction between thesedwages is not essential, but some technical reasons itnak-
venient. Infact, the algorithm is very similar for both stages.

-43-

The idea behind the algorithm is to find linear dependencies among the columns of the
matrix B(i) and to use these dependencies in making the prediction of the next etenvbmte
specificly we try to find a representation &f as a linear combination (modulo the currény of
the preious B;’s (that are known to the predictor at this time). If such a combination exists, we
apply it to the previous elements in the sequence (i.eiopies;’s) to obtain ourpredictionfor
s. If not correct, we made a misgkut gain information that alles us to refine the modulus
m. A combination as alve will not exist if B; is independent of the pn@us columns. \& how
that under auitable definition of independendle number of possibiedependentB;’s cannot
be too large Therefore only asmall number of mistakes is possible, allowing us tovprine
efficieng of the predictor.

The number of mistads made by the predictamntil it is able to refine the curreni, will
be bounded by a polynomial in the size of this Also the total number of distinct moduti
computed during the algorithm is bounded by the size of the first (fifige)Thus, the total
number of possible mistakes is polynomial in this size, which in turn is determined by the length
of the output of the non-reduced functiohs This is the reason for which the non-reduced com-
plexity of these functions is required to be polynomial in the size of thertr@and k. In this
case the total number of mistakes made by the predictor will also be polynomial in these parame-
ters. Thesame is true for the computation time wérg prediction.

The algorithm presented here is closely related taB® [B]. Our first stage is exactly the
same as the first stage there. That is, tredgorithms begin by computing a multiple of the
modulusm. Once this is accomplished, Rar’s drategy is to find a set of coﬁanfients{aj'}'J-‘:1
and a sequence of moduh which are refined during the algorithm until no more mistakes are
made. For praing the correctness andiefency of her predictorit is required that the generator
satisfies thainique atrapolation poperty (mentioned in the Introduction). In our work, we do
not try to find the coefficients. Instead, weend the ideas of the first stage, and apply them also
in the second stage. In this way the need for an extrapolation propevtydsda allowing the
extensions of the predictability results.

4.3.1 First Stage

Let us describe hothe predictor computes its prediction for At this point the predictor
knows the whole sequence befase i.e. s(i —1), and so far it hasdiled to compute a finite mul-
tiple of the modulusm, so it is gill working over the integers. In fact, the predictor is able at this
point to compute all theectors By, B,,---, B;, sSince the depend only ons(i —1). Moreover, our
predictor keeps at this point, a submatrix B{i —1), denoted byB(i —1), of linearly independent
(over the rationals) columns(For every i, when predicting the elemesst, the predictor checks

if the column B; is independent of the previous ones. If this is the case Bhes added to

-44-

B(i —1) to form B(i)). Finally, let us denote by(i —1) the correspondingubvectorof s(i -1),
having the entries inated with the same indices appearingBt —1).

Prediction of s in the first stage:

The predictor begins by computing the (columekter B;. Then, it soles, over the
rationals, the system of equations

B(i —1) Ox = B;
If no solution existsB; is independent of the columns B{i —1) so it sets
B)=B(-1) B

and it fails to predics;.

If a solution exists, let denote the solution (vector) computed by the predidioe prediction
for s, denoteds;, will be

§=s(-1) c

The predictoronce having receed the true value fors , checks whether this prediction is eor
rect or not (observthat the predictio as computed alve may not @en be an mnteger). Ifcor-
rect, it has succeeded and goes on predicting If not, i.e. § #s;, the predictor has made a
mistale, but nav it is able to computeriy, # 0o, the first multiple of the modulus, as bllows.
Let| be the number of columns in matixi —1) and let the solutiort be

oG/ch O
Lc,/d, U
c= 2- 2|:|
o - o
Oc/d, O

Now, let d denote the least common multiple of the dominators in these fractions, i.e.

d=Ilcm(d,,---,d;). The value ofriy is computed as follows

My=|d§ - ds]|.

Obserne that iy is an intger, even if § is not. Morewoer this integer is a multiple of the true
modulusm the generator is working with (see Lemma 4.3.1 below).

Once iy is computed, the predictor can begin working modulo tiysSo he first stage
of the algorithm is terminated and it goes on into the second one.

-45-

The main facts concerning the performance of the predicting algorithm during the first
stage are summarized in the next Lemma.

Lemma 4.3.1:

a) Thenumberry computed at the end of the first stage is a nonzero multiple of the modulus
m.

b) Thenumber of mistakes made by the predictor in the first stage is atkmast

) For non-reduced polynomial time-generators, the prediction time for eaghduring the
first stage is polynomial in logh and k.

d) For non-reduced polynomial time-generators, the size @, is polynomial in logm and
k. More preciselylet M be an upper bound on the output of each of the functions
®;,j=1,..,k working on{0,...,m-1}-valued intgers. Thengy < (k+1)k“?m M*.

Proof:

a) From the definition of the generator wedéhe congruence; = o [B; (mod m)for all j =0,
therefore

s(i —1) = o [B(i —1) (mod m) (4.3.1)
Thus,

d§ =ds(i -1) Oc (by definitionof §)

= da OB(i —1) Cc (mod m) (by (4.31))

=da [B; (c is asolution to B(i —1) (x = B;)

=ds (mod n (By definitionof s (4.2 1))

So we hge dhown that d§ = ds (mod n). Obsene that it cannot be the case that =ds,
because this implies; =s;, contradicting the incorrectness of the prediction. Thus, we ha
proved that my=|d§ —ds | is indeed a nonzero multiple of.

b) The possible mistals in the first stage are when a rational solution to the system of equations
B(i —1) (x = B; does not exist, or when such a solution existsolr prediction is incorrect. The

last case will happen only once because after that occurs the predictor goes into the second stage.
The first case cannot occur "too much". Obsdhat the matricesB(j) have k rows, thus the

maximal number of independent columnseothe rationals) is at mosk. So the maximal

number of mistakes made by the predictor in the first staige is

-46-

c) The computation time for the prediction ®fis essentially gien by the time spent computing

B; and solving the ab@ eguations. The function®; are computable in time polynomial in log

m and k, so he computation of theector B; is also polynomial in logn and k. The compl&-

ity of solving the system of equationsienthe rationals, is polynomial ikand in the size of the
entries of B(i —1) andB; (see [Ed], [Sch, Ch. 3]). These entries are determined by the output of
the (non-reduced) functions;, and therefore their size is bounded by a polynomi#&dmm and

k. Thus, the total complexity of the prediction step is polynomiadgm and k, as equired.

d) As pointed out in the proof of claim c), a solution to the system of equations in the algorithm,
can be found in time bounded polynomiallyleag m andk. In particular this guarantees that the
sizeof the solution will be polynomial itog m andk. (By size we mean the size of the denomi-
nators and numerators in the entries of the solutemtov) Clearly by the definition ofihy, the
polynomiality of the size of the solutianmplies that the size ofiy, is itself polynomial inog m

andk.

The explicit bound om, can be devied as bllows. UsingCramers rule we get that the solution
c to the systemB(i —1) [x = B;, can be represented as(c,/d,...,c;/d) where eacl; andd are
determinants of by | submatrices in the ale g/stem of equationsLet D be the maximal pos-
sible \alue of a determinant of such a matri?le havethatd§ =ds(i-1)c<Im D (heremis a
bound ons(i -1) entries) andl 5 < m D, thenriy =|d§ -ds|< (I+1)m D. In order to bound we

use Haddamard’ inequality which states that each by n matrix A=(a;) satisfies

n n
det(A)sl‘ll(glaﬁ)l’z. In our case the matrices are of ortléy I, and the entries to the system are
1=1 =

bounded byM (the bound or®; output). Thust_ﬁﬂ(_éMz)l’zz(l M2)2 and we get
i=1j=

iy < (I +1)m D< (I +1) m(I M?)"2 < (k +1) kN2 m M

The last inequality follows sindeck. o

4.3.2 Second Stage

After having computediy, the first multiple of m, we proceed to predict the next ele-
ments of the sequence, butwinworking modulo a finiteh. The prediction step is very similar
to the one described for the first stage. The differences are those that arise from the fact that the
computations are modulo an igex In particular the equations to be solved will not verca
field (in the first stage it wasver the rationals), but rathewver the ring of residues moduld.
Let us denote the ring of residues moduldy z,. In the following definition we extend the
concept of linear dependence to these rings.

47-

Definition 4.3.1:Let v, v,,...,v; be a sequence ofvectors with k entries fromz,,. We sy that
this sequence mweakly linearly dependent modfnv, =0 or there exists an indei,2<i<I, and
elementsc, c,,...,ci4 O Z,, such thaty, = ¢;v; +cov, +---+¢1viq (mod). Otherwise, we say
that the sequencevgeakly linearly independent

Note that the order here is important. Ualike case in the traditional definitiowep a
field, in the abwe definition it isnot equivalent to say thasomevector in the set can be written
as a linear combination of tlm¢hers Another important difference is that it is not true in general,
that k+1 vectors of k components wer Z, must contain a dependen¢ctor Fortunately a
slightly weaker statement does hold.

Theorem 4.3.2:Let wv,v,,...,v; be a sequence ok-dimensional ectors eer Z,. If the
sequence is weakly linearly independent nmdhen I <klog, n, where g is the smallest prime
dividing n.

Proof: Let v;,v,,...,v, be a sequence of vectors from zX, and suppose this sequence is weakly
linearly independent moal Consider the set

V=(Z ey (mod 0:¢ 0{0,1,q-1})

We dhall shav that this set containg' different \ectors. Equiaently, we show that no tvo (dif-
ferent) combinations iV yield the same vector.

| |

Claim: For every c,c 0{0,1,---,q-1},1<i<l, if _glcivisglc{vi (mod n) then c¢;=c/ for
i= i=

i=12...,l.

|
Suppose this is not true. Then We/dagi(ci -c¢)v; =0(mod n. Denotec; -c/ by d;. Lett be
1=

the maximal inde for which d,#0. This numberd; satisfies-q<d; <q, s0 it has an inerse
modulo n (recall that q is the least prime divisor oh), denoted di. It follows that

t-1
V; = El— d;*d;v;(mod 1 contradicting the independence wf and thus proving the claim.

Hence)V|=q' and therefore
q' =|V|<|zg/=n*

which implies| < klog, n, proving the Theoremo

With the abwe cefinition of independence in mind, we can define the m&fix as a sub-
matrix of B(i), in which the (sequence of) columns are weakly linearly independedth.

-48-

Note thatrm will have dstinct values during the algorithm, so when writigi) we shall refer
to its value modulo the currerrt.

Prediction of s; in the second stage:

Let us describe the prediction step ®rwhen working modulah. In fact, all we need is
to point out the differences with the process described for the first stage.

As before, we begin by computing thector B, (now reduced modulah), and solving
the system of equations

B(i —1) Ox = B; (mod m)

We gress that this time we are looking for a solutieeroZ;,. In case a solution does notist,
we fail to predict, exactly as in the previous case. As before,at®nB;(mod) is added to
B(i -1) to form the matrixB(i). If a olution does eist, we output our prediction, computed as
before, but the result is reduced mdd Namely we st § =s(i —1) Uc (mod), where c is a
solution to the abee s/stem of modular equationgf the prediction is correct, we proceed to
predict the next elemeny,,. If not, we tale advantage of this error to update. This is done by
computing

m=gcd(m, § - s))
This m will be the newrm we shall work with in the coming predictions.
To e that the prediction algorithm as described here, is indeefiicent pedictor, we

have o prove te following facts summarized in Lemma 4.3.3. (Lemma 4.3.3 is analogous to
Lemma 4.3.1 for the second stage).

Lemma 4.3.3:The following claims hold for the akie predictor when predicting a non-reduced
polynomial timed-generator.

a) Thenumbernm computed abee is a rontrivial divisor of m and a multiple of the modulus
m.

b) Letrm, be the modulus computed at the end of the first stage. The total number oésmistak
made by the predictor during the second stage is boundgd+bylogm,, and then poly-
nomial in log m and k.

c) Theprediction time for eacls; during the second stage is polynomialogm and k.
Proof:

a) Recall thati=gcd(m, § - s), So it is a dvisor of m. It is a rontrivial divisor becaus& ands;
are reduced mordh and m respecitrely, and then their difference is strictly less thanlt cannot
be zero becausg # s, as bllows from the incorrectness of the predictiorhe proof thah is a

-49-

multiple of mis similar to that of claim a) of Lemma 4.3.1. It is sufficient tonskiwat § - s is a
multiple of m, ancemiis itself a multiple oim. We show this by proving§ = s (mod n) :

= (i —1) Oc (mod m) (by definitionof §)

a OB(i —1) Oc (mod m) (by (4.31))

a B; (mod M) (cis asolution to B(i —1) Ox = B; (mod m))

s (mod n) (By definitionof s (4.2 1))

As m dividesm, claim a) follows.

b) The possible mistakes during the second stage ar@dfpes. Mistakes of the first type hap-
pen when a solution to the alomngruential equations does noist. Thisimplies the inde-
pendence modulo the currefit of the correspondingg;. In fact, thisB; is also independent
mod iy. This follows from the property thatvery mis a divisor offi,. By Theorem 4.3.2, we
have that the number of weakly linearly independesttersmod riy, is at mostklog riy,. There-

fore the number of mistak by lack of a solution is bounded by this quantity too. The second
type of mistak is when a solution exists but the computed prediction is incorrect. Such a mis-
take can occur only once pei. After it occurs, a ng mis computed. Thus, the total number of
such mistakes is as the number ofedéntrivs computed during the algorithm. Thegés form a
decreasing sequence of poatintegers in which eery element is a divisor of the previous one.
The first (i.e. largest) elementig and then the length of this sequence is at mogsfy,. Con-
sequentlythe total number of mistakes during the second stage is at(knd3tog i, and by
Lemma 4.3.1 claim d) this number is polynomialoign m andk.

c) By our assumption of the polynomiality of the functignswhen working on theeactorss(i),

it is clear that the computation of eaBh(mod), takes time that is polynomial ileg m and k.

We aly need to shwe that a solution td(i —1) [x = B; (mod M) can be computed in time poly-
nomial inlog m and k. A simple method for the solution of a system of linear congruences lik
the abee, is described in [BS] (and [B]). This method is based on the computation &ntiité
Normal Form of the coefficients matrix in the systenfihis special matrix and the related trans-
formation matrices, can be computed in polynomial time, using an algorithm of [Ki]s,
finding a solution to the alke g/stem (or deciding that none exists) can be accomplished in time
polynomial inlog m and k. Therefore the whole prediction step is polynomial in these parame-
ters. o

-50-

Combining Lemmas 4.3.1 and 4.3.3 we get

Theorem 4.3.4 The predicting algorithm described a&pBois an dficient predictor for non-
reduced polynomial-timed-generators. Thenumber of prediction mistakes is at most
(k+1) (log iy, +1) = O(k?log (k mM)), whereriy, is the first finite modulus computed by the algo-
rithm, andM is an upper bound on the output of each of the functigng=1,...k, working
over integers in the s¢0,...,m-1}.

As a special case we get

Corollary 4.3.5. Every multivariate polynomial recurrence generator is efficiently predictable.
The number of prediction mistakes for a polynomial recurrenceviariables and dgreed is

bounded byO(k? log(k m")), wherek =(”;d).

Proof: A multivariate polynomial recurrence is a special case ofgenerator withM <m®, as
each monomial is of degree at mdsind it is computed on irgers less tham. Therefore, by
Lemma 4.3.1 d) we gety < (k+1) k"2 m%*, The numbeik of coefficients is as the number of

possible monomials in such a polynomial recurrence Whi(:H 3'3). The bound on the number

of mistakes follows by substituting these parameters in the general bound of Theorem 4.3.4.

Remark 4.3.1:Notice that the numbek of coefficients equals the number of possible monomi-

als in the polynomial. For general polynomialsnivariables and of dgreed, this number is
n+d

(7

ble, e.g.s = a; &+ --+a, s, (mod nm), then the numbek may be much smalleend then a

better bound on the number of mistakes for such casesvsdieri

). Nevetheless, if we consider special recurrences in which veoy enonomial is possi-

4.4. VECTOR-VALUED RECURRENCES

The most interesting subclassdefjenerators is the class of mudtiate polynomial recur
rence generators mentioned in previous sectibagarias and Reeds [LR] studied a more gen-
eral case of polynomial recurrences in which a sequencedohensional vectorsver Z,, is
generated, rather than a sequencg,pélements as in our cas€hese ector-\alued polynomial
recurrences he the form

S = (Pu(Sap - San)(mod m,..., Pn(Siaa,---,Sa0) (Mod)

-51-

where eachP,,1<l<n, is a plynomial inn variables and of maximal deeed. Clearly, these
recurrences extend the single-valued case, since yamaltivariate polynomialP which gener
ates a sequencé€s}, of Z, elements, one can consider the sequence aitoxs
S =(SiS-1---+S-nua) Wheres = (P(§4,---,S-n) (Mod 1), Si4, -+, Si-naa)-

The \ector-\alued polynomial recurrences can be generalized in termbsgeherators as
follows. Considem congruential generatore®,... o™, where " ={oP}¥, and for each
j,1,{ is a function inn variables. Fr ary set{a!’:1<j<k,1<I<n} of coefficients and modu-
lus m, we cefine a ector-walued generator which outputs a sequencesoforss, §;,..., where
eachs =(54,...,5,,) 0Zp is generated by the recurrence

M=

k
5= (X aPoP(say,...,54,) (Mod M) zl " o(s44,...,54,0) (mod M) (4.4.1)
J:

=

It is easy to see thatwetor-\alued recurrences of the foffh4.1) can be predicted in a sim-
ilar way to the single-alued recurrences studied in the previous section. One can apply the pre-
diction method of Section 4.3 to each of the "sub-generamﬂsz'r =1,..,n. Notice thats is
computed by applying the functionﬁ) to the \ectors_4, and that thiss,; is knownto the predic-
tor at the time of computing its prediction f§r Thus, each of the sequendas}i2,,1=1,...,n
are efficiently predictable and so is the whole vector sequence. The number of possible predic-
tion errors is as the sum of possible errors in each of the sub-genefdtofhat is, at mosh
times the bound of Theorem 4.3.4.

One can tad advantage of the fact that the different sub-generators work with the same
modulusm in order to accelerate the a@gence to the true value of. At the end of each pre-
diction step, we hae n (not necessarily different) estimat@®, ... ,m™ computed by the predic-
tors foro® ... o™, respectiely. In the next prediction we put all the predictors torkvwith
the same estimaté computed ash = ged(h®,...,M"). This works since each of th&® is
guaranteed to be a multiple wf(claim (a) in Lemmas 4.3.1 and 4.3.3ih this way we get that
the total number of mistak is bounded bgnk +1)(log iy, +1). Notice that the dimension of the
whole system of equations corresponding tortk#)-generators isk (as is the total number of
coeficients hidden from the predictor). On the other hand, the boumd, (nom Lemma 4.3.1
is still valid. It does not depend on the number of sub-generators since we predibt)egeh-
erator (i.e. sole the corresponding system of equations) separaiéiys, we can restate Theo-
rem 4.3.4 for the vector-valued case.

Theorem 4.4.1:Vector-valued recurrences of the fom4.1) are efficiently predictable pvaded
that eachp)-generator| =1, .., n, has polynomial-time non-reduced comyptg. The number of
mistakes made by the abe gedictor isO(n k*log (k mM)), whereM is an upper bound on the

-52-

output of each of the functions{,j=1,...k,1=1,..,n, working over integers in the set

{0,...,m-1}. In particular for vector-\alued polynomial recurrences nvariables and degree at
mostd the number of mistakes & n k?log (k m®)), wherek = (";d).

Remark 4.4.1: For simplicity we have restricted ourselves to the cgdet 1) in which the sub-
generatorsp!) work on the last gctors_;. Clearly, our results hold for the more general case in
which each of these sub-generators may depend on the whole vector segyence 4 output

so far. In this case the numberof sub-generators does not depend on the numbeguainants
the sub-generators work on, and the number of arguments doedeabttled number of mis-
takes.

-53-
Chapter 5:

The Composition of Zero-Knowledge Interactve RFoofs

5.1. INTRODUCTION

In this chapter we apply the results orastve pseudorandom distributions, presented in
chapter 3, to the westigation of zero-knowledge interagti proof systems.We aldress the
guestion of whether the (sequential and/or parallel) composition of intergmiofs preseres
the zero-knowledge property.

The notions of interacte poofs and zero-knowledge were introduced by Galsser,
Micali and Rackff [GMR1]. Herewe gve an informal outline of these notion$:or formal and
complete definitions, as well as the basic results concerning these concepts, the reader is referred
to [GMR1, GMW1, GMR?2].

An interactive poof for a language. is a two-party protocol in which a computationally
powerful Prover proves to a pobabilistic polynomial-timeé/erifier whether their common input
belongs to the languade The computation is carried out by exchanging messages between the
two parties. The acceptance or rejection of the inp{ats belonging ta.) is decided by the eri-
fier depending on the whole aansation. Ifthe assertion is true, i.e OL, then the verifier will
accept with very high probability(This is referred to as theompletenessondition). If the
assertion is false then the probability to convince tefigr to accept is negligibly small, no
matter hav the praver behares during the &ecution of the protocol(This is thesoundnesson-
dition).

An interactve poof is calledzero-knowledgd on input x L no polynomial-time erifier
(even one that arbitrarily deviates from the predetermined program) gains information from the
execution of the protocol, except the kmedge thatx belongs toL. This means that grpoly-
nomial-time computation based on the \w@ration with the preer can be simulated, without
interacting with the real pver, by a probabilistic polynomial-time machine ("the simulator")
that getsx as its only input. More preciseliet< P,V" > (x) denote the probability distniition
generated by the interasti machine (erifier) V' which interacts with the pver P on input
x OL. We say that an interacte poof is zero-knowledgé for all probabilistic polynomial-time
machines/’, there exists a probabilistic polynomial-time algoritMy (called asimulato) that
on inputx OL produces a probability distition M,-(x) that is polynomially indistinguishable
(see definition 3.2.2) from the distuition < P,V" > (x). (This notion of zero-knowledge is also

-54-

calledcomputational zero-knowledg€he results in this chapter concern only this notipin

The abwe description of the notion of zero-knowledge corresponds to the original defini-
tion of zero-knowledge in [GMR1]. This definition requires that the simulator is able to simulate
the cowersations between the @& and ary probabilistic polynomial-time verifier on the com-
mon input. Later, sronger formulations of zero-knowledge were introduced in which the simula-
tion requirement is extended to deal with stronger verifietGNR2, O, TW]. Namely verifiers
with non-uniform properties, e.g. probabilistic polynomial-time verifiers which get an additional
auxiliary-inputtape. Oneentral reason for these extensions is that in these stronger models one
can proe that repeatedxecutions of zero-knowledge protocols presete zero-knwledge
condition. Thais, thesequential compositioof zero-knowledge protocols results in avn@o-
tocol which is still zero-knowledge (see [O]). This preaéion property is crucial for the the
utilization of zero-knwledge interactie proofs in cryptographic applications and in particular to
the construction of cryptographic protocols for playing eemputable game [Y2,GMW?2].

Whether the original ("uniform”) formulation of zero-knowledge is closed under sequen-
tial composition was an open problem. kswvconjectured that this is not the case, what implies
the necessity of the stronger models for guaranteeing the preservation prbpsstyion 5.2 we
prove this conjecture.

Another way to compose interaai proofs is byparallel compositioni.e. by concurrent
execution of the corresponding protocol$his kind of composition is used in order to decrease
the error probability of an interaeé poof without increasing the number of messages
exchanged. &rallelism is also used in multy-party protocols in which parties wish tceitioe
same and/or different) statements to various parties concurr&lyrove that parallel compo-
sition of interactre poofs does not necessarily preserzero-knavledge, not een under the
strong models of zero-kmdedge. V¢ present two protocols, both being zero-knowledge in a
strong sense yet their parallel composition is not zero-knowledgev@otrethe weak sense of
[GMR1] formulation).

Further results concerning the parallel composition of zerovlatlye interactie poofs
are presented in chapter 6.

5.2. SEQUENTIAL COMPOSITION OF ZERO-KNOWLEDGE PR OTOCOLS

Here we proe that the original definition of zero-knowledge (with uniform verifiers) intro-
duced in [GMRL1]s not closedinder sequential composition.

1 Other definitions were proposed in which it is required that the disbibgenerated by the
simulator isidenticalto the distrilation of cowversations between the verifier and theverdper-
fectzero-knavledge), or at least statistically closgafisticalzero-knavliedge). Se¢GMR?2] for
further details.

-55-

We begn by giving a formal definition of "sequential composition" of intexectiroof
systems.

Definition 5.2.1: Let< P, V; >, ... ,< P, V| > be interactte poof systems for languages, L,
..., Ly, respectrely. A sequential compositionf the k protocols,< P,V >, is defined as follas.
The common inputx, to < P,V > will be a string of the fornx,%x,%. . %x,%, where '%’ is a
delimiter The ecution of< P,V > consists ok stages. Astagei, P andV actvate P; andV;,
respectrely, as sibroutines orx;. The verifierv accepts if alv;’s haveaccepted.

Intuitively, the reason that a zero-knowledge protocol could not be closed under sequential
composition is that the definition of zero-knowledge requires that the information transmitted in
the execution of the protocol is "useless" foryapolynomial-time computation; it does not rule
out the possibility that a cheating verifier couldetakivantage of this "kneledge" in a subse-
guent interaction with the (non-polynomial) peo for obtaining valuable informationThis
intuition (presented in [F]) is the basis of our example of a protocol which is zero-knowledge in a
single eecution but rgeals significant information when composed twice in a sequenhbes
protocol uses a polynomial-timeasive ensemble as defined in section 3\ essentially use
the result of Theorem 3.5.For the application here we need the following technical formula-
tion of the claim preed in that theorem.

Theorem 5.2.1:There exists an infinite sequence of ®tss,,---, such that for each, S, is a
subset 0f0,1}*" of size2", and the collection of uniform distributions on each of these sets con-
stitutes anesive and pseudorandom ensembile.

As stressed in Remark 3.5.2 the abaisemble is easive e/en aganst algorithms which get an
additional input of lengtim (in our application the algorithms are probabilistic polynomial-time
verifiers and the additional input is the inputo the protocol). Since the proof of existence (and
samplability) of such an ensemble does not rely gnuaproven assumption, so does the proof
of the next theorem.

Theorem 5.2.2: Computational Zero-Knowledge ([GMR1] formulation) is not closed under
sequential composition.

Proof: LetS,S,,... be an "gasive and pseudorandom” sequence as described in Theorem 5.2.1.
Also, letK be a hard Boolean function, in the sense that the landuyagéx: K(x)=1} is not in
BPP (we use this function as a "knowledge" function).

We present the following interas-proof protocol< P,V > for the language. ={0,1}".
(Obviously this language has a trivial zero-knowledge proof in which #rdier accepts\ery
input, without carrying out aninteraction. V& intentionally modify this trivial protocol in order
to demonstrate a zero-knowledge protocol which fails sequential composition).

-56-

Let x be the common input fd? andV, and letn denote the length of. The \erifier v
begins by sending to the prer a random strings of length4n. The praver P checks whether
sUS, (the n-th set in the ab@ quence). Ithis is the case (i.a0S,) thenP sends to/ the
value of K(x). Otherwise (i.e.s[1S,), P sends tov a dring s, randomly selected frors,. In
ary case the verifier accepts the inpuas belonging td.).

We dress that the same sequence of sets is used in akaheiens of the protocolThus,
the setS, does not depend on the specific input to the protoablpiily on its length Therefore,
the stringsy, obtained by the verifier in the firskeeution of the protocol, enables him tovade
from the protocol during a secongeeution in order to obtain the value K{x), for ary x' of
lengthn (and in particular fox'= x). Indeed,consider a secondecution of the protocol, this
time on inputx'. A "cheating" verifier which sends the strings, instead of choosing it at ran-
dom, will get the alue ofK(x') from the proer. Obsene that this cheating verifier obtain infor
mation that cannot be computed by itself. There is ap t@ simulate in probabilistic polyno-
mial-time the interaction in which the e sends the value df (x') (otherwise the language,
is in BPP).

Thus, it is clear that the protocol is not zero-knowledge when composed twice. On the
other hand, the protocol is zero-knowledge (wheeceted the first time).To show this, we
present for apverifier V', a polynomial-time simulatoiM,- that can simulate the cesrsations
betweerV" and the preer P. There is only one message sent by thevgrduring the protocol.

It sends the value &€(x), in case that the stringsent by the verifier belongs to the Sgtand a
randomly selected element 8f, otherwise. Bythe easivity condition of the ses,, there is

only a negligible probability that the first case holds. Indeed, no probabilistic polynomial-time
machine (in our case, the verifier) can find such a string,, except with insignificant proba-
bility (no matter what the input to the protocol is). Thus, the simulator can succeedvgyal
simulating the second possibilitye. the sending of a random elemgntrom S,. This step is
simulated by randomly choosirsg from {0,1}*" rather than frons,. The indistinguishability of

this choice from the original one follows from the indistinguishability between the uniform dis-
tribution onS, and the uniform distribution of0,1}*". o

Remark 5.2.1: The argument presented in the proof generalizes yoarmguagel having a
zero-knavledge interactie proof. Simply modify the zero-knowledge proof fdr as in the
above proof of Theorem 5.2.2.

Remark 5.2.2: Another example of a zero-knowledge protocol which is not closed under
sequential composition ag independently found by D. Simon [Si]. His construction assumes
the existence of secure encryption systems.

-57-

5.3. PARALLEL COMPOSITION OF ZERO-KNOWLEDGE PR OTOCOLS

In this section we address the question of whether zero-knowledge intenaobfs are
robust under parallel composition.

First we present a definition of "parallel composition” of intevagtroof systems.

Definition 5.3.1: Let< P, V; >, ... ,< P,V > be interactte poof systems for languages, L,
..., L, respectrely. Without loss of generalifygssume that all protocols anestep protocols. A
parallel compositiorof thek protocols< P,V >, is defined as follws. < P,V > will also be anm-
step protocol. The common inpw, to < P,V > will be a string of the formx,%x,%. . .%x,%,
where "%’ i s a celimiter. Thei-th message in P,V > will consist of the concatenation of th¢h
messages of P, V; >, ..., <P,V > respectrely. The \erifier V accepts if allv,’s have
accepted.

Clearly, we @annot expect the [GMR1] definition of zero-knowledge to be closed under
parallel composition: it is easy to see that a zerawkadge protocol which is not closed under
sequential composition can be transformed into another zero-knowledge protocol which-fails par
allel composition. Thus, our result of the previous section implies that zero-knowledge with uni-
form verifiers is not closed under parallgbeution.

In light of the fact thaauxiliary-inputzero-knavledge is robust under sequential composi-
tion [O], it is an interesting open question whether this formulation of zero-knowledge is also
robust under parallel compositiol.he main result of this section is that this\ad the case.We
prove the existence of protocols which are zerolealge @en aganst non-uniform erifiers
(e.g. auxiliary-input zero-knowledge), but which do not remain zero-knowledge wbeuntexl
twice in parallel. As in the case of sequential composition our result concerns only computational
zero-knowledge.

The ideas used for the design of a protocol whaals parallel composition are similar to
those used for the sequential ca3bere, we hee wsed a pseudorandom andhsive ensemble
to construct the intended protocole\Wse this method also here. The main difference is that no
we need anwasive @llection which resists also non-uniforranfiers. Thuswe use the stronger
notion of non-uniform easiveness introduced in section 3.6.

Theorem 5.3.1:Computational Zero-Knowledgev@n with non-uniform verifiers) is not closed
under parallel composition.

Proof: We pgresent a pair of protocotsP;,V; > and< P,,V, > which are zero-knowledge when
executed independenthjput whose parallel composition is pable not zero-knowledge.

We wise some dummy steps in the protocols in order to eelgachronization between
them. Ofcourse one can modify the protocol substituting thest®a steps by significant ones.

-58-

The version we ge here prefers simplicity rather than "naturality”. Both protocols consist of
five geps and are describedxhe An alternatve description is presented in Figure 5.3The
notations g S means the elemestis chosen at random (i.e. with uniform probability) from the
setsS.

P, Vq step P, Vo
i Orf1,---,2"Y -~ 1 dummy step
dummy step | 2 <-jOrfL,--,2%
dummy step 3 rgs”--
< -sOg{0,13*" 4 dummy step
if sOS": K(x)- = 5 dummy step

Figure 5.3.1: protocols Py, V; >and< P, V, > with input X.

The first protocol is denotedP,,V; >. Let x be the input to the protocol and ketlenote
its length. The protocol uses (for all itseeutions) a P/polyesive ®quenceS”, S?, ... with
the properties described in Theorem 3.6.1. It alsolwes an (arbitrary) hard Boolean function
K as in the proof of Theorem 5.2.2. The ymo P, begins by sending to/; an inde
i Og{l,...,2"}. After two dummy steps the erifier V; sends toP, a dring s0z{0,1}*". The
prover P; checks whethes 01S". If this is the case then it sendsviothe value ofk(x). This
concludes the protocol.

The second protocel P,, V, > uses thesameP/poly-avasive ®quenceS”, S?, ... as proto-
col < P, V; > does. Thdirst step of the protocol is a dummy one. In the second stegethien
V, sends tdP, an inde j Og{l,...,2"}. The praoer P, responds with a stringg S(J-”). After two
more dummy steps the protocol stops.

We show that the abee potocols are indeed zero-knowledgeefe for non-uniform eri-
fiers). For the first protocol, there areaveeps of the preer to be smulated. Inthe first stefP;
sends an indei Og{l,...,2"}. The simulator does the same. In the second step, thier gemds
the value ofk(x) only if the verifier succeeds to present him a string which belongs to the set
s, By the easivity condition of the sequenc8®, S?, ... this will happen with ngligible
probability and therefore the simulator cawals simulate this step as for the case where the
verifier sends a string PS”. Obsene that the circuits in the definition of P/polyasive
sequences only get as input the mdéthe set to be hitNevertheless, in our case the circuits
also get an additional inpwt This cannot help them finding an eIementSjP?. Otherwise,

-590-

circuits which hae such a string incorporated will contradict theasiveness condition.

In the second protocot, P,, V, >, the only significant step of the p P, is when it sends
an element [y S‘l-”) in response to the indg sent by the erifier. In this case the simulator will
send a string’ 0z {0,1}*". Using the pseudorandomness property of thes(j@eWe get that the
simulators dhoice is polynomially indistinguishable from the peds ane.

Finally we shav that the parallel composition of the akqgrotocols into a single protocol
<P,V > is not zero-knwledge. LetV" be a "cheating" verifier which beles as bllows.
Instead of sending a randomly selected xngécorresponding to the second step of the subpro-
tocol< P,,V, >) it sends the indei receved from P as part ofP;’s first step. Thus, j =i, and the
prover P will respond with a string OS™. In the next step this stringwill be sent byv to P as
the "random"” strings thatV; should send t&®;. The praver P will verify that r 0S"™ and then
will send the informatiorK (x). By the hardness of the functighthis step cannot be simulated
by a probabilistic polynomial-time machin&herefore, the composed protoeoP,V > is not
zero-knowledgeno

Remark 5.3.1: The two protocols< P, V; > and< P,,V, > can be merged into a single zero-
knowledge protocol which is not robust under parallel compositiem.example, let the pnaer

in the merged protocol choose at random anxind#1, 2}, send it toV, and then both parties
execute the protocok P;,V; >. This protocol, whenecuted twice in parallel, has probability
one-half to become a paralleteeution of < P;,V; > and < P,,V, >. Therefore, it is not zero-
knowledge.

-60-
Chapter 6:

On the Round Complexity of Zero-Knowledge Interactve Roofs

6.1. INTRODUCTION

In chapter 5 we hee fiown that the definition of zero-knowledge does not guarantee the
preseration of the zero-knowledge property when composing protocols in parallel. &kis w
shavn even for the strong formulations of zero-kmiedge which allev non-uniform "cheating”
verifiers. Thisresult leaes goen the question of whether particular protocolehhe composi-
tion property or not. That is, wheree we ae interested to compose concrete protocols we must
investigate whether the resultant composed protocol remains zero-knowledge or not.

Such a question arises in nyacases. In particulasince the first works on zero-kwt
edge [GMR1, GMW1] it was repeatedly askwhether the parallel versions of the protocols for
Quadratic ResiduosityGraph Isomorphism and for yrlanguage in NPpresented in these
papers, are zero-kmbedge. Themain motvation for this question is that these "parallelrv
sions" use only a constant number of rounds (in this case, 3 rounds), while the "seqgeential v
sions" (praved zero-knowledge in the alie works) use an unbounded number of rounds.

In this chapter we report a general result concerning the round complexity of zare-kno
edge interactie proofs which, in particularesoles the question of parallelization of the men-
tioned protocols. This general result states trdy BPP languges have 3-round inteactive
proofs whit are black-box simulation zero-knowleglg

Since the parallel versions of the abaexamples are 3-round interagdi proofs it follows
that these interaete poofs cannot be pwen zero-knavledge using black-box simulation zero-
knowledge, unless the corresponding languages are in BRPay that an interaate poof is
black-box simulation zerknowledgef there exists a umérsal simulator which using gr(even
non-uniform) \erifier V° as a black box, produces a probability disttitn which is polynomi-
ally indistinguishable from the disttition of cowersations of (the same) with the prwer.
This definition of zero-knowledge is more restxietihan the original one which allows tovesa
specific simulator for eachevifier V. Nevetheless, all known zero-knowledge protocols (with
non-uniform verifiers) are also black-box simulation zerowkedge. Thidact cannot come as a
surprise since it is hard to coneeia way to tale advantage of the full power of the more liberal
definition.

-61-

It is not plausible that our result could be extended to 4-round intergmdofs since such
proofs are known for languages beée to be aitside BPPThe protocols for Quadratic Non-
Residuosity [GMR1] and Graph Non-lsomorphism [GMW1] are sua@mgles. Inaddition,
zero-knavledge interactie proofs of 5 rounds are known for Quadratic Residuosity and Graph
Isomorphism [BMO], and assuming the existence olvdl@e permutations there exist 5-round
zero-knavledge interactie poofs for aly language in NP [GKa]Moreover, our results gtend
to zero-knavledgearguments', for which Feige and Shamir [FS] presented (assumingxike e
tence of one-ay functions) a 4-round protocol foryatanguage in NPOur result implies that
the round complexity of this protocol is optimal (as long as BRNP).

When restricting ourselves to Arthlterlin interactve proofs, we can extend the aleo
result to ag constant number of round&Ve ow thatonly BPP languges have constanteund
Arthur-Merlin proofs whib are adso black-box simulation zero-knowlexg

Arthur-Merlin interactve proofs, introduced by Babai [Ba], are interaetgoofs in which
all the messages sent by the verifier are the outcome of his coin tosses. In other woeds, the v
fier "keeps no secrets from the ped. Thisresult is a good reason to bghkethat the only feasi-
ble way of constructing constant-round zero-knowledge intgeaptdofs is to let the verifier use
"secret coins". (Indeed, the algomentioned constant-round zero-knowledge proofs use secret
coins). Thus,'secret coins" help in the (black-box simulation) zero-knowledge setfiihgs
should be contrasted with the result of Gadser and Sipser [GS] which states that Artar-
lin interactve roofs areequivalentto general interacte proofs (as far as language recognition
is concerned).They show that aly language hang a general interae® poof of k rounds, has
also an Arthur-Merlin proof ok rounds. Usingur result we see that in the zero-knowledge set-
ting such a preservation of rounds is not plausible (e.g., Graph Non-Isomorphism).

Our result is tight in the sense that, the languages considereel @ap Graph Non-Iso-
morphism, NP) h& unbounded (i.e.w(n)-round, for &ery unbounded functionu: N - N)
Arthur-Merlin proof systems which are black-box simulation zeroAkadge. Inparticular we
get that bounded round Arthur-Merlin proofs which are black-box zero-knowledge exist only for
BPPE while unbounded round proofs of the same type exist for all NP (if @yefunctions
exist). Thatis, while thefinite hierarchy of languages having black-box zero-knowledge Arthur
Merlin proofs collapses to BPP (= AM(0)), the correspondiniimite hiemarchy contains all NP
This implies (assuming the existence of orasiunctions) a separation between the herar-
chies.

! Interactive argumentdiffer from an interactie groof system in that the soundness condition
of the system is formulated with respeciptobabilistic polynomial-timgrovers, possibly with
auxiliary input (see [BCC]).

-62-

6.2. SECRET COINS HELP ZERO-KNOWLEDGE

In this section we present our result concerning zero-knowledge proofs systems in which
the interaction is of Arthur-Merlin type. In such systems the (honesifier chooses its mes-
sages at random, while the only real computation it carries out isdluateon of a polynomial-
time predicate at the end of the interaction, in order to decide the acceptance or rejection of the
input to the protocol.

We dow that only languages in BPPJamnstant-round ArthuMerlin interactve proofs
which arebladk-box simulation zerknowledge A zero-knavledge interactie proof< P,V > is
calledblack-box simulatiorzero-knavledge if it is preed zero-knavledge by presenting a uni-
versal simulatarwhich using an verifier V" as a black-box, succeeds in simulating<tigVv’ >
interaction [O]. In this definition of zero-knowledge we wllthe verifierv” to be non-uniform.

The main Theorem of this section is

Theorem 6.2.1:A languagelL has a constant-round Arthur-Merlin interaetiproof which is
black-box simulation zero-knowledge if and only ifIBPP.

We present a proof for a special case of this Theorem. Narfwlthe case of a three-round
Arthur-Merlin protocol. The general case is ped using careful gtensions of the ideas pre-
sented hereThe three-round case can also be extended for general iMeraof systems.
That is, we also he te following Theorem.

Theorem 6.2.2:A languagd. has a three-round interaeti proof which is black-box simulation
zero-knowledge if and only if OBPP.

6.2.1 The case AM(3)

Consider an Arthur-Merlin protocel P,V > for a language., consisting of three rounds.
We wse the following notation. Denote lmthe input for the protocol, and lythe length of this
input. Thefirst message in the interaction is sent by thegrdVe denote it bya. The second
round is forv which sends a string. The third (and last) message is frénand we denote it by
y. The predicate computed by theriierV in order to accept or reject the inpuis denoted by
oy, and we consider it, for ceenience, as a deterministic functigi(x, a, 8,y). (Our results
hold also for the case in which the predicajealso depends on an additional random string
We will also assume, w.l.0.g., the existence of a polynohtigksuch thaja|=|g|=1(n).

Let this three-round Arthur-Merlin protocelP,V > be black-box simulation zero-kwb
edge. Denotby M the guaranteed black-box simulator whictiegi access to the black-box
can simulate: P,V >. The process of simulation consists ofesal "tries" or calls to the inter
acting \erifier V" ("the black-box"). In each such call the simulatfeeds the arguments far.

-63-

These arguments are the ingufwhich may be dierent from the "true" inpuk), the random
coins forV’, denotedr, and a stringa representing the message sent by thegorb. Finally,
after completing its tries the simulator outputs avewsation(y,r,a, 8,y). Notice that the simu-
lator runs polynomial-time and therefore there exists a polynatnjavhich bounds the number
of calls tried before outputting a a@nsation.

We dall male some simplifying assumptions on the beioa of the simulatoM, which
will not restrict the generalityln particular we assume that some cases, which may arise with
only negligible 2 probability do rot happen at all. This cannot significantly affect the success
probability of the simulator We assume that the cearsations output byM have dways the
form(x,r,a, B,y), i.e.y=x, and that the stringg equals the message outputWywhen gven the
inputsx,r anda. Note that these conditionsaays hold for the real caersations generated by
the praver P and the werifierv'. Therefore, the simulator must almostays do the same(Oth-
erwise, a distinguisher which has accesg tovould distinguish between the simulasodutput
and the original corersations). W dso assume that the simulatidr explicitly tries, in one of
its calls tov", the parameters, r anda appearing in the output cesrsation.

We dosene that the behavior of the simulatdt, interacting with a erifier V', is com-
pletely determinedly the inputx, the random tap®,, used byM and the strings output by in
response to the guments fed by the simulator during its tries. Based on this observation we
define the following process in which the simulatbitself is used as a subroutine.

Fix an inputx of lengthn, a dring Ry andt=t(n) stringss®, 3@,...,pY. Activate M on
input x with its random tape containirig,. For eachy,r anda presented by, respond in the
following way. The responses will depend only on the strimgand not iny andr). If a was
previously presented b, respond with the samgas before. I is thei-th differentstring pe-
sented byM then respond with3®. We denote thei-th different o by «®. Clearly, o is
uniquely determined by, Ry, and thei -1 strings g%, ..., %Y. That is, thee exists a determin-
istic function ay sud that aD=ay(x, Ry, gY,....500). We denote by
conviy(X, Ry, BY,...,.89) =(x,r,a, B,y), the cowersation output by the simulaton when acti-
vated with these pametes. Byour convention on the simulatoa, there existsi,1<i<t such
thata =o® and g=g".

Definition: We sy that a ector(x, Ry, 8%, ...,59) is M-goodif conv,(x, Ry, 8Y,...,80) is an
accepting cowversation for the (honest) evifier V. Namely if py(x,a,8,y)=1, where
conviy(X, Ry, BY,....80) =(x,r,a, B,y). We say that(x, Ry, 8Y,...,89) is i-good if it is M-
good andr =a® and =",

2We wse the term "negligible" for denoting functions which are (asymptoticly) smaller than
1/Q, for ary polynomial Q.

-64-

The main property oM-good strings is stated in the following Lemmeae #ét as a corol-
lary the proof of Theorem 6.2.1 for the case AM(3).

Lemma 6.2.3:Let <P,V > be a 3-rounds Artheerlin protocol for a language. Suppose
< P,V > is black-box simulation zero-knowledge, and Netoe a black-box simulator as al@o
Then,x OL if and only if all but a negligible portion of theestors(x, Ry, 8Y,...,5") are M-
good.

Before proving this &y lemma, we use it to pve Theorem 6.2.1 for the case of three-round
Arthur-Merlin interactve oof.

Proof of Theorem 6.2.1 (for case AM(3))By Lemma 6.2.3 we get that the following is a BPP
algorithm for the language.

* select at random a vect(Ry, sY,...,50).
* accept the inpuk if and only if(x, Ry, 8Y,...,8Y) is M-good. o
Proof of Lemma 6.2.3:

IF direction Let R, be a string for which there exist a non-negligible number eaftors
(BY,...,5Y9) such that(x, Ry, 8Y,...,5Y) are M-good. Thereexists an inde iy,1<i,<t, for
which a non-negligible fraction of the al&(x, Ry, 8%, ...,5Y) arei,-good. Thusthere exists a
non-ngligible number of prefigs(sY,...,50™), each with a non-rgligible number of,-good
continuations(5%,...,s") (i.e., such tha{ x, Ry, sY,...,p0™D, gl . gVY arei,-good). Let

For eachi,-good continuation g0, ..., 39) machineM outputs a coversation(x,r,al@, g% y)
for which py (x,a", 09) =1. In particulag there exists a non-negligible numberas for
which this happens.

In other vords, we hee shown the existence of a string (=) for which the set
B(x,a)={B:0y,pv(X,a,B,y)=1} is of non-negligible size among all possible stripysBy
the soundness property of the AM protocol fome getx O L. (For x [JL, the praver may con-
vinceV that x 0L with only negligible probabilitySnce the honest selects its responsgsat
random, then we ka that forx [IL and for alla, the setB(x, a) is of negligible size).

ONLY IF direction. We show that forx OL most (i.e. all but a negligible portion) of thectors
(x, Ry, 8Y,...,p0) areM-good. Ve do it by onsidering the behavior of the simulatarwhen
simulating the coversations of the preer P with a particular family of erifiers which we intro-
duce shortly.

Let x OL and letn denote its length. Consider a family of hash functiet{s) which map
[(n)-bit strings tol(n)-bit strings, such that the locations assigned to the strings by a randomly

-65-

selected hash function are uniformly distitded andt(n)-wise independent. (Recall thigh) is

the length of messagesand g in the ArthurMerlin protocol< P,V > for L, while t(n) is the
bound on the number of’s tries). For properties and implementation of such functions see [J].
We cenote this set of hash functions Byn).

For each hash functioh OH(n) we associate a (deterministi@rifier v}, which responds to the
prover's messager with the stringg=h(a). Consider the simulation 6f P, V;, > corversations
by the simulatoM. Fixing a random tap®&, for M and a functiorh OH(n), the whole simula-
tion is determined. In particulathis defines a sequence @6 tried by the simulatorand the
corresponding respons@sof V. Denote bya®,a®@, ... o, the differentvalues ofa in these
tries. Incase thas<t, we cmplete this sequence td",...,a®, o, ... oY, by addingt-s
strings o in some canonical ay, such that the resultard®,... o® are all diferent. Let
BV =h(@"),1<i<t, and definev(x, Ry, h) =(x, Ry, BY,...,8Y). The only-if direction of the
Lemma follows from the following tavClaims.

Claim I For ary xOL and for all but a negligible portion of the paiR,,h) the \ector
v(x, Ry ,h) is M-good.

Proof: By the completeness property of the protecél, VvV >, most of the coversations between
P andV on inputx 0L are accepting. That is, for most coin sequerkesf the prover P, and
most choiceg of V, the resultant corersation(x, a(x, Rp), 8, y(X, Rp, B)) is accepting.

Consider nw the interaction between the pep P and the erifiersV,, on x OL. By the unifor
mity property of thedmily H(n) we get that forery a, dl g’s are equi-probable as the result of
h(a). This, together with the ale remark on the comrsations betweer andV, implies that
for most stringsRs, and for most hash functionis, the interaction ofP with Vv, leads to an
accepting coversation.

Since the simulatoMm succeeds in simulatingP,V;, > corversations for all function& OH(n),
we get that for mogt's the simulatoM outputs with very high probability an accepting wan
sation. TheClaim follows. ¢

Claim 2 For all stringsx and Ry, the \ector v(x, Ry, h) is uniformly distributed wer the set
{(x,Ry,AY,....89): g9 0{0,1'™}
Proof: Obsere that

V(X, Ry, h) = (X, Ry ,ﬁ(l),...,ﬁ(t)))

if and only if for every i,1<i<t,

h(aM(X, RM! ﬁ(l)’ T lﬁ(i_l))) = ﬁ(l) .

-66-

On the other hand, by the uniformity atfd)-independence property of thentfily H(n), we have

that for ay t differentelementsay,...,a;, in the domain of the functioris 0 H(n), the sequence
h(a,),...,h(a,) is uniformly distributed wer all possible sequences, ... b, for b; in the range of
the functionsH (n).

Puttinga; =ay(x, Ry, 8%, ...,8™), and b, = gV, and using the ab@ dsenation the claim fol-
lows. ¢

Claim 2 states that for arRy,, the value ofv(x, Ry, h) is uniformly distributed wer all possible
vectors(x, Ry, AY,...,p"). On the other hand, by Claim 1, mogi, Ry, h) are M-good, and
then we get that mogk, Ry, 8, ...,8Y) areM-good.

The Lemma follows.o

-67-

References

[ACGS] W Alexi, B. Chor O. Goldreich and C.Pschnort "RSA and Rabin Functions: Ger
tain Parts Are As Hard As the Whol&&AM Jour. on Computing, Vol. 17, 1988, pp.
194-209.

[Ba] Babai, L., "Trading Group Theory for Randomnes#toc. 17th STOC, 1985, pp.
421-429.

[BMO] Bellare, M., Micali S. and Ostresky R., "Perfect Zero-Knowledge in Constant
Rounds", to appear iaroc. 22nd STOC, 1990.

[BBS] L. Blum, M. Blum and M. ShubA Smple Secure Unpredictable Pseudo-Random
Number Generator, SSAM Jour. on Computing, Vol. 15, 1986, pp. 364-383.

[BM] Blum, M., and Micali, S., "Hw to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits§AM Jour. on Computing, Vol. 13, 1984, pp. 850-864.

[B] Boyar, J. "Inferring Sequences Produced by Pseudo-Random Number Generators"”,
Jour. of ACM, Vol. 36, No. 1, 1989, pp.129-141.

[BCC] Brassard(., D. Chaum, and C. Qrau, "Minimum Disclosure Proofs of kwtedge",
JCSS, Vol. 37, No. 2, 1988, pp. 156-189.

[BS] Butson,A.T., and Stevart, B.M., "Systems of Linear Congruence€gnad. J. Math.,
Vol. 7, 1955, pp. 358-368.

[CW] Carter J.,, and M. V¢gman, "Unversal Classes of Hash FunctiondGCSS, 1979, \ol.
18, pp. 143-154.

[C] Chernof, H., "A measure of asymptoticfefiency for tests of a ypothesis based on
the sum of obseations”, Annals of Mathematical Satistics, Vol. 23, 1952, pp.
493-507.

[CG] Chor, B., and O. Goldreich, "On the Power okdPoint Based SamplingJour. of
Complexity, Vol. 5, 1989, pp. 96-106.

[CGG] Chor B., O. Goldreich, and S. Golasser"The Bit Security of Modular Squaring
Given Partial Factorization of the ModulosAdvances in Cryptology - Crypto 85
Proceedings, ed. H.C. Wiliams, Lecture Notes in Computer Science, 218, Springer
Verlag, 1985, pp. 448- 457.

[DH] W. Diffie, and M. E. Hellman, "Ne Directions in Cryptograpi, |EEE transactions
on Info. Theory, IT-22 (Nov. 1976), pp. 644-654

[Ed]

[E]

[F]
[FS]

[FHKLS]

[C]

[GGM]

[GKa]

[GK1]

[GK2]

[GKL]

[GL]

[GrM]

[GMW1]

[GMW2]

-68-

EdmondsJ., "Systems of Distinct Representesi and Linear Algebra”Journal of
Research of the National Bureau of Sandards (B), Vol. 71B, 1967, pp. 241-245.

S. Even,Graph Algorithms, Computer Science Press, 1979.
Feige,U., "Interactve Roofs", M.Sc. Thesis, Weizmann Institute, 1987.

FeigeU., and A. Shamjr'Zero knowledge proofs of knowledge indwounds", Pro-
ceedings oCrypto89, 1989.

Frieze,A.M., Hastad, J., Kannan, R., Lagarias, J.C., and Sh&niReconstructing
Truncated Integer Variables Satisfying Linear Congruei&g J. Comput., Vol. 17,
1988, pp. 262-280.

Goldreich, O., "A Note on Computational Distinguishability”, TR-602, Computer
Science Dept., Technion, Haifa, January 1988 gppear inlPL.

Goldreich,0., S. Goldvasserand S. Micali, "Hav to Construct Random Functions”,
Jour. of ACM, Vol. 33, No. 4, 1986, pp. 792-807.

Goldreich,0., and Kahan, A., "Using Claw-Free Permutations to Construct Constant-
Round Zero-Knowledge Proofs for NP", in preparation, 1989.

Goldreich,0., and Krawczyk, H., "Sparse Pseudorandom Distributions”, Proceedings
of Crypto89, 1989. Submittedo Random Structures and Algorithms.

Goldreich, O. and Kravczyk, H., "On the Composition of Zero-Knowledge Proof
Systems”, TR-570, Computer Science Dept., Technion, Haifa, June T98®. pre-
sented atCALP90.

Goldreich, O., H. Krawczyk and M. Luhy'On the Existence of Pseudorandom Gen-
erators", Proc. 29th |IEEE Symp. on Foundations of Computer Science, 1988, pp
12-24. Submitted t& AM J. on Compuit..

Goldreich,O., and L.A. L&in, "A Hard-Core Predicate for grOne-Way Function”,
21st STOC, 1989, pp. 25-32.

Goldreich,O., and S. Micali, "The \dalest Pseudorandom Bit Generator Implies the
Strongest One", unpublished manuscript, 1984.

Goldreich, O., S. Micali, and A. Wigderson, "Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Desigafgc. 27th FOCS,
1986, pp. 174-187. Submitted dour. of ACM.

Goldreich,O., S. Micali, and A. Wjderson, "Hav to Pay ary Mental Game or A
Completeness Theorem for Protocols with Honest Majorigd¢. 19th STOC, 1987,

[GO]

[GM]

[GMR1]

[GMR2]

[GS]

[H]

[Ha]

[ILL]

[J]

[KB]

[K1]

[K2]

[K]

[LR]

[L]

-69-

pp. 218-229.

Goldreich,O., and Oren, Y "Definitions and Properties of Zero-Knowledge Proofs",
in preparation.

GoldwasserS,, and S. Micali, "Probabilistic EncryptionJCSS, Vol. 28, No. 2, 1984,
pp. 270-299.

Goldwasser S., S. Micali, and C. Radif, "Knowledge Complexity of Interacte
Proofs",Proc. 17th STOC, 1985, pp. 291-304.

Goldwasser S., S. Micali, and C. Radiff, "The Knowledge Complexity of Interac-
tive Roof Systems"S AM Jour. on Computing, Vol. 18, 1989, pp. 186-208.

Goldwasser S., and M. Sipser'Private Coins vs. Public Coins in Interaati Froof
Systems"Proc. 18th STOC, 1986, pp. 59-68.

Hoeffding W.,, "Probability Inequalities for Sums of Bounded Randoamiables",
Journal of the American Satistical Association, Vol. 58, 1963, pp. 13-30.

HastadJ., "Pseudo-Random Generators under Uniform Assumptions”, to appear in
Proc. 22nd STOC, 1990.

Impagliazzo,R., L.A., Levin and M.G. Luby"Pseudo-random Generation from One-
Way Functions",21st STOC, 1989, pp. 12-24.

A. Joffe, "On a Set of Almost DeterministicIndependent Randomaviables",the
Annals of Probability, 1974, Vol. 2, No. 1, pp. 161-162.

Kannan,R., and Bachem, A., "Polynomial Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrbd&§AM J. Comput., Vol. 8, 1979, pp.
499-507.

Knuth, D.E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Addison-Weslg, Reading, Mass., 1969.

Knuth, D.E., "Deciphering a Linear Congruential EncryptioiEEE Trans. Info. Th.
IT-31, 1985, pp. 49-52.

Krawczyk, H., "Hav to Predict Congruential Generators", to appeatoarnal of
Algorithms. Presented aCrypto89.

Lagarias, J.C., and Reeds, J., "Unique Extrapolation of Polynomial Recurrences",
S AM J. Comput., Vol. 17, 1988, pp. 342-362.

L.A. Levin, "One-Way Function and Pseudorandom Generat@sthbinatorica,
Vol. 7, No. 4, 1987, pp. 357-363.

[L2]

[Lu]

[LUR]

[McS]

[N]
[NY]

[NW]

[O]

[P]

[R]

[RSA]

[Sch]

[Sh]

[Si]

[S]

-70-

L.A. Levin, "Homogeneous Measures and Polynomial Timerlants", Proc. 29th
| EEE Symp. on Foundations of Computer Science, 1988, pp 36-41.

M. Luby, "A Simple Parallel Algorithm for the Maximal Independent Set Problem",
SAM J. Comput., Vol. 15, No. 4, Ne. 1986, pp. 1036-1054.

M. Luby and C. Raaiff, "How to Construct Pseudorandom Permutations From Pseu-
dorandom Functions'SIAM Jour. on Computing, Vol. 17, 1988, pp. 373-386.

McWilliams, F.J., and N.J.A. Sloan&he Theory of Error Correcting Codes, North-
Holland Publishing Compan1977.

M. Naor, "Bit Commitment Using Pseudorandomne&&'ypto89 proceedings, 1989.

M. Naor and M. Yung, "Unersal One-Way Hash Functions and their Cryptographic
Applications",21st STOC, pp. 33-43, 1989.

Nissan,N. and Wigderson, A., "Hardness vs. Randomndasi;. of the 29th |IEEE
Symp. on Foundation of Computer Science, 1988, pp. 2-11.

Oren, Y., "On the Cunning Power of Cheating Verifiers: Some Observations About
Zero-Knavledge Proofs"Proc. of the 28th IEEE Symp. on Foundation of Computer
Science, 1987, pp. 462-471.

PlumsteadBoyar), J.B., "Inferring a Sequence Generated by a Linear Congruence”,
Proc. of the 23rd IEEE Symp. on Foundations of Computer Science, 1982, pp.
153-159.

M.O. Rabin, "Digitalized Signatures and PublieyKRunctions as Intractable asd-
toring", MIT/LCS/TR-212, 1979.

R. Rivest, A. Shamirand L. Adleman, "A Method for Obtaining Digital Signatures
and Public Ky Qyptosystems"Comm. ACM, Vol. 21, Feb1978, pp 120-126

Schrijer, A., "Theory of Linear and Integer Programming'ij/léy, Chichester1986.

A. Shamir "On the Generation of Cryptographically Strong Pseudorandom
Sequences"ACM Transaction on Computer Systems, Vol. 1, No. 1, February 1983,
pp. 38-44.

Simon,D., "Issues in the Definition of Zero Knowledge", M.Sc. Thesisyésity of
Toronto, 1989.

Stern,J., "Secret Linear Congruential Generators Are Not Cryptographically Secure”,
Proc. of the 28rd IEEE Symp. on Foundations of Computer Science, 1987.

-71-

[TW] Tompa, M., and H. Woll, "Random Self-Reducibility and Zero-Wlealge Interactie
Proofs of Possession of InformatioRPtoc. of the 28th IEEE Symp. on Foundation of
Computer Science, 1987, pp. 472-482.

[Y] Yao, A.C., "Theory and Applications of Trapdoor Functiofstc. of the 23rd IEEE
Symp. on Foundation of Computer Science, 1982, pp. 80-91.

[Y2] Yao, A.C., "Hav to Generate and Exchange SecreB&'tc. 27th FOCS, pp. 162-167,
1986.

