
Modern Cryptography, Probabilistic
Proofs and Pseudorandomness

(Second Edition – author’s copy)

Oded Goldreich

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science, Rehovot, Israel.

May 10, 2000

I

to Dana

c©Copyright 2000 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit

or commercial advantage and that new copies bear this notice and the full citation

on the first page. Abstracting with credit is permitted.

II

Preface

You can start by putting the do not disturb sign.

Cay, in Desert Hearts (1985).

The interplay between randomness and computation is one of the most fas-
cinating scientific phenomena uncovered in the last couple of decades. This
interplay is at the heart of modern cryptography and plays a fundamental
role in complexity theory at large. Specifically, the interplay of randomness
and computation is pivotal to several intriguing notions of probabilistic proof
systems and is the focal of the computational approach to randomness. This
book provides an introduction to these three, somewhat interwoven domains
(i.e., cryptography, proofs and randomness).

Modern Cryptography. Whereas classical cryptography was confined to
the art of designing and breaking encryption schemes (or “secrecy codes”),
Modern Cryptography is concerned with the rigorous analysis of any system
which should withstand malicious attempts to abuse it. We emphasize two
aspects of the transition from classical to modern cryptography: (1) the
widening of scope from one specific task to an utmost wide general class
of tasks; and (2) the move from an engineering-art which strives on ad-hoc
tricks to a scientific discipline based on rigorous approaches and techniques.

In this book we provide an introduction to the foundations of Modern
Cryptography. We focus on the paradigms, approaches and techniques used
to conceptualize, define and provide solutions to natural cryptographic prob-
lems. We also survey some of the fundamental results obtained using these
paradigms, approaches and techniques. The emphasis of the exposition is on
the need for and impact of a rigorous approach.

Probablistic Proof Systems. Various types of probabilistic proof systems
have played a central role in the development of computer science in the last
decade. These proof systems share a common (untraditional) feature – they
carry a probability of error; yet, this probability is explicitly bounded and

III

IV

can be reduced by successive application of the proof system. The gain
in allowing this untraditional relaxation is substantial, as demonstrated by
three well known results regarding interactive proofs, zero-knowledge proofs,
and probabilistic checkable proofs: In each of these cases, allowing a bounded
probability of error makes the system much more powerful and useful than
the traditional (errorless) counterparts.

Focusing on the three types of proof systems mentioned above, but going
also beyond them, we survey the basic definitions and results regarding prob-
abilistic proofs. Our exposition stresses both the similarities and differences
between the various types of probabilistic proofs.

Pseudorandomness. A fresh view at the question of randomness was
taken in the theory of computing: It has been postulated that a distribution
is pseudorandom if it cannot be told apart from the uniform distribution by
any efficient procedure. This paradigm, originally associating efficient pro-
cedures with polynomial-time algorithms, has been applied also with respect
to a variety of limited classes of such distinguishing procedures.

Starting with the general paradigm, we survey the archetypical case of
pseudorandom generators (withstanding any polynomial-time distinguisher),
as well as generators withstanding space-bounded distinguishers, the deran-
domization of complexity classes such as BPP, and some special-purpose
generators.

An underlying assumption

Much of the contents of this book depends on the widely believed conjecture
by which P 6= NP . This dependency is explicitly stated in some of the results
which make even stronger assumptions (such as the existence of one-way
functions), and is implicit in some results (such as the PCP Characterization
of NP) which would become uninteresting if P = NP .

On the nature of this book

This book offers an introduction and extensive survey to each of the three
areas mentioned above. It present both the basic notions and the most im-
portant (and sometimes advanced) results. The presentation is focused on
the essentials and does not ellaborate on details. In some cases it offers a
novel and illuminating perspective. The goal is to provide the reader with

1. A clear and structured overview of each of these areas.

2. Knowledge of the most important notions, ideas, techniques and results
in each area.

3. Some new insights into each of these areas.

V

It is hoped that the book may be useful both to a beginner (who has only
some background in the theory of computing), and to an expert in any of
these areas.

Organization

In Chapter 1 we survey the basic concepts, definitions and results in cryp-
tography. In particular, we survey the basic tools of cryptography – compu-
tational difficulty, pseudorandomness and zero-knowledge proofs – and the
basic utilities – encryption, signatures, and general cryptographic protocols.
Chapters 2 and 3 provides a wider perspective on two concepts mentioned
in Chapter 1. Specifically, Chapter 2 surveys various types of probabilistic
proof systems including interactive proofs, zero-knowledge proofs and prob-
abilistically checkable proofs (pcp). (The overlap with Chapter 1 is small,
and the presentation is quite different.) Likewise, Chapter 3 surveys various
notions of pseudorandom generators, viewing the one discussed in Chapter 1
as an archetypical instantiation of a general paradigm.

The three chapters may be read independently of each other. In particu-
lar, each starts with an individual brief introduction to the respective subject
matter. As hinted above, although the chapters do overlap, the perspectives
taken in them are different. Specifically, Chapter 1 treats the theoretical foun-
dations of a practical discipline, and so the presentation departs from practice
and emphasizes the importance of rigorous treatment for sound practice (and
not merely per se). In contrast, Chapters 2 and 3 depart from the theory
of computing and emphasize the intellectual contents of the material (rather
than its practical applicability). The fact that different perspectives co-exist
in the same book, let alone in the same author, is indicative of the nature of
the theory of computing.

The three chapters are augmented by four appendices and an extensive
bibliography. Most importantly, Appendix A provides some basic background
on computation and randomness.

We mention that important relations between randomness and compu-
tation were discovered also in other domains of the theory of computation.
Some examples are given in Appendix B.

Appendix C provides proofs of two basic results; one being a folklore for
which no proof has ever appeared, and the other for which the published proof
is both too terse and more complex than the alternative presented here.

VI

Notes for the second
edition

This is the second edition of the book. It benefits from corrections to some
errors pointed out by a few readers. In addition, Section 3.6.5 has been
revised in view of some recent exciting developments (most importantly, the
extractor of [353]).

Website for notices regarding this book

We maintain a website listing corrections of various types. The location of
the site is

http://www.wisdom.weizmann.ac.il/∼oded/book1.html

Relation to another book by the author

A frequently asked question refers to the relation of the current book to our
planned textbook Foundations of Cryptography, fragements of which have
appeared in [171]. The current book is almost unrelated to the planned text-
book. The only relation is that Chapter 1 provides a 30-page overview (or
summary) to what may become a 600-pages textbook on the Foundations of
Cryptography. In fact, the structure of Chapter 1 (specifically, Sections 1.2–
1.7) mimics the structure of the planned textbook. For further update re-
garding the state of the planned textbook, see

http://www.wisdom.weizmann.ac.il/∼oded/foc-book.html

VII

VIII

Acknowledgments

Much of the material was written while visiting the Laboratory for Computer
Science of MIT.

A preliminary version of Chapter 1 has appeared in the proceedings of
Advances in Cryptology – Crypto97, Springer’s Lecture Notes in Computer
Science (1997), Vol. 1294, pages 46–74.

Parts of the material presented in Chapter 2 have appeared in the pro-
ceedings of STACS97, Springer’s Lecture Notes in Computer Science (1997),
Vol. 1200, pages 595–611.

As for personal acknowledgments, I will only mention some of the people
to whom I am most indebt for my professional development. These include
Benny Chor, Shimon Even, Shafi Goldwasser, Leonid Levin, Silvio Micali,
and Avi Wigderson.

.... very little do we have and inclose which we can call our own
in the deep sense of the word. We all have to accept and learn,
either from our predecessors or from our contemporaries. Even
the greatest genius would not have achieved much if he had wished
to extract everything from inside himself. But there are many
good people, who do not understand this, and spend half their
lives wondering in darkness with their dreams of originality. I
have known artists who were proud of not having followed any
teacher and of owing everything only to their own genius. Such
fools!

[Goethe, Conversations with Eckermann, 17.2.1832]

IX

X

Contents

Preface III

Notes for the second edition VII

1 The Foundations of Modern Cryptography 1
1.1 Introduction . 1
1.2 Central Paradigms . 5

1.2.1 Computational Difficulty 7
1.2.2 Computational Indistinguishability 8
1.2.3 The Simulation Paradigm 8

1.3 Pseudorandomness . 9
1.3.1 The Basics . 10
1.3.2 Pseudorandom Functions 11

1.4 Zero-Knowledge . 12
1.4.1 The Basics . 12
1.4.2 Some Variants . 14

1.5 Encryption . 16
1.5.1 Definitions . 16
1.5.2 Constructions . 18
1.5.3 Security beyond passive attacks 20

1.6 Signatures . 21
1.6.1 Definitions . 22
1.6.2 Constructions . 23
1.6.3 Two variants . 25

1.7 Cryptographic Protocols . 25
1.7.1 Definitions . 26
1.7.2 Constructions . 27

1.8 Some Notes . 28
1.8.1 General notes . 28
1.8.2 Specific notes . 32

1.9 Historical Perspective . 35
1.10 Two Suggestions for Future Research 37
1.11 Some Suggestions for Further Reading 38

XI

XII CONTENTS

2 Probabilistic Proof Systems 41
2.1 Introduction . 41
2.2 Interactive Proof Systems . 43

2.2.1 Definition . 43
2.2.2 The Role of Randomness 45
2.2.3 The Power of Interactive Proofs 45
2.2.4 The Interactive Proof System Hierarchy 49
2.2.5 How Powerful Should the Prover be? 50

2.3 Zero-Knowledge Proof Systems 51
2.3.1 A Sample Definition 52
2.3.2 The Power of Zero-Knowledge 53
2.3.3 The Role of Randomness 55

2.4 Probabilistically Checkable Proof Systems 56
2.4.1 Definition . 56
2.4.2 The Power of Probabilistically Checkable Proofs . . . 57
2.4.3 PCP and Approximation 60
2.4.4 More on PCP itself . 61
2.4.5 The Role of Randomness 64

2.5 Other Probabilistic Proof Systems 64
2.5.1 Restricting the Prover’s Strategy 64
2.5.2 Non-Interactive Proofs 67
2.5.3 Proofs of Knowledge 68
2.5.4 Refereed Games . 68

2.6 Concluding Remarks . 68
2.6.1 Comparison among the various notions 69
2.6.2 The Story . 70
2.6.3 Open Problems . 74

3 Pseudorandom Generators 77
3.1 Introduction . 77
3.2 The General Paradigm . 80
3.3 The Archetypical Case . 81

3.3.1 A Short Discussion . 83
3.3.2 Some Basic Observations 83
3.3.3 Constructions . 86
3.3.4 Pseudorandom Functions 90

3.4 Derandomization of time-complexity classes 91
3.5 Space Pseudorandom Generators 93
3.6 Special Purpose Generators 97

3.6.1 Pairwise-Independence Generators 98
3.6.2 Small-Bias Generators 100
3.6.3 Random Walks on Expanders 101
3.6.4 Samplers . 103
3.6.5 Dispersers, Extractors and Weak Random Sources . . 106

3.7 Concluding Remarks . 109

CONTENTS XIII

3.7.1 Discussion . 109
3.7.2 Historical Perspective 110
3.7.3 Open Problems . 112

A Background on Randomness and Computation 113
A.1 Probability Theory – Three Inequalities 113
A.2 Computational Models and Complexity classes 116

A.2.1 P, NP, and more . 116
A.2.2 Probabilistic Polynomial-Time 117
A.2.3 Non-Uniform Polynomial-Time 120

A.2.4 Oracle Machines . 122
A.2.5 Space Bounded Machines 123
A.2.6 Average-Case Complexity 124

A.3 Complexity classes – Glossary 124
A.4 Some Basic Cryptographic Settings 126

A.4.1 Encryption Schemes 127
A.4.2 Digital Signatures and Message Authentication 128

A.4.3 The RSA and Rabin Functions 130

B Randomized Computations 133
B.1 Randomized Algorithms . 134

B.1.1 Approx. Counting of DNF satisfying assignments . . . 134
B.1.2 Finding a perfect matching 135

B.1.3 Testing whether polynomials are identical 138
B.1.4 Randomized Rounding applied to MaxSAT 139
B.1.5 Primality Testing . 140
B.1.6 Testing Graph Connectivity via a random walk 141
B.1.7 Finding minimum cuts in graphs 142

B.2 Randomness in Complexity Theory 143
B.2.1 Reducing (Approximate) Counting to Deciding 143

B.2.2 Two-sided error versus one-sided error 145
B.2.3 The permanent: Worst-Case vs Average Case 146

B.3 Randomness in Distributed Computing 147
B.3.1 Testing String Equality 148
B.3.2 Routing in networks 149
B.3.3 Byzantine Agreement 150

B.4 Bibliographic Notes . 151

C Two proofs 153
C.1 Parallel repetition of interactive proofs 153
C.2 A generic Hard-Core Predicate 158

C.2.1 A motivating discussion 159
C.2.2 Back to the formal argument 161

C.2.3 Improved Implementation of Algorithm A
′ 162

XIV CONTENTS

D Related Surveys by the Author 165

Bibliography 167

List of Figures

1.1 The Fiat–Shamir Identification Scheme [151] – basic version. 15
1.2 The Blum–Goldwasser Public–Key Encryption Scheme [69]. . 20

2.1 Comparison of various proof systems 69

3.1 Pseudorandom generators at a glance 109

XV

Chapter 1

The Foundations of
Modern Cryptography

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906–1995)

Summary – In our opinion, the Foundations of Cryptogra-
phy are the paradigms, approaches and techniques used to con-
ceptualize, define and provide solutions to natural cryptographic
problems. In this chapter, we survey some of these paradigms,
approaches and techniques as well as some of the fundamental
results obtained using them. Special effort is made in attempt to
dissolve common misconceptions regarding these paradigms and
results.

Throughout this chapter, we assume some familiarity with modern cryp-
tography; specifically with the basic settings of private-key and public-key
cryptography. The unfamiliar reader is referred to Appendix A.4 for the
adequate background.

1.1 Introduction

Cryptography is concerned with the construction of schemes which are robust
against malicious attempts to make these schemes deviate from their pre-
scribed functionality. Given a desired functionality, a cryptographer should

1

2 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

design a scheme which not only satisfies the desired functionality under “nor-
mal operation”, but also maintains this functionality in face of adversarial
attempts which are devised after the cryptographer has completed his/her
work. The fact that an adversary will devise its attack after the scheme has
been specified, makes the design of such schemes very hard. In particular,
the adversary will try to take actions other than the ones the designer had
envisioned. Thus, our approach is that it makes little sense to make assump-
tions regarding the specific strategy that the adversary may use. The only
assumptions which can be justified refer to the computational abilities of the
adversary. Furthermore, it is our opinion that the design of cryptographic
systems has to be based on firm foundations; whereas ad-hoc approaches and
heuristics are a very dangerous way to go. A heuristic may make sense when
the designer has a very good idea about the environment in which a scheme
is to operate, yet a cryptographic scheme has to operate in a maliciously
selected environment which typically transcends the designer’s view.

Providing firm foundations to Cryptography has been a major research
project in the last two decades. Indeed, the pioneering paper of Diffie and
Hellman [122] should be considered the initiator of this project. Two major
(interleaved) activities have been:

1. Definitional Activity: The identification, conceptualization and rigorous
definition of cryptographic tasks which capture natural security con-
cerns; and

2. Constructive Activity: The study and design of cryptographic schemes
satisfying definitions as in (1).

The definitional activity provided a definition of secure encryption [201].
The reader may be surprised: what is there to define (beyond the basic setting
formulated in [122])? Let us answer with a question (posed by Goldwasser
and Micali [201]): should an encryption scheme which leaks the first bit of the
plaintext be considered secure? Clearly, the answer is negative and so some
naive conceptions regarding secure encryption (e.g., “a scheme is secure if it
is infeasible to obtain the plaintext from the ciphertext when not given the
decryption key”) turn out to be unsatisfactory. The lesson is that even when
a natural concern (e.g., “secure communication over insecure channels”) has
been identified, work still needs to be done towards a satisfactory (rigorous)
definition of the underlying concept. The definitional activity also undertook
the treatment of unforgeable signature schemes [203]: One result of the treat-
ment was the refutation of a “folklore theorem” (attributed to Ron Rivest)
by which “a signature scheme that is robust against chosen message attack
cannot have a proof of security”. The lesson here is that unclear/unsound
formulations (i.e., those underlying the above folklore paradox) lead to false
conclusions.

Another existing concept which was re-examined is the then-fuzzy notion

1.1. INTRODUCTION 3

of a “pseudorandom generator”. Although ad-hoc “pseudorandom gener-
ators” which pass some ad-hoc statistical tests may be adequate for some
statistical samplings, they are certainly inadequate for use in Cryptography:
For example, sequences generated by linear congruential generators are easy
to predict [75, 158] and endanger cryptographic applications even when not
given in the clear [44]. The alternative suggested by Blum, Goldwasser, Micali
and Yao [72, 201, 364] is a robust notion of pseudorandom generators – such
a generator produces sequences which are computationally indistinguishable
from truly random sequences, and thus, can replace truly random sequences
in any practical application. We mention that the notion of computational
indistinguishability has played a central role in the formulation of other cryp-
tographic concepts (such as secure encryption and zero-knowledge).

The definitional activity has identified concepts which were not known
before. One well-known example is the introduction of zero-knowledge proofs
by Goldwasser, Micali and Rackoff [202]. A key paradigm crystallized in
making the latter definition is the simulation paradigm: A party is said to
have gained nothing from some extra information given to it if it can generate
(i.e., simulate the receipt of) essentially the same information by itself (i.e.,
without being given this information). The simulation paradigm plays a
central role in the related definitions of secure multi-party computations (with
respect to varying settings such as in [274, 31, 200, 82, 51, 91]).

The definitional activity is an on-going process. Its more recent targets
include session-key problems [51, 52, 35], mobile adversaries (a.k.a “Proactive
Security”) [300, 92, 218], Electronic Cash [97, 99, 157, 307, 338], Coercibil-
ity [88, 85], Threshold Cryptography [121], and more.

The constructive activity. As new definitions of cryptographic tasks
emerged, the first challenge was to demonstrate that they can be achieved.
Thus, the first goal of the constructive activity is to demonstrate the plau-
sibility of obtaining certain goals. Standard assumptions such as that the
RSA is hard to invert were used to construct secure public-key encryption
schemes [201, 364] and unforgeable digital schemes [203]. We stress that
assuming that RSA is hard to invert is different from assuming that RSA
is a secure encryption scheme. Furthermore, plain RSA (alike any deter-
ministic public-key encryption scheme) is not secure (as one can easily dis-
tinguish the encryption of one predetermined message from the encryption
of another). Yet, RSA can be easily transformed into a secure public-key
encryption scheme by using a construction [8] which is reminiscent of a com-
mon practice (of padding the message with random noise). We stress that
the resulting scheme is not merely believed to be secure but rather its se-
curity is linked to a much simpler assumption (i.e., the assumption that
RSA is hard to invert). Likewise, although plain RSA signing is vulnera-
ble to “existential forgery” (and other attacks), RSA can be transformed
into a signature scheme which is unforgeable (provided RSA is hard to in-

4 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

vert) [203, 49]. Using the assumption that RSA is hard to invert, one can
construct pseudorandom generators [72, 364], zero-knowledge proofs for any
NP-statement [186], and multi-party protocols for securely computing any
multi-variant function [366, 187].

A major misconception regarding theoretical work in Cryptography stems
from not distinguishing work aimed at demonstrating the plausibility of ob-
taining certain goals from work aimed at suggesting paradigms and/or con-
structions which can be used in practice. For example, the general results
concerning zero-knowledge proofs [186] and multi-party protocols [366, 187],
mentioned above, are merely claims of plausibility: What they say is that
any problem of the above type (i.e., any protocol problem as discussed in
Section 1.7) can be solved in principle. This is a very valuable piece of in-
formation. Thus, if you have a specific problem which falls into the above
category then you should know that the problem is solvable in principle.
However, if you need to construct a real system then you should probably
construct a solution from scratch (rather than employing the above general
results). Typically, some tools developed towards solving the general prob-
lem may be useful in solving the specific problem. Thus, we distinguish three
types of results:

1. Plausibility results: Here we refer to mere statements of the type “any
NP-language has a zero-knowledge proof system” (cf., Goldreich, Micali
and Wigderson [186]).

2. Introduction of paradigms and techniques which may be applicable in
practice: Typical examples include construction paradigms as the “choose
n out of 2n technique” of Rabin [309], the “authentication tree” of
Merkle [267, 269], the “randomized encryption” paradigm of Gold-
wasser and Micali [201], proof techniques as the “hybrid argument”
of [201] (cf., [171, Sec. 3.2.3]), and many others.

3. Presentation of schemes which are suitable for practical applications:
Typical examples include the public-key encryption schemes of Blum
and Goldwasser [69], the digital signature schemes of [132, 128, 111],
the session-key protocols of [51, 52], and many others.

Typically, it is quite easy to determine to which of the above categories a spe-
cific technical contribution belongs. Unfortunately, the classification is not
always stated in the paper; however, it is typically evident from the construc-
tion. We stress that all results we are aware of (and in particular all results
cited in this chapter), come with an explicit construction. Furthermore, the
security of the resulting construction is explicitly related to the complexity
of certain intractable tasks. In contrast to some uninformed beliefs, for each
of these results there is an explicit translation of concrete intractability as-
sumptions (on which the scheme is based) into lower bounds on the amount

1.2. CENTRAL PARADIGMS 5

of work required to violate the security of the resulting scheme.1 We stress
that this translation can be invoked for any value of the security parameter.
Doing so determines whether a specific construction is adequate for a specific
application under specific reasonable intractability assumptions. In many
cases the answer is in the affirmative, but in general this does depend on the
specific construction as well as on the specific value of the security parameter
and on what is reasonable to assume for this value. When we say that a
result is suitable for practical applications (i.e., belongs to Type 3 above), we
mean that it offers reasonable security for reasonable implementation values
of the security parameter and reasonable assumptions.

Other activities. This chapter is focused on the definitional and con-
structive activities mentioned above. Other activities in the foundations of
cryptography include the exploration of new directions and the marking of
limitations. For example, we mention novel modes of operation such as split-
entities [59, 121, 271], batching operations [150], off-line/on-line signing [132]
and Incremental Cryptography [39, 40]. On the limitation side, we men-
tion [223, 180]. In particular, [223] indicates that certain tasks (e.g., secret
key exchange) are unlikely to be achieved by using a one-way function in a
“black-box manner”.

Organization

Although encryption, signatures and secure protocols are the primary tasks of
Cryptography, we start our presentation with basic paradigms and tools such
as computational difficulty (Section 1.2), pseudorandomness (Section 1.3) and
zero-knowledge (Section 1.4). Once these are presented, we turn to encryp-
tion (Section 1.5), signatures (Section 1.6) and secure protocols (Section 1.7).
We conclude with some notes (Section 1.8), a short historical perspective
(Section 1.9), two suggestions for future research (Section 1.10) and some
suggestions for further reading (Section 1.11).

PART I : Basic Tools

1.2 Central Paradigms

Modern Cryptography, as surveyed here, is concerned with the construction
of efficient schemes for which it is infeasible to violate the security feature.
Thus, we need a notion of efficient computations as well as a notion of in-
feasible ones. The computations of the legitimate users of the scheme ought

1 The only exception to the latter statement is Levin’s observation regarding the exis-
tence of a universal one-way function (cf., [249] and [171, Sec. 2.4.1]).

6 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

be efficient; whereas violating the security features (via an adversary) ought
to be infeasible. Our notions of efficient and infeasible computations are
“asymptotic”: They refer to the running time as a function of the security
parameter. This is done in order to avoid cumbersome formulations which
refer to the actual running-time on a specific model for specific values of the
security parameter. As discussed above one can easily derive such specific
statements from the asymptotic treatment. Actually, the term “asymptotic”
is misleading since, from the functional treatment of the running-time (as a
function of the security parameter), one can derive statements for any value
of the security parameter.

Efficient computations are commonly modeled by computations which are
polynomial-time in the security parameter. The polynomial bounding the
running-time of the legitimate user’s strategy is fixed and typically explicit
and small (still in some cases it is indeed a valuable goal to make it even
smaller). Here (i.e., when referring to the complexity of the legitimate user)
we are in the same situation as in any algorithmic research. Things are
different when referring to our assumptions regarding the computational re-
sources of the adversary. A common approach is to postulate that the latter
are polynomial-time too, where the polynomial is not a-priori specified. In
other words, the adversary is restricted to the class of efficient computations
and anything beyond this is considered to be infeasible. Although many def-
initions explicitly refer to this convention, this convention is inessential

to any of the results known in the area. In all cases, a more general (and
yet more cumbersome) statement can be made by referring to adversaries of
running-time bounded by any function (or class of functions). For example,
for any function T :N 7→N (e.g., T (n) = 2

3
√

n), we may consider adversaries
which on security parameter n run for at most T (n) steps. Doing so we (im-
plicitly) define as infeasible any computation which (on security parameter
n) requires more than T (n) steps. A typical result has the form2

If RSA with n-bit moduli cannot be inverted in time T (n) then
the following construction (using security parameter n) is se-
cure against adversaries operating in time T ′(n) = T (g(n))/f(n),
where f and g−1 are explicitly given polynomials.

However, most papers prefer to present a simplified statement of the form “if
RSA cannot be inverted in polynomial-time then the following construction
is secure against polynomial-time adversaries”. This is unfortunate since it
is the specific functions f and g, which are (sometimes explicit and) always

2 Actually, the form below is over-simplified. The actual statement refers also to the suc-
cess probabilities of both attacks. It reads: If RSA with n-bit moduli cannot be inverted in
time T (n), with success probability greater than ǫ(n), then the following construction (us-
ing security parameter n) cannot be broken by adversaries operating in time T ′(n) with suc-
cess probability greater than ǫ′(n), where T ′(n) and ǫ′(n) are related to T (g(n)) and ǫ(g(n))
via explicit polynomial expressions and g−1 is an explicitly given polynomial. Specifically,
T (g(n)) = poly(n, T ′(n))/poly(ǫ′(n)) and ǫ(g(n)) = poly(ǫ′(n))/poly(n, T ′(n)). Typically,
T (g(n)) = poly(n/ǫ′(n)) · T ′(n) and ǫ(g(n)) = poly(ǫ′(n))/poly(T ′(n)).

1.2. CENTRAL PARADIGMS 7

implicit in the proof, that determine the practicality of the construction.3

The smaller f and g−1, the better. Our rule of thumb is that results with
g−1(n) = O(n) (e.g., g(n) = n/2) are practical, whereas results with, say,
g−1(n) = n4 (i.e., g(n) = 4

√
n) are to be considered merely plausibility results.

Lastly, we consider the notion of a negligible probability. The idea behind
this notion is to have a robust notion of rareness: A rare event should occur
rarely even if we repeat the experiment for a feasible number of times. That
is, if we consider any polynomial-time computation to be feasible then any
function f : N 7→N so that (1 − f(n))p(n) > 0.99, for any polynomial p, is
considered negligible (i.e., f is negligible if for any polynomial p the function
f(·) is bounded above by 1/p(·)). However, if we consider the function T (n)
to provide our notion of infeasible computation then functions bounded above
by 1/T (n) are considered negligible (in n).

In the rest of this chapter we adopt the simpler convention of defining
infeasible computations as ones which cannot be conducted in polynomial-
time. (However, we explicitly state the level of practicality of each of the
results presented.) The interested reader is referred to [257] for a more general
treatment.

1.2.1 Computational Difficulty

Modern Cryptography is concerned with the construction of schemes which
are easy to operate (properly) but hard to foil. Thus, a complexity gap (i.e.,
between the complexity of proper usage and the complexity of defeating the
prescribed functionality) lies in the heart of Modern Cryptography. How-
ever, gaps as required for Modern Cryptography are not known to exist –
they are only widely believed to exist. Indeed, almost all of Modern Cryp-
tography rises or falls with the question of whether one-way functions exist
(e.g., see [214, 175, 321, 279, 186] for positive results and [249, 321, 299] for
negative ones). One-way functions are functions which are easy to evaluate
but hard (on the average) to invert.

Definition 1.1 (one-way functions [122]): A function f :{0, 1}∗ 7→{0, 1}∗ is
called one-way if

• easy direction: there is an efficient algorithm which on input x outputs
f(x).

• hard direction: given f(x), where x is uniformly selected, it is infeasible
to find, with non-negligible probability, a preimage of f(x). That is,
any feasible algorithm which tries to invert f may succeed only with

3 The importance of explicitly relating the security of the resulting scheme to the quan-
tified intractability assumption has been advocated (and practiced) in a sequence of recent
works by Bellare and Rogaway (cf., [48, p. 343]).

8 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

negligible probability, where the probability is taken over the choices of
x and the algorithm’s coin tosses.

Warning: The above definition, as well as all other definitions in this chap-
ter, avoids some technicalities and so is imprecise.4 For precise definitions,
the interested reader is referred to other texts (see Section 1.11).

Some known constructions require special types of one-way functions:
One-way permutations are length-preserving 1-1 (one-way) functions, com-
monly viewed as collections of finite permutations, each having its own do-
main. Such a collection is specified by efficient algorithms for selecting a
(succinct representation of a) permutation from the collection, for sampling
the domain of a given permutation, and – of course – for evaluating a given
permutation. Some construction require one-way permutations with a trap-
door. That is, the permutation-selection algorithm generates a representation
of the permutation along with some trapdoor information, so that it is easy
to invert the permutation given this trapdoor but it remains hard to do so
when only given the representation of the permutation. The RSA (cf., [320]
or Appendix A.4) is a popular candidate trapdoor permutation.

1.2.2 Computational Indistinguishability

A central notion in Modern Cryptography is that of “effective similarity”.
The underlying idea is that we do not care if objects are equal or not – all
we care is whether a difference between the objects can be observed by a
feasible computation. In case the answer is negative, we may say that the
two objects are equivalent as far as any practical application is concerned.
Indeed, it will be our common practice to interchange such (computationally
indistinguishable) objects.

Definition 1.2 (computational indistinguishability [201, 364]): Let X =
{Xn}n∈N and Y = {Yn}n∈N be probability ensembles such that each Xn and
Yn ranges over strings of length n. We say that X and Y are computationally
indistinguishable if for every feasible algorithm A the difference

dA(n)
def
= |Pr[A(Xn)=1]− Pr[A(Yn)=1]|

is a negligible function in n.

1.2.3 The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express
the intuitive requirement that an adversary “gains nothing substantial” by

4 In this case, the missing technicality is requiring that f does not shrink its input too
much; that is, |x| = poly(|f(x)|), ∀x. (Otherwise, the inversion task is infeasible for trivial
reasons, and has no useful consequences.)

1.3. PSEUDORANDOMNESS 9

deviating from the prescribed behavior of an honest user. The approach
initiated in [201, 202] is that the adversary gains nothing if whatever it can
obtain by deviating from the prescribed honest behavior can also be obtained
in an appropriately defined “ideal model”. The definition of the “ideal model”
captures what we want to achieve in terms of security, and so is specific to
the security concern to be addressed. For example, an encryption scheme is
considered secure (against eavesdropping) if an adversary which eavesdrops
a channel on which encrypted messages are sent, gains nothing over a user
which does not tap this channel. Thus, the encryption scheme “simulates”
an ideal private channel between parties.

A notable property of the above simulation paradigm, as well as of the
entire approach surveyed here, is that this approach is very liberal with re-
spect to its view of the abilities of the adversary as well as to what might
constitute a gain for the adversary. For example, we consider an encryption
scheme to be secure only if it can simulate a private channel. Indeed, failure
to provide such a simulation does not necessarily mean that the encryption
scheme can be “broken” in some intuitively harmful sense. Thus, it seems
that our approach to defining security is overly cautious. However, it seems
impossible to come up with definitions of security which distinguish “break-
ing the scheme in a harmful sense” from “breaking it in a non-harmful sense”.
Firstly, even in a specific application, the notion of a “harmful breaking” is a
very evasive one (and typically becomes clear only after the system is broken).
More importantly, whatever is harmful is application-dependent, whereas a
good definition of security ought to be application independent (as otherwise
using the scheme in any new application will require a full re-evaluation of
its security).

1.3 Pseudorandomness

In practice “pseudorandom” sequences are used instead of truly random se-
quences in many applications. The underlying belief is that if an (efficient)
application performs well when using a truly random sequence then it will
perform essentially as well when using a “pseudorandom” sequence. However,
this belief is not supported by previous characterizations of “pseudorandom-
ness” (e.g., such as passing the statistical tests in Knuth’s book [238] or having
large linear-complexity5). In contrast, the above belief is an easy corollary
of defining pseudorandom distributions as ones which are computationally
indistinguishable from uniform distributions.

5 The linear complexity of a sequence is defined as the length of the shortest Linear
Feedback Shift Register which produces it. See [207].

10 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

1.3.1 The Basics

We are interested in pseudorandom sequences which can be determined by
and generated from short random seeds. That is,

Definition 1.3 (pseudorandom generator [72, 364]): Let ℓ : N 7→ N be so
that ℓ(n) > n, ∀n. A pseudorandom generator, with stretch function ℓ, is
an efficient (deterministic) algorithm which on input a random n-bit seed
outputs a ℓ(n)-bit sequence which is computationally indistinguishable from a
uniformly chosen ℓ(n)-bit sequence.

We stress that pseudorandom sequences can replace truly random sequences
not only in “ordinary” computations but also in cryptographic ones. That
is, any cryptographic application which is secure when the legitimate parties
use truly random sequences, is also secure when the legitimate parties use
pseudorandom sequences. Various cryptographic applications of pseudoran-
dom generators will be presented in the sequel, but first let us consider the
construction of pseudorandom generators. A key paradigm is presented next.
It uses the notion of a hard-core predicate [72] of a (one-way) function: The
predicate b is a hard-core of the function f if b is easy to evaluate but b(x)
is hard to predict from f(x). That is, it is infeasible, given f(x) when x is
uniformly chosen, to predict b(x) substantially better than with probability
1/2. Intuitively, b “inherits in a concentrated sense” the difficulty of inverting
f . (Note that if b is a hard-core of an efficiently computable 1-1 function f
then f must be one-way.)

The iteration paradigm [72]: Let f be a 1-1 function which is length-
preserving and efficiently computable, and b be a hard-core predicate of f .
Then

G(s) = b(s) · b(f(s)) · · · b(f ℓ(|s|)−1(s))

is a pseudorandom generator (with stretch function ℓ), where f i+1(x)
def
=

f(f i(x)) and f0(x)
def
= x. As a concrete example, consider the permutation

x 7→ x2 mod N , where N is the product of two primes each congruent to

3 (mod 4). We have GN (s) = lsb(s) · lsb(s2 mod N) · · · lsb(s2
ℓ(|s|)−1

mod
N), where lsb(x) is the least significant bit of x (which by [8, 359] is a
hard-core of the modular squaring function). We note that for any one-
way permutation f ′, the inner-product mod 2 of x and r is a hard-core of
f(x, r) = (f ′(x), r) [183]. Thus, using any one-way permutation, we can
easily construct pseudorandom generators.

The iteration paradigm is even more beneficial when one has a hard-core
function rather than a hard-core predicate: h is called a hard-core function
of f if h is easy to evaluate but, for a random x ∈ {0, 1}∗, the distribution
f(x) · h(x) is pseudorandom. (Note that a hard-core predicate is a special
case.) Using a hard-core function h for f , we obtain the pseudorandom

1.3. PSEUDORANDOMNESS 11

generator G′(s) = h(s) · h(f(s)) · h(f2(s)) · · ·. In particular, assuming the
intractability of the subset sum problem (for suitable densities) or of the
decoding of random linear codes, this paradigm was used in [222, 152] to
construct very efficient pseudorandom generators. Alternatively, encouraged
by the results in [8, 216], we conjecture that the first n/2 least significant
bits of the argument constitute a hard-core function of the modular squaring
function for n-bit long moduli. This conjecture yields an efficient pseudoran-
dom generator: G′

N (s) = lsbN (s) · lsbN (s2 mod N) · lsbN (s4 mod N) · · ·,
where lsbN (x) denotes the 0.5 log2N least significant bits of x.

A plausibility result [214]: Pseudorandom generators exist if (and only
if) one-way functions exist. Unlike the construction of pseudorandom gener-
ators from one-way permutations, the known construction of pseudorandom
generators from arbitrary one-way functions has no practical significance. It
is indeed an important open problem to provide an alternative construction
which may be practical and still utilize an arbitrary one-way function.

1.3.2 Pseudorandom Functions

Pseudorandom generators allow to efficiently generate long pseudorandom
sequences from short random seeds. Pseudorandom functions (defined be-
low) are even more powerful: They allow efficient direct access to a huge
pseudorandom sequence (which is not feasible to scan bit-by-bit). Put in
other words, pseudorandom functions can replace truly random functions in
any application where the function is used in a black-box fashion (i.e., the
adversary may indirectly obtain the value of the function at arguments of its
choice, but does not have the description of the function and so is not able
to evaluate the function by itself).6

Definition 1.4 (pseudorandom functions [175]): A pseudorandom function
is an efficient (deterministic) algorithm which given an n-bit seed, s, and
an n-bit argument, x, returns an n-bit string, denoted fs(x), so that it is
infeasible to distinguish the responses of fs, for a uniformly chosen s, from
the responses of a truly random function.

That is, the distinguisher is given access to a function and is required to
distinguish a random function f : {0, 1}n 7→ {0, 1}n from a function chosen
uniformly in {fs : s∈ {0, 1}n}. We stress that in the latter case the distin-
guisher is not given the description of the function fs (i.e., the seed s), but
rather may obtain the value of fs on any n-bit string of its choice.7

6 This is different from the Random Oracle Model of [50], where the adversary has a
direct access to a random oracle (that is later “implemented” by a function, the description
of which is given also to the adversary).

7 Typically, the distinguisher stands for an adversary that attacks a system which uses a
pseudorandom function. The values of the function on arguments of the adversary’s choice

12 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

Pseudorandom functions are a very useful cryptographic tool (cf., [176,
166] and Section 1.5): One may first design a cryptographic scheme assum-
ing that the legitimate users have black-box access to a random function,
and next implement the random function using a pseudorandom function.
We stress that the description of the pseudorandom function is given to the
legitimate users but not to the adversary. (The adversary may be able to
obtain from the legitimate users the value of the function on arguments of
its choice, but not the function’s description.)

From pseudorandom generators to pseudorandom functions [175]:
Let G be a pseudorandom generator with stretching function ℓ(n) = 2n, and
let G0(s) (resp., G1(s)) denote the first (resp., last) n bits in G(s) where
s ∈ {0, 1}n. We define the function ensemble {fs :{0, 1}|s| 7→{0, 1}|s|}, where
fs(σ|s| · · ·σ2σ1) = Gσ|s|

(· · ·Gσ2 (Gσ1(s)) · · ·). This ensemble is pseudoran-
dom.

Alternative constructions of pseudorandom functions have been suggested
in [283, 285].

1.4 Zero-Knowledge

Loosely speaking, zero-knowledge proofs are proofs which yield nothing be-
yond the validity of the assertion. That is, a verifier obtaining such a proof
only gains conviction in the validity of the assertion. Using the simulation
paradigm this requirement is stated by postulating that anything that is fea-
sibly computable from a zero-knowledge proof is also feasibly computable
from the valid assertion alone.

1.4.1 The Basics

The above informal paragraph refers to proofs as to interactive and random-
ized processes.8 That is, here a proof is a (multi-round) protocol for two
parties, called verifier and prover, in which the prover wishes to convince
the verifier of the validity of a given assertion. Such an interactive proof
should allow the prover to convince the verifier of the validity of any true
assertion, whereas no prover strategy may fool the verifier to accept false as-
sertions. Both the above completeness and soundness conditions should hold

are obtained from the legitimate users of the system who, unlike the adversary, know the
seed s. The definition implies that the adversary will not be more successful in its attack
than it could have been if the system was to use a truly random function. Needless to say
that the latter system is merely a Gedanken Experiment (it cannot be implemented since
it is infeasible to even store a truly random function).

8 The formulation applies also to “proofs” in the ordinary sense of being strings (i.e.,
NP-proofs). However, zero-knowledge NP-proofs exist only in a trivial manner (i.e., for
languages in BPP).

1.4. ZERO-KNOWLEDGE 13

with high probability (i.e., a negligible error probability is allowed). The
prescribed verifier strategy is required to be efficient. No such requirement
is made with respect to the prover strategy; yet we will be interested in “rel-
atively efficient” prover strategies (see below). Zero-knowledge is a property
of some prover-strategies. More generally, we consider interactive machines
which yield no knowledge while interacting with an arbitrary feasible adver-
sary on a common input taken from a predetermined set (in our case the set
of valid assertions).

Definition 1.5 (zero-knowledge [202]): A strategy A is zero-knowledge on
inputs from S if, for every feasible strategy B∗, there exists a feasible compu-
tation C∗ so that the following two probability ensembles are computationally
indistinguishable:

1. {(A,B∗)(x)}x∈S
def
= the output of B∗ when interacting with A on com-

mon input x ∈ S; and

2. {C∗(x)}x∈S
def
= the output of C∗ on input x ∈ S.

Note that whereas A and B∗ above are interactive strategies, C∗ is a non-
interactive computation. The above definition does not account for aux-
iliary information which an adversary may have prior to entering the in-
teraction. Accounting for such auxiliary information is essential for using
zero-knowledge proofs as subprotocols inside larger protocols (see [180, 188]).
Another concern is that we prefer that the complexity of C∗ be bounded as a
function of the complexity of B∗. Both concerns are taken care of by a more
strict notion of zero-knowledge presented next.

Definition 1.6 (zero-knowledge, revisited [188]): A strategy A is black-box
zero-knowledge on inputs from S if there exists an efficient (universal) subroutine-
calling algorithm U so that for every feasible strategy B∗, the probability
ensembles {(A,B∗)(x)}x∈S and {UB∗

(x)}x∈S are computationally indistin-
guishable, where UB∗

is algorithm U using strategy B∗ as a subroutine.

Note that the running time of UB∗

is at most the running-time of U times the
running-time of B∗. Actually, the first term may be replaced by the number
of times U invokes the subroutine. Almost all known zero-knowledge proofs
are in fact black-box zero-knowledge.9

9 The only exception we are aware of are contrived protocols constructed in [180] (for
the purpose of separating Definitions 1.5 and 1.6), and the 3-message protocol of [209]
(designed – using non-standard assumptions – so to bypass the “triviality result” of [180]
regarding 3-message black-box zero-knowledge proofs).

14 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

A general plausibility result [186]: Assuming the existence of commit-
ment schemes, there exist (black-box) zero-knowledge proofs for membership
in any NP-language. Furthermore, the prescribed prover strategy is efficient,
provided it is given an NP-witness to the assertion to be proven. This makes
zero-knowledge a very powerful tool in the design of cryptographic schemes
and protocols.

Zero-knowledge as a tool: In a typical cryptographic setting, a user,
referred to as A, has a secret and is supposed to take some steps depending
on its secret. The question is how can other users verify that A indeed
took the correct steps (as determined by A’s secret and some publicly known
information). Indeed, if A discloses its secret then anybody can verify that it
took the correct steps. However, A does not want to reveal its secret. Using
zero-knowledge proofs we can satisfy both conflicting requirements. That is,
A can prove in zero-knowledge that it took the correct steps. Note that A’s
claim to having taken the correct steps is an NP-assertion and that A has
an NP-witness to its validity (i.e., its secret!). Thus, by the above result,
it is possible for A to efficiently prove the correctness of its actions without
yielding anything about its secret. (However, in practice one may want to
design a specific zero-knowledge proof, tailored to the specific application and
so being more efficient, rather than invoking the general result above. Thus,
the development of techniques for the construction of efficient zero-knowledge
proof systems is still of interest – see, for example, [179, 80, 145, 235, 118,
112, 297, 324, 194, 113].)

1.4.2 Some Variants

Perfect zero-knowledge arguments: This term captures two deviations
from the above definition; the first being a strengthening and the second
being a weakening. Perfect zero-knowledge strategies are such for which the
ensembles in Definition 1.5 are identically distributed (rather than computa-
tionally indistinguishable). This means that the zero-knowledge clause holds
regardless of the computational abilities of the adversary. However, argu-
ments (aka computationally sound proofs) differ from interactive proofs in
having a weaker soundness clause: it is infeasible (rather than impossible)
to fool the verifier to accept false assertion (except with negligible probabil-
ity) [78]. Perfect zero-knowledge arguments for NP were constructed using
any one-way permutation [282].

Non-Interactive zero-knowledge proofs [67, 144]: Here the interac-
tion between the prover and the verifier consists of the prover sending a
single message to the verifier (as in “classical proofs”). In addition, both
players have access to a “random reference string” which is postulated to be
uniformly selected. Non-interactive zero-knowledge proofs are useful in appli-

1.4. ZERO-KNOWLEDGE 15

universal parameter: A composite N , product of two (secret) primes.

private-key (of user u): A uniformly chosen xu ∈ {1, ...,N}.

public-key: (of user u): yu = x2
u

mod N .

protocol for user u to identify itself. (basic version)

1. Prover uniformly select r ∈ {1, ...,N}, and sends s
def
= r2 mod N to the verifier.

2. The verifier uniformly select a challenge σ ∈ {0, 1}, and sends it to the prover.

3. Prover replies with z
def
= r · xσ

u
mod N .

4. The verifier accepts if and only if z2 ≡ s · yσ
u

(mod N).

The above protocol is a zero-knowledge proof of knowledge of a modular square root of yu.
Since u is supposedly the only party knowing the square root of yu, succeeding in this protocol
is taken as evidence that the prover is u. The zero-knowledge clause guarantees that interacting
with u according to the protocol, does not leak knowledge which may be used to impersonate
u. For more details see [202, 151, 138].

Figure 1.1: The Fiat–Shamir Identification Scheme [151] – basic version.

cations where one of the parties may be trusted to select the abovementioned
reference string (e.g., see Section 1.5.3). Non-interactive zero-knowledge ar-
guments for NP were constructed using any trapdoor permutation [144, 236].

Zero-knowledge proofs of knowledge [202, 151, 37]: Loosely speak-
ing, a system for proofs of knowledge guarantees that whenever the verifier is
convinced that the prover knows X , this X can be efficiently extracted from
the prover’s strategy. One natural application of (zero-knowledge) proofs of
knowledge is for identification [151, 138]. Figure 1.1 depicts the Fiat-Shamir
Identification Scheme [151] (which is based on the Goldwasser-Micali-Rackoff
zero-knowledge proof system for Quadratic Residuosity [202]).

Relaxations of Zero-knowledge: Important relaxations of zero-knowledge
were presented in [146]. Specifically, in witness indistinguishable proofs it is
infeasible to tell which NP-witness to the assertion the prover is using. Un-
like zero-knowledge proofs, this notion is closed under parallel composition.
Furthermore, this relaxation suffices for some applications in which one may
originally think of using zero-knowledge proofs.

PART II : Basic Utilities

16 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

1.5 Encryption

Both Private-Key and Public-Key encryption schemes consists of three effi-
cient algorithms: key generation, encryption and decryption. The difference
between the two types is reflected in the definition of security – the secu-
rity of a public-key encryption scheme should hold also when the adversary
is given the encryption key, whereas this is not required for private-key en-
cryption scheme. Thus, public-key encryption schemes allow each user to
broadcast its encryption key so that any user may send it encrypted mes-
sages (without needing to first agree on a private encryption-key with the
receiver). Below we present definitions of security for private-key encryp-
tion schemes. The public-key analogies can be easily derived by considering
adversaries which get the encryption key as additional input. (For private-
key encryption schemes we may assume, without loss of generality, that the
encryption key is identical to the decryption key.)

1.5.1 Definitions

For simplicity we consider only the encryption of a single message; how-
ever this message may be longer than the key (which rules out information-
theoretic secrecy [333]). We present two equivalent definitions of security.
The first, called semantic security, is a computational analogue of Shannon’s
definition of perfect secrecy [333]. The second definition views secure encryp-
tion schemes as ones for which it is infeasible to distinguish encryptions of
any (known) pair of messages (e.g., the all-zeros message and the all-ones
message). The latter definition is technical in nature and is referred to as
indistinguishability of encryptions.

We stress that the definitions presented below go way beyond saying that
it is infeasible to recover the plaintext from the ciphertext. The latter state-
ment is indeed a minimal requirement from a secure encryption scheme, but
we claim that it is way too weak a requirement: An encryption scheme is
typically used in applications where obtaining specific partial information on
the plaintext endangers the security of the application. When designing an
application-independent encryption scheme, we do not know which partial in-
formation endangers the application and which does not. Furthermore, even
if one wants to design an encryption scheme tailored to one’s own specific ap-
plications, it is rare (to say the least) that one has a precise characterization
of all possible partial information which endanger these applications. Thus,
we require that it is infeasible to obtain any information about the plaintext
from the ciphertext. Furthermore, in most applications the plaintext may not
be uniformly distributed and some a-priori information regarding it is avail-
able to the adversary. We require that the secrecy of all partial information
is preserved also in such a case. That is, even in presence of a-priori informa-
tion on the plaintext, it is infeasible to obtain any (new) information about
the plaintext from the ciphertext (beyond what is feasible to obtain from the

1.5. ENCRYPTION 17

a-priori information on the plaintext). The definition of semantic security
postulates all of this. The equivalent definition of indistinguishability of en-
cryptions is useful in demonstrating the security of candidate constructions
as well as for arguing about their usage as part of larger protocols.

The actual definitions: In both definitions we consider (feasible) adver-
saries which obtain, in addition to the ciphertext, also auxiliary information
which may depend on the potential plaintexts (but not on the key). By E(x)
we denote the distribution of encryptions of x, when the key is selected at
random. To simplify the exposition, let us assume that on security parameter
n the key generation produces a key of length n, whereas the scheme is used
to encrypt messages of length n2.

Definition 1.7 (semantic security (following [201])): An encryption scheme
is semantically secure if for every feasible algorithm, A, there exists a feasible
algorithm B so that for every two functions f, h : {0, 1}∗ 7→ {0, 1}∗ and all

probability ensembles, {Xn}n∈N, where Xn ranges over {0, 1}n2

,

Pr[A(E(Xn), h(Xn))=f(Xn)] < Pr[B(h(Xn))=f(Xn)] + µ(n)

where µ is a negligible function. Furthermore, the complexity of B should be
related to that of A.

What this definition says is that a feasible adversary does not gain anything
by looking at the ciphertext. That is, whatever information (captured by the
function f) it tries to compute from the ciphertext, can be essentially com-
puted as efficiently from the available a-priori information (captured by the
function h). In particular, the ciphertext does not help in (feasibly) comput-
ing the least significant bit of the plaintext or any other information regarding
the plaintext. This holds for any distribution of plaintexts (captured by the
random variable Xn).

Definition 1.8 (indistinguishability of encryptions (following [201])): An
encryption scheme has indistinguishable encryptions if for every feasible algo-
rithm, A, and all sequences of triples, (xn, yn, zn)n∈N, where |xn| = |yn| = n2

and |zn| is of feasible (in n) length, the difference

dA(n)
def
= |Pr[A(E(xn), zn)=1]− Pr[A(E(yn), zn)=1]|

is a negligible function in n.

In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the
encryptions of any two fix messages such as the all-zero message and the
all-ones message.

18 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

Probabilistic Encryption: It is easy to see that a secure public-key en-
cryption scheme must employ a probabilistic (i.e., randomized) encryption
algorithm. Otherwise, given the encryption key as (additional) input, it is
easy to distinguish the encryption of the all-zero message from the encryption
of the all-ones message. The same holds for private-key encryption schemes
when considering the security of encrypting several messages (rather than
a single message as done above).10 This explains the linkage between the
above robust security definitions and the randomization paradigm (discussed
below).

1.5.2 Constructions

It is common practice to use “pseudorandom generators” as a basis for
private-key stream ciphers. We stress that this is a very dangerous practice
when the “pseudorandom generator” is easy to predict (such as the linear
congruential generator or some modifications of it which output a constant
fraction of the bits of each resulting number – see [75, 158]). However, this
common practice becomes sound provided one uses pseudorandom generators
(as defined in Section 1.3). An alternative, more flexible construction follows.

Private-Key Encryption based on Pseudorandom Functions: The
key generation algorithm consists of selecting a seed, denoted s, for such a
function, denoted fs. To encrypt a message x ∈ {0, 1}n (using key s), the
encryption algorithm uniformly selects a string r ∈ {0, 1}n and produces the
ciphertext (r, x ⊕ fs(r)). To decrypt the ciphertext (r, y) (using key s), the
decryption algorithm just computes y ⊕ fs(r). The proof of security of this
encryption scheme consists of two steps (suggested as a general methodology
in Section 1.3):

1. Prove that an idealized version of the scheme, in which one uses a
uniformly selected function f : {0, 1}n 7→ {0, 1}n, rather than the pseu-
dorandom function fs, is secure.

2. Conclude that the real scheme (as presented above) is secure (since
otherwise one could distinguish a pseudorandom function from a truly
random one).

Note that we could have gotten rid of the randomization if we had allowed the
encryption algorithm to be history dependent (e.g., use a counter in the role
of r). Furthermore, if the encryption scheme is used for fifo communication
between the parties and both can maintain the counter value then there is
no need for the sender to send the counter value.

10 Here, for example, using a deterministic encryption algorithm allows the adversary to
distinguish two encryptions of the same message from the encryptions of a pair of different
messages.

1.5. ENCRYPTION 19

The randomization paradigm [201]: We demonstrate this paradigm
by presenting several constructions of public-key encryption schemes. First,
suppose we have a trapdoor one-way permutation, {pα}α, and a hard-core
predicate, b, for it.11 The key generation algorithm consists of selecting at
random a permutation pα together with a trapdoor for it: The permuta-
tion (or rather its description) serves as the public-key, whereas the trapdoor
serves as the private-key. To encrypt a single bit σ (using public key pα), the
encryption algorithm uniformly selects an element, r, in the domain of pα and
produces the ciphertext (pα(r), σ ⊕ b(r)). To decrypt the ciphertext (y, τ)
(using the private key), the decryption algorithm just computes τ⊕b(p−1

α (y))
(where the inverse is computed using the trapdoor (i.e., private-key)). The
above scheme is quite wasteful in bandwidth; however, the paradigm under-
lying its construction is valuable in practice. Following are two important
examples.

First, we note that it is better to randomly pad messages (say using
padding equal in length to the message) before encrypting them using RSA,
than to employ RSA on the plain message. Such a heuristic could be placed
on firm grounds if a conjecture analogous to the one mentioned in Section 1.3
is supported. That is, assume that the first n/2 least significant bits of the
argument constitute a hard-core function of RSA with n-bit long moduli.
Then, encrypting n/2-bit messages by padding the message with n/2 ran-
dom bits and applying RSA (with an n-bit moduli) on the result constitutes
a secure public-key encryption system, hereafter referred to as Randomized
RSA.

Secondly, following [69], we present an alternative public-key encryption
scheme, which can be based on any trapdoor permutation. In contrast to the
scheme presented above, the current scheme is not wasteful in bandwidth.
The encryption scheme augments the construction of a pseudorandom gener-
ator, given in Section 1.3, as follows. The key-generation algorithm consists
of selecting at random a permutation pα together with a trapdoor. To en-
crypt the n-bit string x (using public key pα), the encryption algorithm uni-
formly selects an element, s, in the domain of pα and produces the ciphertext
(pn

α(s), x ⊕Gα(s)), where Gα(s) = b(s) · b(pα(s)) · · · b(pn−1
α (s)). (We use the

notation pi+1
α (x) = pα(pi

α(x)) and p
−(i+1)
α (x) = p−1

α (p−i
α (x)).) To decrypt

the ciphertext (y, z) (using the private key), the decryption algorithm first
recovers s = p−n

α (y) and then outputs z ⊕Gα(s).

Assuming that factoring Blum Integers (i.e., products of two primes each
congruent to 3 (mod 4)) is hard, one may use the modular squaring func-
tion in role of the trapdoor permutation above (see [69, 8, 359, 153]). This
yields a secure public-key encryption scheme (depicted in Figure 1.2) with
efficiency comparable to that of RSA. Recall that RSA itself is not secure (as
it employs a deterministic encryption algorithm), whereas Randomized RSA

11 Hard-core predicates are defined in Section 1.3. Recall that by [183], every trapdoor
permutation can be modified into one having a hard-core predicate.

20 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

private-key: Two primes p, q, each congruent to 3 (mod 4).

public-key: Their product N
def
= pq.

encryption of message x ∈ {0, 1}n :

1. Uniformly select s0 ∈ {1, ...,N}.

2. For i = 1, .., n + 1, compute si ← s2
i−1 mod N and σi = lsb(si).

The ciphertext is (sn+1, y), where y = x⊕ σ1σ2 · · ·σn.

decryption of the ciphertext (r, y) :

Precomputed: dp = ((p + 1)/4)n mod p− 1, dq = ((q + 1)/4)n mod q − 1,
cp = q · (q−1 mod p), and cq = p · (p−1 mod q).

1. Let s′ ← rdp mod p, and s′′ ← rdq mod q.

2. Let s1 ← cp · s′ + cq · s′′ mod N .

3. For i = 1, .., n, compute σi = lsb(si) and si+1 ← s2
i mod N .

The plaintext is y ⊕ σ1σ2 · · ·σn.

(One may think of n as being equal the length of N , but this is not essential to the
scheme. The larger n, the more efficient the scheme becomes. Recall, however,
that the security of the scheme depends on the length of N (and not on n).)

Figure 1.2: The Blum–Goldwasser Public–Key Encryption Scheme [69].

(defined above) is not known to be secure under standard assumption such
as intractability of factoring (or of inverting the RSA function).12

1.5.3 Security beyond passive attacks

The above definitions refer only to a “passive” attack in which the adversary
merely eavesdrops on the line over which ciphertexts are being sent. Stronger
types of attacks, in which the adversary is active, may be possible in various
applications. In particular, we discuss two notions of Chosen Ciphertext At-
tacks. In the first type (cf., [287]), the adversary may obtain the plaintexts of
ciphertexts of its choice (as well as ciphertexts of plaintexts of its choice), and
its task is to obtain information about the plaintext of a different ciphertext
(to be presented in the future). In the second and stronger notion (cf., [314]),
the adversary is given a target ciphertext ahead of time, and may obtain the
plaintexts of any other ciphertext of its choice.

The private-key encryption scheme based on pseudorandom functions (de-
scribed above) is secure also against Chosen Ciphertext Attacks of the first
type. Public-key encryption schemes secure against Chosen Ciphertext At-

12 Recall that Randomized RSA is secure assuming that the n/2 least significant bits
constitute a hard-core function for n-bit RSA moduli. We only know that the O(log n)
least significant bits constitute a hard-core function for n-bit moduli [8].

1.6. SIGNATURES 21

tacks of the first type can be constructed, assuming the existence of trap-
door permutations and utilizing non-interactive zero-knowledge proofs [287]
(which can be constructed under this assumption [144]). Public-key encryp-
tion schemes secure against Chosen Ciphertext Attacks of the second type
are exactly those which are non-malleable (see below) under such attacks.

Loosely speaking, an encryption scheme is non-malleable if it is infeasible
for an adversary, given a ciphertext, to produce a valid ciphertext for a related
plaintext [123]. That is, the adversary is deemed successful if it produces a
certain ciphertext, regardless of whether it knows to which plaintext it cor-
responds or not. In case of public-key encryption, non-malleability implies
security in the sense discussed above. Non-malleability also comes in several
flavors corresponding to what the adversary may obtain prior to attempting
to produce a violating ciphertext. We focus on the strongest notion of Cho-
sen Ciphertext Attack, where the adversary may obtain the plaintext of any
ciphertext of its choice (as long as it is different that the target ciphertext
given ahead of time). It is easy to turn any secure private-key encryption
scheme into one which is secure and non-malleable under such Chosen Ci-
phertext Attacks, by using a message authentication scheme on top of the
encryption (i.e., authenticate the ciphertext using a mac).13 Analogous (se-
cure and non-malleable under such attacks) public-key encryption schemes
are known to exist assuming the existence of trapdoor permutation [123].

For a detailed discussion of the relationship among the various notions of
secure encryption the reader is referred to [36].

1.6 Signatures

Again, there are private-key and public-key versions both consisting of three
efficient algorithms: key generation, signing and verification. (Private-key
signature schemes are commonly referred to as message authentication schemes
or codes (mac).) The difference between the two types is again reflected in
the definition of security (i.e., whether the adversary is given access to the
verification-key). This difference yields different functionality (even more
than in the case of encryption): Public-key signature schemes (hereafter re-
ferred to as signature schemes) may be used to produce signatures which are
universally verifiable (given access to the publicly available verification-key of
the signer). Private-key signature schemes (hereafter referred to as message
authentication schemes) are only used to authenticate messages sent among
a small set of mutually trusting parties (since ability to verify signatures is
linked to the ability to produce them). Put in other words, message authen-
tication schemes are used to authenticate information sent between (typically
two) parties, and the purpose is to convince the receiver that the information
was indeed sent by the legitimate sender. In particular, message authen-
tication schemes cannot convince a third party that the sender has indeed

13 See the definition of message authentication in the next section.

22 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

sent the information (rather than the receiver having generated it by itself).
In contrast, public-key signatures can be used to convince third parties: A
signature to a document is typically sent to a second party so that in the
future this party may (by merely presenting the signed document) convince
third parties that the document was indeed generated/sent/approved by the
signer.

1.6.1 Definitions

We consider very powerful attacks on the signature scheme as well as a very
liberal notion of breaking it. Specifically, the attacker is allowed to obtain
signatures to any message of its choice. One may argue that in many appli-
cations such a general attack is not possible (as messages to be signed must
have a specific format). Yet, our view is that it is impossible to define a gen-
eral (i.e., application-independent) notion of admissible messages, and thus a
general/robust definition of an attack seems to have to be formulated as sug-
gested here. (Note that at worst, our approach is overly cautious.) Likewise,
the adversary is said to be successful if it can produce a valid signature to any

message for which it has not asked for a signature during its attack. Again,
this defines the ability to form signatures to possibly “nonsensical” messages
as a breaking of the scheme. Yet, again, we see no way to have a general
(i.e., application-independent) notion of “meaningful” messages (so that only
forging signatures to them will be consider a breaking of the scheme).

Definition 1.9 (unforgeable signatures [203]):

• A chosen message attack is a process which on input a verification-
key can obtain signatures (relative to the corresponding signing-key) to
messages of its choice.

• Such an attack is said to succeeds (in existential forgery) if it outputs a
valid signature to a message for which it has not requested a signature
during the attack.

• A signature scheme is secure (or unforgeable) if every feasible chosen
message attack succeeds with at most negligible probability.

We stress that plain RSA (alike plain versions of Rabin’s scheme [310] and
DSS [278]) is not secure under the above definition. However, it may be
secure if the message is “randomized” before RSA (or the other schemes) is
applied (cf., [53]). Thus, the randomization paradigm (see Section 1.5) seems
pivotal here too.

1.6. SIGNATURES 23

1.6.2 Constructions

Message authentication schemes can be constructed using pseudorandom
functions (see [176] or the more efficient constructions in [48, 45, 33]). How-
ever, as noted in [34], an extensive usage of pseudorandom functions seem
an overkill for achieving message authentication, and more efficient schemes
may be obtained based on other cryptographic primitives. We mention two
approaches, each consisting of a two-stage process:

1. Fingerprinting the message using a scheme which is secure against
forgery provided that the adversary does not have access to the scheme’s
outcome (e.g., using Universal Hashing [93]), and “hiding” the result
using a non-malleable scheme (e.g., a private-key encryption or a pseu-
dorandom function). (Non-malleability is not required in certain cases;
cf. [361, 240].)

2. Hashing the message using a collision-free scheme (cf., [116, 117]), and
authenticating the result using a mac which operates on (short) fixed-
length strings [34].

Three central paradigms in the construction of signature schemes are the
“refreshing” of the “effective” signing-key, the usage of an “authentication
tree” and the “hashing paradigm”.

The refreshing paradigm [203]: To demonstrate this paradigm, sup-
pose we have a signature scheme which is robust against a “random mes-
sage attack” (i.e., an attack in which the adversary only obtains signatures
to uniformly distributed messages). Further suppose that we have a one-
time signature scheme (i.e., a signature scheme which is secure against an
attack in which the adversary obtains a signature to a single message of
its choice). Then, we can obtain a secure (full-fledged) signature scheme
as follows: When a new message is to be signed, we generate a new random
signing-key for the one-time signature scheme, use it to sign the message, and
sign the corresponding (one-time) verification-key using the fixed signing-key
of the main signature scheme14 (which is robust against a “random message
attack”) [132]. We note that one-time signature schemes (as utilized here)
are easy to construct (see, for example [268]).

The tree paradigm [267, 203]: To demonstrate this paradigm, we show
how to construct a general signature scheme using only a one-time signature
scheme (alas one where an 2n-bit string can be signed w.r.t an n-bit long

14 One may generate the one-time key-pair and the signature to its verification-key ahead
of time, leading to an “off-line/on-line” signature scheme [132]. An alternative and more
efficient transformation, of signature schemes which are robust under a “random message
attack” into general ones, has been suggested in [114].

24 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

verification-key). The idea is to use the initial singing-key (i.e., the one cor-
responding to the public verification-key) in order to sign/authenticate two
new/random verification keys. The corresponding signing keys are used to
sign/authenticate four new/random verification keys (two per a signing key),
and so on. Stopping after d such steps, this process forms a binary tree with
2d leaves where each leaf corresponds to an instance of the one-time signature
scheme. The signing-keys at the leaves can be used to sign the actual mes-
sages, and the corresponding verification-keys may be authenticated using
the path from the root. Pseudorandom functions may be used to eliminate
the need to store the values of intermediate vertices used in previous signa-
tures [166]. Employing this paradigm and assuming that the RSA function is
infeasible to invert, one obtains a secure signature scheme [203, 166] in which
the ith message can be signed/verified in time 2 log2 i slower than plain RSA.
Using a tree of large fan-in and assuming that RSA is infeasible to invert,
one may obtain a secure signature scheme [128, 111] which for reasonable
parameters is only 5 times slower than plain RSA.15 We stress that plain
RSA is not a secure signature scheme, whereas the security of its randomized
version (mentioned above) is not known to be reducible to the assumption
that RSA is hard to invert.

The hashing paradigm: It is common practice to sign real documents via
a two stage process: First the document is hashed into a (relatively) short
bit string, and next the basic signature scheme is applied to the resulting
string. We note that this heuristic becomes sound provided the hashing
function is collision-free (as defined in [116]). Collision-free functions can be
constructed assuming the intractability of factoring [116]. One may indeed
postulate that certain off-the-shelf products (as MD5 or SHA) are collision-
free, but such assumptions need to be tested (and indeed may turn out false).
We stress that using a hashing scheme in the above two-stage process without
evaluating whether it is collision-free is a very dangerous practice.

A useful variant on the above paradigm is the use of Universal One-Way
Hash Functions (as defined in [286]), rather than the collision-free hashing
used above. In such a case a new hash function is selected per each application
of the scheme, and the basic signature scheme is applied to both the (suc-
cinct) description of the hash function and to the resulting (hashed) string.
(In contrast, when using a collision-free hashing function, the same function –
the description of which is part of the signer’s public-key – is used in all ap-
plications.) The advantage of using Universal One-Way Hash Functions is
that their security requirement seems weaker than the collision-free condi-
tion (e.g., the former may be constructed using any one-way function [321],
whereas this is not known for the latter).

15 This figure refers to signing up-to 1,000,000,000 messages. The scheme in [128] requires
a universal set of system parameters consisting of 1000–2000 integers of the size of the
moduli. In the [111] scheme this requirement is removed.

1.7. CRYPTOGRAPHIC PROTOCOLS 25

A plausibility result [286, 321]: Signature schemes exist if (and only
if) one-way functions exist. Unlike the constructions of signature schemes
described above, the known construction of signature schemes from arbitrary
one-way functions has no practical significance [321]. It is indeed an im-
portant open problem to provide an alternative construction which may be
practical and still utilize an arbitrary one-way function.

1.6.3 Two variants

Loosely speaking, Fail-stop signatures (cf., [303]) are signature schemes aug-
mented by a proof system which allows the signer to prove that a particular
(document,signature)-pair was not generated by him/her. In particular, each
document has many possible valid signatures (with respect to the public ver-
ification key), but only a negligible fraction of these can be generated by the
unknown signing key. Furthermore, any strategy (even a non-computable
one), is unlikely to generate signatures corresponding to the signing-key, and
it is infeasible given one signing-key to generate valid signatures (i.e., w.r.t
the verification key) which do not correspond to the given signing-key. Thus,
fail-stop signature schemes allow to prove that forgery has occurred, and so
offer an information-theoretic security guarantee to the potential signers (yet
the guarantee to potential signature-recipients is only a computational one).16

Furthermore, in case a proof of forgery is ever presented, one may “discertify”
the particular verification key, or even the entire signature scheme (hence the
term “fail-stop”).

Loosely speaking, Blind signatures (cf., [97, 157, 306, 227]) are a variant of
signature schemes in which the signer gains no knowledge about the document
it has signed, but rather only knows the total number of documents signed.
The unforgeability condition thus requires that it is infeasible to produce more
signatures than the count held by the signer (and that this count reflects
the number of successfully-completed invocations of the signing protocol).
Blind signatures play a central role in the design of electronic cash systems
(cf., [97, 99]): They are used to make the monetary-certificates, signed by a
financial institute, untraceable.

1.7 Cryptographic Protocols

A general framework for casting cryptographic (protocol) problems consists
of specifying a random process which maps n inputs to n outputs. The inputs
to the process are to be thought of as local inputs of n parties, and the n

16 The above refers to the natural convention by which a proof of forgery frees the signer
of any obligations implied by the document. Thus, when accepting a valid signature the
recipient is only guaranteed that it is infeasible for the signer to repudiate the signature. In
contrast, when following the standard paradigms of signature schemes, the signature recip-
ients have an absolute guarantee; whenever the verification algorithm accepts a signature,
it is by definition an unrepudiated one.

26 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

outputs are their corresponding local outputs. The random process describes
the desired functionality. That is, if the n parties were to trust each other (or
trust some outside party), then they could each send their local input to the
trusted party, who would compute the outcome of the process and send each
party the corresponding output. The question addressed in this section is to
what extent can this trusted party be “emulated” by the mutually distrustful
parties themselves.

1.7.1 Definitions

For simplicity we consider the special case where the specified process is de-
terministic and the n outputs are identical. That is, we consider an arbitrary
n-ary function and n parties which wish to obtain the value of the function
on their n corresponding inputs. Each party wishes to obtain the correct
value of the function and prevent any other party from gaining anything else
(i.e., anything beyond the value of the function and what is implied by it).
Towards this goal, the parties execute a “secure” multi-party protocol.

We first observe that each party may change its local input before enter-
ing the protocol. However, this is unavoidable even when the parties utilize
a trusted party. In general, the basic paradigm underlying the definitions
of secure multi-party computations amounts to saying that situations which
may occur in the real protocol, can be simulated in the ideal model (where
the parties may employ a trusted party). Thus, the “effective malfunction-
ing” of parties in secure protocols is restricted to what is postulated in the
corresponding ideal model. The specific definitions differ in the specific re-
strictions and/or requirements placed on the parties in the real computation.
This is typically reflected in the definition of the corresponding ideal model –
see examples below.

An example – computations with honest majority: Here we consider
an ideal model in which any minority group (of the parties) may collude as
follows. Firstly this minority shares its original inputs and decided together
on replaced inputs17 to be sent to the trusted party. (The other parties send
their respective original inputs to the trusted party.) When the trusted party
returns the output, each majority player outputs it locally, whereas the col-
luding minority may compute outputs based on all they know (i.e., the output
and all the local inputs of these parties). A secure multi-party computation
with honest majority is required to emulate this ideal model. That is, the
effect of any feasible adversary which controls a minority of the players in

17 Such replacement may be avoided if the local inputs of parties are verifiable by the
other parties. In such a case, a party (in the ideal model) has the choice of either joining
the execution of the protocol with its correct local input or not join the execution at all
(but it cannot join with a replaced local input). Secure protocols emulating this ideal
model can be constructed as well.

1.7. CRYPTOGRAPHIC PROTOCOLS 27

the actual protocol, can be essentially simulated by a (different) feasible ad-
versary which controls the corresponding players in the ideal model. This
means that in a secure protocol the effect of each minority group is “essen-
tially restricted” to replacing its own local inputs (independently of the local
inputs of the majority players) before the protocol starts, and replacing its
own local outputs (depending only on its local inputs and outputs) after the
protocol terminates. (We stress that in the real execution the minority play-
ers do obtain additional pieces of information; yet in a secure protocol they
gain nothing from these additional pieces of information, as they can actually
reproduce these by themselves.)

Secure protocols according to the above definition may even tolerate a
situation where a minority of the parties aborts the execution. An aborted
party (in the real protocol) is simulated by a party (in the ideal model) which
aborts the execution either before supplying its input to the trusted party (in
which case a default input is used) or after supplying its input. In either case,
the majority players (in the real protocol) are able to compute the output al-
though a minority aborted the execution. This cannot be expected to happen
when there is no honest majority (e.g., in a two-party computation) [108].

Another example – two-party computations: In light of the above,
we consider an ideal model where each of the two parties may “shut-down”
the trusted (third) party at any point in time. In particular, this may hap-
pen after the trusted party has supplied the outcome of the computation to
one party but before it has supplied it to the second. A secure multi-party
computation allowing abort is required to emulate this ideal model. That is,
each party’s “effective malfunctioning” in a secure protocol is restricted to
supplying an initial input of its choice and aborting the computation at any
point in time. We stress that, as above, the choice of the initial input of each
party may not depend on the input of the other party.

1.7.2 Constructions

General plausibility results: Assuming the existence of trapdoor per-
mutations, one may provide secure protocols for any two-party computa-
tion (allowing abort) [366] as well as for any multi-party computations with
honest majority [187]. Thus, a host of cryptographic problems are solvable
assuming the existence of trapdoor permutations. Specifically, any desired
(input–output) functionality can be enforced, provided we are either willing
to tolerate “early abort” (as defined above) or can rely on a majority of
the parties to follow the protocol. Analogous plausibility results were sub-
sequently obtained in a variety of models. In particular, we mention secure
computations in the private channels model [60, 98], in the presence of mobile
adversaries [300], and for an adaptively chosen set of corrupted parties [87].

As stressed in the case of zero-knowledge proofs, we view these results
as asserting that very wide classes of problems are solvable in principle.

28 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

However, we do not recommend using the solutions derived by these gen-
eral results in practice. For example, although Threshold Cryptography
(cf., [121, 161]) is merely a special case of multi-party computation, it is
indeed beneficial to focus on its specifics.

PART III : Concluding Comments

1.8 Some Notes

We partition the notes into two categories: General notes which refer to gen-
eral themes in this chapter, and specific notes which refer to specific covered
or uncovered issues.

1.8.1 General notes

On information theoretic secrecy. Most of Modern Cryptography aims
at achieving computational security; that is, making it infeasible (rather than
impossible) for an adversary to break the system. The departure from infor-
mation theoretic secrecy was suggested by Shannon in the very paper which
introduced the notion [333]: In an information theoretic secure encryption
scheme the private-key must be longer than the total entropy of the plain-
texts to be sent using this key. This drastically restricts the applicability
of (information-theoretic secure) private-key encryption schemes. Further-
more, notions such as public-key cryptography, pseudorandom generators,
and most known cryptographic protocols18 cannot exist in an information
theoretic sense.

On the need for and choice of assumptions. As stated in Section 1.2,
most of Modern Cryptography is based on computational difficulty. Intu-
itively, this is an immediate consequence of the fact that Modern Cryp-
tography wish to capitalize on the difference between feasible attacks and
possible-but-infeasible attacks. Formally, the existence of one-way functions
has been shown to be a necessary condition for the existence of secure private-
key encryption [221], pseudorandom generators [249], digital signatures [321],
“non-trivial” zero-knowledge proofs [299], and various basic protocols [221].

As we need assumptions anyhow, why not assume what we want? Well,
first we need to know what we want. This calls for a clear definition of
complex security concerns – an non-trivial issue which is discussed at length
in previous sections. However, once a definition is derived how can we know

18 Here we refer to cryptographic protocols in the “standard model” where the adversary
can read all messages sent between honest parties. In contrast, information-theoretically
secure multi-party computation is possible when assuming the existence of perfect private
channels between each pair of honest users [60, 98].

1.8. SOME NOTES 29

that it can at all be met? The way to demonstrate that a definition is viable
(and so the intuitive security concern can be satisfied at all) is to construct
a solution based on a better understood assumption. For example, looking
at the definition of zero-knowledge proofs [202], it is not a-priori clear that
such proofs exists in a non-trivial sense. The non-triviality of the notion
was demonstrated in [202] by presenting a zero-knowledge proof system for
statements, regarding Quadratic Residuosity, which are believed to be hard
to verify (without extra information). Furthermore, in contrary to prior
beliefs, it was shown in [186] that the existence of commitment schemes19

implies that any NP-statement can be proven in zero-knowledge. Thus, facts
which were not known at all to hold (and even believed to be false), where
shown to hold by reduction to widely believed assumptions (without which
most of Modern Cryptography collapses anyhow). Furthermore, reducing
the solution of a new task to the assumed security of a well-known primitive
typically means providing a construction which, using the known primitive,
solves the new task. This means that we do not only know (or assume) that
the new task is solvable but rather have a solution based on a primitive which,
being well-known, typically has several candidate implementations. More on
this subject below.

On the meaning of asymptotic results. Asymptotic analysis is a major
simplifying convention. It allows to disregard specifics like the model of com-
putation and to focus on the essentials of the problem at hand. Further sim-
plification is achieved by identifying efficient computations with polynomial-
time computations, and more importantly by identifying infeasible computa-
tions with ones which are not implementable in polynomial-time. However,
none of these conventions is really essential for the theory discussed in this
chapter.20

As stated in Section 1.2, all know results (referring to computational com-
plexity) consists of an explicit construction in which a complex primitive is
implemented based on a simpler one. The claim of security in many pa-
pers merely states that if the resulting (complex) primitive can be broken in
polynomial-time then so can the original (simpler) primitive. However, all
papers provide an explicit construction showing how to use any breaking al-
gorithm for the resulting primitive in order to obtain a breaking algorithm for
the original primitive. This transformation does not depend on the running-
time of the first algorithm; it typically uses the first algorithm as a black-box.
Thus, the running-time of the resulting breaking algorithm (for the simpler
primitive) is explicitly bounded in terms of the running-time of the given
breaking algorithm (for the complex primitive). This means that for each

19 Consequently, it was shown how to construct commitment schemes based on any
pseudorandom generator [279], and that the latter exists if one-way functions exist [214].

20 As long as the notions of efficient and feasible computation are sufficiently robust and
rich. For example, they should be closed under various functional compositions and should
allow computations such as RSA.

30 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

of these results, one can instantiate the resulting (complex) scheme for any
desired value of the security parameter, make a concrete assumption regard-
ing the security of the underlying (simpler) primitive, and derive a concrete
estimate of the security of the proposed implementation of the complex prim-
itive.

The applicability of a specific theoretical result depends on the complexity
of the construction and the relation between the security of the resulting
scheme and the quantified intractability assumption. Some of these results
seem applicable in practice, some only offer useful paradigm/techniques, and
other only state the plausibility of certain results. In the latter cases it is
indeed the task of the theory community to work towards the improvement
of these results. In fact, many improvements of this type have been achieved
in the past (and we hope to see more in the future). Following are some
examples:

• A plausibility result of Yao (commonly attributed to [364]) on the exis-
tence of hard-core predicates, assuming the existence of one-way permu-
tations, was replaced by a practical construction of hard-core predicates
for any one-way functions [183].

• A plausibility result of Yao (commonly attributed to [364]) by which
any weak one-way permutation can be transformed into an ordinary
one-way permutation was replaced by an efficient transformation of
weak one-way permutation into ordinary one-way permutation [178].

• A plausibility result of [186] by which one may construct Verifiable
Secret Sharing schemes (cf., [107]), using any one-way function, was
replaced by an efficient construction the security of which is based on
DLP [148]. In general, many concrete problems which are solvable
in principle (by the plausibility results of [186, 366, 187]) were given
efficient solutions.

Forget the result, use its ideas. As stated above, some theoretical re-
sults are not directly applicable in practice. Still, in many cases these results
utilize ideas which may be of value in practice. Thus, if you know (by a
theoretical result) that a problem is solvable in principle, but the known con-
struction is not applicable for your purposes, you may try to utilize some
of its underlying ideas when trying to come-up with an alternative solution
tailored for your own purposes. We note that the underling ideas are at least
as likely to appear in the proof of security as in the construction itself.

The choice of assumptions, revisited. When constructing a solution
to a cryptographic problem one may have a choice of which building blocks
to use (e.g., one-way functions or pseudorandom functions). In a coarse
sense these tools may look equivalent (e.g., one exists if and only if the other

1.8. SOME NOTES 31

exists), but when deciding which to use in practice one should consider the
actual level of security attributed to each of them and the “cost” of using
each of them as a building block in a particular construction. In the latter
term (“cost”) we mean the relationship of the security of the building block
to the security of the resulting solution. For further discussion the reader
is referred to [33, Sec. 1.5]. Turning the table around, if we note that a
specific primitive provides good security, when used as a building block in
many constructions, then this may serve as incentive to focus attention on the
implementation of this primitive. The last statement should be understood
both as referring to the theory and practice of cryptography. For example,
it is our opinion that the industry should focus on constructing fixed-length-
key pseudorandom functions rather than on constructing fixed-length-key
pseudorandom permutations (or, equivalently, private-key block ciphers).21

Security as a quantity rather than a quality. From the above it should
be clear that our notions of security are quantitative in nature. They refers
to the minimal amount of work required to break the system (as a function
of the security parameter). Thus alternative constructions for the same task
may (and need to) be compared based on the security they provide. This can
be done whenever the underlying assumption are comparable.

“Too cautious” definitions. As stated in Sections 1.5 and 1.6, our defini-
tions of security seem “too cautious” in the sense that they also imply things
which may not matter in practice. This is an artifact of our approach to
security which requires that the adversary gains nothing (rather than “gains
nothing we care about”) by its malicious actions. We stress two advantages
of our approach. First it yields application-independent notions of security
(since the notion of a “gain we care about” is application-dependent). Sec-
ondly, even when having a specific application in mind, it is close to impos-
sible to come-up with a precise characterization of the set of “gains we care
about”. Thus, even in the latter case, our approach of depriving the adver-
sary from any gain seems to be the best way to go. Finally, we note that in
all known cases the plausibility of meeting the “maximalistic” definitions of
security has been demonstrated (based on assumptions which are necessary
even for “minimalistic” notions of security).

On “Provable Security”. Some of the papers discussed in this chapter
use the term “provable security”. The term is supposed to reflect the fact
that these papers only make well-defined technical claims and that proofs of
these claims are given or known to the authors. Specifically, whenever a term
such as “security” is used, the paper offers or refers to a rigorous definition of
the term (and the authors wish to stress this fact in contrast to prior papers
where the term was used as an undefined intuitive phrase). We personally

21 Not to mention that the latter can be efficiently constructed from the former [258, 284].

32 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

object to this terminology since it suggests the possibility that there can
be technical claims22 which are well-defined and others which are not, and
among the former some can be stated even when no proof is known. This
view is wrong: A technical claim must always be well-defined, and it must
always have a proof (otherwise it is a conjecture – not a claim). There is
room for non-technical claims, but these claims should be stated as opinions
and such. In particular, a technical claim referring to security must always
refer to a rigorous definition of security and the person making this claim
must always know a proof (or state the claim as a conjecture).

Still, do consider specific attacks (but as a last resort). We do
realize that sometimes one is faced with a situation where all the paradigms
described above offer no help. A typical example occurs when designing an
“atomic” cryptographic primitive (e.g., a one-way function). The first thing
we suggest in such a case is to formulate precise specifications/assumptions
regarding the security of this primitive. Once this is done, one may need
to turn to ad-hoc methods for trying to test these assumptions (i.e., if the
known attack schemes fail then one gains some confidence in the validity of
the assumptions). For example, if we were to invent RSA today then we would
have postulated that it is a trapdoor permutation. To evaluate the validity
of our conjecture, we would have noted (as Rivest, Shamir and Adleman
did in [320, Sec. IX]) that known algorithms for factoring are infeasible for
reasonable values of the security parameter, and that there seems to be no
other way to invert the function.

1.8.2 Specific notes

This chapter can not possibly cover all good work done in Cryptography, not
even all good work of theoretical flavor, and not even all theoretical work
which interests the author. We have focused on one fundamental research
direction – the attempt to turn Cryptography from an art into a science.
Furthermore, within this direction we have preferred to concentrate on the
basics, and gave-up on many important developments which go beyond the
basics. Whenever such developments are mentioned it is typically in order to
demonstrate a basic paradigm. Thus, the choice of material is governed by
its relevance to the intentions of the current chapter. Arguably and hopefully
this is correlated with the importance of the work, but no tight relation was
sought or is claimed. In an attempt to redeem some of the omissions made
above, we shortly discuss some topics which were ignored (or mentioned too
briefly) above. The following collection of notes is indeed eclectic in nature.

Information theoretic secrecy, revisited. As stated above, most of
Modern Cryptography only aims at achieving computational secrecy – and

22 We refer to theorems, lemmas, propositions and such.

1.8. SOME NOTES 33

does so for a good reason (as information theoretic secrecy is unachievable
in many settings). However, these impossibility results hold only in case
the adversary has full information (apart from the honest parties secret in-
puts and private coin tosses). For example, information-theoretically secure
multi-party computation is possible (and in fact feasible) if there are perfect
private channels between each pair of honest users [60, 98]. On the other
hand, information-theoretically secure private channels can be implemented
on top of channels to which the adversary has limited access. Channels of
the latter type include

1. Quantum Channels where an adversary is prevented from obtaining
full information by the laws of quantum mechanics (cf., [77] and the
references therein).

2. The noisy channel model (which generalizes the wiretap channel of [363])
where both the communication between the legitimate parties and the
tapping channel of the adversary are subjected to noise (cf., [265, 115]
and the references therein).

3. A model where the adversary can freely tap the communication channel
but is restricted in the amount of data it can store (cf., [81]).

In addition, with respect to private-key cryptography (i.e., both encryption
and message-authentication), the abovementioned impossibility results may
be irrelevant in some applications. What these impossibility results actually
establish is that the private-keys need to be at least as long as the data to
which they are applied. In certain cases, especially given current storage
technology, using such long private-keys may be feasible.

Byzantine Agreement. The general results regarding multi-party com-
putations surveyed in Section 1.7 assume the existence of a broadcast channel
(i.e., a channel on which each party may place messages which may be read
by all parties and yet cannot be corrupted by any party). Such a channel
can be implemented over a standard point-to-point network using a Byzan-
tine Agreement protocol [302]. Efficient Byzantine Agreement protocols are
known in a variety of models. In the information-theoretic model, we mention
the deterministic protocols of [124, 350] which tolerate malicious behavior of
t < m/3 parties, where m is the total number of parties. In the compu-
tational model, using a signature infrastructure, one may construct efficient
protocols tolerate any number of faults [125]. These protocols operate in O(t)
rounds, which is optimal (for deterministic protocols). Assuming the exis-
tence of private channels, a faster (i.e., expected constant number of rounds)
randomized algorithm tolerating Ω(m) malicious parties is known [149].

Threshold Cryptography. Cryptography relies on the user’s ability to
maintain the secrecy of its private-keys. However, guaranteeing the secrecy

34 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

of private-keys in practice is not easy, especially when these keys belong to
large organizations. It is thus desirable to replace the single private-key by
a set of “shares” so that the disclosure of a small subset of shares does not
endanger the security of the system, whereas a larger subset of shares enables
the operation of the system. Assuming these shares are stored at different
sites (and that after set-up time the private-key is never available again in
any single site), such a scheme may enhance security as it seems harder to
penetrate to several sites than to one. The security and operation of such
a distributed cryptographic system falls within the domain of general multi-
party computation, and thus is solvable in principle [187, 60, 98].23 However,
what one desires is efficient solutions, and in particular ones comparable
in efficiency to standard “single private-key” cryptosystems. Such efficient
solutions, called threshold cryptosystems, were envisioned in [120, 121] and
provided in [121, 119, 163] (and many other works). In addition to the
conditions informally described above, it is desired that the threshold system
be robust [163] and proactive [300, 92, 217]. By robust we mean that proper
operation is guaranteed even if some of the sites holding shares of the private-
key misbehave (as may be the case when controlled by an adversary). By
proactive we mean that both security and proper operation are maintained
even if the adversary can, during the lifetime of the system, gain temporary
control of each site provided it never controls simultaneously a large number
of sites.

On the Random Oracle Model. A popular methodology for designing
cryptographic protocols consists of the following two steps. One first designs
an ideal system in which all parties (including the adversary) have oracle ac-
cess to a truly random function, and proves the security of this ideal system.
Next, one replaces the random oracle by a “good cryptographic hashing func-
tion” (such as MD5 or SHA), providing all parties (including the adversary)
with the succinct description of this function. Thus, one obtains an imple-
mentation of the ideal system in a world where random oracles do not exist.
This methodology, explicitly formulated in [50], has been used in many works
(see, for example, [151, 330, 53]). However, it is unclear to what extent this
methodology can be put on firm grounds. In particular, there exist secure
ideal encryption and signature schemes, which do not have any secure imple-
mentation (cf., [89]). Thus, one cannot hope to “implement” (by a function
ensemble) all properties of a random oracle. Instead, we suggest that one
should proceed by identifying useful special-purpose properties of a random
oracle, which can be also provided by a fully specified function (or function
ensemble), and so yield implementations of certain useful ideal systems. In
fact, first steps in this alternative direction have been taken in [83, 90].

23 Such a solution would use a standard secret-sharing scheme, and consists of “emu-
lating” the reconstruction and usage of the private-key by an ideal trusted party, without
having the key actually reconstructed in any site.

1.9. HISTORICAL PERSPECTIVE 35

1.9 Historical Perspective

Work done during the 1980’s plays a dominant role in our exposition. This
work was in turn tremendously influenced by previous work, but these in-
fluences were not stated explicitly above. The influence took the form of
setting intuitive goals, providing basic techniques, and suggesting potential
solutions which served as a basis for constructive criticism (leading to robust
approaches). In this section, specifically in its first part, we try to trace some
of these influences. We then proceed to the history of the rigorous (or robust)
approach to cryptography.

Classic Cryptography. Answering the fundamental question of classic
cryptography in a gloomy way (i.e., it is impossible to design a code that can-
not be broken), Shannon also suggested a modification to the question [333]:
Rather than asking whether it is possible to break the code, one should ask
whether it is feasible to break it. A code should be considered good if it
cannot be broken when investing work which is in reasonable proportion to
the work required of the legal parties using the code. Indeed, this is the
approach followed by Modern Cryptography.

New Directions in Cryptography. Prospects of commercial application
were the trigger for the beginning of civil investigations of encryption schemes.
The DES designed in the early 70’s has adopted the new paradigm: It is
clearly possible, but supposedly infeasible to break it. Following the chal-
lenge of constructing and analyzing new (private-key) encryption schemes,
came new questions like how to exchange keys over an insecure channel [266].
New concepts were invented: digital signatures (cf., Diffie and Hellman [122]
and Rabin [309]), public-key cryptosystems [122], and one-way functions [122].
First implementations of these concepts were suggested by Merkle and Hell-
man [270], Rivest, Shamir and Adleman [320], and Rabin [310].

Cryptography was explicitly related to complexity theory in [76, 134, 246]:
It was understood that problems related to breaking a 1-1 cryptographic map-
ping cannot be NP-complete, and more importantly that NP-hardness of
the breaking task is a poor evidence for cryptographic security. Techniques
such as “n-out-of-2n verification” [309] and secret sharing [334] were intro-
duced (and indeed were used extensively in subsequent research).

At the Dawn of a New Era. Early investigations of cryptographic proto-
cols revealed the inadequacy of imprecise notions of security and the subtleties
involved in designing cryptographic protocols. In particular, problems as coin
tossing over telephone [63], exchange of secrets [62], and Oblivious Transfer
were formulated [311] (cf., [131]). Doubts (raised by Lipton) concerning the
security of the “mental poker” protocol of [336] led to the current notion
of secure encryption, due to Goldwasser and Micali [201], and to concepts

36 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

as computational indistinguishability [201, 364]. Doubts (raised by Fischer)
concerning the Oblivious Transfer protocol of [311] led to the concept of zero-
knowledge (suggested by Goldwasser, Micali, and Rackoff [202], with early
versions date to March 1982).

A formal approach to the security of cryptographic protocols was sug-
gested in [126]. This approach actually identifies a subclass of insecure pro-
tocols (i.e., those which can be broken via a syntactically-restricted type
of attack). Furthermore, it turned out that it is much too difficult to test
whether a protocol is secure [130]. Recall that, in contrast, our current ap-
proach is to construct secure protocols (alongside with their proof of security),
and that this approach is complete (in the sense that it allows to solve any
solvable problem).

Establishing the new paradigms. The abovementioned work of Gold-
wasser and Micali [201] is the key-stone of the rigorous approach to cryptogra-
phy. On top of supplying robust definitions for secure encryption – the most
classic of cryptographic tasks – it has introduced almost all paradigms which
played a key role in subsequent developments. We refer firstly to the simula-
tion paradigm, made more explicit in the definition of zero-knowledge [202],
and to the notion of computational indistinguishability, formulated in full
generality by Yao [364]. But not less importantly, we refer to the under-
standing that cryptographic tasks are highly complex entities which should
be “reduced” to simpler ones (such as well-defined intractability assumptions
referring to simply stated computational problems).

The next major step was the definition and construction of pseudorandom
generators by Blum, Micali, and Yao [72, 364]. In addition to the contribu-
tion of these works to cryptography, they have established a link between
cryptography and computer science at large. This link, in turn, has fostered
the evolution of cryptography from an art to a scientific discipline.

The concept of zero-knowledge, suggested by Goldwasser, Micali, and
Rackoff [202], has provided an extremely powerful tool for the design of
cryptographic protocols. In addition, it has further clarified the simulation
paradigm, demonstrating its generality. Being such a fascinating notion,
zero-knowledge has attracted attention also from outside of cryptography.

The above robust definitional approach would never have striven were it
not coupled with actual constructions or at least proofs of feasibility. These
were indeed provided – in many cases in the same papers (e.g., [201, 72,
364, 202]) and/or by subsequent work. The work of Goldreich, Micali, and
Wigderson [186], which established the generality and wide applicability of
zero-knowledge proofs, is a good example to the latter. We also mention
the signature scheme of Goldwasser, Micali, and Rivest [203], which demon-
strated – in contrary to prior beliefs – that a robust definition of unforgeable
signature schemes can be materialized.

1.10. TWO SUGGESTIONS FOR FUTURE RESEARCH 37

Going beyond the wildest dreams. Meeting the above robust defini-
tions of security qualifies as going beyond the wildest dreams of most re-
searchers of the time. It is safe to say that the works of Yao [366] and of
Goldreich, Micali, and Wigderson [187] went beyond the wildest dreams of
anybody. These work demonstrate that any (properly defined) cryptographic
protocol problem can be solved in a meaningful sense.

And still, going on. The last paragraph may be read as an invitation to
“close shop”. This is certainly not the intention. As stated throughout this
exposition, there are still much to be done (see, for example, Section 1.10).
Indeed, in the years which have elapsed, many important works have been
done. We merely mention the project of basing each cryptographic task on
the minimal possible intractability assumption (the constructions of pseudo-
random generator by H̊astad, Impagliazzo, Levin and Luby [214] and signa-
ture schemes by Naor, Yung and Rompel [286, 321] are indeed the crown jew-
els of this project), and replacing feasibility claims by practical constructions
(the hard-core predicate of Goldreich and Levin [183] is a good example).

1.10 Two Suggestions for Future Research

A very important direction for future research consists of trying to “upgrade”
the utility of some of the constructions mentioned above. In particular, we
have highlighted four plausibility results: two referring to the construction of
pseudorandom generators and signature schemes and two referring to the con-
struction of zero-knowledge proofs and multi-party protocols. For the former
two results, we see no fundamental reason why the corresponding construc-
tions can not be replaced by reasonable ones (i.e., providing very efficient
constructions of pseudorandom generators and signature schemes based on
arbitrary one-way functions). Furthermore, we believe that working towards
this goal may yield new and useful paradigms (which may be applicable in
practice regardless of these results). As for the latter general plausibility
results (i.e., the construction of zero-knowledge proofs and multi-party pro-
tocols), here there seem to be little hope for a result which may both maintain
the generality of the results in [186, 366, 187] and yield practical solutions
for each specific task. However, we believe that there is work to be done
towards the development of additional paradigms and techniques which may
be useful in the construction of schemes for specific tasks.

Another very important direction is to provide results and/or develop
techniques for guaranteeing that individually-secure cryptographic protocols
remain secure when many copies of them are run in parallel and, furthermore,
obliviously of one another.24 Although some negative results are known [180],
they only rule out specific approaches (such as the naive false conjecture

24 This goal coincides with a general formulation of non-malleable cryptography, as
introduced in [123].

38 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

that any zero-knowledge proof maintains its security when executed twice in
parallel).

1.11 Some Suggestions for Further Reading

The intention of these suggestions is not to provide a scholarly account of the
due credits but rather to provide sources for further reading. Thus, our main
criteria is the readability of the text (not its novelty). The recommendations
are arranged by subjects.

One-Way Functions, Pseudorandom Generators and Zero-Knowledge:
For these, our favorite source is our own text [171].

Encryption Schemes: A good motivating discussion appears in [201]. For
a definitional treatment of eavesdropping security, the reader is referred to
the revised version of [171]. Further details on the constructions of public-key
encryption schemes (sketched above) can be found in [201, 168] and [69, 8],
respectively. For discussion of Non-Malleable Cryptography, which actually
transcends the domain of encryption, see [123].

Signature Schemes: For a definitional treatment of signature schemes
the reader is referred to [203] and [305]. Easy to understand constructions
appear in [49, 132, 128, 111]. Variants on the basic model are discussed
in [305] and in [97, 157, 306, 227]. For discussion of message authentication
schemes (macs) the reader in referred to [34].

General Cryptographic Protocols: This area is both most complex and
most lacking of good expositions. For the least of all evil, we refer the reader
to [174] which provides an exposition of the basic definitions and results, as
well as detailed proofs for the latter. More advanced treatment can be found
in [82, 84].

New Directions: These include Realizing the Random Oracle Model [83,
89, 90], Session-Key Problems [51, 52, 35], Incremental Cryptography [39, 40],
Coercibility [88, 85], sharing of cryptographic objects [121, 119, 161], Private
Information Retrieval [106, 103, 242], Cryptanalysis by induced faults [73],
and many others.

Acknowledgments

I am most grateful to Hugo Krawczyk for carefully reading and commenting
on an early draft of this chapter.

1.11. SOME SUGGESTIONS FOR FURTHER READING 39

Thanks also to Mihir Bellare, Gilles Brassard, Christian Cachin, Ran
Canetti, Ronald Cramer, Cynthia Dwork, Shafi Goldwasser, Moni Naor and
Birgit Pfitzmann for comments and corrections regarding previous versions
of this chapter.

40 CHAPTER 1. FOUNDATIONS OF MODERN CRYPTOGRAPHY

Chapter 2

Probabilistic Proof
Systems

A proof is whatever convinces me.

Shimon Even, answering a student’s question
in his Graph Algorithms class (1978)

Summary – Various types of probabilistic proof systems have
played a central role in the development of computer science in
the last decade. In this chapter, we concentrate on three such
proof systems — interactive proofs, zero-knowledge proofs, and
probabilistic checkable proofs — stressing the essential role of ran-
domness in each of them.

2.1 Introduction

The glory attached to the creativity involved in finding proofs, makes us
forget that it is the less glorified procedure of verification which gives proofs
their value. Philosophically speaking, proofs are secondary to the verification
procedure; whereas technically speaking, proof systems are defined in terms
of their verification procedures.

The notion of a verification procedure assumes the notion of computation
and furthermore the notion of efficient computation. This implicit assump-
tion is made explicit in the definition of NP , in which efficient computation
is associated with (deterministic) polynomial-time algorithms.

41

42 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

Definition 2.1 (NP-proof systems): Let S ⊆ {0, 1}∗ and ν : {0, 1}∗ ×
{0, 1}∗ 7→ {0, 1} be a function so that x ∈ S if and only if there exists a
w ∈ {0, 1}∗ such that ν(x,w) = 1. If ν is computable in time bounded by a
polynomial in the length of its first argument then we say that S is an NP-set
and that ν defines an NP-proof system.

Traditionally, NP is defined as the class of NP-sets. Yet, each such NP-set
can be viewed as a proof system. For example, consider the set of satisfi-
able Boolean formulae. Clearly, a satisfying assignment π for a formula φ
constitutes an NP-proof for the assertion “φ is satisfiable” (the verification
procedure consists of substituting the variables of φ by the values assigned
by π and computing the value of the resulting Boolean expression).

The formulation of NP-proofs restricts the “effective” length of proofs to
be polynomial in length of the corresponding assertions (since the running-
time of the verification procedure is restricted to be polynomial in the length
of the assertion). However, longer proofs may be allowed by padding the
assertion with sufficiently many blank symbols. So it seems that NP gives
a satisfactory formulation of proof systems (with efficient verification pro-
cedures). This is indeed the case if one associates efficient procedures with
deterministic polynomial-time algorithms. However, we can gain a lot if we
are willing to take a somewhat non-traditional step and allow probabilistic
verification procedures. In particular,

• Randomized and interactive verification procedures, giving rise to in-
teractive proof systems, seem much more powerful (i.e., “expressive”)
than their deterministic counterparts.

• Such randomized procedures allow the introduction of zero-knowledge
proofs which are of great theoretical and practical interest.

• NP-proofs can be efficiently transformed into a (redundant) form which
offers a trade-off between the number of locations examined in the NP-
proof and the confidence in its validity (see probabilistically checkable
proofs).

In all the abovementioned types of probabilistic proof systems, explicit bounds
are imposed on the computational complexity of the verification procedure,
which in turn is personified by the notion of a verifier. Furthermore, in all
these proof systems, the verifier is allowed to toss coins and rule by statisti-
cal evidence. Thus, all these proof systems carry a probability of error; yet,
this probability is explicitly bounded and, furthermore, can be reduced by
successive application of the proof system.

Notational Conventions. When presenting a proof system, we state all
complexity bounds in terms of the length of the assertion to be proven (which
is viewed as an input to the verifier). Namely, polynomial-time means time

2.2. INTERACTIVE PROOF SYSTEMS 43

polynomial in the length of this assertion. Note that this convention is con-
sistent with the definition of NP-proofs.

Denote by poly the set of all integer functions bounded by a polynomial
and by log the set of all integer functions bounded by a logarithmic function
(i.e., f ∈ log iff f(n) = O(log n)). All complexity measures mentioned in the
subsequent exposition are assumed to be constructible in polynomial-time.

Organization. We start by discussing interactive proofs (in Section 2.2),
and then turn to zero-knowledge proofs (Section 2.3) and probabilistically
checkable proofs – pcp (Section 2.4). Other types of probabilistic proof sys-
tems are discussed in Section 2.5. These include multi-prover interactive
proofs (mip), two types of computationally-sound proofs (i.e., arguments and
CS-proofs), non-interactive probabilistic proofs, and proofs of knowledge. We
conclude with a comparison among the various types of proof systems (Sec-
tion 2.6.1), a brief historical account (Section 2.6.2) and some open problems
(Section 2.6.3).

2.2 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computa-
tions, it is only natural to associate the notion of efficient computation with
probabilistic and interactive polynomial-time computations. This leads nat-
urally to the notion of an interactive proof system in which the verification
procedure is interactive and randomized, rather than being non-interactive
and deterministic. Thus, a “proof” in this context is not a fixed and static
object, but rather a randomized (dynamic) process in which the verifier in-
teracts with the prover. Intuitively, one may think of this interaction as
consisting of “tricky” questions asked by the verifier, to which the prover has
to reply “convincingly”. The above discussion, as well as the following defi-
nition, makes explicit reference to a prover, whereas a prover is only implicit
in the traditional definitions of proof systems (e.g., NP-proofs).

2.2.1 Definition

Loosely speaking, an interactive proof is a game between a computationally
bounded verifier and a computationally unbounded prover whose goal is to
convince the verifier of the validity of some assertion. Specifically, the verifier
is probabilistic polynomial-time. It is required that if the assertion holds then
the verifier always accepts (i.e., when interacting with an appropriate prover
strategy). On the other hand, if the assertion is false then the verifier must
reject with probability at least 1

2 , no matter what strategy is being employed
by the prover. A sketch of the formal definition is given in Item (1) below.
Item (2) introduces additional complexity measures which can be ignored in
first reading.

44 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

Definition 2.2 (Interactive Proof systems – IP [202]):

1. An interactive proof system for a set S is a two-party game, between a
verifier executing a probabilistic polynomial-time strategy (denoted V)
and a prover which executes a computationally unbounded strategy (de-
noted P), satisfying

• Completeness: For every x ∈ S the verifier V always accepts after
interacting with the prover P on common input x.

• Soundness: For every x 6∈ S and every potential strategy P ∗, the
verifier V rejects with probability at least 1

2 , after interacting with
P ∗ on common input x.

2. For an integer function m, the complexity class IP(m(·)) consists of
sets having an interactive proof system in which, on common input x,
at most m(|x|) messages are exchanged1 between the parties.

For a set of integer functions, M , we let IP(M)
def
=
⋃

m∈M IP(m(·)).

Finally, IP def
= IP(poly).

In Item (1), we have followed the standard definition which specifies strategies
for both the verifier and the prover. An alternative presentation only specifies
the verifier’s strategy while rephrasing the completeness condition as follows:

There exists a prover strategy P so that, for every x ∈ S, the
verifier V always accepts after interacting with P on common
input x.

Arthur-Merlin games (a.k.a public-coin proof systems), introduced in [24],
are a special case of interactive proofs, where the verifier must send the
outcome of any coin it tosses (and thus need not send any other information).
Yet, as shown in [206], this restricted case has essentially the same power as
the general case (introduced in [202]). Thus, in the context of interactive
proof systems, asking random questions is as powerful as asking “tricky”
ones. Also, in some sources interactive proofs are defined so that two-sided
error probability is allowed; yet, this does not increase their power [159]. See
further discussion below.

We stress that although we have relaxed the requirements from the verifi-
cation procedure, by allowing it to interact, toss coins and risk some (bounded)
error probability, we did not restrict the validity of its assertions by as-
sumptions concerning the potential prover. (This should be contrasted with
the latter notions of proof systems, such as computationally-sound ones and

1We count the total number of messages exchanged regardless of the direction of commu-
nication. For example, interactive proof systems in which the verifier sends a single message
answered by a single message of the prover corresponds to IP(2). Clearly, NP ⊆ IP(1),
yet the inclusion may be strict since the verifier may toss coins after receiving the prover’s
single message.

2.2. INTERACTIVE PROOF SYSTEMS 45

multi-prover ones, in which the validity of the verifier’s assertions depends
on assumptions concerning the external proving entity.)

2.2.2 The Role of Randomness

Randomness is essential to the formulation of interactive proofs; if random-
ness is not allowed (or if it is allowed but zero error is required in the sound-
ness condition) then interactive proof systems collapse to NP-proof systems.
The reason being that, in case the verifier is deterministic, the prover can
predict the verifier’s part of the interaction. Thus it suffices to let the (mod-
ified) prover send the full transcript of the (original) interaction, and let the
(modified) verifier check that the transcript is indeed valid and accepting (i.e.,
that the verifier messages match the original (deterministic) verifier strategy
and that the transcript would have caused the original verifier to accept).2

The moral is that there is no point to interact with predictable parties
which are also computationally weaker. (This moral represents the prover’s
point of view. Certainly, from the verifier’s point of view it is beneficial to
interact with the prover, since the latter is computationally stronger.)

2.2.3 The Power of Interactive Proofs

A simple example demonstrating the power of interactive proofs follows.
Specifically, we present an interactive proof for proving that two graphs are
not isomorphic3. It is not known whether such a statement can be proven
via an NP-proof system.

Construction 2.3 (Interactive proof for Graph Non-Isomorphism [186]):

• Common Input: A pair of graphs, G1 = (V1, E1) and G2 = (V2, E2).
Suppose, without loss of generality, that V1 = {1, 2, ..., |V1|}, and simi-
larly for V2.

• Verifier’s first step (V1): The verifier selects at random one of the two
input graphs, and sends to the prover a random isomorphic copy of this
graph. Namely, the verifier selects uniformly σ ∈ {1, 2}, and a random
permutation π from the set of permutations over the vertex set Vσ. The
verifier constructs a graph with vertex set Vσ and edge set

E
def
= {{π(u), π(v)} : {u, v}∈Eσ}

and sends (Vσ, E) to the prover.

2 Probabilistic verifiers of zero soundness error are dealt with by fixing their coins to
an arbitrary outcome, say the all-zero sequence.

3Two graphs, G1 = (V1, E1) and G2 = (V2, E2), are called isomorphic if there exists a
1-1 and onto mapping, φ, from the vertex set V1 to the vertex set V2 so that {u, v} ∈ E1

if and only if {φ(v), φ(u)} ∈ E2. The (“edge preserving”) mapping φ, if existing, is called
an isomorphism between the graphs.

46 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

• Motivating Remark: If the input graphs are non-isomorphic, as the
prover claims, then the prover should be able to distinguish (not nec-
essarily by an efficient algorithm) isomorphic copies of one graph from
isomorphic copies of the other graph. However, if the input graphs are
isomorphic then a random isomorphic copy of one graph is distributed
identically to a random isomorphic copy of the other graph.

• Prover’s step: Upon receiving a graph, G′ = (V ′, E′), from the verifier,
the prover finds a τ ∈ {1, 2} so that the graph G′ is isomorphic to the
input graph Gτ . (If both τ=1, 2 satisfy the condition then τ is selected
arbitrarily. In case no τ ∈ {1, 2} satisfies the condition, τ is set to 0).
The prover sends τ to the verifier.

• Verifier’s second step (V2): If the message, τ , received from the prover
equals σ (chosen in Step V1) then the verifier outputs 1 (i.e., accepts
the common input). Otherwise the verifier outputs 0 (i.e., rejects the
common input).

The verifier’s strategy presented above is easily implemented in probabilistic
polynomial-time. We do not known of a probabilistic polynomial-time imple-
mentation of the prover’s strategy, but this is not required. The motivating
remark justifies the claim that Construction 2.3 constitutes an interactive
proof system for the set of pairs of non-isomorphic graphs. Recall that the
latter is a coNP-set (not known to be in NP).

Interactive proofs are powerful enough to prove any coNP assertion (e.g.,
that a graph is not 3-colorable) [261]. Furthermore, the class of sets having
interactive proof systems coincides with the class of sets that can be decided
using a polynomial amount of work-space [335].

Theorem 2.4 (The IP Theorem [261, 335]): IP = PSPACE.
Recall that it is widely believed that NP ⊂ PSPACE . Thus, under this
conjecture, interactive proofs are more powerful than NP-proofs.

Theorem 2.4, was established using algebraic methods (see proof sketch
below). In particular, the following approach – unprecedented in complexity
theory – was employed: In order to demonstrate that a particular set is in
a particular class, an arithmetic generalization of the Boolean problem is
presented, and (elementary) algebraic methods are applied to show that the
arithmetic problem is solvable within the class. Interestingly, this technique
“does not relativize” and, furthermore, yields results (e.g., IP = PSPACE)
that are false relative to most oracles, providing a dramatic refutation of the
“Random Oracle Hypothesis”; see [100].

Sketch of the Proof of Theorem 2.4

We first show that coNP ⊆ IP , by presenting an interactive proof system
for the coNP-complete set of non-satisfiable CNF formulae. Next we modify

2.2. INTERACTIVE PROOF SYSTEMS 47

this proof system to obtain the ultimate theorem. The first part is due to
Lund, Fortnow, Karloff and Nisan [261], but our entire presentation follows
the one of Shamir [335], to which the proof of the second part is due.4

Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF)
formula, we replace the Boolean variables by integer variables, or-clauses by
sums, and the top level conjunction by a product. Then we sum over all 0-1
assignments to these variables. For example, the Boolean formula

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ ¬x4)

is replaces by the arithmetic expression

(x3 + (1 − x5) + x17) · (x5 + x9) · ((1 − x3) + (1 − x4))

and the Boolean formula is non-satisfiable if and only if the sum of the arith-
metic expression over x1, x2, ..., x17 ∈ {0, 1} equals 0. Observe that the arith-
metic expression is a low degree polynomial over the integers. Also observe
that, in any case, the value of the arithmetic expression resides within the
interval [0, vm], where v is the maximum number of variables in a clause, and
m is the number of clauses. Summing over all 2m 0-1 assignments, the result
resides in [0, 2mvm].

Moving to a Finite Field: Whenever we check equality between two
integers in [0,M], it suffices to check equality mod q, where q > M . The
benefit is that the arithmetic is now in a finite field (mod q) and so certain
things are “nicer” (e.g., uniformly selecting a value). Thus, proving that a
CNF formula is not satisfiable reduces to proving equality of the following
form ∑

x1=0,1

· · ·
∑

xn=0,1

φ(x1, ..., xn) ≡ 0 (mod q)

where φ is a low degree multi-variant polynomial.

The construction: We strip off summations in iterations. In each iteration
the prover is supposed to supply the polynomial representing the expression
in one (currently stripped) variable. (By the above observation, this is a
low degree polynomial and so has a short description.) The verifier checks
that the polynomial (say, p) is of low degree, and that it corresponds to the
current value (say, v) being claimed (i.e., p(0) + p(1) ≡ v). Next, the verifier
randomly instantiates the variable, yielding a new value to be claimed for the
resulting expression (i.e., v ← p(r), for uniformly chosen r ∈ GF(q)). The
verifier sends the uniformly chosen instantiation to the prover. (At the end

4 Some people, consider the proof in [337] to be simpler than the one presented in [335]
(and below). We are not among them.

48 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

of the last iteration, the verifier has a fully specified expression and can easily
check it against the claimed value.)

Thus, the ith iteration is aimed at proving a claim of the form

∑

xi=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, xi, xi+1, ..., xn) ≡ vi−1 (mod q)

where v0 = 0, and r1, ..., ri−1 and vi−1 are as determined in previous itera-
tions. The prover is supposed to supply the univariant polynomial pi

pi(z)
def
=

∑

xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, z, xi+1, ..., xn) mod q

Denote by p′i the actual polynomial sent by the verifier (i.e., the honest prover
sets p′i = pi). Then, the verifier first checks if p′i(0) + p′i(1) ≡ vi−1 (mod q),
and next uniformly selects ri ∈ GF(q) and sends it to the prover. The claim
to be proven in the next iteration is

∑

xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, ri, xi+1, ..., xn) ≡ vi (mod q)

where vi
def
= p′i(ri) mod q.

Completeness of the above: When the claim holds, the prover has no
problem supplying the correct polynomials, and this will lead the verifier to
always accept.

Soundness of the above: It suffices to bound the probability that, for
a particular iteration, the initial claim is false whereas the ending claim is
correct. Both claims refer to the current summation expression being equal
to the current value, where ‘current’ means either at the beginning of the
iteration or at its end. Let T (·) be the actual polynomial representing the
expression when stripping the current variable, and let p(·) be any potential
answer by the prover. We may assume that p(0) + p(1) ≡ v and that p is of
low-degree (as otherwise the verifier will reject). Using our hypothesis (that
the initial claim is false), we know that T (0) + T (1) 6≡ v. Thus, p and T are
different low-degree polynomials and so they may agree on very few points
(if at all). In case the verifier instantiation (i.e., its choice of random r) does
not happen to be one of these few points, the ending claim is false too.

Interactive Proofs for PSPACE. Recall that PSPACE languages can
be expressed by Quantified Boolean Formulae. The number of quantifiers is
polynomial in the input, but there are both existential and universal quanti-
fiers, and furthermore these quantifiers may alternate. Considering the arith-
metization of these formulae, we face two problems: Firstly, the value of the

2.2. INTERACTIVE PROOF SYSTEMS 49

formulae is only bounded by a double exponential function (in the length of
the input), and secondly when stripping out summations, the expression may
be a polynomial of high degree (due to the universal quantifiers which are
replaced by products). The first problem is easy to deal with by using the Chi-
nese Reminder Theorem (i.e., if two integers in [0,M] are different then they
must be different modulo most of the primes up-to poly(logM)). The second
problem is resolved by “refreshing” variables after each universal quantifier:
That is, let φ(x1, ..., xs, y, xs+1, ..., xs+t) be a quantifier-free boolean formula
with free Boolean variables x1, , ..., xs+t, y, and let Q1, ..., Qs+t be an arbi-
trary sequence of quantifiers. Then, we replace the formula

Q1x1 · · · Qsxs∀yQs+1xs+1 · · · Qs+txs+tφ(x1, ..., xs, y, xs+1, ..., xs+t)

by the formula

Q1x1 · · · Qsxs∀y [∃x′1 · · · ∃x′s ∧s
i=1 (x′i = xi)

∧ Qs+1xs+1 · · · Qs+txs+tφ(x′1, ..., x
′
s, y, xs+1, ..., xs+t)]

This process of refreshing variables is applied from left to right on the entire
sequence of quantifiers. Thus, in the resulting formula, no variable quantified
to the left of two universal quantifiers may appear on their right. It follows
that when arithmetizing and stripping summations (or products) from the
resulting quantified Boolean formula, until we get to the very last product,
the corresponding univariant polynomial is of constant degree. (The degree
of the univariant polynomial obtained when stripping the last product and
the rest of the summations is bounded by the number of the original clauses.)

IP in PSPACE: One shows that for every interactive proof system, there
exists an optimal prover strategy, and furthermore that this strategy can be
computed in polynomial-space (and consequently IP ⊆ PSPACE). This
claim follows by looking at the tree of all possible executions, and observing
that the “value” of each node in this tree can be computed recursively in
polynomial-space (see related Appendix C.1).

2.2.4 The Interactive Proof System Hierarchy

Concerning the finer structure of the IP-hierarchy, the following is known:

• A “linear speed-up” [28]: For every integer function, f , so that f(n) ≥ 2
for all n, the class IP(O(f(·))) collapses to the class IP(f(·)).
In particular, IP(O(1)) collapses to IP(2).

• The class IP(2) contains sets not known to be in NP , e.g., Graph
Non-Isomorphism (see above) [186].

• The class IP(2) is contained in NP/poly (i.e., nonuniform-NP), anal-
ogously to the containment BPP ⊆ P/poly [340].

50 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

• If coNP ⊆ IP(2) then the Polynomial-Time Hierarchy collapses [74].

It is conjectured that coNP is not contained in IP(2), and consequently
that interactive proofs with an unbounded number of message exchanges are
more powerful than interactive proofs in which only a bounded (i.e., con-
stant) number of messages are exchanged. The class IP(1) (also denoted
MA) seems to be the “real” randomized (and yet non-interactive) version of
NP : Here the prover supplies a candidate (polynomial-size) “proof”, and the
verifier assesses its validity probabilistically (rather than deterministically).
We note that certain derandomization results regarding BPP imply that
IP(1) = NP . Specifically, if any promise problem [133] solvable in prob-
abilistic polynomial-time is solvable in deterministic polynomial-time then
IP(1) = NP . Fur further discussion see [198].

Variants. As mentioned above, the IP-hierarchy (i.e., IP(·)) equals an
analogous hierarchy, denotedAM(·), in which the verifier is restricted to send
the outcome of any coin it tosses [206]. The latter restricted proof systems
are called Arthur-Merlin games or public-coin interactive proofs. In addition,
the IP-hierarchy equals an analogous two-sided error hierarchy [159]. In the
latter proof systems the completeness condition is relaxed so that the verifier
is required to accept each x ∈ L with probability at least 2

3 . In both cases,
we mean that for every integer function f with f(n) ≥ 1 (for all n’s), the
f -level of the alternative hierarchy coincides with the f -level of the basic
hierarchy (i.e., IP(f)).5 Thus, the constant levels of all hierarchies coincide

with AM def
= AM(2).

2.2.5 How Powerful Should the Prover be?

Assume that a set S is in IP . This means that there is a verifier V that can
be convinced to accept any input in S but cannot be convinced to accept any
input not in S (except with small probability). One may ask how powerful
should a prover be so that it can convince the verifier V to accept any input
in S. More interestingly, considering all possible verifiers which give rise to
interactive proof systems for S, what is the minimum power required from
a prover which satisfies the completeness requirement with respect to one of
these verifiers?
We stress that, unlike the case of computationally-sound proof systems (see
Sec. 2.5), we do not restrict the power of the prover in the soundness con-

5For f ≡ 1 there is no syntactic difference between Arthur-Merlin games and interactive
proof systems. As for one-sided versus two-sided error, the transformation of [159] adds an
initial message by the prover, which can be incorporated into the single message sent in a
one-message interactive proof system. In general, for f ≥ 2, the transformations of [159]
and [206] may add 1 or 2 messages, respectively, but this effect may be removed using the
linear speed-up result of [28] (mentioned above). As for the 0th level it is not interactive in
any sense; it is syntactically equal to BPP or to coRP (depending on whether we consider
two-sided or one-sided error).

2.3. ZERO-KNOWLEDGE PROOF SYSTEMS 51

dition, but rather consider the minimum complexity of provers meeting the
completeness condition. Specifically, we are interested in relatively efficient
provers which meet the completeness condition. The term ‘relatively efficient
prover’ has been given three different interpretations.

1. A prover is considered relatively efficient if, when given an auxiliary
input (in addition to the common input in S), it works in (probabilistic)
polynomial-time. Specifically, in case S ∈ NP , the auxiliary input
maybe an NP-proof that the common input is in the set6.

This interpretation is adequate and in fact crucial for applications in
which such an auxiliary input is available to the otherwise-polynomial-
time parties. Typically, such auxiliary input is available in crypto-
graphic applications in which parties wish to prove in (zero-knowledge)
that they have conducted some computation correctly. In these cases
the NP-proof is just the transcript of the computation by which the
claimed result has been generated, and thus the auxiliary input is avail-
able to the proving party. See [186].

2. A prover is considered relatively efficient if it can be implemented by
a probabilistic polynomial-time oracle machine with oracle access to
the set S itself. (Note that the prover in Construction 2.3 has this
property.)

This interpretation generalizes the notion of self-reducibility of NP-sets.
(By self-reducibility of an NP-set we mean that the search problem of
finding an NP-witness is polynomial-time reducible to deciding mem-
bership in the set.) See [42].

3. A prover is considered relatively efficient if it can be implemented by
a probabilistic machine which runs in time which is polynomial in the
deterministic complexity of the set. This interpretation relates the dif-
ficulty of convincing a “lazy verifier” to the complexity of finding the
truth alone.

Hence, in contrast to the first interpretation which is adequate in set-
tings where assertions are generated along with their NP-proofs, the
current interpretation is adequate in settings in which the prover is
given only the assertion and has to find a proof to it by itself (before
trying to convince a lazy verifier of its validity). See [273].

2.3 Zero-Knowledge Proof Systems

Zero-knowledge proofs, introduced in [202], are central to cryptography. Fur-
thermore, zero-knowledge proofs are very intriguing from a conceptual point

6Still, even in this case the interactive proof need not consist of the prover sending the
auxiliary input to the verifier; e.g., an alternative procedure may allow the prover to be
zero-knowledge (see Construction 2.7).

52 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

of view, since they exhibit an extreme contrast between being convinced of
the validity of a statement and learning anything in addition while receiving
such a convincing proof. Namely, zero-knowledge proofs have the remarkable
property of being both convincing while yielding nothing to the verifier, be-
yond the fact that the statement is valid. Formally, the fact that “nothing is
gained by the interaction” is captured by stating that whatever the verifier
can efficiently compute after interacting with a zero-knowledge prover, can
be efficiently computed from the assertion itself, without interacting with
anyone.

2.3.1 A Sample Definition

Zero-knowledge is a property of some interactive proof systems, or more ac-
curately of some specified prover strategies. The formulation of the zero-
knowledge condition considers two ensembles of probability distributions,
each ensemble associates a probability distribution to each valid assertion.
The first ensemble represents the output distribution of the verifier after
interacting with the specified prover strategy P , where the verifier is not
necessarily employing the specified strategy (i.e., V) – but rather any effi-
cient strategy. The second ensemble represents the output distribution of
some probabilistic polynomial-time algorithm (which does not interact with
anyone). The basic paradigm of zero-knowledge asserts that for every en-
semble of the first type there exist a “similar” ensemble of the second type.
The specific variants differ by the interpretation given to ‘similarity’. The
most strict interpretation, leading to perfect zero-knowledge, is that similarity
means equality. Namely,

Definition 2.5 (perfect zero-knowledge, simplified7 [202]): A prover strat-
egy, P , is said to be perfect zero-knowledge over a set S if for every probabilis-
tic polynomial-time verifier strategy, V ∗, there exists a probabilistic polynomial-
time algorithm, M∗, such that

(P, V ∗)(x) ≡M∗(x) , for every x ∈ S

where (P, V ∗)(x) is a random variable representing the output of verifier V ∗

after interacting with the prover P on common input x, and M∗(x) is a
random variable representing the output of machine M∗ on input x.

A somewhat more relaxed interpretation, leading to almost-perfect zero-
knowledge, is that similarity means statistical closeness (i.e., negligible dif-
ference between the ensembles). The most liberal interpretation, leading
to the standard usage of the term zero-knowledge (and sometimes referred
to as computational zero-knowledge), is that similarity means computational

7 In the actual definition one either allows M∗ to run for expected polynomial-time (as
done in [202, 186]) or allows M∗ to have no output with probability at most 1/2 (as done
in [171]). The latter alternative implies the former, but the converse is not known to hold.

2.3. ZERO-KNOWLEDGE PROOF SYSTEMS 53

indistinguishability (i.e., failure of any efficient procedure to tell the two en-
sembles apart). Since the notion of computational indistinguishability is a
fundamental one, it is indeed in place to present a definition of it.

Definition 2.6 (computational indistinguishability [201, 364]): An integer
function, f , is called negligible if for every positive polynomial p and all suf-
ficiently large n, it holds that f(n) < 1

p(n) . (Thus, multiplying a negligible

function by any fixed polynomial yields a negligible function.)
Two probability ensembles, {Ax}x∈S and {Bx}x∈S, are indistinguishable by
an algorithm D if

d(n)
def
= max

x∈S∩{0,1}n
{|Pr[D(Ax)=1]− Pr[D(Bx)=1]|}

is a negligible function. The ensembles {Ax}x∈S and {Bx}x∈S are compu-
tationally indistinguishable if they are indistinguishable by every probabilistic
polynomial-time algorithm.

The definitions presented above are a simplified version of the actual defini-
tions. For example, in order to guarantee that zero-knowledge is preserved
under sequential composition it is necessary to slightly augment the defini-
tions. For details see [188].

Knowledge Complexity. Zero-knowledge is the lowest level of a knowledge-
complexity hierarchy which quantifies the “knowledge revealed in an interac-
tion” [202]. Knowledge complexity may be defined as the minimum number
of oracle-queries required in order to (efficiently) simulate an interaction with
the prover (cf., [191]). Results linking two different variants of this measure
to other complexity measures are given in [190, 304] and [1], respectively.

2.3.2 The Power of Zero-Knowledge

A simple example, demonstrating the power of zero-knowledge proofs, fol-
lows. Specifically, we will present a simple zero-knowledge proof for proving
that a graph is 3-colorable8. The interactive proof will be described using
“boxes” in which information can be hidden and later revealed. Such “boxes”
can be implemented using one-way functions (see below).

Construction 2.7 (Zero-knowledge proof of 3-colorability [186]):

• Common Input: A simple graph G=(V,E).

8A graph G=(V, E) is said to be 3-colorable if there exists a function π :V 7→ {1, 2, 3}
so that π(v) 6= π(u) for every {u, v} ∈ E. Such a function, π, is called a 3-coloring of the
graph.

54 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a

random permutation, π, over {1, 2, 3}, and sets φ(v)
def
= π(ψ(v)), for

each v ∈ V . Hence, the prover forms a random relabeling of the 3-
coloring ψ. The prover sends the verifier a sequence of |V | locked and
non-transparent boxes so that the vth box contains the value φ(v);

• Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E,
and sends it to the prover;

• Motivating Remark: The verifier asks to inspect the colors of vertices
u and v;

• Prover’s second step: The prover sends to the verifier the keys to boxes
u and v;

• Verifier’s second step: The verifier opens boxes u and v, and accepts if
and only if they contain two different elements in {1, 2, 3};

The verifier strategy presented above is easily implemented in probabilistic
polynomial-time. The same holds with respect to the prover’s strategy, pro-
vided it is given a 3-coloring of G as auxiliary input. Clearly, if the input
graph is 3-colorable then the prover can cause the verifier to accept always.
On the other hand, if the input graph is not 3-colorable then any contents
put in the boxes must be invalid on at least one edge, and consequently the
verifier will reject with probability at least 1

|E| . Hence, the above game ex-

hibits a non-negligible gap in the accepting probabilities between the case
of 3-colorable graphs and the case of non-3-colorable graphs. To increase
the gap, the game may be repeated sufficiently many times (of course, using
independent coin tosses in each repetition). The zero-knowledge property
follows easily, in this abstract setting, since one can simulate the real inter-
action by placing a random pair of different colors in the boxes indicated
by the verifier. This indeed demonstrates that the verifier learns nothing
from the interaction (since it expects to see a random pair of different colors
and indeed this is what it sees). We stress that this simple argument is not
possible in the digital implementation since the boxes are not totally unaf-
fected by their contents (but are rather effected, yet in an indistinguishable
manner). Instead, we simulate the interaction as follows. We first guess (at
random) which pair of boxes the verifier would ask to open, and place a ran-
dom pair of distinct colors in these boxes (and garbage in the rest). We hand
all boxes to the verifier. In case the verifier asks for the chosen pair (i.e., the
one we guessed), we can complete the simulation. Otherwise, we try again
(with a new random guess). Thus, it suffices to use boxes which hide their
contents quite well (rather than being perfectly opaque). Such boxes can be
implemented digitally.

2.3. ZERO-KNOWLEDGE PROOF SYSTEMS 55

Digital implementation. We implement the “boxes” (used above) by us-
ing an adequately defined “commitment scheme”. Loosely speaking, such a
scheme is a two phase game between a sender and a receiver so that after the
first phase the sender is “committed” to a value and yet, at this stage, it is
infeasible for the receiver to find out the committed value. The committed
value will be revealed to the receiver in the second phase and it is guaranteed
that the sender cannot reveal a value other than the one committed. Such
commitment schemes can be implemented assuming the existence of one-way
functions (i.e., loosely speaking, functions that are easy to compute but hard
to invert, such as the multiplication of two large primes) [279, 214].

Using the fact that 3-colorability is NP-complete, one gets zero-knowledge
proofs for any NP-set.

Theorem 2.8 (The ZK Theorem [186]): Assuming the existence of one-way
functions, any NP-proof can be efficiently transformed into a (computational)
zero-knowledge interactive proof.

The hypothesis (regarding the existence of one-way functions) in the above
theorem seems unavoidable – the existence of zero-knowledge proofs for “hard
on the average” problems implies the existence of one-way functions (and,
likewise, the existence of zero-knowledge proofs for sets outside BPP implies
the existence of “auxiliary-input one-way functions”) [299]. Theorem 2.8 has
a dramatic effect on the design of cryptographic protocols (cf., [186, 187]). In
a different vein and for the sake of elegancy, we mention that, using further
ideas and under the same assumption, any interactive proof can be efficiently
transformed into a zero-knowledge one [225, 58]. Thus,

Theorem 2.9 (The ultimate ZK Theorem [225, 58]): Assuming the exis-
tence of one-way functions, IP = CZK, where CZK is the class of sets
having (computational) zero-knowledge proof systems.

Perfect and Statistical Zero-Knowledge. The above results may be
contrasted with the results regarding the complexity of almost-perfect (a.k.a
statistical) zero-knowledge proof systems: Almost-perfect zero-knowledge
proof systems exist only for sets in IP(2) ∩ coIP(2) [154, 2], and thus are
unlikely to exist for all NP-sets. On the other hand, the class Statistical Zero-
Knowledge is known to contain some hard problems (cf., discussion in [194]),
and turns out to have interesting complexity theoretic properties (e.g., being
closed under complementation, and having very natural complete problems;
cf., [297, 324, 194, 196]).

2.3.3 The Role of Randomness

Again, randomness is essential to all the above mentioned (positive) results.
Namely, if either the verifier or the prover is required to be deterministic then

56 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

only BPP-sets can be proven in a zero-knowledge manner [188]. However,
BPP-sets have trivial zero-knowledge proofs in which the prover sends noth-
ing and the verifier just test the validity of the assertion by itself.9 Thus,
randomness is essential to the usefulness of zero-knowledge proofs.

2.4 Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system, the probabilistically
checkable proof setting consists of a prover which is memoryless. Namely, one
can think of the prover as being an oracle and of the messages sent to it as
being queries. A more appealing interpretation is to view the probabilistically
checkable proof setting as an alternative way of generalizing NP . Instead of
receiving the entire proof and conducting a deterministic polynomial-time
computation (as in the case of NP), the verifier may toss coins and query
the proof only at location of its choice. Potentially, this allows the verifier
to utilize very long proofs (i.e., of super-polynomial length) or alternatively
examine very few bits of an NP-proof.

2.4.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a
probabilistic polynomial-time verifier having access to an oracle which rep-
resents a proof in redundant form. Typically, the verifier accesses only few
of the oracle bits, and these bit positions are determined by the outcome of
the verifier’s coin tosses. Again, it is required that if the assertion holds then
the verifier always accepts (i.e., when given access to an adequate oracle);
whereas, if the assertion is false then the verifier must reject with probability
at least 1

2 , no matter which oracle is used. The basic definition of the PCP
setting is given in Item (1) below. Yet, the complexity measures introduced
in Item (2) are of key importance for the subsequent discussions, and should
not be ignored.

Definition 2.10 (Probabilistic Checkable Proofs – PCP):

1. A probabilistic checkable proof system (pcp) for a set S is a probabilistic
polynomial-time oracle machine (called verifier), denoted V , satisfying

• Completeness: For every x ∈ S there exists an oracle πx so that
V , on input x and access to oracle πx, always accepts x.

• Soundness: For every x 6∈ S and every oracle π, machine V , on
input x and access to oracle π, rejects x with probability at least
1
2 .

9Actually, this is slightly inaccurate since the resulting “interactive proof” may have
two-sided error, whereas we have required interactive proofs to have only one-sided er-
ror. Yet, since the error can be made negligible by successive repetitions this issue is
insignificant.

2.4. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 57

2. Let r and q be integer functions. The complexity class PCP(r(·), q(·))
consists of sets having a probabilistic checkable proof system in which the
verifier, on any input of length n, makes at most r(n) coin tosses and
at most q(n) oracle queries. We stress that here, as usual in complexity
theory, the oracle answers are always binary (i.e., either 0 or 1).

For sets of integer functions, R and Q, we let
PCP(R,Q) equal

⋃
r∈R,q∈Q PCP(r(·), q(·)).

The above model was suggested in [155] and shown related to a multi-prover
model introduced previously in [59]. The fine complexity measures were
introduced and motivated in [140], and further advocated in [21]. A related
model was presented in [26], stressing the applicability to program checking.

We stress that the oracle πx in a pcp system constitutes a proof in the
standard mathematical sense. (Jumping ahead, the oracles in pcp systems
characterizing NP have the property of being NP proofs themselves.) Yet,
this oracle has the extra property of enabling a lazy verifier, to toss coins,
take its chances and “assess” the validity of the proof without reading all of
it (but rather by reading a tiny portion of it).

2.4.2 The Power of Probabilistically Checkable Proofs

Clearly, PCP(poly, 0) equals coRP , whereas PCP(0, poly) equals NP . It is
easy to prove an upper bound on the non-deterministic time complexity of
sets in the PCP hierarchy. In particular,

Proposition 2.11 : PCP(log, poly) is contained in NP.

The above follows by observing that PCP systems of logarithmic randomness
only utilize a polynomial (in the input length) portion of the oracle. This
observation also explains much of the appeal of such proof systems – the
oracle in such PCP systems constitutes an NP-proof with extra properties;
we refer to the ability to evaluate the validity of this proof by reading a small
portion of it. Thus, any result of the form

NP ⊆ PCP(log, q(·)) (2.1)

where q is any fixed polynomial would have been interesting (as it would apply
also to NP-sets having witnesses of length exceeding q(n)), and the smaller
q – the better. Interestingly, the polynomial q can be made a constant, and
this fact – known as the PCP Theorem – has very important consequences.
The PCP Theorem is a culmination of a sequence of great works [25, 26, 140,
21, 20],10 each establishing meaningful and increasingly stronger versions of
Eq. (2.1). An overview of the proof is given below.

10 See Section 2.6.2 for an account of the developments leading to Theorem 2.12. The
constant (number of queries) in Theorem 2.12 has been subsequently improved, and is
currently 5; cf., [41, 213, 208].

58 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

Theorem 2.12 (The PCP Theorem [20]):

NP is contained in PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only log-
arithmically many coins and makes only a constant number of queries exist
for every set in the complexity class NP. Furthermore, the proof of Theo-
rem 2.12 is constructive in the sense that it allows to efficiently transform
any NP-witness (for an instance of a set in NP) into an oracle which makes
the PCP verifier always accept. Thus, NP-proofs can be transformed into
NP-proofs which offer a trade-off between the portion of the proof being read
and the confidence it offers. Specifically, for every ǫ > 0, if the verifier is
willing to tolerate an error probability of ǫ then it suffices to let it examine
O(log(1/ǫ)) bits of the (transformed) NP-proof. These bit locations need to
be selected at random.

Combining Theorem 2.12 with Proposition 2.11 we obtain the following char-
acterization of NP .

Corollary 2.13 (The PCP characterization of NP): NP = PCP(log, O(1)).

Overview of the Proof of Theorem 2.12

The proof of the PCP Theorem (Theorem 2.12) is one of the most complicated
proofs in the Theory of Computation. Its main ingredients are:

1. A PCP(log, poly(log)) proof system for NP . Furthermore, this proof
system has additional properties which enable proof composition as in
item (3) below.

2. A PCP(poly, O(1)) proof system for NP . This proof system also has
additional properties enabling proof composition as in item (3).

3. The proof composition paradigm: In general this paradigm allows to
compose two proof systems so that the “inner” one is used to proba-
bilistically verify the acceptance criteria of the “outer” verifier. The
aim is to conduct this verification using fewer queries than the total
query complexity of the “outer” proof system. This is done by encod-
ing the supposed answers of the “outer” system using an appropriate
error correcting code. Thus, the “inner” verifier should be able to verify
claims made with respect to an encoded input, presented by an input
oracle, using much fewer queries than the length of the input. Actu-
ally, the “inner” verifier should be able to process inputs presented by
several such oracles, and the “outer” verifier should operate by making
at most a corresponding number of queries (possibly to a multi-valued
oracle).

2.4. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 59

Suppose we are given a PCP(r(·), O(ℓ(·))) system for NP in which a
constant number of queries are made (non-adaptively) to an 2ℓ-valued
oracle, and the verifier’s decision regarding the answers may be imple-
mented by a poly(ℓ)-size circuit. Further suppose that we are given a
PCP(r′(·), q(·))-like system for P in which the input is given in encoded
form via an additional oracle so that the system accepts input-oracles
which encode inputs in the language and reject any input-oracle which
is “far” from the encoding of any input in the language. In this latter
system access to the input-oracle is accounted in the query complex-
ity. Furthermore, suppose that the latter system may handle inputs
which result from concatenation of a constant number of sub-inputs,
each encoded in a separate sub-input oracle.

Then, NP ⊆ PCP(2(r(·)+r′(s(·))), 2q(s(·))), where s(n)
def
= poly(ℓ(n)).

[The extra factor of 2 is an artifact of the need to amplify each of the
two proof systems so that the total error probability sums up to at
most 1/2.]

In particular, the proof system of item (1) is composed with itself [using
r = r′ = log, ℓ = q = poly(log), and s(n) = poly(log(n))] yielding a
PCP(log, poly(log log)) system for NP , which is then composed with the
system of item (2) [using r = log, ℓ = poly(log log), r′ = poly, q = O(1), and
s(n) = poly(log log(n))] yielding the desired PCP(log, O(1)) system for NP .

The PCP(log, poly(log)) system for NP: We start with a different arith-
metization of CNF formulae (i.e., other than the one used for constructing
an interactive proof for coNP). Logarithmically many variables are used
to represent (in binary) the names of variables and of clauses in the in-
put formula, and an oracle from variables to Boolean values is supposed to
represent a satisfying assignment. An arithmetic expression involving a log-
arithmic number of summations is used to represent the value of the formula
under the truth assignment represented by the oracle. This expression is a
low-degree polynomial in the new variables and has a cubic dependency on
the assignment-oracle. Small-biased probability spaces are used to generate
a polynomial number of such expressions so that if the formula is satisfiable
then all these expressions evaluate to zero, and otherwise at most half of
them evaluate to zero. Using a summation test (as in the interactive proof
for coNP) and a low-degree test, this yields a PCP(t(·), t(·)) system for NP ,

where t(n)
def
= O(log(n) · log log(n)). [We use a finite field of poly(log(n))

elements, and so we need (log n) ·O(log logn) random bits for the summation

and low-degree tests.] To obtain the desired pcp system, one uses O(log n)
log log n -

long sequences over {1, ..., logn} to represent variable/clause names (rather
than logarithmically-long binary sequences). [We can still use a finite field of

poly(log(n)) elements, and so we need only O(log n)
log log n ·O(log logn) random bits

60 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

for the summation and low-degree tests.] All this is relatively easy compared
to what is needed in order to transform the pcp system so that only a con-
stant number of queries are made to a (multi-valued) oracle. This is obtained
via a (randomness-efficient) “parallelization” of pcp systems, which in turn
depends heavily on efficient low-degree tests. (Indeed, this “parallelization”
is the most technically complex part of the entire proof of the PCP Theorem.)

The PCP(poly, O(1)) system for NP: It suffices to prove the satisfiabil-
ity of a systems of quadratic equations over GF(2) (as this problem too is
NP-complete). The oracle is supposed to hold the values of all quadratic
expressions under a satisfying assignment to the (say n) variables. We dis-
tinguish two tables in the oracle: One corresponding to the (2n) linear ex-

pressions and the other to the (2n2

pure) bilinear expressions. Each table is
tested for self-consistency (via a linearity test), and the two tables are tested
to be consistent with each other (via a matrix-equality test which utilizes
“self-correction”). Each of these tests utilizes a constant number of Boolean
queries, and randomness which is logarithmic in the size of the corresponding
table (and thus poly(n)).

2.4.3 PCP and Approximation

The characterization of NP in terms of probabilistically checkable proofs
plays a central role in recent developments concerning the difficulty of ap-
proximation problems (cf., [140, 20, 262, 41] and [212, 213]). To demonstrate
this relationship, we first note that Theorem 2.12 can be rephrased without
mentioning the class PCP altogether. Instead, a new type of polynomial-time
reductions, which we call amplifying, emerges.

Theorem 2.14 (Theorem 2.12 — Rephrased): There exists a constant ǫ >
0, and a polynomial-time computable function f , mapping the set of 3CNF
formulae11 to itself so that

• As usual, f maps satisfiable 3CNF formulae to satisfiable 3CNF for-
mulae; and

• f maps non-satisfiable 3CNF formulae to (non-satisfiable) 3CNF for-
mulae for which every truth assignment satisfies at most a 1−ǫ fraction
of the clauses.

The function f is called an amplifying reduction.

Proof Sketch (Thm. 2.12 ⇒ Thm. 2.14): We start by considering a pcp
system for 3SAT, and use the fact that the pcp system given by the proof of
Theorem 2.12 is non-adaptive (i.e., the queries are determined as a function

11A 3CNF formula is a Boolean formula consisting of a conjunction of clauses, where
each clause is a disjunction of upto 3 literals. (A literal is variable or its negation.).

2.4. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 61

of the input and the random-tape – and do not depend on answers to previous
queries).12 Next, we associate the bits of the oracle (of this pcp system) with
Boolean variables, and introduce a (constant size) Boolean formula for each
possible outcome of the sequence of O(log n) coin tosses, describing whether
the verifier would have accepted given this outcome. (For each input and
each fix outcome of the coin tosses, the verifier’s decision depends only on a
constant number or oracle bits.) Finally, using auxiliary variables, we convert
each of these formulae into a 3CNF formula and obtain (as the output of the
reduction) the conjunction of all these polynomially-many clauses.

It is also easy to see that Theorem 2.14 implies Theorem 2.12: Given a reduc-
tion as in Theorem 2.14, we construct a pcp system for 3SAT by letting the
verifier select a clause uniformly among the clauses of the reduced formula,
and make three queries corresponding to the three variables in it. This yields
a proof system with soundness error bounded by 1− ǫ. Theorem 2.12 is ob-
tained by reducing the error probability, using O(1/ǫ) successive applications
of the proof system.

As an immediate corollary to the formulation of Theorem 2.14 one concludes
that it is NP-Hard to distinguish satisfiable 3CNF formulae from 3CNF for-
mulae for which no truth assignment satisfies at least a 1− ǫ fraction of the
clauses (as otherwise, using the reduction, one may decide membership in
3SAT). In general, probabilistic checkable proof systems for NP yield strong
non-approximability results for various classical optimization problems. In
particular, quite tight non-approximability results have been shown for Max-
Clique (cf., [212]), Chromatic Number (cf., [142]), Set Cover (cf., [135]), and
Max3SAT (cf., [213] and algorithm in [231]). For further details the reader
is referred to [19] (alas this survey does not contain the most recent results).

2.4.4 More on PCP itself

We start by discussing variants of the PCP characterization of NP, and next
turn to PCPs having expressing power beyond NP.

More on the PCP characterization of NP. Interestingly, the two com-
plexity measures in the PCP-characterization of NP can be traded off, so
that at the extremes we getNP = PCP(log, O(1)) andNP = PCP(0, poly),
respectively.

Proposition 2.15 : There exist constants α, β>0 such that for every inte-
ger function l(·), so that 0≤ l(n)≤α log2 n,

NP = PCP(r(·), q(·)),
12Actually, it is not essential to use this fact, since one can easily convert any adap-

tive system into a non-adaptive one while incurring an exponential blowup in the query
complexity (which in our case is a constant).

62 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

where r(n) = α · log2 n− l(n) and q(n) = β · 2l(n).

Proof Idea: Starting with Theorem 2.12, one tries all possibilities for the
l(n)-long prefix of the random tape of the verifier.

The above simple observation is but the tip of an iceberg. In the years
which have passed since the establishment of Theorem 2.12 many far more
interesting and technically involved facts regarding the PCP characterization
of NP were discovered. Following is a brief summary of the various (still
active) research directions.

• The length of PCPs: By definition, the number of possible different
oracle queries in a PCP(log, log) system is polynomial (in the length
of the input). Actually, in the PCP systems of Theorem 2.12 these
queries refer only to a polynomially long prefix of the oracle, and so
we may say that the length of these PCPs for NP is polynomial. It is
known that the length of PCPs for NP can be made nearly-linear [308].

• The number of queries in PCPs: Theorem 2.12 asserts that a constant
number of queries suffice for PCPs with logarithmic randomness and
soundness error 1/2 (for NP). It is currently known that this constant is
at most 5 (whereas with 3 queries one may get arbitrary close to error
1/2) [208]. Allowing an arbitrary small constant error in the com-
pleteness condition, 3 queries are sufficient [213] (and necessary, unless
P = NP). The obvious trade-off between the number of queries and
the soundness error gives rise to the robust notion of amortized query
complexity defined as the ratio of the number of queries and (minus) the
logarithm (to based 2) of the soundness error. It is known that PCPs of
logarithmic randomness and amortized query complexity 1 exist only
for sets in P [41]. On the other hand, PCPs of logarithmic randomness
and amortized query complexity 2.5+ ǫ exists for all NP and any ǫ > 0
(see [208] presenting a 5-query system of error 0.25 + ǫ). In case one
allows arbitrary small constant error probability in the completeness
condition, the amortized query complexity is practically 1 (since, 1 is
again a lower bound, and 1 + ǫ is an upper bound, for any ǫ > 0) [328].

• The free-bit complexity: The motivation to this notion came from
the PCP–MaxClique connection, but we find it intriguing for its own
sake. Loosely speaking, here one distinguishes queries for which the
verifier compares the answer with a value determined by previously
obtained answers, from queries in which the verifier only records the
answer for future usage [141]. The latter queries are called free (as
the “acceptable answers” to them are not determined). The amortized
free-bit complexity is define analogously [55]. Interestingly, NP has
PCPs with logarithmic randomness and amortized free-bit complexity
less than any positive constant (cf., H̊astad [212]).

2.4. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 63

• Adaptive versus non-adaptive: A PCP verifier is called non-adaptive if
its queries are determined solely based on its input and the outcome of
its coin tosses. (A general verifier, called adaptive, may determine its
queries also based on previously received oracle answers.) Recall that
the PCP Characterization of NP (i.e., Theorem 2.12) is obtained using
a non-adaptive verifier; however, it turns out that adaptive verifier are
more powerful than non-adaptive ones (in terms of quantitative results):
Specifically, for every ǫ > 0 and logarithmic randomness, (adaptive) 3-
query PCPs with soundness error 0.5 + ǫ exist for NP [208], whereas
non-adaptive verifiers making 3 queries and having soundness error 5/8
exist only for P [370].

• Non-binary queries: Our definition of PCP allows only binary queries.
Certainly, non-binary queries can always be coded as binary ones, but
the converse is not necessarily valid, in particular in adversarial settings.
Note that the soundness condition constitutes an implicit adversarial
setting, where a bad proof may be thought of as being selected by an
adversary. Thus, when several binary queries are packed into one non-
binary query, the adversary need not respect the packing (i.e., it may
answer inconsistently on the same binary query depending on the other
queries packed with it). For this reason, “parallel repetition” is highly
non-trivial in the PCP (as well as the MIP) setting; see [316]. Still,
using adequate “consistency tests” one may construct PCP systems for
NP using logarithmic randomness, a constant number of queries and
soundness error exponential in the length of the answers (cf., [318] as
well as [22]). (Currently, this is known only for sub-logarithmic answer
lengths.) We comment that 2 non-binary queries are known to be less
powerful (in terms of quantitative results) than an equivalent number
of binary queries [346].

PCP with super-logarithmic randomness. The above text has focused
on the important case where the verifier tosses logarithmically many coins,
and hence the “effective proof length” is polynomial. Here we shortly mention
that the above main results scale up as follows.

Proposition 2.16 (Proposition 2.11 – Generalized): For every integer func-
tion r(·), the class PCP(r(·), poly) is contained in Ntime(2O(r(·)+log(·))).

Theorem 2.17 (Theorem 2.12 – Generalized): Let t(·) be an integer func-
tion so that n<t(n)<2poly(n), for all n’s. Then, the class Ntime(t(·)) is
contained in the class PCP(O(log t(·)), O(1)).

We comment thatNP is unlikely to be in PCP(o(log), o(log)) since PCP(o(log), o(log)) =
P will follow (by iteratively applying the FGLSS-reduction [140] to Max-
Clique, cf., [21]).

64 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

2.4.5 The Role of Randomness

No trade-off, between the number of bits examined and the confidence, is pos-
sible if one requires the verifier to be deterministic. In particular, PCP(0, q(·))
contains only sets that are decidable by a deterministic algorithms of running
time 2q(n) · poly(n). It follows that PCP(0, log) = P . Furthermore, since it
is unlikely that all NP-sets can be decided by (deterministic) algorithms of
running time, say, 2n ·poly(n), it follows that PCP(0, n) is unlikely to contain
NP .

2.5 Other Probabilistic Proof Systems

In this section, we shortly review some variants on the basic model of inter-
active proofs. These variants include models in which the prover is restricted
in its choice of strategy, a model in which the prover-verifier interaction is
restricted, and a model in which one proves “knowledge” of facts rather than
their validity.

2.5.1 Restricting the Prover’s Strategy

We stress that the restrictions discussed here refer to the strategies employed
by the prover both in case it tries to prove valid assertions (i.e., the com-
pleteness condition) and in case it tries to fool the verifier to believe false
statements (i.e., the soundness condition). Thus, the validity of the verifier
decision (concerning false statements) depends on whether this restriction
(concerning “cheating” prover strategies) really holds. The reason to con-
sider these restricted models is that they enable to achieve results which are
not possible in the general model of interactive proofs (cf., [59, 78, 235, 271]).
We consider restrictions of two types – computational and physical. We start
with the latter.

Multi-Prover Interactive Proof Systems (MIP): In the so-called multi-
prover interactive proof model, denoted MIP (cf., [59]), the prover is split into
several (say, two) entities and the restriction (or assumption) is that these en-
tities cannot interact with each other. Actually, the formulation allows them
to coordinate their strategies prior to interacting with the verifier13 but it is
crucial that they don’t exchange messages among themselves while interact-
ing with the verifier. The multi-prover model is reminiscent of the common
police procedure of isolating collaborating suspects and interrogating each of
them separately. A typical application in which the two-prover model may
be assumed is an ATM that verifies the validity of a pair of smart-cards in-
serted in two isolated slots of the ATM. The advantage in using such a split
system is that it enables the presentation of (perfect) zero-knowledge proof

13This is implicit in the universal quantifier used in the soundness condition.

2.5. OTHER PROBABILISTIC PROOF SYSTEMS 65

systems for any set in NP , using no intractability assumptions [59]. Fur-
thermore, these proofs can be made very efficient in terms of communication
complexity [127]. Interestingly, the multi-prover model is related to the PCP
model [155]; yet the relationship is not straightforward (cf., [43, 347]). (In
fact, the multi-prover formulation was the one presented first.)

Computationally-Sound Proof Systems (arguments and CS-Proofs):
We now turn to computational restrictions. Since the effect of this restric-
tion is more noticeable in the soundness condition, we refer to these proof
systems as being computationally-sound. Two variants have been suggested.
In argument systems [78], the prover strategy is restricted to be probabilistic
polynomial-time with auxiliary input (analogously to item (1) in Sec. 2.2.5).
In CS-proofs [273], the prover strategy is restricted to be probabilistic and run
in time polynomial in the time required to validate the assertion (analogously
to item (3) in Sec. 2.2.5). Interestingly, computationally-sound interactive
proofs can be much more communication-efficient than (regular) interactive
proofs (cf. [235, 273, 177]). Details follow.

Argument Systems. The definition of an argument system is derived from the
definition of an interactive proof system by modifying the completeness and
soundness conditions as follows.

• Completeness: The prover P runs in time polynomial in the length of
the common input. For every x ∈ S, there exists an auxiliary input (for
the prover), wx, so that the verifier V always accepts after interacting
with P (wx) on common input x.

• Soundness: For every probabilistic polynomial-time14 machine P ∗, for
all sufficiently long x 6∈ S, and for all w ∈ {0, 1}∗, the verifier V rejects
with probability at least 1

2 , after interacting with P ∗(w) on common
input x.

Both conditions can be rephrased by using (non-uniform) families of circuits
of polynomial size. Argument systems are adequate for modeling the behav-
ior of parties in a real-life setting. Under strong intractability assumptions,
argument systems exhibit advantages over interactive proof systems.15 Let
us start by stating these assumptions.

Definition 2.18 (Collision-Free Hashing): Consider a family of hash func-

tions, indexed by strings, F
def
= {fα : {0, 1}2|α| 7→ {0, 1}|α|}α, so that there

exists a polynomial-time algorithm for evaluating F (i.e., on input α and

14Again, this means a running time polynomial in the length of the common input.
15Below, we consider the expressing power of both models. An additional advantage

of argument systems is that, under strong intractability assumptions, there exist perfect

zero-knowledge arguments (rather than computational zero-knowledge interactive proofs)
for any set in NP [78]. Recall that perfect zero-knowledge proofs may exist only for sets
in IP(2) ∩ coIP(2) [154, 2].

66 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

x returns fα(x)). The family F is called collision-free w.r.t. complexity c(·)
if for every non-uniform family of circuits {Cn} with size bounded by c(·),
and all sufficiently large n’s, the probability that Cn, given a uniformly cho-
sen α ∈ {0, 1}n, outputs a pair (x, y) so that fα(x) = fα(y), is bounded
above by 1/c(n). The family F is called collision-free if it is collision-free
w.r.t. all polynomials, and is called strongly collision-free if, for some ǫ > 0,

it is collision-free w.r.t. the function f(n)
def
= 2nǫ

.

Collision-free functions exist assuming the intractability of factoring integers
(i.e., in polynomial time). Strong collision-free functions exist if n-bit long
integers cannot be factored in time 2nǫ

, for some ǫ > 0.

Theorem 2.19 [235]: Let L ∈ NP and assume the existence of collision-
free functions (resp., strong collision-free functions). Then, for every ǫ > 0,
there exists an argument system for L in which the randomness and commu-
nication complexities, on inputs of length n, are both bounded by nǫ (resp.,
by poly(log(n))). Furthermore, the computational complexity of the verifier
is quadratic in the length of the input.

The theorem is proved by combining techniques from Cryptography with
constructions of PCP systems (as of Theorem 2.12). Specifically, the prover
commits to a proof-oracle of the PCP system using an “authentication tree”
in which each node holds the hash value (under a collision-free function) of
its two children. To inspect a specific leaf, it suffices to obtain the values of
all nodes along the path from the root to this leaf as well as the values of
their immediate children.
We stress that Theorem 2.19 is meaningful also in case L ∈ P ; in particular,
it offers quadratic verification time, independently of the (possibly higher)
deterministic complexity of the set. Interestingly, the results of Theorem 2.19
are unlikely for interactive proof systems, due to the following:

Proposition 2.20 [177]: Suppose that L has an interactive proof system in
which both the randomness and communication complexities are bounded by
an integer function c(·). Then L ∈ Dtime(2O(c(·)+log(·))).

Further results of similar nature are also presented in [177].

Proof Idea: Consider the tree of all possible executions (see Definition C.2).

CS-Proof Systems. The definition of a CS-proof system is derived from the
definition of an interactive proof system analogously to the way the definition
of an argument system is derived. The difference is that here the potential
provers are uniform probabilistic machines, with no auxiliary inputs, running
in time polynomial in the deterministic complexity of the set. A result anal-
ogous to Theorem 2.19 is obtainable also in the current setting. Specifically,

2.5. OTHER PROBABILISTIC PROOF SYSTEMS 67

Theorem 2.21 [273]: Let S ∈ EXP. Then, assuming the existence of strong
collision-free functions, there exists a CS-proof system for S. Furthermore,
fixing any decision procedure D for the set S, the following holds, for each
x ∈ S,

1. The running-time of the verifier, on common input x, is quadratic in
the length of the input and poly-logarithmic in the running time of D
on x.

2. The running-time of the (prescribed) prover, on common input x, is
polynomial in the running time of D on x.

In fact, the above additional requirements are incorporated into the actual
definition of CS-proofs in [273]. Thus, the actual definition of CS-proofs
yields a notion of proof systems in which proving is not much harder than
deciding, in a strong “pointwise” sense.

2.5.2 Non-Interactive Proofs

The class IP(1) may be considered the real model of non-interactive prob-
abilistic proof systems. It extends NP in allowing the verifier to toss coins
while examining a candidate proof of polynomial (in the assertion) length.
Two more interesting models are discussed below.

Non-Interactive Zero-Knowledge Proofs (NIZK). Actually the term
“non-interactive” is somewhat misleading. The model, introduced in [67],
consists of three entities: a prover, a verifier and a uniformly selected sequence
of bits (which can be thought of as being selected by a trusted third party).
Both verifier and prover can read the random sequence, and each can toss
additional coins. The interaction consists of a single message sent from the
prover to the verifier, who then is left with the decision (whether to accept or
not). Based on some reasonable complexity assumptions, one may construct
non-interactive zero-knowledge proof systems for every NP-set (cf., [67, 144,
236]).

Non-Interactive CS-proofs. Actually, [273] presents two different models
of non-interactive CS-proofs.

1. Ordinary non-interactive CS-proofs relate to (interactive) CS-proofs (as
presented above) analogously to the relation of ordinary non-interactive
proofs to interactive proofs. That is, both the prover and the verifier
have access to a random bit sequence (of polynomial length). A plau-
sibility argument towards the existence of such non-trivial CS-proofs
is given in [273]; but it is an important open problem (e.g., see appli-
cations in [273]), whether such CS-proofs can be constructed, say for
NP, based on standard intractability assumptions.

68 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

2. CS-proofs in the Random Oracle Model (i.e., both parties have access to
a random oracle). The existence of such CS-proofs for any set in EXP
is proven in [273] (without relying on any complexity assumptions).

2.5.3 Proofs of Knowledge

The concept of a proof of knowledge, introduced in [202], is very appeal-
ing; yet, its precise formulation is much more complex than one may expect
(cf. [37]). Loosely speaking, a knowledge-verifier for a relation R guarantees
the existence of a “knowledge extractor” that on input x and access to any
interactive machine P ∗ outputs a y, so that (x, y) ∈ R, within complexity
(inversely) related to the probability that the verifier accepts x when inter-
acting with P ∗. By convincing such a knowledge-verifier, on common input
x, one proves that he knows a y so that (x, y) ∈R. Clearly, any NP-verifier
(i.e., accepting x iff it receives an NP-witness w.r.t R) is a knowledge-verifier
for the corresponding NP-relation. More interestingly, the (zero-knowledge)
protocol which results by successively applying Construction 2.7 sufficiently
many time constitutes a “proof of knowledge” of a 3-coloring of the input
graph.

2.5.4 Refereed Games

The following notion of refereed games seems related to Multi-Prover Interac-
tive Proof (MIP) systems, but is actually very different both conceptually and
technically. Whereas in MIP the two provers try to coordinate their strategies
so as to convince the verifier of the validity of a given assertion, in a Refereed
Game one party tries to convince the verifier (called the referee) that the
assertion is valid whereas the other tries to refute the assertion [147, 143].
Thus, the correctness of the referee’s decision depends on the assumption
that the party which is right plays well (if not optimally). As in all proof
systems discussed above, also here the referee (or verifier) employs a proba-
bilistic polynomial-time strategy. The refereed game may either be a game
of full information (i.e., each of the competing players sees all messages sent)
or be a game of partial information (i.e., each obtains only the messages sent
to it by the referee). It turns out that the latter are more powerful [143].

2.6 Concluding Remarks

In this section we compare the various proof systems presented above, provide
a historical account of their evolution, and propose some open problems.

2.6. CONCLUDING REMARKS 69

IP arguments CS-proof PCP MIP
restrictions none poly-time polynomial memoryless split
on prover + aux. input in Dec. time (i.e., oracle) entity
motivation generalize restrict IP augment see
(as we see it) NP (see Remark 1) NP Remark 2

expressive PSPACE IP(1) ⊆ PH EXP17 scalable: Ntime(2l(n)),
power for rnd+query = O(l(n))

Figure 2.1: Comparison of various proof systems

2.6.1 Comparison among the various notions

All the above variants of probabilistic proof systems are aimed at capturing
central aspects of the intuitive notion of efficient proof systems. Although
the alternative formulations are sometimes introduced using the same generic
phrases, they are actually very different in motivation, applications and ex-
pressive power. The objective of this section is to try to clarify these differ-
ences.

In Figure 2.1, we have tried to summarize the differences between the var-
ious notions of efficient proof systems. The class NP has been omitted for
obvious reasons. We view IP as the natural generalization of NP , obtained
by relaxing the notion of efficient computation so that probabilism and inter-
action are allowed. Except for the negligible probability of error, which can
be controlled by the verifier, the original flavor of a proof is maintained. Also,
we view PCP(log, O(1)) as an augmentation of NP with the extra property
of allowing a hasty verifier to take its chances and verify the proof in a super-
fast manner.16 In contrast, the two notions of computationally sound proof
systems (i.e., arguments and CS-proofs) deviate significantly from the con-
servative approach of absolute proofs. Yet, computational soundness seems
adequate in most practical settings. The only word of warning is that typi-
cal results in these latter settings depend on intractability assumptions, and
when evaluating such results one should not ignore the relative severeness of
these assumptions.

Remark 1: Arguments and CS-proof systems are derived by imposing com-
putational restrictions on the potential provers in both the completeness and
soundness conditions. In both cases the motivation for these restrictions is
to obtain properties that interactive proofs do not (seem to) have. In the
case of argument systems the advantageous properties are very low commu-
nication complexity and perfect zero-knowledge (for NP). Interestingly, the
expressive power of the system does not increase in this case (but rather de-
creases). In the case of CS-proof systems the advantageous property is the
linking of the complexity of proving to the complexity of deciding. Interest-

16 Recall that the oracle guaranteed by the completeness condition (of the definition of
PCP(log, O(1))) provides a standard NP-proof. The additional feature of allowing hasty
probabilistic verification accounts for the term ‘augmentation’ used above.

17Depending on (strong) intractability assumptions.

70 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

ingly, the expressive power of the system seems to increase as well (unless
PSPACE = EXP).

Remark 2: The MIP model indeed generalizes the IP model. However, in our
opinion, this generalization is less natural than the generalization of NP to
IP. As far as we are concerned, the MIP model is justified by cryptographic
applications (see subsection on MIP). (The transformations between MIP
systems and PCP systems does not mean that the motivation of one model
can be moved to the other.)

Remark 3: As mentioned above, the error probability can be decreased in
all these probabilistic proof systems, by using sequential repetitions. Error
reduction by parallel repetitions is more problematic, with the exception of
(plain) interactive proof systems (alas even in this vanilla case, parallel repe-
tition is less trivial to analyze than sequential repetition; see Appendix C.1).
A Parallel Repetition Theorem for one-round multi-party interactive proofs
was proven by Raz [316] (cf., Appendix C.1 and [137] for further discus-
sion). Zero-knowledge is not preserved, in general, under parallel repetition
(cf., [180]). A recent study shows that parallel repetition is problematic also
in case of computationally-sound proof systems (cf., [47]).

2.6.2 The Story

In this section we provide a historical account of the evolution of probabilis-
tic proof systems. We focus on the main conceptual discoveries, neglecting
many of the technical contributions which played an important role in the
development of the area.

The introduction of interactive proofs and zero-knowledge proofs.
The story begins with Goldwasser, Micali and Rackoff who sought a general
setting for their novel notion of zero-knowledge [202]. The choice fell on
proof systems – as capturing a fundamental activity which takes place in
a cryptographic protocol. Motivated by the desire to formulate the most
general type of “proofs” that may be used within cryptographic protocols,
Goldwasser, Micali and Rackoff introduced the notion of an interactive proof
system [202]. Although the main thrust of their paper is the introduction
of a special type of interactive proofs (i.e., ones that are zero-knowledge),
the possibility that interactive proof systems may be more powerful from
NP-proof system has been pointed out in [202].

Independently of [202],18 Babai suggested a different formulation of in-
teractive proofs, which he called Arthur-Merlin Games [24]. Syntactically,
Arthur-Merlin Games are a restricted form of interactive proof systems, yet
it was subsequently shown that these restricted systems are as powerful as the

18 Although both [202] and [24] have appeared in the same conference (i.e., 17th STOC,
1985), early versions of [202] have existed as early as 1982, and were rejected three times
from major conferences (i.e., FOCS83, STOC84, and FOCS84).

2.6. CONCLUDING REMARKS 71

general ones (cf., [206]). Babai’s motivation was to place a group-theoretic
problem, previously placed in NP under some group-theoretic assumptions,
“as close to NP as possible” without using any assumptions. Interestingly,
Babai underestimated the expressive power of interactive proof systems, con-
jecturing that the class of sets possessing such proof systems (even with an
unbounded number of message-exchange rounds) is “very close” to NP .

Discovering the power of zero-knowledge proofs. The first evidence
of the surprising power of interactive proofs was given by Goldreich, Mi-
cali, and Wigderson, who presented an interactive proof system for Graph
Non-Isomorphism [186], a set not known to be in NP . More importantly,
this paper has demonstrated the generality and wide applicability of zero-
knowledge proofs. Assuming the existence of one-way function, it was shown
how to construct zero-knowledge interactive proofs for any set in NP . This
result has had a dramatic impact on the design of cryptographic protocols
(cf., [187]). In addition, this result has called attention to the then new no-
tion of interactive proof systems (since zero-knowledge NP-proofs could exist
only in a trivial sense [188]).

Multi-Prover Interactive Proof Systems. A generalization of interac-
tive proofs to multi-prover interactive proofs has been suggested by Ben-Or,
Goldwasser, Kilian and Wigderson [59]. Again, the main motivation came
from zero-knowledge aspects; specifically, introducing multi-prover zero-knowledge
proofs for NP without relying on intractability assumptions. Yet, the com-
plexity theoretic prospects of the new class, denoted MIP, have not been
ignored. A more appealing, to our taste, formulation of the class MIP has
been presented in [155]. The latter formulation exactly coincides with the
formulation now known as probabilistically checkable proofs (i.e., PCP).

Algebraic Methods Demonstrate the Power of Interactive Proofs.
The amazing power of interactive proof systems has been demonstrated by
using algebraic methods. The basic technique has been introduced by Lund,
Fortnow, Karloff and Nisan, who applied it to show that the polynomial-time
hierarchy (and actually P♯P) is in IP [261]. Subsequently, Shamir used the
technique to show that IP = PSPACE [335], and Babai, Fortnow and Lund
used it to show thatMIP = NEXP [25].

The technique of Lund et. al. [261] has been inspired by ideas coming from
works on “program checking” (cf., [71]). In particular, their interactive proof
system for the permanent combines the “self-correcting” procedure for the
permanent (which represents the permanent as a multi-linear polynomial)
of [254], and the “downwards self-reducibility” procedure of [70]. Another
idea that is implicit in [261] and made explicit in the subsequent works of [335,
25] is the representation, introduced in [32], of Boolean formulae as multi-
linear polynomials.

72 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

It may be of interest to note that the technique of Lund et. al. has
been first applied in the context of multi-prover interactive proofs, yielding
P♯P ⊆ MIP , and that the result quoted above (concerning IP) followed
later. Hence, MIP has played a role in the historical development leading
to the characterization of IP .

Scaling Down the BFL Proof System Yields a New Class. The
abovementioned multi-prover proof system of Babai, Fortnow and Lund [25]
(hereafter referred to as the BFL proof system) has been the starting point

for fundamental developments regarding NP . The first development was the
discovery that the BFL proof system can be “scaled-down”19 from NEXP
to NP . This important discovery was made independently by two sets of
authors: Babai, Fortnow, Levin and Szegedy [26] and Feige, Goldwasser,
Lovasz and Safra [139].20 However, the manner in which the BFL proof is
scaled-down is different in the two papers, and so are the consequences of the
scaling-down.

Babai et. al. [26] start by considering only inputs encoded using a spe-
cial error-correcting code. The encoding of strings, relative to this error-
correcting code, can be computed in polynomial time. They presented an
almost-linear time algorithm that transforms NP-witnesses (to inputs in a
set S ∈ NP) into transparent proofs that can be verified as vouching for the
correctness of the encoded assertion in (probabilistic) poly-logarithmic time
(by a Random Access Machine). (The fact that the verification procedure
never reads the entire “proof” should not come as a surprise, as the pro-
cedures of [261, 335, 25] also have this property.) Thus, once “statements”
and “proofs” are in the right (error-correcting) form, verification is “super-
fast.” Babai et. al. [26] stress the practical aspects of transparent proofs –
specifically, for rapidly checking transcripts of long computations.

In the proof system of Babai et. al. [26] the total running time of the
verifier is reduced (i.e., “scaled-down”) to poly-logarithmic. In contrast, in
the proof system of Feige et. al. [139, 140] the verifier stays polynomial-time
and only two more refined complexity measures, specifically the randomness
and query complexities, are reduced to poly-logarithmic. This eliminates
the need to assume that the input is in a special error-correcting form, and
yields a more appealing (i.e., less cumbersome) complexity class. This com-
plexity class is a refinement of the class introduced in [155]. The refinement
is obtained by specifying the randomness and query complexities. Namely,
PCP(r(·), q(·)) denotes the class of sets having probabilistically checkable
proofs in which, on input x, the verifier tosses at most r(|x|) coins and makes
at most q(|x|) (Boolean) queries to the proof. Hence, whereas the BFL-

19The term “scaled-down” is used here as a (standard) technical term. Doing so, I do
not mean to underestimate the technical difficulty of obtaining these results.

20At a later stage, Szegedy improved the randomness and query complexities of the
system in [139] and joined the latter paper, which has appeared as [140].

2.6. CONCLUDING REMARKS 73

result [25] can be restated as

NEXP = PCP(poly, poly), (2.2)

the result of Feige et. al. [140] is restated as

NP ⊆ PCP(f(·), f(·)) , where f(n) = O(log n · log logn). (2.3)

It should be stressed that the result of Babai et. al. [26] also implies

NP ⊆ PCP(log, polylog) . (2.4)

Interest in the new complexity class became immense since Feige et. al. [139,
140] demonstrated its relevance to proving the intractability of approximat-
ing some combinatorial problems (specifically, MaxClique). When using the
PCP–MaxClique connection established by Feige et. al., the randomness and
query complexities of the verifier (in a pcp system for an NP-complete set)
relate to the strength of the negative results obtained for approximation prob-
lems. This fact provided a very strong motivation for trying to reduce these
complexities and obtain a tight characterization of NP in terms of PCP(·, ·).

Tightening the Relation between NP and PCP. Once the work of
Feige et. al. [140] had been presented, the challenge was clear – showing that
NP equals PCP(log, log). This challenge was met by Arora and Safra [21].
The proof system they constructed is very complex, involving recursive use
of proof systems and concatenation tests that are much more efficient than
the length of strings being tested. (Interestingly, the idea of encoding inputs
in an error-correcting form, as suggested in [26], is essential to make this
recursion work.) Actually, Arora and Safra showed that

NP = PCP(log, f(·)) , where f(n) = o(log n). (2.5)

Hence, a new challenge arose, namely, further reducing the query complex-
ity – in particular to a constant – while maintaining the logarithmic random-
ness complexity. Again, additional motivation for this challenge came from
the relevance of such a result to the study of approximation problems. The
new challenge was met by Arora, Lund, Motwani, Sudan and Szegedy [20],
and is captured by the equation

NP = PCP(log, O(1)). (2.6)

In addition to building on the ideas of Arora and Safra [21], the above re-
sult of [20] utilizes ideas and techniques from the works on self-testing/self-
correcting [70], degree-tests for multi-variant polynomials [162, 322], and par-
allelization of multi-prover proof systems [243].

Derandomization techniques were extensively used in the above as well
as subsequent works. In particular, pairwise-independent sampling [104] is
essential to [26] (and instrumental for obtaining the best bounds in [140]),
small-bias spaces [281] are implicit in [26, 140], and random walks on ex-
pander graphs [5] are used from [21] onwards,

74 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

Computationally-Sound Proof Systems. Argument systems were de-
fined in 1986 by Brassard, Chaum and Crépeau [78], but their complexity-
theoretic significance became apparent only in 1992. This happened when
Kilian, using early results on PCP (due to [26, 140]), showed that, under some
reasonable intractability assumptions, every set inNP has a computationally-
sound proof in which the randomness and communication complexities are
poly-logarithmic [235]. Consequently, Micali suggested three new types of
computationally-sound proof systems which he called CS-proofs [272, 273].

Other Types of Proof Systems. The setting of non-interactive proofs
was first introduced by Blum, Feldman and Micali [67]. The concept of
proofs of knowledge was introduced in the paper of Goldwasser, Micali and
Rackoff [202], and given a satisfactory formal treatment in [37].

2.6.3 Open Problems

We disagree with the general sentiment according to which the nature of the
various probabilistic proof systems is well understood by now. In contrast,
we point out several important directions for future research:

1. The structure of the IP Hierarchy: The relatively early discovery of
the exact expressive power of interactive proofs (i.e., Theorem 2.4)
caused researchers to forget that except for the Linear Speed-up Theo-
rem of [28] we know little about the impact of the number of interactions
on the expressive power.

2. A non-tricky proof of IP = PSAPCE : It seems strange that the proof
of such a fundamental result about computation has to rely on mys-
terious algebraic tricks. Things become even worse when one gets to
the proof of the PCP Characterization of NP (i.e., Theorem 2.12). We
refer to the key role of polynomials in the above constructions. We
consider it important to obtain an alternative proof of coNP ⊆ IP ; a
proof in which all the underlying ideas can be presented at an abstract
level.

3. The power of the prover in interactive proofs: We ask how powerful
should be a prover which is able to convince a verifier for a set S. The
question is aimed at characterizing classes of sets for which relative
efficient provers exists, where we refer to either the second or the third
notion of relative efficiency mentioned in Section 2.2.5. (For the first
notion the answer is trivial.)

4. Simplifying the proof of the PCP Characterization of NP: It is very an-
noying that the current proof is so complex. One question is whether
the proof composition paradigm is indeed essential. However, given
the role it plays in subsequent developments, we are tempted to let

2.6. CONCLUDING REMARKS 75

it stay. In such a case one is left with the question of how to con-
struct a PCP(log, poly(log)) system for NP , having the extra proper-
ties required in the proof composition (see proof sketch above). Specif-
ically, we refer to the requirement that the verifier makes a constant
number of queries to a multi-valued oracle. Thus, given an arbitrary
PCP(log, poly(log)) system for NP , one wishes to construct a system
in which the latter property holds. We seek an alternative way of
obtaining such a “parallelization” – one which does not rely on non-
abstractable algebraic creatures (like polynomials). A first step towards
this partial goal was taken in [193]: It was shown how to construct an
efficient low-degree test which utilizes a specific simple/inefficient low-
degree test as a subroutine, and reduces it error probability via a par-
allelization which is analyzed using a new “combinatorial consistency
lemma”.

5. The power of ordinary non-interactive CS-proofs: Positive results re-
garding CS-proofs are known only in the interactive model and in
the Random Oracle Model [272, 273]. Any non-trivial positive re-
sults, under standard intractability assumptions, for the ordinary non-
interactive model will be of interest.

6. Computational ZK proofs vs Perfect ZK arguments: Computational
zero-knowledge proofs and perfect zero-knowledge arguments seem to
be dual terms. However, the former can be constructed for NP based
on any one-way function [186], whereas the latter can be constructed
(for NP) based on one-way permutations [78, 282]. Is this discrepancy
fundamental?

7. Constant-round zero-knowledge proofs for NP: The known constant-
round zero-knowledge proofs for NP use expected polynomial-time sim-
ulators, rather than strict polynomial-time ones (cf., [179]). Can this
annoying technicality be removed?

Acknowledgments

I am grateful to Shafi Goldwasser for suggesting the essential role of random-
ness as the unifying theme for this exposition. Thanks also to Leonid Levin,
Dana Ron, Madhu Sudan, Salil Vadhan, Luca Trevisan and Uri Zwick for
commenting on earlier versions of this chapter.

76 CHAPTER 2. PROBABILISTIC PROOF SYSTEMS

Chapter 3

Pseudorandom
Generators

If two objects are indistinguishable, in what sense are they different?

The author, failing to recall a suitable quote (1997).

Summary – A fresh view at the question of randomness was
taken in the theory of computing: It has been postulated that a
distribution is pseudorandom if it cannot be told apart from the
uniform distribution by an efficient procedure. The paradigm,
originally associating efficient procedures with polynomial-time
algorithms, has been applied also with respect to a variety of
limited classes of such distinguishing procedures. Starting with
the general paradigm, we survey the archetypical case of pseu-
dorandom generators (withstanding any polynomial-time distin-
guisher), as well as generators withstanding space-bounded dis-
tinguishers, the derandomization of complexity classes such as
BPP, and some special-purpose generators.

3.1 Introduction

The second half of this century has witnessed the development of three theo-
ries of randomness, a notion which has been puzzling thinkers for ages. The
first theory (cf., [110]), initiated by Shannon [332], is rooted in probabil-
ity theory and is focused at distributions which are not perfectly random.
Shannon’s Information Theory characterizes perfect randomness as the ex-
treme case in which the information contents is maximized (and there is no

77

78 CHAPTER 3. PSEUDORANDOM GENERATORS

redundancy at all). Thus, perfect randomness is associated with a unique dis-
tribution – the uniform one. In particular, by definition, one cannot generate
such perfect random strings from shorter random seeds.

The second theory (cf., [247, 251]), due to Solomonov [343], Kolmogorov [239]
and Chaitin [94], is rooted in computability theory and specifically in the no-
tion of a universal language (equiv., universal machine or computing device).
It measures the complexity of objects in terms of the shortest program (for a
fixed universal machine) which generates the object. Like Shannon’s theory,
Kolmogorov Complexity is quantitative and perfect random objects appear
as an extreme case. However, in this approach one may say that a single
object, rather than a distribution over objects, is perfectly random. Still,
Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Complex-
ity is uncomputable), and – by definition – one cannot generate strings of
high Kolmogorov Complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [201,
72, 364], is rooted in complexity theory and is the focus of this chapter. This
approach is explicitly aimed at providing a notion of perfect randomness
which nevertheless allows to efficiently generate perfect random strings from
shorter random seeds. The heart of this approach is the suggestion to view
objects as equal if they cannot be told apart by any efficient procedure.
Consequently a distribution which cannot be efficiently distinguished from
the uniform distribution will be considered as being random (or rather called
pseudorandom). Thus, randomness is not an “inherent” property of objects
(or distributions) but rather relative to an observer (and its computational
abilities). To demonstrate this approach, let us consider the following mental
experiment.

Alice and Bob play “head or tail” in one of the following four
ways. In all of them Alice flips an unbiased coin and Bob is asked
to guess its outcome before the coin hits the floor. The alternative
ways differ by the knowledge Bob has before making his guess. In
the first alternative, Bob has to announce his guess before Alice
flips the coin. Clearly, in this case Bob wins with probability 1/2.
In the second alternative, Bob has to announce his guess while the
coin is spinning in the air. Although the outcome is determined
in principle by the motion of the coin, Bob does not have accu-
rate information on the motion and thus we believe that also in
this case Bob wins with probability 1/2. The third alternative is
similar to the second, except that Bob has at his disposal sophisti-
cated equipment capable of providing accurate information on the
coin’s motion as well as on the environment effecting the outcome.
However, Bob cannot process this information in time to improve
his guess. In the fourth alternative, Bob’s recording equipment is
directly connected to a powerful computer programmed to solve
the motion equations and output a prediction. It is conceivable

3.1. INTRODUCTION 79

that in such a case Bob can improve substantially his guess of the
outcome of the coin.

We conclude that the randomness of an event is relative to the information
and computing resources at our disposal. Thus, a natural concept of pseudo-
randomness arises – a distribution is pseudorandom if no efficient procedure
can distinguish it from the uniform distribution, where efficient procedures
are associated with (probabilistic) polynomial-time algorithms. This notion
of pseudorandomness is indeed the most fundamental one, and much of this
chapter is focused on it. Weaker notions of pseudorandomness arise as well –
they refer to indistinguishability by weaker procedures such as space-bounded
algorithms, constant-depth circuits, etc. Stretching this approach even fur-
ther one may consider algorithm which are designed on purpose so not to
distinguish even weaker forms of “pseudorandom” sequences from random
ones (such algorithms arise naturally when trying to convert some natural
randomized algorithm into deterministic ones; see Section 3.6).

The above discussion has focused on one aspect of the pseudorandomness
question – the resources or type of the observer (or potential distinguisher).
Another important question is whether such pseudorandom sequences can
be generated from much shorter ones, and at what cost (or complexity). A
natural answer is that the generation process has to be at least as efficient
as the efficiency limitations of the distinguisher. Coupled with the above-
mentioned strong notion of pseudorandomness, this yields the archetypical
notion of pseudorandom generators – these operating in polynomial-time and
producing sequences which are indistinguishable from uniform ones by any
polynomial-time observer. Such pseudorandom generators allow to reduced
the randomness complexity of any efficient application, and are thus of great
relevance to randomized algorithms, cryptography and complexity theory (see
Section 3.3). Interestingly, there are important reasons to consider also an
alternative which seems less natural; that is, allow the generator to use more
resources (e.g., time or space) than the observer it tries to fool. Indeed, this
makes the task of designing pseudorandom generators easier, but the use-
fulness of such generators has to be demonstrated – as done in Sections 3.4
through 3.6.

Organization. In Section 3.2 we present the general paradigm underlying
all the various notions of pseudorandom generators. The archetypical case
(of generators operating in polynomial-time and fooling all polynomial-time
distinguishers) is discussed in Section 3.3. We then turn to the alternative
notions of pseudorandom generators: Generators which work in time ex-
ponential in the length of the seed, and suffice for the derandomization of
complexity classes such as BPP, are discussed in Section 3.4; Pseudoran-
dom generators in the domain of space-bounded computations are discussed
in Section 3.5; and special-purpose generators are discussed in Section 3.6.
Concluding remarks appear in Section 3.7.

80 CHAPTER 3. PSEUDORANDOM GENERATORS

For an alternative presentation, which focuses on the archetypical case
and provides more details on it, the reader is referred to [171, Chap. 3].

3.2 The General Paradigm

A generic formulation of pseudorandom generators consists of specifying three
fundamental aspects – the stretching measure of the generators; the class
of distinguishers that the generators are supposed to fool (i.e., the algo-
rithms with respect to which the computational indistinguishability require-
ment should hold); and the resources that the generators are allowed to use
(i.e., their own computational complexity).

Stretching function: A necessary requirement from any notion of a pseu-
dorandom generator is that it is a deterministic algorithm which stretches
short strings, called seeds, into longer output sequences. Specifically, it
stretches k-bit long seeds into ℓ(k)-bit long outputs, where ℓ(k) > k. The
function ℓ is called the stretching measure (or stretching function). In some
settings the specific stretching measure is immaterial (e.g., see Section 3.3).

Computational Indistinguishability: A necessary requirement from any
notion of a pseudorandom generator is that it “fools” some non-trivial algo-
rithms. That is, any algorithm taken from some class of interest cannot
distinguish the output produced by the generator (when the generator is fed
with a uniformly chosen seed) from a uniformly chosen sequence. Typically,
we consider a class D of distinguishers and a class F of noticeable functions,
and require that the generator G satisfies the following: For any D ∈ D, any
f ∈ F , and for all sufficiently large k’s

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k)

where Un denotes the uniform distribution over {0, 1}n and the probability
is taken over Uk (resp., Uℓ(k)) as well as over the coin tosses of algorithm D
in case it is probabilistic.1 The archetypical choice is that D is the set of
probabilistic polynomial-time algorithms, and F is the set of functions which
are the reciprocal of some positive polynomial.

Complexity of Generation: The archetypical choice is that the genera-
tor has to work in polynomial-time (in length of its input – the seed). Other
choices will be discussed as well. We note that placing no computational re-
quirements on the generator (or, alternatively, putting very mild requirements

1 Thus, we require certain functions (i.e., the absolute difference between the above
probabilities), to be smaller than any noticeable function on all but finitely many integers.
We call such functions negligible. Note that a function may be neither noticeable nor
negligible (e.g., it may be smaller than any noticeable function on infinitely many values
and yet larger than some noticeable function on infinitely many other values).

3.3. THE ARCHETYPICAL CASE 81

such as a double-exponential running-time upper bound), yields “generators”
which can fool any subexponential-size circuit family [181].

Notational conventions. We will consistently use k to denote the length
of the seed of a pseudorandom generator, and ℓ(k) to denote the length
of the corresponding output. In some cases, this makes our presentation a
little more cumbersome (as a natural presentation may specify some other
parameters and let the seed-length be a function of these). However, our
choice has the advantage of focusing attention on the fundamental parameter
of pseudorandom generation – the length of the random seed. Whenever
a pseudorandom generator is used to “derandomize” an algorithm, n will
denote the length of the input to this algorithm, and k will be selected as a
function of n.

3.3 The Archetypical Case

As stated above, the most natural notion of a pseudorandom generator refers
to the case where both the generator and the potential distinguisher work
in polynomial-time. Actually, the distinguisher is more complex than the
generator: The generator is a fixed algorithm working within some fixed
polynomial-time, whereas a potential distinguisher is any algorithm which
runs in polynomial-time. Thus, for example, the distinguisher may always
run in time cubic in the running-time of the generator. Furthermore, to
facilitate the development of this theory, we allow the distinguisher to be
probabilistic (whereas the generator remains deterministic as above). In the
role of the set of noticeable functions we consider all functions which are the
reciprocal of some positive polynomial.2 This choice is naturally coupled with
the association of efficient computation with polynomial-time algorithms: An
event which occurs with noticeable probability occurs almost always when
the experiment is repeated a “feasible” (i.e., polynomial) number of times.
This discussion leads to the following instantiation of the generic framework
presented above –

Definition 3.1 (pseudorandom generator – archetypical case [72, 364]): A
deterministic polynomial-time algorithm G is called a pseudorandom generator
if there exists a stretching function, ℓ : N 7→N, so that for any probabilistic
polynomial-time algorithm D, for any positive polynomial p, and for all suf-

2 The definition below asserts that the distinguishing gap of certain machines must
be smaller than the reciprocal of any positive polynomial for all but finitely many n’s.
Such functions are called negligible. See Footnote 1. The notion of negligible probability
is robust in the sense that an event which occurs with negligible probability occurs with
negligible probability also when the experiment is repeated a “feasible” (i.e., polynomial)
number of times.

82 CHAPTER 3. PSEUDORANDOM GENERATORS

ficiently large k’s

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < 1

p(k)

where Un denotes the uniform distribution over {0, 1}n and the probability is
taken over Uk (resp., Uℓ(k)) as well as over the coin tosses of D.

Thus, pseudorandom generators are efficient (i.e., polynomial-time) deter-
ministic programs which expand short randomly selected seeds into longer
pseudorandom bit sequences, where the latter are defined as computationally
indistinguishable from truly random sequences by efficient (i.e., polynomial-
time) algorithms. It follows that any efficient randomized algorithm main-
tains its performance when its internal coin tosses are substituted by a se-
quence generated by a pseudorandom generator. That is,

Construction 3.2 (typical application of pseudorandom generators): Let A
be a probabilistic algorithm, and ρ(n) denote a (polynomial) upper bound on
its randomness complexity. Let A(x, r) denote the output of A on input x
and coin tosses sequence r ∈ {0, 1}ρ(|x|). Let G be a pseudorandom generator
with stretching function ℓ :N 7→N. Then AG is a randomized algorithm which
on input x, proceeds as follows. It sets k = k(|x|) to be the smallest integer
such that ℓ(k) ≥ ρ(|x|), uniformly selects s ∈ {0, 1}k, and outputs A(x, r),
where r is the ρ(|x|)-bit long prefix of G(s).

We show that it is infeasible to find long x’s on which the noticeable behavior
of AG is different from the one of A, although AG may use much fewer coin
tosses. That is

Proposition 3.3 Let A and G be as above. Then for every pair of proba-
bilistic polynomial-time algorithms, a finder F and a distinguisher D, every
positive polynomial p and all sufficiently long n’s

∑

x∈{0,1}n

Pr[F (1n) = x] ·∆A,D(x) <
1

p(n)

where ∆A,D(x)
def
= |Pr[D(x,A(x, Uρ(n))) = 1] − Pr[D(x,AG(x, Uk(n))) = 1] |,

|F (1n)| = n and the probabilities are taken over the Um’s as well as over the
coin tosses of F and D.

The proposition is proven by showing that a triplet (A,F,D) violating the
claim can be converted into an algorithm D′ which distinguishes the out-
put of G from the uniform distribution, in contradiction to the hypothesis.
Analogous arguments are applied whenever one wishes to prove that an ef-
ficient randomized process (be it an algorithm as above or a multi-party
computation) preserves its behavior when one replaces true randomness by
pseudorandomness as defined above. Thus, given pseudorandom generators
with large stretching function, one can considerably reduce the randomness
complexity in any efficient application.

3.3. THE ARCHETYPICAL CASE 83

3.3.1 A Short Discussion

Randomness is playing an increasingly important role in computation: It
is frequently used in the design of sequential, parallel and distributed algo-
rithms, and is of course central to cryptography. Whereas it is convenient to
design such algorithms making free use of randomness, it is also desirable to
minimize the usage of randomness in real implementations. Thus, pseudo-
random generators (as defined above) are a key ingredient in an “algorithmic
tool-box” – they provide an automatic compiler of programs written with
free usage of randomness into programs which make an economical use of
randomness.

Indeed, “pseudo-random number generators” have appeared with the first
computers. However, typical implementations use generators which are not
pseudorandom according to the above definition. Instead, at best, these gen-
erators are shown to pass some ad-hoc statistical test (cf., [238]). However,
the fact that a “pseudo-random number generator” passes some statistical
tests, does not mean that it will pass a new test and that it is good for a
future (untested) application. Furthermore, the approach of subjecting the
generator to some ad-hoc tests fails to provide general results of the type
stated above (i.e., of the form “for all practical purposes using the output
of the generator is as good as using truly unbiased coin tosses”). In contrast,
the approach encompassed in Definition 3.1 aims at such generality, and in
fact is tailored to obtain it: The notion of computational indistinguishabil-
ity, which underlines Definition 3.1, covers all possible efficient applications
postulating that for all of them pseudorandom sequences are as good as truly
random ones.

3.3.2 Some Basic Observations

We now present some basic observations regarding pseudorandom generators
and the underlying notion of computational indistinguishability.

Amplifying the stretch function. Pseudorandom generators of any given

stretch function, and in particular ℓ1(k)
def
= k + 1, are easily converted

into pseudorandom generators of any desired (polynomially bounded) stretch
function, ℓ. Thus, when talking about the existence of pseudorandom gener-
ators, we may ignore the stretch function.

Construction 3.4 [185]: Let G1 be a pseudorandom generator with stretch-
ing function ℓ1(k) = k+1, and ℓ be any polynomially bounded stretch function,
which is polynomial-time computable. Let

G(s)
def
= σ1σ2 · · ·σℓ(|s|) ,

where x0 = s and xiσi = G1(xi−1), for i = 1, ..., ℓ(|s|). (That is, σi is the
last bit of G1(xi−1) and xi is the |s|-bit long prefix of G1(xi−1).)

84 CHAPTER 3. PSEUDORANDOM GENERATORS

Proposition 3.5 G as defined in Construction 3.4 constitutes a pseudoran-
dom generator.

Proof Sketch: The proposition is proven using the hybrid technique (cf.,
[171, Sec. 3.2.3]): One considers distributions Hi

k (for i = 0, ..., ℓ(k)) defined

by U
(1)
i Pℓ(k)−i(U

(2)
k), where U

(1)
i and U

(2)
k are independent uniform distri-

butions (over {0, 1}i and {0, 1}k, respectively), and Pj(x) denotes the j-bit
long prefix of G(x). The extreme hybrids correspond to G(Uk) and Uℓ(k),
whereas distinguishability of neighboring hybrids can be worked into dis-
tinguishability of G1(Uk) and Uk+1. Loosely speaking, suppose one could
distinguish Hi

k from Hi+1
k . Then, defining f(s) (resp., b(s)) as the first |s|

bits (resp., last bit) of G1(s), and using Pj(s) = b(s)Pj−1(f(s)) (for j ≥ 1),

this means that one can distinguishH i
k ≡ (U

(1)
i , b(U

(2)
k), P(ℓ(k)−i)−1(f(U

(2)
k)))

from Hi+1
k ≡ (U

(1)
i , U

(1′)
1 , Pℓ(k)−(i+1)(U

(2′)
k)). Incorporating the generation of

U
(1)
i and the evaluation of Pℓ(k)−i−1 into the distinguisher, one could distin-

guish (f(U
(2)
k), b(U

(2)
k)) ≡ G1(Uk) from (U

(2′)
k , U

(1′)
1) ≡ Uk+1, in contradic-

tion to the pseudorandomness of G1. (For details see [171, Sec. 3.3.3].)

Derandomization of BPP. Assuming the existence of pseudorandom gen-
erators and given Construction 3.4 and the above discussion, it follows that,
for any constant ǫ > 0, the randomness complexity of any polynomial-time
algorithm (as a function of the input length n) can be shrinked to nǫ, without
incurring any noticeable difference in its behavior. In particular, assuming
that the original algorithm is a decision procedure for some language (in
BPP), then it is infeasible to find a (long enough) input on which the mod-
ified algorithm decides differently than the original one (e.g., the original
algorithm accepts the input with probability at least 2/3, whereas the mod-
ified algorithm accepts it with probability less than 0.6). However, this does
not mean that such inputs do not exist (rather than being hard to find).
Thus, in order to “derandomize” BPP we need a stronger notion of a pseu-
dorandom generator; that is, one which can fool all polynomial-size circuits
(and not merely all polynomial-time algorithms).

Definition 3.6 (strong pseudorandom generator – fooling circuits): A de-
terministic polynomial-time algorithm G is called a non-uniformly strong pseu-
dorandom generator if there exists a stretching function, ℓ :N 7→N, so that for
any family {Ck}k∈N of polynomial-size circuits, for any positive polynomial
p, and for all sufficiently large k’s

|Pr[Ck(G(Uk)) = 1] − Pr[Ck(Uℓ(k)) = 1] | < 1

p(k)

3.3. THE ARCHETYPICAL CASE 85

Theorem 3.7 (Derandomization of BPP [364]): If there exists non-uniformly
strong pseudorandom generators then BPP is contained in ∩ǫ>0Dtime(tǫ),

where tǫ(n)
def
= 2nǫ

.

Proof Sketch: Given any L ∈ BPP and any ǫ > 0, we let A denote the
decision procedure for L and G denote a pseudorandom generator stretching
nǫ-bit long seeds into poly(n)-long sequences (to be used by A on input length
n). We thus obtain an algorithm A′ = AG (as in Construction 3.2). We note
that A and A′ may differ in their decision on at most finitely many inputs
(or else we can incorporate such inputs, together with A, into a family of
polynomial-size circuits which distinguishes G(Unǫ) from Upoly(n)). Incorpo-
rating these finitely many inputs into A′, and more importantly – emulating
A′ on each of the 2nǫ

possible random choices (i.e., seeds to G), we obtain a
deterministic algorithm A′′ as required.

We comment that stronger results regarding derandomization of BPP are
presented in Section 3.4.

Computational Indistinguishability under multiple samples. The
definition of computational indistinguishability underlying Definition 3.1 refers
to distinguishers which obtain a single sample from each of the possible prob-
ability ensembles (i.e., {Uℓ(k)}k∈N and {G(Uk)}k∈N). A more general defini-
tion refers to distinguishers which obtain several independent samples from
each of the possible ensembles.3

Definition 3.8 (indistinguishability by multiple samples): Let s : N 7→N

be polynomially-bounded. Two probability ensembles, X
def
= {Xk}k∈N and

Y
def
= {Yk}k∈N, are computationally indistinguishable by s(·) samples if for

every probabilistic polynomial-time algorithm, D, every polynomial p(·), and
all sufficiently large k’s

∣∣∣Pr
[
D(X

(1)
k , ..., X

(s(k))
k)=1

]
− Pr

[
D(Y

(1)
k , ..., Y

(s(k))
k)=1

]∣∣∣ <
1

p(k)

where X
(1)
k through X

(s(k))
k and Y

(1)
k through Y

(s(k))
k are independent random

variables, with each X
(i)
k identical to Xk and each Y

(i)
k identical to Yk.

Using the hybrid technique one can easily show that if both X and Y are
polynomial-time constructible then computational indistinguishability by a
single sample implies computational indistinguishability by any polynomial
number of samples. (The ensemble {Zk}k∈N is said to be polynomial-time

3 We have implicitly used the notion of a probability ensemble so far without explicitly
defining it. As our usage of this term at this point is explicit, we now define it: By a
probability ensemble, {Zk}k∈N

, we mean an infinite sequence of random variables such

that each Zk ranges over strings of length bounded by a polynomial in k.

86 CHAPTER 3. PSEUDORANDOM GENERATORS

constructible if there exists a polynomial-time algorithm S so that S(1k)
and Zk are identically distributed.) The condition (of both ensembles be-
ing polynomial-time constructible) is essential; see [184, 195].

Non-triviality of Computational Indistinguishability. Clearly, any
two distributions ensembles which are statistically close4 are computation-
ally indistinguishable. As noted above, there exist probability ensembles
which are statistically far apart and yet are computationally indistinguish-
able [364, 181]. However, at least one of the probability ensembles in these
results is not polynomial-time constructible. As we shall see below, the ex-
istence of one-way functions implies the existence of polynomial-time con-
structible probability ensembles which are statistically far apart and yet are
computationally indistinguishable [214]. This sufficient condition is also nec-
essary (cf., [167]).

3.3.3 Constructions

The constructions surveyed in this section transform computation difficulty,
in the form of one-way functions, into generators of pseudorandomness. Loosely
speaking, a polynomial-time computable function is called one-way if any ef-
ficient algorithm can invert it only with negligible success probability. For
simplicity we consider throughout this section only length-preserving one-way
functions.

Definition 3.9 (one-way function): A one-way function, f , is a polynomial-
time computable function such that for every probabilistic polynomial-time
algorithm A′, every positive polynomial p(·), and all sufficiently large k’s

Pr
[
A′(f(Uk))∈f−1(f(Uk))

]
<

1

p(k)

We stress that both occurrences of Uk refer to the same random variable.
That is, the above asserts that

∑

x∈{0,1}k

2−k · Pr
[
A′(f(x))∈f−1(f(x))

]
<

1

p(k)

Popular candidates for one-way functions are based on the conjectured in-
tractability of Integer Factorization (cf., [295] for state of the art), the Dis-
crete Logarithm Problem (cf., [296] analogously), and decoding of random
linear code [182]. The infeasibility of inverting f yields a weak notion of un-
predictability: For every probabilistic polynomial-time algorithm A (and suf-
ficiently large k), it must be the case that Pri[A(i, f(Uk)) 6= bi(Uk)] > 1/2k,

4Two probability ensembles, {Xk}k∈N
and {Yk}k∈N

, are said to be statistically close
if for every positive polynomial p and sufficient large k the variation distance between Xk

and Yk (i.e., 1
2

∑
z
|Pr[Xk = z]− Pr[Yk = z]|) is bounded above by 1/p(k).

3.3. THE ARCHETYPICAL CASE 87

where the probability is taken uniformly over i ∈ {1, ..., k} (and Uk), and
bi(x) denotes the ith bit of x. A stronger (and in fact strongest possible)
notion of unpredictability is that of a hard-core predicate. Loosely speaking,
a polynomial-time computable predicate b is called a hard-core of a func-
tion f if all efficient algorithm, given f(x), can guess b(x) only with success
probability which is negligible better than half.

Definition 3.10 (hard-core predicate [72]): A polynomial-time computable
predicate b : {0, 1}∗ 7→ {0, 1} is called a hard-core of a function f if for
every probabilistic polynomial-time algorithm A′, every polynomial p(·), and
all sufficiently large k’s

Pr (A′(f(Uk))=b(Uk)) <
1

2
+

1

p(k)

Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f
then f must be one-way.5 It turns out that any one-way function can be
slightly modified so that it has a hard-core predicate.

Theorem 3.11 (A generic hard-core [183]): Let f be an arbitrary one-way

function, and let g be defined by g(x, r)
def
= (f(x), r), where |x| = |r|. Let

b(x, r) denote the inner-product mod 2 of the binary vectors x and r. Then
the predicate b is a hard-core of the function g.

A proof is presented in Appendix C.2. Finally, we get to the construction of
pseudorandom generators.

Proposition 3.12 (A simple construction of pseudorandom generators): Let
b be a hard-core predicate of a polynomial-time computable 1-1 function f .

Then, G(s)
def
= f(s)b(s) is a pseudorandom generator.

Proof Sketch: Clearly the |s|-bit long prefix of G(s) is uniformly distributed
(since f is 1-1 and onto {0, 1}|s|). Hence, the proof boils down to showing
that distinguishing f(s)b(s) from f(s)σ, where σ is a random bit, yields
contradiction to the hypothesis that b is a hard-core of f (i.e., that b(s) is
unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes
f(s)b(s) from f(s)b(s), where σ = 1 − σ, and so yields an algorithm for
predicting b(s) based on f(s).

In a sense, the key point in the above proof is showing that the (obvious
by definition) unpredictability of the output of G implies its pseudorandom-
ness. The fact that (next bit) unpredictability and pseudorandomness are
equivalent in general is proven explicitly in the alternative presentation be-
low.

5 Functions which are not 1-1 may have hard-core predicates of information theoretic
nature; but these are of no use to us here. For example, for σ ∈ {0, 1}, f(σ, x) = 0f ′(x)
has an “information theoretic” hard-core predicate b(σ, x) = σ.

88 CHAPTER 3. PSEUDORANDOM GENERATORS

An alternative presentation. Our presentation of the construction of
pseudorandom generators, via Construction 3.4 and Proposition 3.12, is anal-
ogous to the original construction of pseudorandom generators suggested by
by Blum and Micali [72]: Given an arbitrary stretch function ℓ :N 7→N, a 1-1
one-way function f with a hard-core b, one defines

G(s)
def
= b(x1)b(x2) · · · b(xℓ(|s|)) ,

where x0 = s and xi = f(xi−1) for i = 1, ..., ℓ(|s|). The pseudorandomness of
G is established in two steps, using the notion of (next bit) unpredictability.
An ensemble {Zk}k∈N is called unpredictable if any probabilistic polynomial-
time machine obtaining a prefix of Zk fails to predict the next bit of Zk with
probability non-negligiblly higher than 1/2.

1. One first proves that the ensemble {G(Uk)}k∈N, where Uk is uniform
over {0, 1}k, is (next-bit) unpredictable (from right to left) [72].

Loosely speaking, if one can predict b(xi) from b(xi+1) · · · b(xℓ(|s|)) then
one can predict b(xi) given f(xi) (i.e., by computing xi+1, ..., xℓ(|s|)
and so obtaining b(xi+1) · · · b(xℓ(|s|))), in contradiction to the hard-core
hypothesis.

2. Next, one uses Yao’s observation by which a (polynomial-time con-
structible) ensemble is pseudorandom if and only if it is (next-bit) un-
predictable (cf., [171, Sec. 3.3.4]).

Clearly, if one can predict the next bit in an ensemble then one can
certainly distinguish this ensemble from the uniform ensemble (which
in unpredictable regardless of computing power). However, here we
need the other direction which is less obvious. Still, using a hybrid
argument, one can show that (next bit) unpredictability implies indis-
tinguishability from the uniform ensemble. Specifically, the ith hybrid
takes the first i bits from the questionable ensemble and the rest from
the uniform one. Thus, distinguishing the extreme hybrids implies dis-
tinguishing some neighboring hybrids, which in turn implies next-bit
predictability.

A general condition for the existence of pseudorandom generators.
Recall that given any one-way 1-1 function, we can easily construct a pseu-
dorandom generator. Actually, the 1-1 requirement may be dropped, but the
currently known construction – for the general case – is quite complex.

Theorem 3.13 (On the existence of pseudorandom generators [214]):
Pseudorandom generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence
of one-way functions, consider a pseudorandom generator G with stretch

3.3. THE ARCHETYPICAL CASE 89

function ℓ(k) = 2k. For x, y ∈ {0, 1}k, define f(x, y)
def
= G(x), and so f

is polynomial-time computable (and length-preserving). It must be that f
is one-way, or else one can distinguish G(Uk) from U2k by trying to invert
and checking the result: Inverting f on its range distribution refers to the
distribution G(Uk), whereas the probability that U2k has inverse under f is
negligible.

The interesting direction is the construction of pseudorandom generators
based on any one-way function. In general (when f may not be 1-1) the
ensemble f(Uk) may not be pseudorandom, and so Construction 3.12 (i.e.,
G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One
idea of [214] is to hash f(Uk) to an almost uniform string of length related
to its entropy, using Universal Hash Functions [93]. (This is done after guar-
anteeing, that the logarithm of the probability mass of a value of f(Uk) is
typically close to the entropy of f(Uk).)6 But “hashing f(Uk) down to length
comparable to the entropy” means shrinking the length of the output to, say,
k′ < k. This foils the entire point of stretching the k-bit seed. Thus, a second
idea of [214] is to compensate for the k − k′ loss by extracting these many
bits from the seed Uk itself. This is done by hashing Uk, and the point is
that the (k − k′ + 1)-bit long hash value does not make the inverting task
any easier. Implementing these ideas turns out to be more difficult than it
seems, and indeed an alternative construction would be most appreciated.

On constructing non-uniformly strong pseudorandom generators.
Non-uniformly strong pseudorandom generators (i.e., which produce sequences
indistinguishable by polynomial-size circuits as in Definition 3.6) can be con-
structed analogously using any one-way function which is hard to invert by
any non-uniform family of polynomial-size circuits (rather than by probabilis-
tic polynomial-time machines). In fact, the construction can be simplified in
this case (cf., [220]).

Advanced comment regarding other strong notions (of pseudoran-
dom generators): An alternative strengthening of Definition 3.1 amounts to
explicitly quantifying the resources and success gaps of distinguishers. These
quantities will be bounded as a function of the seed length (i.e., k) rather as
a function of the sequence which is being examined (i.e., ℓ(k)). For a class

of time bounds T (e.g., T = {t(k) def
= 2c

√
k}c∈N) and a class of noticeable

functions (e.g., F = {f(k)
def
= 1/t(k) : t ∈ T }), we say that a pseudorandom

generator, G, is (T ,F)-strong if for any probabilistic algorithm D having
running-time bounded by a function in T (applied to k)7, for any function f

6 Specifically, given an arbitrary one way function f ′, one first constructs f by taking
a “direct product” of sufficiently many copies of f ′. For example, for x1, ..., xk2 ∈ {0, 1}k ,

we let f(x1, ..., xk2)
def
= f ′(x1), ..., f ′(xk2).

7 That is, when examining a sequence of length ℓ(k) algorithm D makes at most t(k)
steps, where t ∈ T .

90 CHAPTER 3. PSEUDORANDOM GENERATORS

in F , and for all sufficiently large k’s

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k)

An analogous strengthening may be applied to the definition of one-way
functions. Doing so reveals the weakness of the result in [214]: It only implies
that for some ǫ > 0 (ǫ = 1/5 will do), for any T and F , the existence
of (T ,F)-strong one-way functions implies the existence of (T ′,F ′)-strong

pseudorandom generators, where T ′ = {t′(k) def
= t(kǫ)/poly(k) : t ∈ T }

and F ′ = {f ′(k)
def
= poly(k) · f(kǫ) : f ∈ F}. What we would like to

have is an analogous result with T ′ = {t′(k) def
= t(k)/poly(k) : t ∈ T } and

F ′ = {f ′(k)
def
= poly(k) · f(k) : f ∈ F}.

3.3.4 Pseudorandom Functions

Pseudorandom generators allow to efficiently generate long pseudorandom
sequences from short random seeds. Pseudorandom functions (defined be-
low) are even more powerful: They allow efficient direct access to a huge
pseudorandom sequence (which is not even feasible to scan bit-by-bit). Put
in other words, pseudorandom functions can replace truly random functions
in any efficient application (e.g., most notably in cryptography).

Definition 3.14 (pseudorandom functions [175]): A pseudorandom function
(ensemble), with length parameters ℓD, ℓR :N 7→N, is a collection of functions
{fs :{0, 1}ℓD(|s|) 7→{0, 1}ℓR(|s|)}s∈{0,1}∗ satisfying

• (efficient evaluation): There exists an efficient (deterministic) algo-
rithm which given a seed, s, and an ℓD(|s|)-bit argument, x, returns
the ℓR(|s|)-bit long value fs(x).

• (pseudorandomness): For every probabilistic polynomial-time oracle ma-
chine, M , for every positive polynomial p and all sufficiently large k’s

∣∣Pr[MfUk (1k) = 1]− Pr[MFk(1k) = 1]
∣∣ < 1

p(k)

where Fk denotes a uniformly selected function mapping {0, 1}ℓD(k) to
{0, 1}ℓR(k).

Suppose, for simplicity, that ℓD(k) = k and ℓR(k) = 1. Then a function uni-
formly selected among 2k functions (of a pseudorandom ensemble) presents
an input-output behavior which is computationally indistinguishable from

the one of a function selected at random among all the 22k

Boolean func-
tions. Contrast this with the 2k pseudorandom sequences, produced by a
pseudorandom generator, which are computationally indistinguishable from
a sequence selected uniformly among all the 2poly(k) many sequences. Still
pseudorandom functions can be constructed from any pseudorandom gener-
ator.

3.4. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 91

Theorem 3.15 (How to construct pseudorandom functions [175]): Let G
be a pseudorandom generator with stretching function ℓ(k) = 2k, let G0(s)
(resp., G1(s)) denote the first (resp., last) |s| bits in G(s), and

Gσ|s|···σ2σ1 (s)
def
= Gσ|s|

(· · ·Gσ2 (Gσ1(s)) · · ·)

Then, the function ensemble {fs :{0, 1}|s| 7→{0, 1}|s|}s∈{0,1}∗, where fs(x)
def
=

Gx(s), is pseudorandom with length parameters ℓD(k) = ℓR(k) = k.

The above construction can be easily adapted to any (polynomially-bounded)
length parameters ℓD, ℓR :N 7→N.

Proof Sketch: The proof uses the hybrid technique: The ith hybrid, Hi
k, is a

function ensemble consisting of 22i·k functions {0, 1}k 7→{0, 1}k, each defined
by 2i random k-bit strings, denoted 〈sα〉α∈{0,1}i . The value of such function
at x = βα, with |α| = i, is Gβ(sα). The extreme hybrids correspond to our
indistinguishability claim (i.e., H0

k ≡ fUk
and Hk

k ≡ Fk), and neighboring
hybrids correspond to our indistinguishability hypothesis (specifically, to the
indistinguishability of G(Uk) and U2k under multiple samples).

We mention that pseudorandom functions have been used to derive nega-
tive results in computational learning theory [355] and in complexity theory
(cf., Natural Proofs [319]).

3.4 Derandomization of time-complexity classes

Recall the proof of Theorem 3.7: A pseudorandom generator was used to
shrink the randomness complexity of a BPP-algorithm, and derandomization
was achieved by scanning all possible seeds to the generator. A key observa-
tion of [288, 293] is that whenever a pseudorandom generator is used this way,
there is no point in insisting that it runs in time polynomial in its seed length.
Instead, it suffices to require that the generator runs in time exponential in
its seed length (as we are incurring such a time factor anyhow due to the scan-
ning of all possible seeds). Thus, the generator may have running-time greater
than the distinguisher it is designed to fool. This observation has opened the
door to a sequence of derandomization results [293, 27, 219, 224] culminating

in the following theorem, where E def
= ∪cDtime(tc) with tc(n) = 2cn.

Theorem 3.16 (Derandomization of BPP, revisited [224]): Suppose that
there exists a language L ∈ E having almost-everywhere exponential circuit
complexity (i.e., there exists a constant b > 0 such that, for all but finitely
many k’s, any circuit Ck which correctly decides L on {0, 1}k has size at least
2bk). Then, BPP = P.

Proof Sketch: Underlying the proof is a construction of a pseudorandom
generator due to Nisan and Wigderson [288, 293]. This construction uti-
lizes a predicate computable in exponential-time but unpredictable, even to

92 CHAPTER 3. PSEUDORANDOM GENERATORS

within a particular exponential advantage, by any circuit family of a partic-
ular exponential size. (The crux of [224] is supplying such a predicate, given
the hypothesis; their argument utilizes [288, 27, 183, 5, 219].) Given such a
predicate the generator works by evaluating the predicate on exponentially-
many subsequences of the bits of the seed so that the intersection of any two
subsets is relatively small.8 Thus, for some constant b > 0 and all k’s, the
generator stretches seeds of length k into sequences of length 2bk which (as
loosely argued below) cannot be distinguished from truly random sequences
by any circuit of size 2bk.9 The derandomization of BPP proceeds by setting
the seed-length to be logarithmic in the input length, and utilizing the above
generator.

The above generator fools circuits of the stated size, even when these
circuits are presented with the seed as auxiliary input. (These circuits are
smaller than the running time of the generator and so they cannot just evalu-
ate the generator on the given seed.) The proof that the generator fools such
circuits refers to the characterization of pseudorandom sequences as unpre-
dictable ones. Thus, one proves that the next bit in the generator’s output
cannot be predicted given all previous bits (as well as the seed). Assuming
that a small circuit can predict the next bit, we construct a circuit for pre-
dicting the hard predicate. The new circuit incorporates the best (for such
prediction) augmentation of the input to the circuit into a seed for the gen-
erator (i.e., the bits not in the specific subset of the seed are fixed in the best
way). The key observation is that all other bits in the output of the gener-
ator depend only on a small fraction of the input bits (i.e., recall the small
intersection clause above), and so circuits for computing these other bits have
relatively small size (and so can be incorporated in the new circuit). Using
all these circuits, the new circuit forms the adequate input for the next-bit
predicting circuit, and outputs whatever the latter circuit does.

Derandomization of constant-depth circuits. The same underlying
idea, yet with a different setting of parameters and using the parity function
(which is hard for “small” constant-depth circuits [365, 210]), was used in
the context of constant-depth circuits. The aim was to derandomize RAC0

(i.e., random AC0), or put in other words – given a constant-depth circuit to
deterministically approximate (up-to an additive error) the fraction of inputs
which evaluate to some output. The result obtained in [288] implies that, for
any constant d, given a depth-d circuit C, one can approximate the fraction
of the number of inputs to C which evaluate to 1 to within additive error 0.01

8 These subsets have size linear in the length of the seed, and intersect on a constant
fraction of their respective size. Furthermore, they can be determined within exponential-
time.

9 Thus, this generator is only “moderately more complex” than the distinguisher:
Viewed in terms of its output, the generator works in time polynomial in the length of
the output, whereas the output fools circuits of size which is a (smaller) polynomial in the
length of the output.

3.5. SPACE PSEUDORANDOM GENERATORS 93

by a deterministic quasi-polynomial-time algorithm. For the special case of
approximating the number of satisfying assignment of a DNF formula, relative
error approximations can be obtained by employing the reduction of [232].
(See also improvements in [259].)

Derandomization of probabilistic proof systems. A different (and
more surprising) instantiation of the Nisan–Wigderson Generator utilizes
predicates which are hard for small circuits having oracle access to NP .
The result is a pseudorandom generator robust against two-move public-
coin interactive proofs [4, 237] (which are as powerful as constant-round in-
teractive proofs). The key observation is that the above proof provides a
black-box procedure for predicting the underlying predicate when given or-
acle access to a distinguisher (and applies also in case the distinguisher is
a non-deterministic machine). Thus, under suitably strong (and yet plausi-
ble) assumptions, constant-round interactive proofs collapse to NP . We note
that a stronger result, which deviates from the above framework, has been
subsequently obtained [275].

An even more radical instantiation of the Nisan–Wigderson Generator
was used to obtain explicit constructions of extractors (see Section 3.6.5). In
addition to the above observation, one also utilizes the fact that the gener-
ator itself uses the predicate as a black-box. Further discussion appears in
Section 3.6.5.

3.5 Space Pseudorandom Generators

In the previous two sections we have considered generators the output of
which is indistinguishable by any efficient procedures. The latter were mod-
eled by time-bounded computations; specifically, polynomial-time computa-
tions. A finer characterization of time-bounded computations is obtained by
considering the space-complexity. Unfortunately, natural notions of space-
bounded computations are quite subtle – especially when randomization or
non-determinism are concerned (cf., [325]). Two major issues are:

1. Time bound: Whether one restricts these machines to have time-complexity
at most exponential in the space-complexity (like in the deterministic
case).10 Indeed, following most work in the area, we do postulate so.

2. Access to random tape: Whether the space-bounded machine has one-
way or two-way access to the randomness tape. (Allowing two-way
access means that the randomness is recorded for free; that is, without
being accounted for in the space-bound.) An alternative presentation
of the question refers to whether the randomness is to be considered as

10 Alternatively, one can ask whether these machines must always halt or only halt with
probability approaching 1. It can be shown that the only way to ensure “absolute halting”
is to have the time-complexity at most exponential in the space-complexity [325].

94 CHAPTER 3. PSEUDORANDOM GENERATORS

taking place on-line or whether it is done off-line and given as auxiliary
input (to which one has a two-way access). Again, following most work
in the area, we consider one-way access.11

In accordance with the resulting definition of randomized bounded-space
computation, we consider space-bounded distinguishers which have a one-way
access to the input sequence which they examine. As all known constructions
remain valid also when these distinguishers are non-uniform, we define this
stronger notion below. In such cases one may assume, without loss of gener-
ality, that the running-time of the distinguisher equals the length of its input
(i.e., the inspected sequence). A non-uniform machine of space s : N 7→N is
thus a family, {Dk}k∈N, of directed layered graphs so that Dk has at most
2s(k) vertices at each layer, and labeled directed edges from each layer to the
next layer.12 Each vertex has two (possibly parallel) outgoing directed edges,
one labeled 0 and the other labeled 1. Such a non-uniform machine yields a
natural notion of decision (i.e., consider a fixed partition of the vertices of the
last layer, and define the result of the computation according to the vertex
reached when following the path labeled correspondingly to the input).

Definition 3.17 (Indistinguishability w.r.t space-bounded machines):

• For a non-uniform machine, {Dk}k∈N, and two probability ensembles,

{Xk}k∈N and {Yk}k∈N, the function d : N 7→ [0, 1] defined as d(k)
def
=

|Pr[Dk(Xk) = 1]−Pr[Dk(Yk) = 1]| is called the distinguishability-gap of
{Dk} between the two ensembles.

• A probability ensemble, {Xk}k∈N, is called (s, ǫ)-pseudorandom if for
any (non-uniform) s(·)-space-bounded machine, the distinguishability-
gap of the machine between {Xk}k∈N and a uniform ensemble (of the
same length) is at most ǫ(·).
• A deterministic algorithm G of stretch function ℓ is called a (s, ǫ)-

pseudorandom generator if the ensemble {G(Uk)}k∈N is (s, ǫ)-pseudorandom,
where Uk denotes the uniform distribution over {0, 1}k.

Following are the two major results regarding pseudorandom generators with
respect to space-bounded machines. In contrast to the pseudorandom gen-
erators in the previous two sections, the existence of the “bounded-space
resilient pseudorandom generators” does not depend on any computational
assumptions.

11 We note that the fact that we restrict our attention to one-way access is instrumental in
obtaining space-robust generators without making intractability assumptions. Analogous
generators for two-way space-bounded computations would imply hardness results of a
breakthrough nature in the area.

12 Note that the space bound of the machine is stated in terms of a parameter k, rather
than in terms of the length of its input. In the sequel this parameter will be set to the
length of a seed to a pseudorandom generator. We warn that our presentation here is indeed
non-standard for this area. To compensate for this, we will also state the consequences in
the standard format.

3.5. SPACE PSEUDORANDOM GENERATORS 95

Theorem 3.18 (Nisan’s Generator [289]): For every s :N 7→N, there exists
a (s, 2−s)-pseudorandom generator of stretch function ℓ(k) = 2k/O(s(k)). The
generator works in space linear in the length of the seed, and in time linear
in the stretch function.

In other words, we have a generator which takes a random seed of length
k = O(t ·m) and produce sequences of length 2t which look random to any
m-space-bounded machine. In particular, using a random seed of length
k = O(m2), one can produce sequences of length 2m which look random to
any m-space bounded machine. Thus, one may replace random sequences
used by any space-bounded computation, by sequences which are efficiently
generated from random seeds of length quadratic in the space bound. (The
common instantiation is for log-space machines.)

Theorem 3.19 (The Nisan–Zuckerman Generator [294]): For any polyno-
mial p, there exists a function s(k) = k/O(1) and a (s, 2−

√
s)-pseudorandom

generator of stretch function p. The generator works in linear-space and
polynomial-time (both stated in terms of the length of the seed).

In other words, we have a generator which takes a random seed of length
k = O(m) and produce sequences of length poly(m) which look random
to any m-space-bounded machine. Thus, one may convert any randomized
computation utilizing polynomial-time and linear-space into a functionally
equivalent randomized computation of similar time and space complexities
which uses only a linear number of coin tosses. (The above two results have
been “interpolated” in [16]: There exists a parameterized family of space
pseudorandom generators which includes both the above as extreme special
cases.)

Comments on the proofs of the above two theorems. In both cases,
we describe the construction by starting with an adequate distinguisher and
showing how the input distribution it examines can be modified (from the
uniform one into a pseudorandom one) without the distinguisher noticing the
difference.

Theorem 3.18 is proven by using the “mixing property” of Universal Hash
Functions [93]. A family of functions Hn which map {0, 1}n to itself is called
mixing if for every pair of subsets A,B ⊆ {0, 1}n for all but few of the
functions h ∈ Hn,

Pr[Un ∈ A ∧ h(Un) ∈ B] ≈ |A|
2n
· |B|

2n

Given a s(k)-space distinguisher Dk as above, we set n
def
= O(s(k)) and

ℓ′
def
= ℓ(k)/n, and consider an auxiliary “distinguisher” D′

k which is a directed
layered graph with ℓ′ layers and 2s(k) vertices in each layer. Each vertex has

96 CHAPTER 3. PSEUDORANDOM GENERATORS

directed edges going to each vertex of the next layer and these edges are
labelled with (possibly empty) subsets of {0, 1}n, where these subsets form a
partition of {0, 1}n. The graph D′

k simulates Dk in the obvious manner (i.e.,
the computation of D′

k on input of length ℓ(k) = ℓ′ ·n is defined by breaking
the input into consequetive blocks of length n and following the path of edges
labelled by the subsets containing the corresponding block). For each pair of
neighboring vertices, u and v (in layers i and i+1, respectively), consider the
label, Lu,v ⊆ {0, 1}n, of the edge going from u to v. Similarly, for a vertex
w at layer i+ 2, we consider the label L′

v,w of the edge from v to w. By the
above mixing property, for all but a few of h ∈ Hn,

Pr[Un ∈ Lu,v ∧ h(Un) ∈ L′
v,w] ≈ Pr[Un ∈ Lu,v] · Pr[Un ∈ L′

v,w]

Thus, replacing the coins in the second block (i.e., used in transitions from
layer i+1 to layer i+2) by the value of h applied to the outcomes of the coins
used in the first block (i.e., in transitions from layer i to i+1), approximately
maintains the probability that D′

k moves from u to w via v. The same (with
“few” being 23s(k) · ℓ′ times larger here) holds for every triple of vertices in
any three layers as above. The point is that we can use the same h in all these
approximations. Thus, at the cost of extra |h| random bits, we can reduce
the number of true random coins used in transitions on D′

k by a factor of
2, without significantly effecting its decision. In other words, at the cost of
extra |h| random bits, we can effectively contract the distinguisher to half its
length.13 Repeating the process for a logarithmic (in D′

k’s length) number of
times we obtain a distinguisher which only examines n bits at which point
we stop. In total we have used log2(ℓ(k)/O(s(k))) random hash functions,
which means that we can generate a sequence which fools the original Dk

using a seed of length n+ log2 ℓ(k) · |h|, which for adequate family Hn yields
the claimed seed length of O(s(k) · log2 ℓ(k)) = k.

Theorem 3.19 is proven by using a much more powerful tool – the extractor
(as defined in Section 3.6.5). The basic idea is that whenDk is at some distant
layer, say at layer t, it typically “knows” little about the random choices
which led it there: That is, it has only s(k) bits of memory which leaves out
t− s(k) bits of uncertainty (or randomness). Thus much of the randomness
which led Dk to its current state may be “re-used” (or “recycled”). To re-
use these bits we need to extract almost uniform distribution on strings of
length, say, t − s(k) − o(k) out of a distribution which has entropy t − s(k)
(actually a stronger technical condition need and can be imposed on the
distribution). Furthermore, such an extraction requires some – yet relatively
few – truly random bits. In particular, [294] used

√
k/2 bits towards this end

(and the extracted bits are exp(−
√
k) away from uniform). An important

13 That is, fixing a good h as above, we can replace the 2-paths in D′
k by edges in a new

distinguisher D′′
k , so that r is in the set labeling an edge u–w in D′′

k iff for some v, the
string r is in the label of the edge u–v in D′

k and h(r) is in the label of the edge v–w (also

in D′
k).

3.6. SPECIAL PURPOSE GENERATORS 97

point is how to use the above argument repeatedly. We break the seed into
two parts, ρ ∈ {0, 1}k/2 and r1, ..., r√k where |ri| =

√
k/2, and set n = k/3.

Looking at layer i ·n, we consider the information known about ρ (rather the
information known about the last n steps). Thus, using ri, we can extract
(k/2) − s(k) − o(k) > k/3 = n almost-random bits required for the next
n steps. Hence, using k random bits we were able to produce a sequence of
length

√
k ·n = k3/2/3 which fools machines of space bound, say, s(k) = k/10.

Using sequential composition, one may amplify the stretch function up-to
any polynomial p at the expense of fooling only k/c-space machines, where c
depends p.

Derandomization of space-complexity classes: Utilizing the specific
structure of Nisan’s Generator led to showing that randomized log-space
can be simulated in deterministic polynomial-time and polylogarithmic-space
(i.e., RL ⊆ SC) [290]. Thus, RL (and actually BPL) were placed in a
class not known to contain NL. Another such result was subsequently ob-
tained in [327]: Randomized log-space can be simulated in deterministic space

o(log2); specifically, in space log3/2. A better simulation is currently known
for the archetypical (but not known to be complete) problem of RL; that
is, undirected connectivity [7]. Specifically, by [18] (improving over [292]),
the problem is solvable by a deterministic algorithm of space complexity
O(log4/3 n), where n is the size of the graph.

3.6 Special Purpose Generators

In this section we consider even weaker types of pseudorandom generators,
producing sequences which can fool only very restricted types of distinguish-
ers. Still, such generators have many applications in complexity theory and
in the design of algorithms.

Technically speaking, the material presented in this section is quite in-
terleaved. Furthermore, some of it is related to the results presented in the
previous two sections (e.g., Theorem 3.18 uses ideas implicit in the material
below, whereas Theorems 3.16 and 3.19 rely explicitly on results discussed
below).

Our choice is to start with the simplest of these generators – the pairwise-
independent generator [104], and its generalization [10] to t-wise indepen-
dence, for any t≥ 2. Such generators perfectly fool any distinguisher which
only observe t fixed locations in the output sequence. This leads naturally
to almost pairwise (or t-wise) independence generators, which also fool (but
non-perfectly) such distinguishers. The latter generators are implied by a
stronger class of generators which is of independent interest – the small-bias
generators [281]. Small-bias generators fool any linear test (i.e., any distin-
guisher which merely considers the xor of some fixed locations in the input
sequence). We then turn to the Expander Random Walk Generator – this

98 CHAPTER 3. PSEUDORANDOM GENERATORS

generator produces a sequence of strings which hit any dense subset of strings
with probability which is close to the hitting probability of a truly random
sequence. A generalization, called a sampler, generates a sequence of sam-
ple points from which one can approximate the average value of any fixed
function (which maps strings into a bounded interval of reals). Finally, we
consider the related notions of a disperser and an extractor.

Comment regarding our parameterization: To maintain consistency
with prior sections, we continue to present the generators in terms of the
seed length, denoted k. Since this is not the common presentation for most
results presented below, we provide (in footnotes) the common presentation
where the seed length is determined as a function of other parameters.

3.6.1 Pairwise-Independence Generators

A t-wise independence generator of block-size b : N 7→N (and stretch func-
tion ℓ) is an efficient (e.g., works in time polynomial in the output length)
deterministic algorithm which expands a k-bit long random seed into a se-
quence of ℓ(k)/b(k) strings, each of length b(k), such that any t blocks are
uniformly and independently distributed in {0, 1}t·b(k). In case t = 2, we call
the generator pairwise independent.

Proposition 3.20 (t-wise independence generator [104, 10]):14 Let t be a
fixed integer, and suppose that b(k) = k/t, ℓ′(k) = ℓ(k)/b(k) and ℓ′(k) < 2b(k).
Associate both {0, 1}b(k) and {1, 2, ..., 2b(k)} with the field GF(2b(k)), and let
α1, ..., αℓ′(k) be distinct non-zero elements of this field. For s0, s1, ..., st−1 ∈
{0, 1}b(k), let

G(s0, s1, ..., st−1)
def
=

t−1∑

j=0

sjα
j
1 ,

t−1∑

j=0

sjα
j
2 , ...,

t−1∑

j=0

sjα
j
ℓ′(k)

where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence
generator of block-size b.

To make the above generator totally explicit, we need an explicit represen-
tation of GF(2b(k)), which requires an irreducible polynomial of degree b(k)
over GF(2). For specific values of b(k) a good representation exists: Specifi-

cally, for d
def
= b(k) = 2 · 3e (with e integer), the polynomial xd + xd/2 + 1 is

14 The common parameterization of t-wise independence generator is as follows. Given
parameters b and ℓ′ < 2b, and a uniformly chosen seed of length t · b, one can efficiently
and deterministically generate a random sequence of ℓ′ strings, each of length b, which are
t-wise independent.

3.6. SPECIAL PURPOSE GENERATORS 99

irreducible over GF(2) [253, Thm. 1.1.28]. Alternatively, for t = 2, one may
use affine transformations defined by random Toeplitz matrices.15 That is,

Proposition 3.21 (Alternative pairwise independence generator [93]):16 Let
ℓ′(k) = ℓ(k)/b(k) and m(k) = ⌈log2 ℓ

′(k)⌉, and suppose that k = 2b(k) +
m(k)− 1. Associate {0, 1}n with the n-dimensional vector space over GF(2),
and let v1, ..., vℓ′(k) be distinct vectors in the m(k)-dimensional vector space.

For s ∈ {0, 1}b(k)+m(k)−1, r ∈ {0, 1}b(k) and i = 1, ..., ℓ′(k), let

G(s, r)
def
= (Tsv1 + r , Tsv2 + r , ..., Tsvℓ′(k) + r)

where Ts is an b(k)-by-m(k) Toeplitz matrix specified by the string s, is a
pairwise independence generator of block-size b.

Pairwise independence generators do suffice for a variety of applications (cf.,
[362, 260]). In particular, we mention the application to sampling discussed in
Section 3.6.4, and the celebrated derandomization by Luby [256]. The latter
uses the fact that the analysis of the target randomized algorithm only relies
on the hypothesis that some objects are selected in pairwise independent
manner. Thus, such weak generators do suffice to fool distinguishers which
are derived from some natural and interesting algorithms.

We remark that for constant t ≥ 2, the cost of derandomization (i.e.,
going over all 2k possible seeds) can be made exponential in the block-
size (i.e., b(k) = O(k/t)) and polynomial in the number of blocks (i.e.,
ℓ′(k) ≤ 2b(k) = exp(k/t)). (We stress that it is important to have the cost of
derandomization be polynomial in the length of the produced pseudorandom
sequence, since the latter is typically polynomially-related to the length of
the input to the algorithm we wish to derandomize.) Thus, whenever the
analysis of a randomized algorithm can be based on a constant amount of
independence between (feasibly-many) random choices, each made inside a
feasible domain, a feasible derandomization is possible. On the other hand,
the relationship ℓ(k) = exp(k/t) is the best possible (cf., [102]), and so one
cannot produce from a seed of length k an exp(k/O(1))-long sequence of non-
constant independence. Technically speaking, t-wise independent generators
of stretch ℓ require a seed of length Ω(t · log ℓ). In the next subsection we
will see that meaningful approximations may be obtained with much shorter
seeds.

15 A Toeplitz matrix is a matrix with all diagonals being homogeneous; that is, T = (ti,j)
is a Toeplitz matrix if ti,j = ti+1,j+1, for all i, j. Note that a Toeplitz matrix is determined
by its first row and first column (i.e., the values of t1,j ’s and ti,1’s).

16 The common parameterization of this pairwise independence generator is as follows.
Given parameters b and ℓ′ ≤ 2b, and a uniformly chosen seed of length 2b + ⌈log2 ℓ′⌉ − 1,
one can efficiently and deterministically generate a random sequence of ℓ′ strings, each of
length b, which are pairwise independent.

100 CHAPTER 3. PSEUDORANDOM GENERATORS

3.6.2 Small-Bias Generators

Trying to go beyond constant-independence in derandomizations (as above)
was the primary motivation of Naor and Naor [281], and is in fact an im-
portant application of the notion of small-bias generators. Let ǫ :N 7→ [0, 1].
An ǫ-bias generators with stretch function ℓ is an efficient (e.g., polynomial
in ℓ(k) time) deterministic algorithm which expands a k-bit long random
seed into a sequence of ℓ(k) bits, so that for any fixed (non-empty) set
S ⊆ {1, ..., ℓ(k)} the bias of the output sequence over S is at most ǫ(k), where
the bias of a sequence of n (possibly dependent) Boolean random variables
ζ1, ..., ζn ∈ {0, 1}n over S ⊆ {1, .., n} is defined as 2 · |Pr[⊕i∈Sζi = 1]− 0.5|.17

Theorem 3.22 (small-bias generators [281]):18 Let the functions ℓ and ǫ be
so that k = O(log(ℓ(k)/ǫ(k))). Then, there exists an ǫ-bias generator with
stretch function ℓ operating in time polynomial in ℓ(k).

Three alternative simpler constructions (i.e., proofs of Theorem 3.22) are
given in [12]. One of these is based on Linear Feedback Shift Registers.
Loosely speaking, the first half of the seed, denoted f0f1 · · · f(k/2)−1, is in-
terpreted as a (non-degenerate) feedback rule19, the other half, denoted
s0s1 · · · s(k/2)−1, is interpreted as “the start sequence”, and the output se-
quence, denoted r0r1 · · · rℓ(k)−1, is obtained by setting ri = si for i < k/2

and ri =
∑(k/2)−1

j=0 fj · ri−(k/2)+j for i ≥ k/2.

Small-bias generators have been used in a variety of areas (e.g., non-
approximation [215], structural complexity [298], and applied cryptography [240]).
In addition, they seem an important tool in the design of various types of
“pseudorandom” objects; see below.

Approximate independence generators. As observed in [358], ǫ-bias is
related to approximate limited independence. Actually, a restricted type of ǫ-
bias – in which only subsets of size t(k) are required to have bias bounded by
ǫ implies that the variation distance (i.e., Norm-1 distance) of any t(k) bits in
the sequence from the uniform distribution is at most 2t(k)/2 ·ǫ(k). (The max-
norm of the difference is bounded by ǫ(k).)20 Combining Theorem 3.22, the

17 The factor of 2 was introduced so to make these biases correspond to the Fourier
coefficients of the distribution (viewed as a function from {0, 1}n to the reals). To see the
correspondence one should replace {0, 1} by {±1}, and substitute xor by multiplication.
The bias with respect to set S is thus written as Exp[

∏
i∈S

ζi] (= Pr[
∏

i∈S
ζi = +1] −

Pr[
∏

i∈S
ζi = −1]), which is merely the Fourier coefficient corresponding to S.

18 Here the common parameterization is merely a point of view: Rather than saying that
the functions ℓ and ǫ satisfy k = O(log(ℓ(k)/ǫ(k))), one says that given desired parameters
ℓ and ǫ one sets k = O(log(ℓ/ǫ)). We also comment that using [12] the constant in the
O-notation is merely 2 (i.e., k ≈ 2 log2(ℓ/ǫ)), whereas using [281] k ≈ log2 ℓ + 4 log2(1/ǫ).

19 That is, f0 = 1 and f(t)
def
= tk/2 +

∑(k/2)−1

j=0
fj · tj is an irreducible polynomial over

GF(2).
20 Both bounds are derived from the Norm2 bound (of ǫ(k)) on the difference vector

(i.e., the difference between the two probability vectors). See [170, Chap. 1].

3.6. SPECIAL PURPOSE GENERATORS 101

above observation, and the linearity of the construction in Proposition 3.20,
one obtains generators with exp(k) stretch function which are approximately
t(k)-independent, for non-constant t(k) (cf., [281]). Specifically, one may ob-
tain generators with stretch function ℓ, producing sequences in which any t(k)
positions are at most ǫ(k)-away from uniform (in variation distance), provided
that k = O(t(k) + log(1/ǫ(k)) + log log ℓ(k)).21 (In particular, we may have
ℓ(k) = 2k/O(1), t(k) = O(log ℓ(k)), and ǫ(k) = 2−O(t(k)).) Thus, whenever
the analysis of a randomized algorithm can be based on a logarithmic amount
of (almost) independence between feasibly-many Boolean random choices, a
feasible derandomization is possible. Extensions to non-Boolean choices are
considered in [129, 96, 17]. The latter papers also consider the related prob-
lem of constructing small “discrepancy sets” for geometric and combinatorial
rectangles. We note that a polynomial (in all parameters) “hitting set” for
such rectangles was constructed in [252].

t-universal set generators. An ǫ-bias generator, for ǫ < 2−t, yields a
t-universal set generator. The latter generator outputs sequences such that
in every subsequence of length t all possible 2t patterns occur (for at least
one possible seed). Such generators have many applications (cf., for exam-
ple, [262, 66]).

3.6.3 Random Walks on Expanders

By expander graphs (or expanders) of degree d and eigenvalue bound λ < d,
we mean an infinite family of d-regular graphs, {Gn}n∈S (S ⊆ N), so that Gn

is a d-regular graph over n vertices and the absolute value of all eigenvalues,
save the biggest one, of the adjacency matrix of Gn is bounded above by
λ.22 Actually, we are interested in explicit constructions of such graphs,
by which we mean that there exists a polynomial-time algorithm that on
input n (in binary), a vertex v ∈ Gn and an index i ∈ {1, ..., d}, returns the
ith neighbor of v. (We also require that the set S for which Gn’s exist is
sufficiently “tractable” – say that given any n ∈ N one may efficiently find
s ∈ S so that n ≤ s < 2n.) Many explicit constructions of expanders were
given, starting in [264] and culminating in the optimal construction of [255]
(where λ = 2

√
d− 1 and S is somewhat complex23). We prefer to use the

21 In the corresponding result for the max-norm distance, it suffices to have k =
O(log(t(k)/ǫ(k) + log log ℓ(k)).

22 This algebraic definition is related to the combinatorial definition of expansion in
which one requires that any (not too big) set of vertices in the graph have relatively a
large set of strict neighbors (i.e., is “expanding”). See [13] for a lower bound of expansion
in terms of (d−λ)/d and [9] for the converse. We stress that the back-and-forth translation
is not tight, and note that in some applications (alas not those discussed in the current
text) the incurred loss when going from the combinatorial definition to the algebraic one
is crucial.

23 Unfortunately, the [255] construction works for a relatively non-trivial set S (i.e., the
elements of S are of the form p ·(p2−1)/2, where p is prime). A relaxation to prime powers

102 CHAPTER 3. PSEUDORANDOM GENERATORS

construction of [160], where S = {n2 : n ∈ N}, alas it is not optimal.
An important discovery of Ajtai, Komlos, and Szemerédi [5] is that ran-

dom walks on expander graphs provide a good approximation to repeated
independent attempts to hit any arbitrary fixed subset of sufficient density
(within the vertex set). The importance of this discovery stems from the fact
that a random walk on an expander can be generated using much fewer ran-
dom coins than required for generating independent samples in the vertex set.
That is, generating a random walk of (edge) length ℓ on a d-regular n-vertex
graph requires only log2 n+ ℓ · log2 d random bits (rather than (ℓ+ 1) · log2 n
random bits requires to produce independent random samples). Precise for-
mulations of the above discovery were given in [5, 109, 226, 178] culminating
in the optimal analysis of [229, Sec. 6].

Theorem 3.23 (Expander Random Walk Theorem [229, Cor. 6.1]): Let G =
(V,E) be an expander graph of degree d and eigenvalue bound λ. Let W be a

subset of V and ρ
def
= |W |/|V |. Then the fraction of random walks (in G) of

(edge) length ℓ which stay within W is at most

ρ ·
(
ρ+ (1− ρ) · λ

d

)ℓ

Thus, a random walk on an expander is “pseudorandom” with respect to the
property of hitting dense sets (i.e., the set V \W above).

Definition 3.24 (the hitting test): A distribution on sequences over {0, 1}b
is (ǫ, δ)-hitting if for any (target) set T ⊆ {0, 1}b of cardinality at least ǫ · 2b,
with probability at least 1−δ, at least one of the elements of a sequence drawn
from this distribution hits T .

Using Theorem 3.23 and the explicit expanders of [160], we have

Proposition 3.25 (The Expander Random Walk Generator):24 Let t ∈ N

be a sufficiently large constant and d = 2t.25 Let b, ℓ, ℓ′ :N 7→N so that b(k) is
even, k = b(k)+ℓ′(k) ·t, and ℓ(k) = (1+ℓ′(k)) ·b(k). Let G2b(k) be a d-regular
expander graph of [160] and let Γσ(v) denote the vertex reached from v when
following the edge labeled σ in G2b(k) . Then, for v0 ∈ {0, 1}b(k) and σi’s in
{0, 1}t,

G(v0, σ1,, σℓ′(k)) = (v0, v1,, vℓ′(k))

is presented in [11, Sec. II].
24 The common parameterization starts with parameters b and ℓ′. Given a uniformly

chosen seed of length b+O(ℓ′), one can efficiently and deterministically generate a random
sequence of ℓ′ + 1 strings, each of length b, which is (ǫ, δ)-hitting for any ǫ > 0 and

δ = (1− ǫ
2
)ℓ′+1.

25 t is selected so that the eigenvalue bound of the d-regular expander of [160] is at most
d/2.

3.6. SPECIAL PURPOSE GENERATORS 103

where vi = Γσi
(vi−1), induces a distribution on sequences over {0, 1}b(k)

which is (ǫ, δ)-hitting for any ǫ > 0 and δ = (1− ǫ
2)ℓ′(k)+1.

Expander random-walk generators have been used in a variety of areas (e.g.,
pcp and the non-approximability of Max-Clique [21, 212]26, and cryptogra-
phy [178]). In addition, they seem an important tool in the design of various
types of “pseudorandom” objects; see below.

3.6.4 Samplers

In this subsection we stretch the pseudorandomness paradigm even further.
Except for the case of averaging samplers (briefly discussed at the end), the
distinguishability test discussed below consists of two components – a fixed
algorithm and an arbitrary function, where the former is designed so that
no function can distinguish (in a certain sense) the output sequence of the
generator from a uniformly selected sequence. In fact, we will combine the
above algorithm and the generator into one entity called a sampler. (Another
aspect in which samplers deviate from the generators discussed above is in the
aim to minimize, rather than maximize, the length of the output sequence.
Still, one aims to maximize the block-length, denoted n below.) A reader
who is confused by this paragraph is encouraged to forget it, for the time
being, and get back to it after reading through the entire subsection.

In many settings repeated sampling is used to estimate the average value
of a huge set of values. Namely, there is a value function ν defined over a

huge domain, say ν : {0, 1}n 7→ [0, 1], and one wishes to approximate ν̄
def
=

1
2n

∑
x∈{0,1}n ν(x) without having to inspect the value of ν on the entire

domain. The obvious thing to do is to sample the domain at random, and
obtain such an approximation from the values of ν on the sample points. It
turns out that certain “pseudorandom” sequences of sample points may serve
almost as well as truly random sequences of sample points.

Formal Setting. It is essential to have the range of ν be bounded (or else
no reasonable approximation may be possible). Our convention of having
[0, 1] be the range of ν is adopted for simplicity, and the problem for other
(predetermined) ranges can be treated analogously. Our notion of approxima-
tion depends on two parameters: accuracy (denoted ǫ) and error probability
(denoted δ). We wish to have an algorithm which with probability at least
1−δ, gets within ǫ of the correct value. This leads to the following definition.

Definition 3.26 (sampler): A sampler is a randomized algorithm that on
input parameters n (length), ǫ (accuracy) and δ (error), and oracle access
to any function ν :{0, 1}n 7→ [0, 1], outputs, with probability at least 1 − δ, a

26 See discussion in [41, Sec. 11.1].

104 CHAPTER 3. PSEUDORANDOM GENERATORS

value that is at most ǫ away from ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ǫ, δ)− ν̄| > ǫ] < δ

where the probability is taken over the internal coin tosses of the sampler.

A non-adaptive sampler is a sampler which consists of two deterministic al-
gorithms – a sample generating algorithm, G, and a evaluation algorithm,
V . On input n, ǫ, δ and a random seed, algorithm G generates a sequence of
queries, denoted s1, ..., sm ∈ {0, 1}n. Algorithm V is given the corresponding
ν-values (i.e., ν(s1), ..., ν(sm)) and outputs an estimate to ν̄.

We are interested in “the complexity of sampling” quantified as a function
of the parameters n, ǫ and δ. Specifically, we will consider three complexity
measures: The sample complexity (i.e., the number of oracle queries made by
the sampler); the randomness complexity (i.e., the length of the random seed
used by the sampler); and the computational complexity (i.e., the running-
time of the sampler). We say that a sample is efficient if its running-time
is polynomial in the total length of its queries (i.e., polynomial in both its
sample complexity and in n). We will focus on efficient samplers. Further-
more, we will focus on efficient samplers which have optimal (up-to a constant
factor) sample complexity, and will be interested in having the randomness
complexity be as low as possible.

All positive results refer to non-adaptive samplers, whereas the lower
bound hold for general samplers. For more details see [172].

The naive sampler. The straightforward method (or the naive sampler)
consists of uniformly and independently selecting sufficiently many sample
points (queries), and outputting the average value of the function on these

points. Using Chernoff Bound one easily determines that O(log(1/δ)
ǫ2) sample

points suffice. The naive sampler is optimal (up-to a constant factor) in its
sample complexity, but is quite wasteful in randomness.

It is known that Ω(log(1/δ)
ǫ2) samples are needed in any sampler, and that

that samplers which make s(n, ǫ, δ) queries require randomness at least n+
log2(1/δ)− log2 s(n, ǫ, δ)−O(1) (cf., [86]). These lower bounds are tight (as
demonstrated by non-explicit and inefficient algorithms [369]). These facts
guide our quest for improvements which is aimed at finding more randomness-
efficient ways of efficiently generating sample sequences which can be used
in conjunction with an appropriate evaluation algorithm V . (We stress that
V need not necessarily take the average of the values of the sampled points.)

The pairwise-independent sampler. Here we use the pairwise-independence
generator (of Section 3.6.1) to generate sample points, and use the natural
evaluation algorithm (which outputs the average of the values of these points).

3.6. SPECIAL PURPOSE GENERATORS 105

Pairwise-independent sampling yields a great saving in the randomness com-
plexity [104]: Specifically, for constant δ > 0, the Pairwise-Independent Sam-
pler is optimal up-to a constant factor in both its sample and randomness
complexities. In general, it uses 2n random bits and a sample of size O(1/δǫ2).
Thus, for small δ (i.e., δ = o(1)), it is wasteful in sample complexity.

The Median-of-Averages sampler. A new idea is required for going fur-
ther, and a relevant tool – random walks on expander graphs (see above) –
is needed too. In [38], the Pairwise-Independent Sampler is combined with
the Expander Random Walk Generator to obtain a new sampler. Loosely
speaking, the new sampler uses a random walk on an expander to generate a

sequence of t
def
= O(log(1/δ)) (related) seeds for t invocations of the Pairwise-

Independent Sampler. Each of these invocations returns an ǫ-close approxi-
mation with probability at least 0.9. The Expander Random Walk Theorem
is used to show that, with probability at least 1 − exp(−t) = 1 − δ, most
of these t invocations return an ǫ-close approximation. Thus, the median
value is an (ǫ, δ)-approximation to the correct value. The resulting sampler,

called the Median-of-Averages Sampler, has sample complexity O(log(1/δ)
ǫ2)

and randomness complexity 2n+O(log(1/δ)), which is optimal up-to a con-
stant factor in both complexities.

Further improvements. A sampler which improves over the pairwise-
independent sampler is presented in [197]. Maintaining the sample complex-
ity of the latter (i.e., O(1/δǫ2)), the new sampler has randomness complexity
n+O(log(1/δǫ)) (rather than 2n). Actually, the general problem of approx-
imating the value of functions mapping to [0, 1] can be efficiently reduced to
the problem of estimating the fraction of 1’s in Boolean functions (cf., [351]).
For the Boolean case, the sampler amounts to picking a random vertex in a
suitable expander graph and using the neighbor set as a sample (i.e., one out-
puts the average over these neighbors). This sampler is identical to a hitting
procedure previously suggested in [234], but the analysis is slightly more in-
volved here. Combining this new sampler with the Median-of-Averages idea,

one obtains a sampler of sample complexity O(log(1/δ)
ǫ2) and randomness com-

plexity n+O(log(1/δ)) +O(log(1/ǫ)).

Averaging Samplers. Averaging (a.k.a. Oblivious) samplers are non-adaptive
samplers in which the evaluation algorithm is the natural one – that is it out-
puts the average of the values of the sampled points. Interestingly, averaging
samplers have applications for which ordinary (non-adaptive) samplers do
not suffice (cf., [54, 369, 352]). An averaging sampler of sample complexity
poly((n/ǫ) · log(1/δ)) and randomness complexity (1 + α) · (n + log2(1/δ)),
for every α > 0, is presented in [369].

106 CHAPTER 3. PSEUDORANDOM GENERATORS

3.6.5 Dispersers, Extractors and Weak Random Sources

In this subsection we stretch the pseudorandomness paradigm even more far
than in the previous subsection. Specifically, when we consider (below) Weak
Random Sources, we will in some sense say that these sources are pseudo-
random with respect to one specific algorithm, which is actually designed in
purpose so that to be fooled by such sources. Actually, the technical tools
defined below (i.e., dispersers and extractors) can also be viewed as pseu-
dorandom generators of a type similar to the generating algorithm of an
non-adaptive sampler. (As samplers, these generators are non-standard in
the sense that they aim to minimize the length, denoted ℓ′(k), of the out-
put sequence. Still, again, the aim is to maximize the block length, denoted
b(k).)27 Our presentation is quite terse; for more details see [291].

Definition 3.27 (disperser):28 Let b, ℓ′,m : N 7→N and ǫ : N 7→ [0, 1], and
F = {fk}k∈N be a function ensemble with fk : {0, 1}k × {1, ..., ℓ′(k)} 7→
{0, 1}b(k). The ensemble F is called an (m, ǫ)-disperser if for every set S ⊂
{0, 1}k of cardinality 2m(k), the set

{fk(s, i) : s ∈ S ∧ i ∈ {1, ..., ℓ′(k)}}
contains at least (1 − ǫ(k)) · 2b(k) elements.

A disperser as above generates hitting sequences in the natural way. That

is, G(s)
def
= (f|s|(s, 1), ..., f|s|(s, ℓ

′(|s|))), induces a distribution of sequences

over {0, 1}b(k) which is (ǫ, δ)-hitting for δ(k) = 2−(k−m(k)). Put in other
words, for any set T ⊂ {0, 1}b of cardinality greater than ǫ · 2b there exists
at most 2m possible s’s such that the set {f|s|(s, i) : i ∈ {1, ..., ℓ′}} does not
intersect T . The following stronger notion, called an extractor, guarantees
that there exists at most 2m possible s’s such that the number of i’s satisfying
f(s, i) ∈ T does not approximate the density of T . More generally, define the
min-entropy of a distribution X to be the minimum of log2(1/Pr[X = x]),
taken over x’s in the support of X . Then an extractor is defined so that, for
all X ’s of sufficient min-entropy and for a uniformly selected i ∈ {1, ..., ℓ′},
the expected value of f(X, i) ∈ T approximates the density of T . This means
that in such cases, the distribution f(X, i) is close to the uniform distribution.

Definition 3.28 (extractor):29 Let b, ℓ′,m : N 7→N, ǫ : N 7→ [0, 1], and F =
{fk}k∈N be as in Definition 3.27. The ensemble F is called an (m, ǫ)-extractor

27 Again, we deviate from the standard presentation, where the block length n
def
= b(k) is

viewed as the principle parameter, and the ultimate goal is to have explicit constructions
with k, ℓ′(k) = poly(n) (for m(k) and ǫ(k) as small as possible). Clearly, m(k) > n −
O(log n), assuming ǫ(k) is bounded away from 1.

28 A popular presentation is in terms of (regular) bipartite graphs. The graph corre-
sponding to fk, will have 2k vertices each of degree ℓ′ on one side, and 2b vertices on the
other side. It will be required that every set of 2m vertices on the first side will neighbor
all but at most an ǫ fraction of the other side vertices.

29 Again, a popular presentation is in terms of (regular) bipartite graphs. Here it will
be required, as a special case, that every set of 2m vertices on the first side will have

3.6. SPECIAL PURPOSE GENERATORS 107

if for every random variable X ∈ {0, 1}k of min-entropy m(k) and U being
uniformly distributed over {1, ..., ℓ′(k)}, the random variable f(X,U) is at
most ǫ(k)-away30 from the uniform distribution over {0, 1}b(k).

An extractor as above yields a (non-adaptive) sampler consisting of the

sample generating algorithm G(s)
def
= (f|s|(s, 1), ..., f|s|(s, ℓ

′(|s|))), and the
standard evaluation algorithm which takes the average. This sampler ap-
proximates the average of any function up-to ǫ with error probability δ,
where δ(k) = 2−(k−m(k)). We comment that every family of Universal2
Hash functions yields an extractor, alas with poor parameters (typically,
with m(k) = k −Θ(log ℓ′(k)), whereas below we mention constructions with
much smaller value of m(k)).

Explicit constructions. By an explicit disperser (resp., extractor) we
mean one for which there exists a polynomial-time evaluation algorithm
(which on input s and i returns f|s|(s, i)). The known results exhibit a
trade-off between the various parameters (i.e., the functions b,m, ℓ′ and ǫ);
see [291]. Here we mention only the best currently known results, fixing a
function ǫ so that ǫ(k) = 1/poly(k). Typically, the goal is to maximize the
function b and minimize the functions m and ℓ′.

Theorem 3.29 (explicit dispersers [349]): For ǫ(k) = 1/poly(k) and any
m :N 7→N, explicit (m, ǫ)-dispersers with range {0, 1}m(·) and ℓ′(k) = poly(k)
exists.

This improves over [326], where explicit (m, ǫ)-dispersers with range {0, 1}b(·)
and ℓ′(k) = poly(k) were constructed for every m(k) = ⌊kΩ(1)⌋ and some
b(k) = ⌊kΩ(1)⌋. The importance of this special case is clarified below (when
discussing Simulations Using Weak Random Sources). Obtaining an ana-
logue result for extractors has been an open problem for several years, and
has been recently resolved by Trevisan [353] improving over many previous
constructions (cf., [369, 348]).

Theorem 3.30 (explicit extractors): For ǫ(k) = 1/poly(k), explicit (m, ǫ)-
extractors with range {0, 1}b(·) exist in two cases

1. For any α > 0, there exists β > 0 so that m(k) = ⌊αk⌋, b(k) = ⌊βk⌋
and ℓ′(k) = poly(k) (cf., [369]).

2. For every α > 0 there exists β > 0 so that m(k) = ⌊kα⌋, b(k) = ⌊kβ⌋
and ℓ′(k) = poly(k) (cf., [353]).

approximately the same number of edges to all but at most an ǫ fraction of the other side
vertices.

30 Distance between distributions is defined as their variation distance; that is, the
distance between Y1 and Y2 is defined as 1

2

∑
y
|Pr[Y1 = y]− Pr[Y2 = y]|.

108 CHAPTER 3. PSEUDORANDOM GENERATORS

3. For any b(k) ≤ m(k) and ℓ′(k) = exp(log3 k) (cf., [317]).

Trevisan’s construction [353] adapts the computational framework underlying
the Nisan–Wigderson Generator [293] to the information-theoretic context
of extractors. His adaptation is based on two key observations. The first
observation is that the generator itself uses a (supposedly hard) predicate as
a black-box. Trevisan’s construction utilizes a “random” predicate which is
encoded by the first input to the extractor. For example, the k-bit input may
encode a predicate on log2 k bits in the obvious manner. The second input
to the extractor will be used as the seed to the resulting generator (defined
by using this random predicate in a black-box manner). The second key
observation is that the proof of indistinguishability of the generator provides
a black-box procedure for computing the underlying predicate when given
oracle access to a distinguisher. Thus, any subset S of the possible outputs
of the extractor gives rise to a relatively small set PS of predicates, so that
for each value x of the first input to the extractor, if S “distinguishes” the
output of the extractor (on a random second input) from uniform then one
of the predicates in PS equals the predicate associated with x. It follows that
for every set S, the set of possible first inputs for which the probability that
the extractor hits S does not approximate the density of S is small. This
establishes the extraction property.

Randomness-efficient error-reduction. As should be clear from the
above discussion, these explicit dispersers (resp., extractors) yield efficient
hitting sequence generators (resp., samplers) of very low randomness com-
plexity. Specifically, the error probability of these generators (resp., samplers)
is 2−(k−m(k)), which is extremely close to the “optimum” of 2−k. Turning
the table around, these dispersers (resp., extractors) can be used to simu-
late one-sided error (resp., two-sided error) randomized algorithm using very
defective (or weak) random sources – see below.

Simulations using Weak Random Sources. Given a randomized algo-
rithm, our goal is to convert it into a robust randomized algorithm which
maintain its performance also when its random choices are implemented by a
defective (or weak) random source [360]. Such transformations, for increas-
ingly weaker (or more general) types of defective sources, have appeared
in [360, 105, 368, 326, 348, 15] (omitting quite a few papers). The weakest
source considered, hereafter denoted an (k,m)-source, supplies a single k-bit
string of min-entropy m. Specifically, using the explicit extractor mentioned
above, for every α > 0, one can simulate any two-sided error randomized
algorithm by an algorithm of polynomial-related complexity which uses any
(k, kα)-source, where k is the length of the random bit sequence required by
the new algorithm. (In general, the new algorithm uses the extractor to run
simulations of the original algorithm feeding it with a random-pad of length
b(k), which in general may be polynomially related to the running-time of

3.7. CONCLUDING REMARKS 109

type distinguisher generator stretch; i.e., ℓ(k) comments

archetypic. poly(k)-time poly(k)-time poly(k) OW Assum.31

derand. BPP 2k/O(1)-time 2O(k)-time 2k/O(1) E.C. Assum.31

space s(k)-space O(k)-space 2k/O(s(k)) runs in time
robust k/O(1)-space O(k)-space poly(k) poly(k) · ℓ(k)

t-wise indep. “t-wise” poly(k) · ℓ(k)-time 2k/O(t) (e.g., pairwise)

small bias “ǫ-bias” poly(k) · ℓ(k)-time 2k/O(1) · ǫ(k)
expander hitting poly(k) · ℓ(k)-time (1 + ℓ′(k)) · b(k)

rand. walk (0.5, 2−ℓ′(k)/O(1))-hitting for {0, 1}b(k), with ℓ′(k) = (k − b(k))/O(1).

Figure 3.1: Pseudorandom generators at a glance

the original algorithm, and so k = poly(b(k)) must hold. This explains why
extractors with m(k) = kα and b(k) = kβ , for some β > 0, are of special
interest.)

3.7 Concluding Remarks

In this section we further discuss the computational approach to randomness,
provide a historical account of its evolution, and propose some open problems.
Figure 3.1 depicts some of the various notions of pseudorandom generators
discussed above.

3.7.1 Discussion

We discuss several conceptual aspects of the above computational approach
to randomness.

Behavioristic versus Ontological. The behavioristic nature of the com-
putational approach to randomness is best demonstrated by confronting this
approach with the Kolmogorov-Chaitin approach to randomness. Loosely
speaking, a string is Kolmogorov-random if its length equals the length of
the shortest program producing it. This shortest program may be consid-
ered the “true explanation” to the phenomenon described by the string. A
Kolmogorov-random string is thus a string which does not have a substan-
tially simpler (i.e., shorter) explanation than itself. Considering the simplest
explanation of a phenomenon may be viewed as an ontological approach. In
contrast, considering the effect of phenomena on certain objects, as underly-
ing the definition of pseudorandomness, is a behavioristic approach. Further-
more, there exist probability distributions which are not uniform (and are not

31By OW Assum. we denote the assumption that one-way functions exists; whereas by
E.C. Assum. we denote the seemingly weaker assumption by which the class E does not
have subexponential-size circuits (cf., Theorem 3.16).

110 CHAPTER 3. PSEUDORANDOM GENERATORS

even statistically close to a uniform distribution) that nevertheless are indis-
tinguishable from a uniform distribution (by any efficient method) [364, 181].
Thus, distributions which are ontologically very different, are considered
equivalent by the behavioristic point of view taken in the definitions above.

A relativistic view of randomness. Pseudorandomness is defined above
in terms of its observer. We have considered several classes of observers, rang-
ing from general efficient (i.e., polynomial-time) observers to very restricted
types of observers (e.g., the linear or hitting tests). Each such class gave
rise to a different notion of pseudorandomness. Furthermore, the general
paradigm explicitly aims at distributions which are not uniform and yet are
indistinguishable from such. Thus, our entire approach to pseudorandomness
is relativistic and subjective (i.e., depending on the abilities of the observer).

Randomness and Computational Difficulty. Pseudorandomness and
computational difficulty play dual roles: The general paradigm of pseudo-
randomness relies on the fact that putting computational restrictions on the
observer gives rise to distributions which are not uniform and still cannot
be distinguished from uniform. Furthermore, many of the construction of
pseudorandom generators have relied on either conjectures or facts regarding
computations which are hard for certain classes. For example, one-way func-
tions were used to construct the archetypical pseudorandom generators (i.e.,
those working in polynomial-time and fooling all polynomial-time observers),
and the fact that parity is hard for polynomial-size constant-depth circuits
was used to generate sequences which fool such circuits.

3.7.2 Historical Perspective

Our presentation, which views vastly different notions as incarnations of a
general paradigm of pseudorandomness, is indeed non-standard (especially,
when referred to the special-purpose generators). This unified view appears
only in retrospect, and is less evident from the actual historical development
of the various notions (although some links can be traced, as done below).

The archetypical pseudorandom generators. The key concept of com-
putational indistinguishability was suggested by Goldwasser and Micali in the
context of defining secure encryption schemes [201]. The general definition is
due to Yao [364], who also proved – using the hybrid technique of [201] – that
defining pseudorandom generators as producing sequences which are com-
putationally indistinguishable from uniform is equivalent as defining them
to produce unpredictable sequences. The latter definition is due to Blum
and Micali who were the first to construct pseudorandom generators based
on some simple intractability assumption (in their case the intractability

3.7. CONCLUDING REMARKS 111

of Discrete Logarithm problem over prime fields) [72]. Their work also in-
troduces basic paradigms which were used in all subsequent improvements
(cf., [364, 249, 182, 214]): Basing pseudorandomness on hard problems, the
usage of hard-core predicates (defined in [72]), and the iteration paradigm.
The fundamental result by which pseudorandom generators exist if and only if
one-way functions exist is due to H̊astad, Impagliazzo, Levin and Luby [214].
Pseudorandom functions were defined and first constructed by Goldreich,
Goldwasser and Micali [175].

Derandomization of time-complexity classes. As observed by Yao [364],
a non-uniformly strong notion of pseudorandom generators yields improved
derandomization of time-complexity classes. A key observation of Nisan [288,
293] is that whenever a pseudorandom generator is used this way, it suffices to
require that the generator runs in time exponential in its seed length, and so
the generator may have running-time greater than the distinguisher (repre-
senting the algorithm to be derandomized). This observation underlines the
construction of Nisan and Wigderson [288, 293], and is the basis for further
improvements culminating in [224]. The Nisan–Wigderson Generator [293]
has been used recently in two ways transcending its standard presentation:
To fool non-deterministic machines and so derandomize constant-round in-
teractive proof systems [4, 237]; and to construct extractors [353].

Space Pseudorandom Generators. As stated in the first paper on the
subject [5],32 this research direction was inspired by the de-randomization
result obtained via use of archetypical pseudorandom generators. The latter
result (necessarily) depends on intractability assumptions, and so the objec-
tive was to find classes of algorithms for which derandomization is possible
without relying on intractability assumptions. (This objective was achieved
before for constant-depth circuits [6].) Fundamentally different construc-
tions of space pseudorandom generators were given in [5, 29, 289, 294], where
Nisan’s Generator [289] improves over all the previous ones, and the Nisan–
Zuckerman Generator [294] is incomparable to Nisan’s.

Special Purpose Generators. With the exception of Trevisan’s recent
construction of extractors [353], the various generators presented in Sec-
tion 3.6 were not inspired by the archetypical pseudorandom generator (nor
even by a generic notion of pseudorandomness). As stated in Section 3.6,
Trevisan’s construction adapts the computational framework underlying the
Nisan–Wigderson Generator [293] to the information-theoretic context of ex-
tractors. The development of the other special purpose generators is rather
technical in nature, and we see little point to repeat or elaborate on the
credits given in the text of Section 3.6.

32 This paper is more frequently cited for the Expander Random Walk technique which
it has introduced.

112 CHAPTER 3. PSEUDORANDOM GENERATORS

3.7.3 Open Problems

As mentioned above, Theorem 3.13 is currently established via an impracti-
cal and complex construction. An alternative construction of (archetypical)
pseudorandom generators based on an arbitrary one-way function would be
most appreciated.

The intractability assumptions used in non-trivial derandomizations of
BPP seem to be getting increasingly weaker (cf., from [364] to [224]). Can
one place BPP in a deterministic class lower than EXP = Dtime(2poly),
without using any assumptions?

In the area of space-robust pseudorandom generators the open problems
are well-known – improving over the parameters of the known generators (i.e.,
of Theorems 3.18 and 3.19), and over the known derandomization results for
RL or for undirected connectivity (cf., [327] and [18], respectively).

With respect to special-purpose generators, one famous open problem
is to provide constructions, polynomial in all parameters, for small discrep-
ancy sets w.r.t combinatorial rectangles (so to improve over [17]). We men-
tion the related (to discrepancy) open problem of providing a deterministic
polynomial-time approximation of the number of satisfying assignment of
DNF formulae. Recall that randomized polynomial-time and determinis-
tic quasi-polynomial-time (relative error) approximators are known (cf. [232,
288, 259]).

We stress that the recent breakthrough in the construction of extrac-
tors [353], still leave room for improvement (cf., [317]). Specifically, the
challenge is to provide constructions with polynomial degree (i.e., ℓ′) for all
values of the min-entropy.

Acknowledgments

Thanks to Amnon Ta-Shma and Luca Trevisan for commenting on earlier
versions of this chapter.

Appendix A

Background on
Randomness and
Computation

This appendix contains some basic background on probability theory (Sec-
tion A.1) and on computational complexity theory (Sections A.2 and A.3).
This background is assumed throughout the book. The appendix also con-
tains an intuitive description of the basic settings of Cryptography (Sec-
tion A.4). Familiarity with these settings is assumed in Chapter 1.

A.1 Probability Theory – Three Inequalities

The following probabilistic inequalities are often used in the analysis of ran-
domized algorithms, and refer to random variables which are assigned real
values (e.g., the success probability of a single run of an algorithm). All in-
equalities refer to random variables which are assigned values within some
interval. The most basic inequality, known as Markov Inequality, provides
bounds on the probability mass which may be assigned to values which are
much above (resp., below) the expected value. Specifically,

Markov Inequality: Let X be a non-negative random variable and v a
positive real number. Then

Pr (X≥v) ≤ Exp(X)

v

Equivalently, Pr(X ≥ r · Exp(X)) ≤ 1
r .

113

114 APPENDIX A. SOME BACKGROUND

Proof:

Exp(X) =
∑

x

Pr(X=x) · x

≥
∑

x<v

Pr(X=x) · 0 +
∑

x≥v

Pr(X=x) · v

= Pr(X≥v) · v

The claim follows.

Markov inequality is typically used in cases one knows very little about the
distribution of the random variable. It suffices to know its expectation and
at least one bound on the range of its values. Typical applications are

1. Let X be a random variable so that Exp(X) = µ and X ≤ 2µ. Then
Pr[X≤ µ

2] ≤ 2
3 .

2. Let 0 < ǫ, δ < 1, and Y be a random variable ranging in the interval
[0, 1] such that Exp(Y) = δ + ǫ. Then Pr[Y ≥δ + ǫ

2] > ǫ
2 .

Using Markov’s inequality, one can obtain a “possibly stronger” bound for
the deviation of a random variable from its expectation. This bound, called
Chebyshev’s inequality, is useful provided one has additional knowledge con-
cerning the random variable (specifically a good upper bound on its variance).

Chebyshev’s Inequality: Let X be a random variable, and δ > 0. Then

Pr [|X − Exp(X)|≥δ] ≤ Var(X)

δ2

Proof: We define a random variable Y
def
= (X−Exp(X))2, and apply Markov

inequality. We get

Pr [|X − Exp(X)|≥δ] = Pr
[
(X − Exp(X))2 ≥ δ2

]

≤ Exp((X − Exp(X))2)

δ2

and the claim follows.

Chebyshev’s inequality is particularly useful in the analysis of the error prob-
ability of approximation via repeated sampling. It suffices to assume that the
samples are picked in a pairwise independent manner.

A.1. PROBABILITY THEORY – THREE INEQUALITIES 115

Corollary (Pairwise Independent Sampling): Let X1, X2, ..., Xn be pair-
wise independent random variables with the identical expectation, denoted
µ, and identical variance, denoted σ2. Then

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ ≥ δ
]
≤ σ2

δ2n

The Xi’s are said to be pairwise independent if for every i 6= j and all a, b, it
holds that Pr[Xi =a ∧Xj =b] equals Pr[Xi =a] · Pr[Xj =b].

Proof: Define the random variables X i
def
= Xi − Exp(Xi). Note that the

Xi’s are pairwise independent, and each has zero expectation. Applying
Chebyshev’s inequality to the random variable defined by the sum

∑n
i=1

Xi

n ,
and using the linearity of the expectation operator, we get

Pr

[∣∣∣∣∣

n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ δ
]
≤ Var

(∑n
i=1

Xi

n

)

δ2

=
Exp

((∑n
i=1Xi

)2)

δ2 · n2

Now (again using the linearity of Exp)

Exp

(

n∑

i=1

Xi

)2

 =

n∑

i=1

Exp
(
X

2

i

)
+

∑

1≤i6=j≤n

Exp
(
X iXj

)

By the pairwise independence of the X i’s, we get Exp(X iXj) = Exp(X i) ·
Exp(Xj), and using Exp(X i) = 0, we get

Exp

(

n∑

i=1

Xi

)2

 = n · σ2

The corollary follows.

Using pairwise independent sampling, the error probability in the approxi-
mation is decreasing linearly with the number of sample points. Using totally
independent sampling points, the error probability in the approximation can
be shown to decrease exponentially with the number of sample points. (The
random variables X1, X2, ..., Xn are said to be totally independent if for every
sequence a1, a2, ..., an it folds that Pr[∧n

i=1Xi =ai] equals
∏n

i=1 Pr[Xi =ai].)
The bounds quote below are (weakenings of) a special case of the Mar-

tingale Tail Inequality which suffices for our purposes. The first bound, com-
monly referred to as Chernoff Bound, concerns 0-1 random variables (i.e.,
random variables which are assigned as values either 0 or 1).

116 APPENDIX A. SOME BACKGROUND

Chernoff Bound: Let p ≤ 1
2 , and X1, X2, ..., Xn be independent 0-1 ran-

dom variables so that Pr[Xi = 1] = p, for each i. Then for all δ, 0 < δ ≤
p(1− p), we have

Pr

[∣∣∣∣
∑n

i=1Xi

n
− p
∣∣∣∣ > δ

]
< 2 · e− δ2

2p(1−p)
·n

We will usually apply the bound with a constant p ≈ 1
2 . In this case, n

independent samples give an approximation which deviates by ǫ from the
expectation with probability δ which is exponentially decreasing with ǫ2n.
Such an approximation is called an (ǫ, δ)-approximation, and can be achieved
using n = O(ǫ−2 · log(1/δ)) sample points. It is important to remember that
the sufficient number of sample points is polynomially related to ǫ−1 and
logarithmically related to δ−1. So using poly(n) many samples the error
probability (i.e. δ) can be made exponentially vanishing (as a function in
n), but the accuracy of the estimation can be only bounded above by any
fixed polynomial fraction. A generalization of Chernoff Bound, which useful
in the approximations of the expectation of a general random variable (not
necessarily 0-1), is given below.

Hoefding Inequality: Let X1, X2, ..., Xn be n independent random vari-
ables with identical probability distribution, each ranging over the (real)
interval [a, b], and let µ denote the expected value of each of these variables.
Then,

Pr

[∣∣∣∣
∑n

i=1Xi

n
− µ

∣∣∣∣ > δ

]
< 2 · e−

2δ2

(b−a)2
·n

A.2 Computational Models and Complexity
classes

In this section, we briefly recall the definitions of complexity classes such as
P , NP , BPP, and non-uniform P (i.e., P/poly), and the concept of oracle
machines. All these classes are defined in terms of worst-case complexity. We
shortly discuss average-case complexity at the end of this section.

A.2.1 P, NP, and more

A conservative approach to computing devices associates efficient computa-
tions with the complexity class P . Jumping ahead, we note that the approach
taken in this book is a more liberal one in that it allows the computing devices
to use coin tosses.

Definition A.1 (P): P is the class of languages which can be recognized by
(deterministic) polynomial-time Turing machines (algorithms).

A.2. COMPUTATIONAL MODELS AND COMPLEXITY CLASSES 117

Likewise, the complexity class NP is associated with computational prob-
lems having solutions that, once given, can be efficiently tested for validity.
It is customary to define NP as the class of languages which can be recog-
nized by a non-deterministic polynomial-time machine. A more fundamental
interpretation of NP is given by the following equivalent definition.

Definition A.2 (NP): A language L is in NP, if there exists a Boolean
relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polynomial p(·) such that RL can be
recognized in (deterministic) polynomial-time and x ∈ L if and only if there
exists a y such that |y| ≤ p(|x|) and (x, y) ∈ RL. Such a y is called a witness
for membership of x ∈ L.

Thus, NP consists of the set of languages for which there exist short proofs
of membership that can be efficiently verified. It is widely believed that
P 6= NP , and settling this conjecture is certainly the most intriguing open
problem in Theoretical Computer Science. Generalizing the above definitions
we have:

Definition A.3 (Dtime and Ntime): Let t : N 7→N. Then L ∈ Dtime(t)
(resp., L ∈ Ntime(t)) if there exists a deterministic (resp., non-deterministic)
Turing machine for deciding L so that for any input x the machine runs for
at most t(|x|) steps.

Clearly, P =
⋃

c Dtime(pc) and NP =
⋃

c Ntime(pc), where pc(n)
def
= nc.

A.2.2 Probabilistic Polynomial-Time

The basic thesis underlying our discussion is the association of “efficient”
computations with probabilistic polynomial-time computations. Namely, we
will consider as efficient only randomized algorithms (i.e., probabilistic Turing
machines) whose running time is bounded by a polynomial in the length of
the input. Such algorithms (machines) can be viewed in two equivalent ways.

One way of viewing randomized algorithms is to allow the algorithm to
make random moves (i.e., “toss coins”). Formally this can be modeled by
a Turing machine in which the transition function maps pairs of the form
(〈state〉, 〈symbol〉) to two possible triples of the form (〈state〉, 〈symbol〉, 〈direction〉).
The next step of such a machine is determined by a random choice of one
of these triples. Namely, to make a step, the machine chooses at random
(with probability one half for each possibility) either the first triple or the
second one, and then acts accordingly. These random choices are called the
internal coin tosses of the machine. The output of a probabilistic machine,
M , on input x is not a string, but rather a random variable assuming strings
as possible values. This random variable, denoted M(x), is induced by the
internal coin tosses of M . By Pr[M(x)=y] we mean the probability that ma-
chine M on input x outputs y. The probability space is that of all possible

118 APPENDIX A. SOME BACKGROUND

outcomes for the internal coin tosses of M , taken with uniform probability
distribution. The last sentence is slightly more problematic than it seems.
The simple case is when, on input x, machineM always makes the same num-
ber of internal coin tosses (independent of their outcome). (In general, the
number of coins tossed may depend on the outcome of previous coin tosses.)
Still, since we only consider machines of bounded run-time, we may assume
(without loss of generality) that the number of coin tosses made by M on
input x is independent of their outcome, and is denoted by tM (x). We denote
by Mr(x) the output of M on input x when r is the outcome of its internal
coin tosses. Then, Pr[M(x)= y] is merely the fraction of r ∈ {0, 1}tM(x) for
which Mr(x) = y. Namely,

Pr [M(x)=y] =
|{r ∈ {0, 1}tM(x) : Mr(x)=y}|

2tM(x)

The second way of looking at randomized algorithms is to view the out-
come of the internal coin tosses of the machine as an auxiliary input. Namely,
we consider deterministic machines with two inputs. The first input plays
the role of the “real input” (i.e., x) of the first approach, while the second
input plays the role of a possible outcome for a sequence of internal coin
tosses. Thus, the notation M(x, r) corresponds to the notation Mr(x) used
above. In the second approach one considers the probability distribution of
M(x, r), for any fixed x and a uniformly chosen r ∈ {0, 1}tM(x). Pictorially,
here the coin tosses are not “internal” but rather supplied to the machine by
an “external” coin tossing device.

Before continuing, let us remark that one should not confuse the ficti-
tious model of “non-deterministic” machines with the model of probabilistic
machines. The first is an unrealistic model which is useful for talking about
search problems the solutions to which can be efficiently verified (e.g., the
definition of NP), while the second is a realistic model of computation.

In the sequel, unless otherwise stated, a probabilistic polynomial-time Tur-
ing machine means a probabilistic machine that always (i.e., independently
of the outcome of its internal coin tosses) halts after a polynomial (in the
length of the input) number of steps. It follows that the number of coin
tosses of a probabilistic polynomial-time machine M is bounded by a poly-
nomial, denoted TM , in its input length. Finally, without loss of generality,
we assume that on input x the machine always makes TM (|x|) coin tosses.

Thesis: Efficient computations correspond to computations that can be car-
ried out by probabilistic polynomial-time Turing machines.

A complexity class capturing these computations is the class, denoted
BPP, of languages recognizable (with high probability) by probabilistic polynomial-
time machines. The probability refers to the event “the machine makes cor-
rect verdict on string x”.

A.2. COMPUTATIONAL MODELS AND COMPLEXITY CLASSES 119

Definition A.4 (Bounded-Probability Polynomial-time — BPP): BPP is
the class of languages which can be recognized by a probabilistic polynomial-
time machine (i.e., randomized algorithm). We say that L is recognized by
the probabilistic polynomial-time machine M if

• For every x ∈ L it holds that Pr[M(x)=1] ≥ 2
3 .

• For every x 6∈ L it holds that Pr[M(x)=0] ≥ 2
3 .

The phrase “bounded-probability” indicates that the success probability is
bounded away from 1

2 . In fact, substituting in Definition A.4 the constant 2
3

by any other constant greater than 1
2 does not change the class defined. More

generally, L ∈ BPP if there exists a polynomial-time computable (thresh-
old) function t : N 7→ [0, 1], a positive polynomial p(·) and a probabilistic
polynomial-time machine, M , such that

• For every x ∈ L it holds that Pr[M(x)=1] > t(|x|) + 1
p(|x|) .

• For every x 6∈ L it holds that Pr[M(x)=1] < t(|x|) − 1
p(|x|) .

(The fact that such L is in BPP can be proven using Chebyshev’s Inequality.)
On the other hand, using Chernoff’s Bound one can prove that, for every L ∈
BPP and every positive polynomial p, there exists a probabilistic polynomial-
time machine, M , such that

• For every x ∈ L it holds that Pr[M(x)=1] ≥ 1− 2−p(|x|)

• For every x 6∈ L it holds that Pr[M(x)=0] ≥ 1− 2−p(|x|)

The class BPP captures two-sided error probabilistic polynomial-time com-
putations. Two analogous classes which capture (complementary) one-sided
error computations are RP and coRP .

Definition A.5 (RP and coRP):

• L ∈ RP if there exists a probabilistic polynomial-time machine M so
that

– For every x ∈ L it holds that Pr[M(x)=1] ≥ 1
2 .

– For every x 6∈ L it holds that Pr[M(x)=0] = 1.

• L ∈ coRP if there exists a probabilistic polynomial-time machine M so
that

– For every x ∈ L it holds that Pr[M(x)=1] = 1.

– For every x 6∈ L it holds that Pr[M(x)=0] ≥ 1
2 .

Analogously to the case of BPP, these classes remain robust when substitut-
ing the constant 1

2 by either 1
p(|x|) or 1−2−p(|x|), for every positive polynomial

p. Clearly, P ⊆ RP ⊆ BPP and RP ⊆ NP .

120 APPENDIX A. SOME BACKGROUND

A.2.3 Non-Uniform Polynomial-Time

A stronger model of efficient computation is that of non-uniform polynomial-
time. This model will be used only in the negative way; namely, for saying
that even such machines cannot do something.

A non-uniform polynomial-time “machine” is a pair (M,a), where M is a
two-input polynomial-time machine and a = a1, a2, ... is an infinite sequence
of strings such that |an| = poly(n). For every x, we consider the computation
of machine M on the input pair (x, a|x|). Intuitively, an may be thought
as an extra “advice” supplied from the “outside” (together with the input
x ∈ {0, 1}n). We stress that machine M gets the same advice (i.e., an) on all
inputs of the same length (i.e., n). Intuitively, the advice an may be useful
in some cases (i.e., for some computations on inputs of length n), but it is
unlikely to encode enough information to be useful for all 2n possible inputs.

Another way of looking at non-uniform polynomial-time “machines” is
to consider an infinite sequence of machines, M1,M2, ... so that both the
length of the description of Mn and its running time on inputs of length n
are bounded by polynomial in n (fixed for the entire sequence). Machine Mn

is used only on inputs of length n. Note the correspondence between the two
ways of looking at non-uniform polynomial-time. The pair (M, (a1, a2, ...)) of
the first definition gives rise to an infinite sequence of machines Ma1 ,Ma2 , ...,

where Ma|x|
(x)

def
= M(x, a|x|). On the other hand, a sequence M1,M2, ... (as

in the second definition) gives rise to the pair (U, (〈M1〉, 〈M2〉, ...)), where U
is a universal Turing machine and 〈Mn〉 is the description of machine Mn

(i.e., U(x, 〈M|x|〉) = M|x|(x)).
In the first sentence of the current subsection, non-uniform polynomial-

time has been referred to as a stronger model than probabilistic polynomial-
time. This statement is valid in many contexts (e.g., language recognition as
in Theorem 1 below). In particular it will be valid in all contexts we discuss
in this book. So we have the following informal “meta-theorem”

Meta-Theorem: Whatever can be achieved by probabilistic polynomial-
time machines can be achieved by non-uniform polynomial-time “machines”.

The Meta-Theorem is clearly wrong if one thinks of the task of tossing
coins... So the meta-theorem should not be understood literally. It is merely
an indication of real theorems that can be proven in reasonable cases. Let’s
consider the context of language recognition.

Definition A.6 (P/poly): The complexity class non-uniform polynomial-time,
denoted P/poly, is the class of languages L which can be recognized by “non-
uniform polynomial-time machines”. Namely, L ∈ P/poly if there exists an
infinite sequence of machines M1,M2, ... satisfying

1. There exists a polynomial p(·) such that, for every n, the description of
machine Mn has length bounded above by p(n).

A.2. COMPUTATIONAL MODELS AND COMPLEXITY CLASSES 121

2. There exists a polynomial q(·) such that, for every n, the running time
of machine Mn on each input of length n is bounded above by q(n).

3. For every n and every x ∈ {0, 1}n, machine Mn accepts x if and only
if x ∈ L.

Note that the non-uniformity is implicit in the lack of a requirement concern-
ing the construction of the machines in the sequence. It is only required that
these machines exist. In contrast, if one augments Definition A.6 by requiring
the existence of a polynomial-time algorithm that on input 1n (n presented
in unary) outputs the description of Mn then one gets a cumbersome way of
defining P . On the other hand, it is obvious that P ⊆ P/poly (in fact strict
containment can be proven by considering non-recursive unary languages).
Furthermore,

Theorem A.7 BPP ⊆ P/poly.

Proof: LetM be a probabilistic machine recognizingL ∈ BPP. Let ξL(x)
def
=

1 if x ∈ L and ξL(x) = 0 otherwise. Then, for every x ∈ {0, 1}∗,

Pr[M(x)=ξL(x)] ≥ 2

3

Assume, without loss of generality, that on each input of length n, machine
M uses the same number, m = poly(n), of coin tosses. Let x ∈ {0, 1}n.
Clearly, we can find for each x ∈ {0, 1}n a sequence of coin tosses r ∈ {0, 1}m
such that Mr(x) = ξL(x) (in fact most sequences r have this property). But
can one sequence r ∈ {0, 1}m fit all x ∈ {0, 1}n? Probably not (provide an
example!). Nevertheless, we can find a sequence r ∈ {0, 1}n which fits 2

3 of
all the x’s of length n. This is done by a counting argument (which asserts
that if 2

3 of the r’s are good for each x then there is an r which is good for
at least 2

3 of the x’s). However, this does not give us an r which is good for
all x ∈ {0, 1}n. To get such an r we have to apply the above argument on a
machine M ′ with exponentially vanishing error probability. Such a machine
is guaranteed by the alternative formulation of BPP (given above). Namely,
for every x ∈ {0, 1}∗,

Pr[M ′(x)=ξL(x)] > 1− 2−|x|

Applying the argument now we conclude that there exists an r ∈ {0, 1}m,
denoted rn, which is good for more than a 1−2−n fraction of the x ∈ {0, 1}n.
It follows that rn is good for all the 2n inputs of length n. MachineM ′ (viewed
as a deterministic two-input machine) together with the infinite sequence
r1, r2, ... “constructed” as above, demonstrates that L is in P/poly.

122 APPENDIX A. SOME BACKGROUND

Finally, let us mention a more convenient (and standard) way of viewing
non-uniform polynomial-time. This is via (non-uniform) families of polynomial-
size Boolean circuits. A Boolean circuit is a directed acyclic graph with in-
ternal nodes marked by elements in {∧,∨,¬}. Nodes with no in-going edges
are called input nodes, and nodes with no outgoing edges are called output
nodes. A node marked ¬ may have only one in-going edge. Computation in
the circuit begins by placing input bits on the input nodes (one bit per node)
and proceeds as follows. If the children of a node (of in-degree d) marked ∧
have values v1, v2, ..., vd then the node gets the value

∧d
i=1 vi. Similarly for

nodes marked ∨ and ¬. The output of the circuit is read from its output
nodes. The size of a circuit is the number of its edges. A polynomial-size
circuit family is an infinite sequence of Boolean circuits, C1, C2, ... such that,
for every n, the circuit Cn has n input nodes and size p(n), where p(·) is a
polynomial (fixed for the entire family). Clearly, the computation of a Tur-
ing machine M on inputs of length n can be simulated by a single circuit
(with n input nodes) having size O((|〈M〉| + n + t(n))2), where t(n) is a
bound on the running time of M on inputs of length n. Thus, a non-uniform
sequence of polynomial-time machines can be simulated by a non-uniform
family of polynomial-size circuits. The converse is also true, since machines
with polynomial description length can incorporate polynomial-size circuits
and simulate their computations in polynomial-time. The thing which is nice
about the circuit formulation is that there is no need to repeat the poly-
nomiality requirement twice (once for size and once for time) as in the two
formulations above.

A.2.4 Oracle Machines

The original utility of oracle machines in complexity theory is to capture
notions of reducibility (see below). In the context of cryptography, oracle
machines are used for a seemingly different purpose – to model an adver-
sary which may use a cryptosystem in course of its attempt to break it. A
third usage of oracle machines is in the context of defining pseudorandom
functions (cf., Section 3.3.4). Lastly, oracle machines are used when defining
Probabilistically Checkable Proof (pcp) systems (cf., Section 2.4).

Definition A.8 (oracle machines): A (deterministic/probabilistic) oracle ma-
chine is a (deterministic/probabilistic) Turing machine with an additional
tape, called the oracle tape, and two special states, called oracle invocation
and oracle appeared. The computation of the deterministic oracle machine
M on input x and access to the oracle f : {0, 1}∗ 7→ {0, 1}∗, denoted Mf(x),
is defined by the successive configuration relation. For configurations with
state different from “oracle invocation” the next configuration is defined as
usual. Let γ be a configuration in which the state is “oracle invocation” and
the contents of the oracle tape is q. Then the configuration following γ is
identical to γ, except that the state is “oracle appeared” and the contents of

A.2. COMPUTATIONAL MODELS AND COMPLEXITY CLASSES 123

the oracle tape is f(q). The string q is called M ’s query and f(q) is called
the oracle reply. The computation of a probabilistic oracle machine is defined
analogously.

We stress that the running time of an oracle machine is the number of steps
made during its computation, and that the oracle’s reply on each query is
obtained in a single step. As stated above, oracle machines are used to
define general notions of reducibility. Below, a language L is identified with
its characteristic function χL, where χL(x) = 1 if x ∈ L and χL(x) = 0
otherwuise.

Definition A.9 (Turing or Cook reducibility): A language L1 is said to
be reducible to a language L2 if there exists a probabilistic polynomial-time
oracle machine M so that

• For every x ∈ L1 it holds that Pr[ML2(x)=1] ≥ 2
3 .

• For every x 6∈ L1 it holds that Pr[ML2(x)=0] ≥ 2
3 .

In both cases L2 is viewed as a Boolean function so that L2(q) = 1 iff x ∈ L2.

Unless stated differently, whenever we say a reduction, we mean a Turing
reduction as above. A more restricted notion of a reduction follows.

Definition A.10 (many-to-one or Karp reducibility): A language L1 is
said to be many-to-one reducible to a language L2 if there exists a polynomial-
time compatible function, f , so that for every x

x ∈ L1 if and only if f(x) ∈ L2

A.2.5 Space Bounded Machines

In contrast to all the above, we now consider complexity classes defined by
the space consumed by the computation, rather than by its time. The space
complexity of algorithms (Turing machines) is defined as the space consumed
by the computation itself; that is, not counting the input and output. Thus,
one considers Turing machines with one-way (read-only) input-tape, one-
way (write-only) output-tape, and several auxiliary work tapes. The space
complexity of a computation is defined as the number of cells scanned on the
work-tapes.

For logarithmic (and higher) space complexity,1 the space complexity re-
mains invariant if we add the logarithm of the input length. This convention
allows to equate the space complexity of a computation with the logarithm of
the number of possible configurations of the computation on a specific input

1 Here we consider only logarithmic and higher space complexity.

124 APPENDIX A. SOME BACKGROUND

(where each configuration consists of the contents of the work-tapes and the
locations of all heads on all tapes).2

The most popular space-complexity classes are L and NL – the set of all
languages recognizable by deterministic, resp., non-deterministic, machines
of logarithmic space complexity. Clearly, L ⊆ NL ⊆ P . The definition of the
analogous randomized classes, denoted BPL and RL, is more problematic
(cf., Section 3.5).

A.2.6 Average-Case Complexity

In contrast to all the above, we now discuss average-case (rather than worst-
case) complexity. Thus the domain consists of distributional problems which
are pairs consisting of a traditional computational problem (e.g., a decision
problem) coupled with a probability distribution. The issues at hand are
which distributions to allow (since placing no restrictions on the distribu-
tions may collapse average-case complexity to its worst-case analogue) and
how to define efficient computation (since, surprisingly, the naive definitions
suffer from fundamental problems). A theory of average-case complexity,
addressing these issues, has been initiated by Levin [248] (cf., [173]).

Much of the material in this book presupposes not only that P 6= NP but
also the ability to efficiently generate hard-on-the-average instances of a com-
putational problem. Furthermore, the latter assumption is even strengthened
by requiring that one may efficiently generate instance-solution pairs, so that
the instances are hard (on the average) to solve. To be specific, let us con-
sider the problem of finding NP-witnesses. That is, let L, p and RL be as in
Definition A.2. We will assume that for some probabilistic polynomial-time
algorithm G, with G(1n) ranging over RL ∩ ({0, 1}n×{0, 1}p(n)), the follow-
ing holds: For any probabilistic polynomial-time algorithm A, any positive
polynomial q, and all sufficiently large n’s

Pr[(Xn, A(Xn)) ∈ RL] <
1

q(n)

where Xn is distributed as the first element of G(1n). The above assumption
is equivalent to assuming the existence of one-way functions (as defined in
Sections 1.2.1 and 3.3.3).3

A.3 Complexity classes – Glossary

AC0 – The set of languages recognized by constant-depth, polynomial-size

2 For a fixed input, there is no need to include the contents of the input-tape as it
remains invariant throughout the computation.

3 Given G as above we define a one-way function by mapping the coins used by G(1n)
to the first element of its output. Conversely, given a one-way function f , we define the
NP-relation R = {(f(w), w) : w∈{0, 1}∗} and consider the generator G that on input 1n

uniformly selects w ∈ {0, 1}n and outputs (f(w), w).

A.3. COMPLEXITY CLASSES – GLOSSARY 125

circuits.

AM – Typically, this denotes the class of languages having an interactive
proof system in which the verifier sends a single uniformly chosen mes-
sage. This class equals IP(2).

BPL – In analogy to BPP, this is the class of languages recognized by
probabilistic polynomial-time two-sided error machines of logarithmic
space-complexity.

BPP – See Definition A.4.

coAM – L ∈ coAM if L ∈ AM.

coNP – L ∈ coNP if L ∈ NP .

coRP – See Definition A.5. (L ∈ coRP if L ∈ RP .)

CZK – The set of languages having a computational zero-knowledge proof
system. Also denoted ZK.

Dtime – See Definition A.3.

E – A shorthand for
⋃

c Dtime(ec), where ec(n)
def
= 2cn.

EXP – A shorthand for
⋃

c Dtime(ec), where ec(n)
def
= 2nc

.

IP and IP(·) – See Definition 2.2.

L – The set of languages recognizable by deterministic machines of loga-
rithmic space-complexity.

MA – The class of languages having an interactive proof system in which
the verifier sends no messages, and merely uses randomization for its
decision regarding the prover’s message. This class equals IP(1).

Ntime – See Definition A.3.

NEXP – A shorthand for
⋃

c Ntime(ec), where ec(n)
def
= 2nc

.

NL – The set of languages recognizable by non-deterministic machines of
logarithmic space-complexity.

NP – See Definition A.2.

NP-complete – L is NP-complete if it is both NP-hard and in NP .

NP-hard – In a narrow sense, L is NP-hard if any language in NP is
Karp reducible to it. In a wide sense, a computational problem (not
necessarily a language recognition problem), is NP-hard if any language
in NP is (Turing) reducible to it.

126 APPENDIX A. SOME BACKGROUND

P – See Definition A.1.

P/poly – See Definition A.6.

PCP and PCP(·, ·) – See Definition 2.10.

PH – The polynomial-time hierarchy, defined as
⋃

c∈N
ΣP

c , where ΣP
c+1 =

NPΣP
c and ΣP

1 = NP . For a class C, the class NPC contains languages
for which there exists a non-deterministic polynomial-time oracle ma-
chine M so that, given oracle access to some language in C, there exists
an accepting computation of M on input x if and only if x is in the
language. See [344, 95].

PSPACE – The set of languages recognizable by (deterministic) machines
of polynomial space-complexity.

PZK – See Definition 2.5.

RL – In analogy to RP , this is the class of languages recognized by proba-
bilistic polynomial-time one-sided error machines of logarithmic space-
complexity.

RP – See Definition A.5.

SC – The set of languages recognizable by polynomial-time deterministic
machines of polylogarithmic space-complexity.

SZK – The set of languages having a statistical zero-knowledge proof sys-
tem. This relaxes perfect zero-knowledge as defined in Definition 2.5.

ZK – The set of languages having a (computational) zero-knowledge proof
system. Also denoted CZK. Unless PSPACE = AM (which is most
unlikely), ZK is a strict generalization of statistical zero-knowledge.
See Section 2.3.

A.4 Some Basic Cryptographic Settings

In this section we briefly review four basic problems of cryptography, giving
rise to the notions of private-key and public-key encryption and signatures.
We also review the definition of the RSA and Rabin functions, which we view
as prime candidates for (trapdoor) one-way functions.

The purpose of this section is merely to familiarize the reader with some
basic notions, and so the presentation is quite informal. Actual definitions
of one-way functions, secure encryption schemes and unforgeable signatures
are provided in Chapter 1.

A.4. SOME BASIC CRYPTOGRAPHIC SETTINGS 127

A.4.1 Encryption Schemes

The problem of providing secret communication over insecure media is the
traditional and most basic problem of cryptography. The setting of this
problem consists of two parties communicating through a channel which is
possibly tapped by an adversary. The parties wish to exchange information
with each other, but keep the “wiretapper” as ignorant as possible regarding
the contents of this information. Loosely speaking, an encryption scheme is
a protocol allowing these parties to communicate secretly with each other.
Typically, the encryption scheme consists of a pair of algorithms. One al-
gorithm, called encryption, is applied by the sender (i.e., the party sending
a message), while the other algorithm, called decryption, is applied by the
receiver. Hence, in order to send a message, the sender first applies the
encryption algorithm to the message, and sends the result, called the cipher-
text, over the channel. Upon receiving a ciphertext, the other party (i.e.,
the receiver) applies the decryption algorithm to it, and retrieves the original
message (called the plaintext).

In order for the above scheme to provide secret communication, the com-
municating parties (at least the receiver) must know something which is not
known to the wiretapper. (Otherwise, the wiretapper can decrypt the cipher-
text exactly as done by the receiver.) This extra knowledge may take the
form of the decryption algorithm itself, or some parameters and/or auxiliary
inputs used by the decryption algorithm. We call this extra knowledge the
decryption key. Note that, without loss of generality, we may assume that
the decryption algorithm is known to the wiretapper, and that the decryp-
tion algorithm operates on two inputs – a ciphertext and a decryption key.
We stress that the existence of a secret key, not known to the wiretapper, is
merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky busi-
ness. A preliminary task is to understand what is “security” (i.e., to properly
define what is meant by this intuitive term). Two approaches to defining se-
curity are known. The first (“classic”) approach is information theoretic. It
is concerned with the “information” about the plaintext which is “present”
in the ciphertext. Loosely speaking, if the ciphertext contains information
about the plaintext then the encryption scheme is considered insecure. It has
been shown that such high (i.e., “perfect”) level of security can be achieved
only if the key in use is at least as long as the total length of the messages
sent via the encryption scheme. The fact, that the key has to be longer
than the information exchanged using it, is indeed a drastic limitation on the
applicability of such encryption schemes.

The second (“modern”) approach, followed in the current book, is based
on computational complexity. This approach is based on the observation
that it does not matter whether the ciphertext contains information about the
plaintext, but rather whether this information can be efficiently extracted. In
other words, instead of asking whether it is possible for the wiretapper to

128 APPENDIX A. SOME BACKGROUND

extract specific information, we ask whether it is feasible for the wiretapper
to extract this information. It turns out that the new (i.e., “computational
complexity”) approach offers security even if the key is much shorter than
the total length of the messages sent via the encryption scheme.

The computational complexity approach allows the introduction of con-
cepts and primitives which cannot exist under the information theoretic ap-
proach. A typical example is the concept of public-key encryption schemes.
Note that in the above discussion we concentrated on the decryption algo-
rithm and its key. It can be shown that the encryption algorithm must get, in
addition to the message, an auxiliary input which depends on the decryption
key. This auxiliary input is called the encryption key. Traditional encryption
schemes, and in particular all the encryption schemes used in the millenniums
until the 1980’s, operate with an encryption key equal to the decryption key.
Hence, the wiretapper in this schemes must be ignorant of the encryption
key, and consequently the key distribution problem arises (i.e., how can two
parties wishing to communicate over an insecure channel agree on a secret
encryption/decryption key). (The traditional solution is to exchange the key
through an alternative channel which is secure, though “more expensive to
use”, for example by a convoy.) The computational complexity approach
allows the introduction of encryption schemes in which the encryption key
may be given to the wiretapper without compromising the security of the
scheme. Clearly, the decryption key in such schemes is different and fur-
thermore infeasible to compute from the encryption key. Such encryption
scheme, called public-key, have the advantage of trivially resolving the key
distribution problem since the encryption key can be publicized.

In contrast, traditional encryption scheme in which the encryption-key
equals the description-key are called private-key schemes, as in these schemes
the encryption-key must be kept secret (rather than be public as in public-
key encryption schemes). We note that a full specification of either schemes
requires the specification of the way keys are generated; that is, a key-
generation (randomized) algorithm which given a security parameter pro-
duces a (random) pair of corresponding encryption/decryption keys (which
are identical in case of private-key schemes).

A.4.2 Digital Signatures and Message Authentication

The need to discuss “digital signatures” has arise with the introduction of
computer communication in business environment (in which parties need to
commit themselves to proposals and/or declarations they make). Discussions
of “unforgeable signatures” did take place also in previous centuries, but
the objects of discussion were handwritten signatures (and not digital ones),
and the discussion was not perceived as related to “cryptography”. Loosely
speaking, a scheme for unforgeable signatures requires that

A.4. SOME BASIC CRYPTOGRAPHIC SETTINGS 129

• each user can efficiently produce his own signature on documents of his
choice;

• every user can efficiently verify whether a given string is a signature of
another (specific) user on a specific document; but

• nobody can efficiently produce signatures of other users to documents
they did not sign.

We note that the formulation of unforgeable digital signatures provides also
a clear statement of the essential ingredients of handwritten signatures. The
ingredients are each person’s ability to sign for himself, a universally agreed
verification procedure, and the belief (or assertion) that it is infeasible (or
at least hard) to forge signatures in a manner that pass the verification pro-
cedure. It is hard to assess to what extent do handwritten signatures meet
these requirements. In contrast, our discussion of digital signatures will sup-
ply precise statements concerning the extend by which digital signatures meet
the above requirements. Furthermore, unforgeable digital signature schemes
can be constructed based on some reasonable computational assumptions.
Loosely speaking, a signature scheme consists of three algorithms correspond-
ing to the key-generation, signing and verification tasks. As in case of encryp-
tion, the signing-key is the (secret) information which distincts the legitimate
signer from all other users. Analogously to the case of public-key encryption,
other users only have the corresponding verification-key allowing them to
verify signatures (but not to produce them).

Message authentication

Message authentication is a task related to the setting considered for en-
cryption schemes; that is – communication over an insecure channel. This
time, we consider an active adversary which is monitoring the channel and
may alter the messages sent on it. The parties communicating through this
insecure channel wish to authenticate the messages they send so that their
counterpart can tell an original message (sent by the sender) from a modified
one (i.e., modified by the adversary). Loosely speaking, a scheme for message
authentication requires that

• each of the communicating parties can efficiently produce an authenti-
cation tag to any message of his choice;

• each of the communicating parties can efficiently verify whether a given
string is an authentication tag of a given message; but

• no external adversary (i.e., a party other than the communicating par-
ties) can efficiently produce authentication tags to messages not sent by
the communicating parties.

130 APPENDIX A. SOME BACKGROUND

Note that in contrast to the specification of signature schemes we do not
require universal verification. That is, only the receiver is required to be able
to verify the authentication tags, and the fact that the receiver can also pro-
duce such tags is of no concern. Thus, schemes for message authentication
can be viewed as a private-key version of signature schemes. The difference
between the two is that in the setting of message authentication the ability to
verify tags may be linked to the ability to authenticate messages, whereas in
the setting of signature schemes these abilities are separated (i.e., everybody
can verify signatures but only the holder of the signing-key can produce valid
signatures). Hence, digital signatures provide a solution to the message au-
thentication problem, but message authentication schemes do not necessarily
constitute a digital signature scheme.

A.4.3 The RSA and Rabin Functions

In contrast to some common presentations, we view the RSA and Rabin
functions as tools (e.g., candidate one-way functions) rather than as full-
fledged utilities (e.g., candidate encryption schemes). Loosely speaking, one-
way functions are functions which are easy to compute but hard to invert.
Both the RSA and Rabin functions have “trapdoor information”, which when
given allows to efficiently invert them. (This does not contradict the hardness
of inverting postulated above, as it refers to inversion when not given this
trapdoor information.)

The conjectured hardness properties of the RSA and Rabin functions
are based on the assumption that the Integer Factorization Problem is in-
tractable. In particular, both functions utilize composite numbers which are
the product of two large primes and are based on the assumption that it
is infeasible to factor such composites. Both the RSA and Rabin functions
are actually collections of functions: Each such function is associated with a
composite, denoted N , which is the product of two primes, denoted P and
Q. Typically, one assumes that | log2 P − log2Q| ≤ 1.

The RSA function

A generic function in the RSA collection is determined by a pair, (N, e),
where N = P ·Q and e is an integer smaller than N and relatively prime to

φ(N)
def
= (P − 1) · (Q− 1). Such a function, denoted RSAN,e, is defined over

the domain {1, ..., N} so that RSAN,e(x)
def
= xe mod N . Using the fact that

e is relatively prime to φ(N), it can be shown that the function is in fact
a permutation over its domain. Furthermore, knowledge of the inverse of e
modulo φ(N), allows to efficiently invert RSAN,e. That is, on input (N, d)
and y, where ed ≡ 1 (mod φ(N)) and y = xe mod N , one can efficiently
retrieve x by computing yd mod N (since (xe)d ≡ xed ≡ x (mod N), for all
x’s).

A.4. SOME BASIC CRYPTOGRAPHIC SETTINGS 131

It is widely believed that given (N, e) (but neither d not the factorization
of N), it is infeasible to invert RSAN,e. Hence, it is conjectured that the RSA
collection is a collection of trapdoor (one-way) permutations. However, it is
not known whether factoring N can be reduced to inverting RSAN,e (in fact
this is a well-known open problem).

The Rabin function

The Rabin collection of functions is defined analogously to the RSA collection,
except that the function is squaring moduloN (instead of raising to the power

e mod N). Namely, RabinN(x)
def
= x2 mod N . This function, however, does

not induces a permutation on the multiplicative group modulo N , but is
rather a 4-to-1 mapping on this group.

It can be shown that extracting square roots modulo N is computationally
equivalent to factoring N (i.e., the two tasks are reducible to one another
via probabilistic polynomial-time reductions) [310]. Thus, assuming that
factoring is intractable, it is infeasible given N and y = RabinN(x) to find a
preimage of y. On the other hand, given the factorization of N , it is feasible
to find all 4 preimages of y under RabinN . Hence, assuming that factoring
is intractable, the above yields a collection of trapdoor one-way functions.

For a special subclass of the integers, known as Blum Integers, the function
RabinN(·) defined above induces a permutation on the quadratic residues
modulo N . We say that r is a quadratic residue mod N if there exists an
integer x such that r ≡ x2 mod N . We denote by QN the set of quadratic
residues in the multiplicative group mod N , and say that N is a Blum Integer
if it is the product of two primes each congruent to 3 mod 4. It can be
shown that when N is a Blum integer, each element in QN has a unique
square root which is also in QN , and it follows that in this case the function
RabinN(·) induces a permutation over QN . Hence, assuming that factoring
Blum Integers is intractable, the above is a collection of trapdoor (one-way)
permutations.

132 APPENDIX A. SOME BACKGROUND

Appendix B

Randomized
Computations

The purpose of this appendix is to demonstrate the usage of randomization
in a variety of computational settings. Our choice is governed by the desire
to focus on the randomization aspect of the solution and avoid any compli-
cated details which are due to other aspects of the computational problem.
Thus, we avoid any example which requires substantial problem-specific back-
ground. We stress that our presentation is merely aimed at demonstrating
the usage of randomization, and that no attempt was made to present a
coherent theory of randomized computation.

Our examples are grouped in three (subjective) categories:

1. Traditional algorithmic problems. Here we consider randomized algo-
rithms for graph theoretic problems such as finding a perfect matching,
algebraic problems such as testing polynomial identity, and approxima-
tion problems such as approximating the number of satisfying assign-
ments to a DNF formula.

2. Traditional complexity questions. Here we present results such as the
randomized reductions of Approximate Counting to NP , and of SAT
to unique-SAT.

3. Distributed and Parallel Computing. Here we consider randomized pro-
cedures for distributed tasks such as Testing String Equality, Byzantine
Agreement, and routing in networks.

For a more systematic and much wider exposition, the reader is referred to
the textbook Randomized Algorithms by Motwani and Raghavan [276].

133

134 APPENDIX B. RANDOMIZED COMPUTATIONS

B.1 Randomized Algorithms

Conspicuous omissions in this category include some of the most well-known
randomized algorithms (e.g., many in the domain of computational number
theory), as well as the Markov Chain approach to approximate counting. As
stated above, the reason for these omissions is that these algorithms either
require specialized (and unrelated to randomness) background or are quite
involved to present and/or analyze.

B.1.1 Approx. Counting of DNF satisfying assignments
or, a twist on naive sampling

The problem considered here is to approximate the number of satisfying as-
signment to a DNF formula up-to a constant factor. We note that given ǫ and
oracle access to any function f : {0, 1}n 7→ {0, 1}, it is easy to approximate
the fraction |{x : f(x) = 1}|/2n up-to an ǫ additive deviation. Specifically, a
sample of O(ǫ−2 log(1/δ)) points has average value which, with probability
at least 1 − δ, is at most ǫ-away from the correct value. However, our aim
is to provide relative (rather than absolute) approximation of this fraction
(i.e., given ǫ > 0 the task is to approximate the above fraction up-to a 1± ǫ
factor).

Let ϕ =
∨m

i=1 Ci, where Ci : {0, 1}n → {0, 1} is a conjunction, be a DNF
formula. Actually, we will deal with the more general problem in which we
are given (implicitly) m subsets S1, ..., Sm ⊆ {0, 1}n and wish to approximate
|⋃i Si|. In our case Si will be the set of assignments satisfying the conjunction
Ci. We make several computational assumptions regarding these sets (letting
efficient mean implementable in time polynomial in n ·m):

1. Given i and x, one can efficiently determine whether x ∈ Si.

2. Given i, one can efficiently determine |Si|.
3. Given i, one can efficiently generate a uniformly distributed element of
Si.

These assumptions are clearly satisfied in the case Si = C−1
i (1) considered

above. The key observation is that
∣∣∣∣∣

m⋃

i=1

Si

∣∣∣∣∣ =

m∑

i=1

∣∣∣∣∣∣
Si \

⋃

j<i

Sj

∣∣∣∣∣∣
(B.1)

=

m∑

i=1

|Si| · Prs∈Si

s 6∈
⋃

j<i

Sj

 (B.2)

and that the probabilities in Eq. (B.2) can be approximated up-to ǫ′ (with
overwhelming success probability) by taking poly(n/ǫ′) many samples. This
leads to the following algorithm

B.1. RANDOMIZED ALGORITHMS 135

Algorithm: On input parameters ǫ and δ, set ǫ′ = ǫ/m and δ′ = δ/m. For
i = 1 to m do

1. Let pi
def
= Prs∈Si

[s 6∈ ⋃j<i Sj].

Using a sample of size t
def
= O((1/ǫ′)2 log(1/δ′)), approximate pi by p̃i

so that Pr[|p̃i− pi| > ǫ′] < δ′. That is, we uniformly select t samples in
Si, and test for each whether it resides in

⋃
j<i Sj .

2. Compute |Si|, and let ai
def
= p̃i · |Si|.

Output the sum of the ai’s.

Analysis: Let Ni = pi · |Si|. We are interested in the quality of the ap-
proximation to

∑
i Ni provided by

∑
i ai. With probability at least 1−m ·δ′,

we have ai = (pi ± ǫ′) · |Si| = Ni ± ǫ′ · |Si|, for all i’s, and so
∑

i ai =∑
iNi ± ǫ′ ·

∑
i |Si|. However, maxi(|Si|) ≤ |

⋃
i Si| =

∑
iNi, and so

m∑

i=1

ai =

m∑

i=1

Ni ± m · ǫ′ · max
1≤i≤m

|Si|

= (1±mǫ′) ·
m∑

i=1

Ni = (1 ± ǫ) ·
m∑

i=1

Ni

Note that the above approach does not require exact computation of |Si|, nor
exact uniform selection in Si. Instead, ability to approximate |Si| up-to a
factor of 1±ǫ′ within time related to poly(n/ǫ′) suffices. Likewise, it suffice to
generate in time related to poly(n/ǫ′) a distribution which is at most ǫ′-away
from the uniform distribution over Si.

The algorithm presented above is actually a deterministic reduction of
the task of approximating the size of one set (in the relative sense) to the
task of providing absolute approximations to some fractions. It utilizes the
hypothesis that the first set can be expressed as a union of feasibly many
sets for which certain natural operations (e.g., deciding membership, approx-
imating the size) can be performed efficiently. Thus, this approach may be
applicable to some sets, but not to their complement – which concurs with
the general phenomena by which relative approximation may be possible for
one quantity, but not for its complement (e.g., it is NP-Hard to approximate
the number of unsatisfying assignment to a DNF formula up-to any factor).

B.1.2 Finding a perfect matching
or, on the loneliness of the extremum

The problem considered here is to find a perfect matching in a graph. The
specific goal is to obtain a fast parallel algorithm, which is the reason we

136 APPENDIX B. RANDOMIZED COMPUTATIONS

do not follow the standard combinatorial approach of iteratively augment-
ing the current matching using alternating paths. Instead, we rely on the
following Isolation Lemma which asserts that when assigning each edge a
random weight, taken from a sufficiently large domain, there is a unique per-
fect matching of minimum (resp., maximum) weight. The lemma extends to
arbitrary set systems.

Lemma B.1 (The Isolation Lemma): Let S1, S2, ..., St ⊆ [m]
def
= {1, 2, ...,m}

be distinct sets, and let w1, w2, ..., wm be independently and uniformly chosen
in [2m]. Then, with probability at least 1/2, there exists a unique j so that∑

i∈Sj
wi equals mink∈[t](

∑
i∈Sk

wi).

In our application [m] corresponds to the set of edges, and the Si’s to perfect
matchings in the graph.

Proof: For i = 1, ...,m, consider the event Ei defined as the existence of two
sets (i.e., Sj ’s) with minimum weight so that one set contains i and the other
set does not contain i. It suffices to show that the probability that Ei occurs
is at most 1/2m. The latter is proven by considering a random process in
which the weight of i (i.e., wi) is selected last.

Suppose that the values of all other wj ’s (with j 6= i) have already been
determined. Let S− be a set of minimum weight among all sets not containing

i, and w− be its weight (i.e., w− def
= minj:i6∈Sj

(
∑

k∈Sj
wk)). Similarly, let S+

be a set of minimum weight among all sets obtained by omitting i from sets

which contain it, and w+ be its weight (i.e., w+ def
= minj:i∈Sj

(
∑

k∈Sj\{i} wk)).

Then, event Ei occurs if and only if w− = w+ + wi, which happens with
probability 1/2m if (w− − w+) ∈ [2m], and with probability 0 otherwise.

Algorithm: On input a bipartite graph G = (U, V,E),

1. For each edge e ∈ E, uniformly and independently select a weight

we ∈ [2m], where m
def
= |E|.

2. Try to compute the value of the minimum weight perfect matching.
This is done by computing the determinant of the matrix, denoted A,
obtained by setting the (u, v)-entry to 2we if e = (u, v) and to 0 if
(u, v) 6∈ E. In case the determinant is 0, halt stating that the graph
has no perfect matching. Otherwise, the value of the minimum weight
perfect matching is set to be the largest i so that the value of the
determinant is divisible by 2i. (The determinant can be computed by
a fast parallel algorithm.)

3. For each e ∈ E, try to compute the value of the minimum weight
perfect matching among those not containing the edge e. This is done

B.1. RANDOMIZED ALGORITHMS 137

(as above) by computing the determinant of the matrix, denoted Ae,
obtained from A by resetting the e-entry to 0. All these computations
can be conducted in parallel.

4. A candidate perfect matching is retrieved by including all edges e for
which the value (of the min-weight perfect matching) found in Step 3
is different than the one found in Step 2.

The algorithm for general graphs is a variation of the above (and is not de-
scribed here). Steps 1 and 2 (by themselves) provide a randomized algorithm
for determining whether a bipartite graph has a perfect matching.

Analysis: We may assume that the graph has a perfect matching, or else
the determinant computed in Step 2 is 0. Assume that the weights (i.e., we’s)
are such that there exists a unique perfect matching of minimum weight. De-
note this matching byM and its weight byW . In such a case, the determinant
of A is of the form 2W + r · 2W+1, where r is an integer (possibly zero). This
is so since the determinant sums (possibly with minus sign) the 2-powers of
the weights of all perfect matchings, and none can cancel the contribution of
the unique minimum weight perfect matching M . Likewise, for every edge e
not in M , the determinant of Ae is of the form 2W + r · 2W+1, where again
r is an integer. On the other hand, for every edge e in M , the determinant
of Ae is either zero or r · 2W+1, with r being a non-zero integer.

Comment: It is tempting to think that when selecting weights as above,
the minimum weight perfect matching may be uniformly distributed among
all perfect matchings.1 To see that this is not always the case consider a
graph in which the set of perfect consists of two types of matchings. There
are 2n matchings of the first type, a generic one having the form {e2i−σi

: i =
1, ..., n}, where σ1, ..., σn ∈ {0, 1}. There is a single matching of the second
type, denoted {e2n+i : i = 1, ..., n}. We claim that the probability that the
minimum weight perfect matching is a specific matching of the first type is
exponentially smaller than the probability that the minimum weight perfect
matching is the matching of the second type.

This claim holds for weights distributed as above, as well as for several
other distributions (e.g., the Normal Distribution). For sake of simplicity, we
consider weights uniformly distributed in the interval [0, 1]. We first show
that, with overwhelmingly high probability, the value of the minimum weight
matching among all 2n matchings of the first type is at least cn, where c is
any constant smaller than 1/3 (e.g., c = 0.32). This follows by observing
that

min
σ1,...,σn∈{0,1}

(
n∑

i=1

w2i−σi

)
=

n∑

i=1

min(w2i−1, w2i)

1 The following text is based on discussions with Madhu Sudan (during March 1998).

138 APPENDIX B. RANDOMIZED COMPUTATIONS

and that the expected value of each min(w2i−1, w2i) equals 1/3. On the other
hand, the probability that any specific perfect matching (and in particular
one of the second type) has weight less than, say, 0.31 · n is greater than
0.6n

2 = exp(Ω(n))·2−n, and so with essentially the same probability the second
type matching is of minimum weight among all 2n+1 perfect matchings. This
follows by observing that

Pr

[
n∑

i=1

wi < 0.31 · n
]

> Pr[∀i (wi ≤ 0.6)] ·
(

1− Pr

[
n∑

i=1

wi ≥ 0.31 · n
∣∣∣∣∣ ∀i (wi ≤ 0.6)

])

> 0.6n · 1
2

where the last inequality uses Exp[wi |wi ≤ 0.6] = 0.3.

B.1.3 Testing whether polynomials are identical
or, on the discrete charm of polynomials

The problem considered here is to determine whether two multi-variant poly-
nomials are identical. We assume that one is given an oracle for the evaluation
of each of the polynomials. We further assume that the polynomials are de-
fined over a sufficiently large finite field, denoted F. Finally, let n denote the
number of variables in these polynomials.

Algorithm: Given n and black-box access to p, q : Fn 7→ F, uniformly
select r1, ..., rn ∈ F, and accept if and only if p(r1, ..., rn) = q(r1, ..., rn).

Analysis: Clearly, if p ≡ q then the algorithm always accepts. The fol-
lowing lemma implies that if p and q are different polynomials, each of total
degree at most d, then the algorithm accepts with probability at most d/|F|.

Lemma B.2 Let p : Fn 7→ F be a non-zero polynomial of total degree d.
Then

Prr1,...,rn
[p(r1, ..., rn) = 0] ≤ d

|F|

Proof: The lemma is proven by induction on n. The base case of n =
1 follows immediately by the Fundamental Theorem of Algebra (i.e., the
number of distinct roots of a degree d univariant polynomial is at most d).
In the induction step, we write p as a polynomial in its first variable. That
is,

p(x1, x2, ..., xn) =

d∑

i=0

pi(x2, ..., xn) · xi
1

B.1. RANDOMIZED ALGORITHMS 139

where pi is a polynomial of total degree at most d − i. Let t be the biggest
integer i for which pi is not identically zero. (We dismiss the case t = 0.)
Then, using the induction hypothesis, we have

Prr1,r2,...,rn
[p(r1, r2, ..., rn) = 0] ≤ Prr2,...,rn

[pt(r2, ..., rn) = 0]

+ Prr1,r2,...,rn
[p(r1, r2, ..., rn) = 0 | pt(r2, ..., rn) 6= 0]

≤ d− t
|F| +

t

|F|
where the second term is bounded by fixing any sequence r2, ..., rn for which

pt(r2,, rn) 6= 0 and considering the univariant polynomial p′(x)
def
= p(x, r2, ..., rn)

(which by hypothesis is a non-zero polynomial of degree t).

Comment: The lesson is that whenever the situation is such that almost
any choice will do – taking a random choice yields an algorithm with a rig-
orous performance guarantee. In a sense any randomized algorithm is based
on this paradigm, except that here the space of choices seems more straight-
forward than in any other case. That is, most randomized algorithms are
based on introducing a sample space which is not obvious from the problem
at hand; whereas here the sample space is the obvious one.

B.1.4 Randomized Rounding applied to MaxSAT
or, on being fractionally pregnant

We slightly deviate from the above style by considering a general method-
ology. The methodology consists of two steps. First, one presents a linear
programming relaxation of an integer program (corresponding to a combina-
torial problem). Next, one derives from a solution to the linear program a so-
lution to the integer program, by using the former to determine a probability
distribution over solutions to the latter, and picking a solution according to
this distribution. We exemplify this methodology by applying it to Max-SAT.
Specifically, we consider the task of approximating the maximum number of
clauses which can be simultaneously satisfied in a given CNF formula.

Let ϕ =
∧m

j=1 Cj be a CNF formula, where Cj = (
∨

i∈S+
j
xi)∨(

∨
i∈S−

j
¬xi)

with S+
j , S

−
j ⊆ [n]

def
= {1, ..., n}. Abusing notation, we may express Max-SAT

as an integer optimization problem in which the task is to maximize
∑m

j=1 yj

subject to

xi, yj ∈ {0, 1} (∀i, j) (B.3)
∑

i∈S+
j

xi +
∑

i∈S−
j

(1− xi) ≥ yj (∀j) (B.4)

In the Linear Programming (LP) relaxation one replaces Eq. (B.3) by

0 ≤ xi, yj ≤ 1 (∀i, j) (B.5)

140 APPENDIX B. RANDOMIZED COMPUTATIONS

Clearly, the value of the LP is lower bounded by the value of the integer
program. Given an (optimal) solution, x̂i, ŷj , to the LP, we randomly derive
a solution to the original integer formulation. It will be shown that the
expected value of the integer solution is at least 1 − e−1 times the value
of the LP (and hence at least a 1 − e−1 fraction of the optimum of the
integer problem). Specifically, we set xi = 1 with probability x̂i (and xi = 0
otherwise).

Analysis: Suppose that clause Cj has cj literals. Then, we will show that
the probability that Cj is satisfied by the above randomized rounding (of the
above LP solution) is at least

(
1−

(
1− 1

cj

)cj
)
· ŷj ≥

(
1− e−1

)
· ŷj

and so the expected number of satisfied clauses is at least (1 − e−1) ·∑j ŷj

(as stated above). The above is proven by noting that the probability of the
complementary event (i.e., Cj is not satisfied) is

∏

i∈S+
j

(1− x̂i)

 ·

∏

i∈S−
j

x̂i

 (B.6)

where, by Eq. (B.4),
∑

i∈S+
j
(1 − x̂i) +

∑
i∈S−

j
x̂i ≤ (cj − ŷj). Eq. (B.6) is

maximized when 1− x̂i = (cj− ŷj)/cj for all i ∈ S+
j , and x̂i = (cj− ŷj)/cj for

all i ∈ S−
j . Thus, Eq. (B.6) is bounded above by

(
1− ŷj

cj

)cj

, and the above

claim follows.

Comments: Combining the above algorithm with the naive algorithm which
uniformly selects a truth assignment, one derives a randomized algorithm of
a 3/4-approximation factor. The key observation is that the performance of
the LP-based algorithm improves as the clause sizes decrease, whereas the
performance of the naive algorithm improves when the sizes increase. In a
different vein, we mention that the randomized rounding paradigm has been
extended also to semidefinite (rather than linear programming) relaxations of
combinatorial problems. In fact, improved approximation ratios for various
versions of MaxSAT were obtained that way (cf., [165, 231]).

B.1.5 Primality Testing
or, on hiding information from an algorithm

The problem considered here is to decide whether a given number is a prime.
The only Number Theoretic facts which we use are:

B.1. RANDOMIZED ALGORITHMS 141

1. For every prime p > 2, each quadratic residue mod p has exactly two
square roots mod p (and they sum-up to p).

2. For every (odd and non-integer-power) composite number N , each
quadratic residue mod N has at least four square roots mod N .

Our algorithm uses as a black-box an algorithm, denoted R, which given a
prime p and a quadratic residue mod p, returns the smallest among the two
square roots. There is no guarantee as to what is the output in case the input
is not of the above form (and in particular in case p is not a prime).

Algorithm: On input a natural number N > 2 do

1. If N is either even or an integer-power then reject.

2. Uniformly select r ∈ {1, ..., N − 1}, and set s← r2 mod N .

3. Let r′ ← R(N, s). If r′ ≡ ±r (mod N) then accept else reject.

Analysis: By Fact 1, on input a prime number N , the above algorithm al-
ways accepts (since in this case R(N, r2 mod N) = ±r for any r ∈ {1, ..., N−
1}). On the other hand, suppose that N is an odd composite which is not
an integer-power. Then, by Fact 2, each quadratic residue s has at least four
square roots, and each is equally likely to be chosen at Step 2 (as s yields no
information on the specific r). Thus, for every such s, the probability that
±R(N, s) has been chosen in Step 2 is at most 2/4. It follows that, on input
a composite number, the algorithm rejects with probability at least 1/2.

Comment: The above analysis presupposes that the algorithm R is al-
ways correct when fed with a pair (p, s), where p is prime and s a quadratic
residue mod p. In case R has error probability ǫ < 1/2, our algorithm still
distinguishes primes from composites (since on the former it accepts with
probability at least 1 − ǫ > 1/2). We note that efficient randomized algo-
rithms for extracting square roots modulo a prime are known (cf., [30, 276]).
Thus, the above establishes that primality can be decided in probabilistic
polynomial-time (alas, with two-sided error).

B.1.6 Testing Graph Connectivity via a random walk
or, the accidental tourist sees it all

The problem considered here is to decide whether a given graph is connected.
The aim is to devise an algorithm which does so while using little space (i.e.,
essentially, as little as needed for storing the identity of a single vertex).
This task can be reduced to testing connectivity between any given pair of
vertices. Thus, we focus on the task of determining whether two given vertices
are connected in a given graph.

142 APPENDIX B. RANDOMIZED COMPUTATIONS

Algorithm: On input a graph G = (V,E) and two vertices, s and t, we
take a random walk of length O(|V | · |E|), starting at vertex s, and test at
each step whether vertex t is encountered. By a random walk we mean that,
at each step, we uniformly select one of the edges incident at the current
vertex and traverse this edge to the other endpoint.

Analysis: We will show that if s is connected to t in the graph G then, with
probability at least 1/2, vertex t is encountered in a random walk starting
at s. In the following, we consider the connected component of vertex s,
denoted G′ = (V ′, E′). For any edge, (u, v) (in E′), we let Tu,v be a random
variable representing the number of steps taken in a random walk starting
at u until v is first encountered. It is easy to see that E[Tu,v] ≤ 2|E′|. Also,
letting cover(G′) be the expected number of steps in a random walk starting
at s and ending when the last of the vertices of V ′ is encountered, and C be
any directed cycle which visits all vertices in G′, we have

cover(G′) ≤
∑

(u,v)∈C

E[Tu,v]

≤ |C| · 2|E′|

Letting C be a traversal of some spanning tree of G′, we conclude that
cover(G′) < 4 · |E′| · |V ′|. Thus, with probability at least 1/2, a random
walk of length 8 · |E′| · |V ′| starting at s visits all vertices of G′.

B.1.7 Finding minimum cuts in graphs
or, random is better than arbitrary

Many algorithms are typically presented in a non-fully specified manner,
allowing some choices to be made arbitrarily (in which case these choices are
typically made in a way most convenient for implementation). In some cases,
replacing the arbitrary choice by a random one yields improved performance.
A demonstration of this phenomena follows. The problem considered here
is to find the minimum cut in a graph. The randomized algorithm which
follows is simpler than the traditional flow-based algorithms, and lends itself
to parallel implementation (omitted here).

Algorithm: On input a graph G = (V,E), with n = |V |, the algorithm
makes n−2 random edge contraction steps: In each step one selects uniformly
an edge of the current multi-graph and contracts the two endpoints into one
vertex, allowing parallel edges but dropping self-loops which may be created.
That is, if (u, v) is the contracted edge of the current graphG′ then we replace
vertices u and v by a new vertex x, and replace edges of the form (w, v) (resp.,
(w, u)), where w 6∈ {u, v}, by a similar number of edges (w, x). When these
n− 2 contraction steps are completed, we are left with a multi-graph on two
vertices, and just output the number of parallel edges.

B.2. RANDOMNESS IN COMPLEXITY THEORY 143

Analysis: Suppose that G has a minimum cut C ⊂ E. Then, the probabil-

ity that no edge of C is contracted in the first step is |E|−|C|
|E| ≥ 1− 2

n (since

the cut cannot be bigger than the average degree |C| ≤ 2|E|/n). The ques-
tion is what happens in subsequent steps. A key observation is that |C| is a
lower bound on the average degree of any multi-graph obtained from G by
any sequence of edge contractions. Thus, the probability that the (n−2)-step
contraction process leaves C intact is at least

n−2∏

i=1

(
1− 2

n− (i− 1)

)
=

n−2∏

i=1

n− 1− i
n+ 1− i =

2

n · (n− 1)

Thus, repeating the above algorithm for a quadratic number of times we
obtain the minimum cut, with probability at least, say, 2/3.

Comment: Observe that if the random choices in the above algorithm are
replaced by arbitrary choices then the output gives little indication towards
the minimum cut in G.

B.2 Randomness in Complexity Theory

In this section we demonstrate the power of randomized reductions (rather
than randomized algorithms discussed in the previous section).

B.2.1 Reducing (Approximate) Counting to Deciding
or, the Random Sieve

We consider the class #P of functions which count the number of NP-
witnesses (w.r.t an NP-relation). That is, f ∈ #P if for some NP-relation, R,
it holds that f(x) = |{y : (x, y)∈R}|, for all x ∈ {0, 1}∗. We will show that
such f can be approximated in probabilistic polynomial-time given oracle
to an NP-complete set. The (randomized Cook) reduction uses any efficient
family of Universal2 Hash functions2, as well as the following lemma.

Lemma B.3 (Leftover Hash Lemma [339, 56, 220]):3 Let Hm,k be a family
of Universal2 Hash functions mapping {0, 1}m to {0, 1}k, and let ǫ > 0. Let

2 A family of functions mapping {0, 1}m to {0, 1}k is called Universal2 if for a uniformly
selected h in the family, the random variables {h(e)}e∈{0,1}m are pairwise independent

and uniformly distributed over {0, 1}k. An efficient family is required to have algorithms
for selecting and evaluating functions. A popular example is the family of all linear trans-
formations from {0, 1}m to {0, 1}k .

3 A stronger statement of the lemma, supported by essentially the same proof, refers
to an arbitrary random variable X over {0, 1}m satisfying Pr[X =x] ≤ ǫ3 · 2−k, for every
x. The lemma was discovered independently in [56, 220], yet it is an extension of the ideas
underlying [339]. The lemma’s name was coined in [226].

144 APPENDIX B. RANDOMIZED COMPUTATIONS

S ⊆ {0, 1}m be arbitrary provided that |S| ≥ ǫ−3 · 2k. Then, for all but at
most an ǫ fraction of the h’s in Hm,k, it holds that

|{e ∈ S : h(e)=0k}| = (1± ǫ) · |S|
2k

Proof: For a uniformly selected h ∈ Hm,k, the random variables {h(e)}e∈S

are pairwise independent and uniformly distributed over {0, 1}k. On top of
these h(e)’s, we define 0-1 random variables, denoted ζe’s, so that ζe = 1 if
h(e) = 0k. Then Exp[ζe] = 2−k and we need to show that the sum

∑
e∈S ζe

is concentrated around |S|/2k. Using Chebyshev’s Inequality and the fact
that the ζe’s are pairwise independent, we get

Pr

[∣∣∣∣∣
∑

e∈S

ζe −
|S|
2k

∣∣∣∣∣ >
ǫ · |S|

2k

]
<

Var[
∑

e∈S ζe]

(ǫ|S|/2k)2

<
|S|/2k

ǫ2 · (|S|/2k)2
≤ ǫ

(Pairwise independence is used in deriving Var[
∑

e∈S ζe] =
∑

e∈S Var[ζe] <

|S| · 2−k.)

Reduction: On input x ∈ {0, 1}n, the probabilistic polynomial-time oracle
machine (for approximating f) sets m to be the length of NP-witness w.r.t
the guaranteed R. For every k = 0, 1, ...,m + 2 it performs the following
experiment n times.

1. Uniformly select h ∈ Hm,k, and construct (via Cook’s reduction) a
CNF formula ϕ so that ϕ is satisfiable if and only if there exists a
string y ∈ {0, 1}m so that (x, y) ∈ R and h(y) = 0k.

2. Query the oracle whether ϕ is satisfiable.

Finally, the machine outputs the smallest non-negative integer k (possibly
zero) so that the oracle has answered no at least n/2 times.

Analysis: We analyze the performance of the above machine when it is

given oracle access to SAT. Clearly, if Sx
def
= {y : (x, y)∈R} has cardinality N

then the probability that the machine outputs a number k ≥ L def
= ⌈log2(4N)⌉

is exponentially vanishing (since the probability that a uniformly selected
h ∈ Hm,L maps some element of Sx to 0L is at most 1/4, and so in each
iteration with value of k ≥ L, with probability at least 3/4, the oracle says

no). On the other hand, using the above lemma, if N
def
= |Sx| ≥ 2k+2 then

for a uniformly selected h ∈ Hm,k with probability at least 3/4 there exists
y ∈ Sx so that h(y) = 0k. Thus, with overwhelmingly high probability,

B.2. RANDOMNESS IN COMPLEXITY THEORY 145

the output of the oracle machine is at least log2(N/4). We conclude that
approximating f up-to a factor of 4 is reducible in probabilistic polynomial-
time to NP . Higher accuracy – that is, approximation factor of 1 + 1

p(n) ,

for any fixed positive polynomial p – can be obtained by considering the

“direct product function” Fp(x)
def
= (f(x))p(|x|) which counts the number of

NP-witnesses w.r.t the NP-relation Rp defined by

Rp
def
= {(x, y1, ..., yp(|x|)) : ∀i (x, yi)∈R}

A related reduction may be used to reduced SAT (or even “approximating
#P”) to unique-SAT. By the latter, we mean the promise problem in which
the yes-instances are CNF formula having a unique satisfying assignment,
and the no-instances are CNF formula having no satisfying assignment. All
that is needed is to notice that in the above reduction, for k = (log2N)±2, the
reduction produces CNF formula which are typically (i.e., w.p. at least 3/4)
either not satisfiable or have few (say up-to 8) satisfying assignments. Thus,
we augment Step 1 as follows. Having produced ϕ, as above, we produce
8 new formulae, ψ1, ..., ψ8, so that ψi asserts that ϕ has at least i different
satisfying assignments (i.e., ψi(y1, ..., yi) =

∧
j ϕ(yj) ∧

∧
1≤j<j′≤i(yj < yj′)).

We refer each of these ψi to the oracle and use yes as answer if the oracle
has answered yes on any of the ψi (as this may happen only if ϕ is indeed
satisfiable). Thus, whenever ϕ has few satisfying assignments, yes will be
returned.

B.2.2 Two-sided error versus one-sided error

We consider the extension of the classes RP and BPP to promise problems
and show that BPP = RPRP (in the extended sense). It is evident that
RPRP ⊆ BPPBPP = BPP (where the last equality utilizes standard “error
reduction”). So we focus on the other direction, considering a BPP-problem
with a characteristic function χ (which may be only partially defined over
{0, 1}∗) so that for some NP-relation, R, a polynomial p, and for every x on
which χ is defined

|{y ∈ {0, 1}p(|x|) : R(x, y) 6=χ(x)}| < 2p(|x|)

3p(|x|)
(where R(x, y) = 1 if (x, y) ∈ R and R(x, y) = 0 otherwise). We show a
randomized one-sided error (Karp) reduction of χ to (the promise problem
extension of) coRP .

Reduction: On input x ∈ {0, 1}n, the randomized polynomial-time map-
ping uniformly selects s1, ..., sm ∈ {0, 1}m, and outputs the pair (x, s), where
m = p(|x|) and s = (s1, ..., sm).

We define the following coRP promise problem, denoted Π. The yes-
instances, denoted Πyes, are pairs (x, s) so that for every r ∈ {0, 1}m there

146 APPENDIX B. RANDOMIZED COMPUTATIONS

exists an i so that R(x, r ⊕ si) = 1. The no-instances, denoted Πno, are
pairs (x, s) so that for at least half of the possible r ∈ {0, 1}m, it holds that
R(x, r ⊕ si) = 0 for every i. Clearly, Π is indeed a coRP promise problem
(via an algorithm which uniformly selects r, and computes R(x, r ⊕ si) for
all i’s).

Analysis: We claim that the above randomized mapping reduces χ to Π.
Suppose first that χ(x) = 0. Then, for every possible choice of s1, ..., sm ∈
{0, 1}m, the fraction of r’s for which R(x, r ⊕ si) = 1 holds for some i is
at most m · 1

3m = 1
3 . Thus, the reduction always maps such an x to a no-

instance (i.e., an element of Πno). On the other hand, we will show shortly
that in case χ(x) = 1, with probability at least 1/2 the reduction maps x to
a yes-instance. Thus, the above reduction has one-sided error and indeed
reduces χ to Π (which as observed above is in coRP). It is left to analyze
the probability that the reduction fails in case χ(x) = 1. That is,

Prs[(x, s) 6∈ Πyes] = Prs1,...,sm
[∃r ∈ {0, 1}m s.t. (∀i) R(x, r ⊕ si) = 0]

≤
∑

r∈{0,1}m

Prs1,...,sm
[(∀i) R(x, r ⊕ si) = 0]

≤ 2n ·
(

1

3m

)m

≪ 1

2

Comment: The traditional presentation uses the above reduction to show
that BPP is in the Polynomial-Time Hierarchy. One defines the polynomial-

time predicate ϕ(x, s, r)
def
=
∨m

i=1(R(x, si ⊕ r) = 1), and observes that

χ(x) = 1 ⇒ ∃s∀r ϕ(x, s, r)

χ(x) = 0 ⇒ ∀s∃r ¬ϕ(x, s, r)

B.2.3 The permanent: Worst-Case vs Average Case

or, the self-correction paradigm

We consider the problem of computing the permanent of a matrix.4 This
problem is known to be #P-complete even in case the matrix has only 0-
1 entries. Here we consider the problem of computing the permanent over
sufficiently large finite fields (i.e., the field size is larger than the dimension).
We show that the (worst-case) problem can be reduced to solving the problem
on random (or typical) instances.

4 The permanent of an n-by-n matrix A = (ai,j) is the sum, taken over all permutations
π of [n], of the products

∏n

i=1
ai,π(i).

B.3. RANDOMNESS IN DISTRIBUTED COMPUTING 147

Reduction: On input an n-by-n matrix, M , over F (s.t., |F | > n+ 1), the
probabilistic polynomial-time oracle machine (i.e., the reduction) proceeds
as follows.

1. Uniformly select an n-by-n matrix, R, over F.

2. For i = 1, ..., n+ 1, obtain from the oracle the value, denoted vi, of the
permanent of the matrix M + iR.

3. Obtain by interpolation, the value of the degree n univariant polyno-
mial, p, satisfying p(i) = vi (for i = 1, ..., n+ 1).

4. Output p(0).

The key observation, underlying the above reduction, is that, for fixed M
and R, the permanent of M + iR is a degree n polynomial in the variable i.

Analysis: We consider the performance of the above reduction assuming
it is given access to an oracle which answers correctly on all but at most an
1/3(n+1) fraction of the instances. We will show that in such a case, on any
input, the reduction answers correctly with probability at least 2/3. Observe
that, for each fixed M and i 6= 0, the matrix M + iR is uniformly distributed
over the instance space. Thus, the probability that the oracle returns an
incorrect answer on any of the n + 1 queries is at most 1/3. But otherwise,
having the permanent of M + iR for every i = 1, .., n + 1, we obtain the
permanent of the formal matrix M + xR (which is a polynomial of degree n
in x ∈ F), and thus the permanent of M (when substituting x = 0).

Comments: As seen above, the reduction of a problem to random instances
of itself allows to reduce its “worst” instances to its average (or typical) cases,
and thus means that the problem does not really have “worst” (or “patho-
logical”) instances: The problem’s complexity, in case the problem is hard,
must stem from typical (or random) instances. Viewed from the other side
(i.e., of feasibility), such a reduction allows to self-correct a procedure which
is correct on a large majority of instances, and obtain a randomized proce-
dure which is correct on every instance. Thus, as any reduction, a reduction
to random instances is open to interpretation: For example, Ajtai’s reduc-
tion of approximating shortest vectors in integer lattices to such random in-
stances [3], is commonly viewed as a demonstration of average-case hardness
based on worst-case hardness, but it may be also viewed as a self-corrector
for programs which find short vectors in a certain class of integer lattices.

B.3 Randomness in Distributed Computing

As much as randomness is a powerful tool in the design of algorithms and
reductions, its power in the distributed context is even more striking. In

148 APPENDIX B. RANDOMIZED COMPUTATIONS

particular, randomized distributed protocols can beat impossibility results
and lower bound which refer to deterministic protocols. Various examples
are given in [101, 263, 23, 241, 276].

As a warm-up consider the problem of electing a leader among a set of n
identical processes. Clearly, there is no deterministic procedure to elect such
a leader (even when all processes are guaranteed to be non-faulty), as there
is no way to “deterministically break the symmetry” among the processors.
However, a simple randomized procedure will do the job: Let each processor
toss, independently of all other processors, a coin with bias 1/n towards 1,
and announce its coin-flip to all processors. If a single processor sends 1 then
it is elected leader, otherwise the process is repeated. In general, randomness
can be used to “break symmetry” in a variety of distributed settings. Other
uses of randomness in such settings include avoiding “pathological” configu-
rations (see Section B.3.2), and making the actions of non-faulty processors
unpredictable to malicious ones (i.e., Byzantine faults; see Section B.3.3).
We start with a much simpler problem.

B.3.1 Testing String Equality
or, randomized fingerprints

The problem considered here is to decide whether two strings, each held by a
different party, are identical. The aim is to devise a protocol for this problem
using low communication complexity. We present three such protocols.

Protocol 1: Party A holds x ∈ {0, 1}n, whereas party B holds y ∈ {0, 1}n.
Here we view x, y as non-negative integers in {0, 1, ..., 2n−1}. In the protocol,
party A uniformly selects i ∈ {1, ..., n}, finds the ith prime, denoted pi, and
sends the pair (i, x mod pi) to B. Party B recovers pi and accepts if and only
if y mod pi equals the value x mod pi (received from A).

Clearly, if x = y then B always accepts. On the other hand, using the
Chinese Reminder Theorem, we know that if x 6= y then x 6= y (mod pi)
for at least n/2 of the pi’s (or else x ≡ y (mod

∏
i∈I pi), for |I| ≥ n/2,

and x = y follows as x, y < 2n <
∏

i∈I pi). The number of bits sent is
log2 n+ log2(n lnn).

Protocol 2: Again, party A holds x ∈ {0, 1}n, whereas party B holds
y ∈ {0, 1}n. Here we use a small-bias probability space S ⊂ {0, 1}n, with
bias 1/6 and |S| = poly(n) (see Section 3.6.2). By definition, for every non-
zero string z ∈ {0, 1}n, with probability at least 1/3 a uniformly chosen r ∈ S
has inner product mod 2 with z equal to 1. In the protocol, party A uniformly
selects r ∈ S, computes the inner product mod 2 of x and r, and sends the
result along with the index of r (in S) to B. Party B retrieves r, computes the
inner product mod 2 of y and r, and accepts if it matches the bit received.

B.3. RANDOMNESS IN DISTRIBUTED COMPUTING 149

Clearly, if x = y then B always accepts. On the other hand, by the above,
if x 6= y then the inner products of x and y with a uniformly chosen r ∈ S
differ with probability at least 1/3 (hint: consider z = x ⊕ y). The number
of bits sent is 1 + log2 |S| = O(log n).

Protocol 3: The inputs are as above, but here we use a different tool: An
error-correcting code, denoted E : {0, 1}n 7→ {0, 1}m, with m = O(n) and
distance Ω(n) (cf., [228]). In the protocol, party A computes the codeword
E(x), uniformly selects i ∈ {1, ...,m}, and sends i along with the ith bit of
E(x) to Party B. The latter computes the codeword E(y) and accepts if its
ith bit matches the bit received.

Clearly, if x = y then B always accepts. On the other hand, if x 6= y then
E(x) and E(y) differ on a constant fraction of the bit positions, and so B
will reject with constant probability. The number of bits sent is 1+ log2m =
O(1) + log2 n.

B.3.2 Routing in networks
or, avoiding pathological configurations

The problem considered here is to allow parallel routing of messages in a
network in which processors have relatively few immediate neighbors (i.e.,
processors connected to them by a direct link). In many such networks,
routing to random destinations can be done quite efficiently (i.e., fast even
assuming that each processor can only deliver a single message at a time, and
without coordination among the processors). Off course, we are interested
in routing messages to “non-random” destinations; that is, to destinations
which are imposed upon us by some high-level application. Still the above
fact (regarding routing to random destinations) becomes relevant, via the
following two phase randomized routing strategy: Suppose that processor i
wishes to deliver a message to processor di, where the di’s consist of an arbi-

trary a permutation of the processor names [n]
def
= {1, ..., n}. Then, processor

i selects a random intermediate processor, ri ∈ [n], and sends its message to
processor ri with a request to forward it to processor di. (The ri’s are not
likely to be distinct!) Thus, the routing is in two phases:

1. The message of processor i, denoted mi, is delivered to ri.

2. Message mi is delivered from ri to di.

By our hypothesis, Phase 1 can be completed fast with high probability. It is
appealing to say that, by symmetry, the same should hold also for Phase 2.
This is not known to be generically true, but has been proved to be so for
a wide class of networks (cf., [245, Sec. 3.4]). Specifically, if one changes
the model a bit, allowing and measuring edge congestion, then bounds on
congestion in Phase 1 apply also to Phase 2.

150 APPENDIX B. RANDOMIZED COMPUTATIONS

B.3.3 Byzantine Agreement
or, take actions the adversary cannot predict

The problem considered here is to allow non-faulty processors to agree on a
common value, in presence of Byzantine (malicious) faulty processors. Specif-
ically, it is required that (1) the non-faulty processors must terminate with
the same output value, and (2) in case their input values are the same this
should also be their output value. We may consider, without loss of gener-
ality, the problem of agreeing on a Boolean value. The primary parameters
are the total number of processors, denoted n, and a bound on the number
of faulty processors, t. We assume a synchronous model of point-to-point
communication.

Protocol: We use auxiliary (threshold) parameters L,H,D so that L >
n
2 + t, H ≥ L+ t and H + t ≤ D ≤ n− t (which is feasible for t < n/8). The
protocol utilizes a global coin (which may be implemented in various ways).
It is postulated that, for each flipping of this coin, each of the two possible
outcomes occurs with probability at least p > 0 (p = 0.1 will do, whereas
p = 0.5 corresponds to an unbiased coin).

Following is the program to processor i ∈ [n]
def
= {1, ..., n}. On input bi ∈

{0, 1}, the processor sets its (initial) vote, denoted votei, to bi. The processor
repeats the following steps r + 1 times, where r is the iteration in which it
decides (see below):

1. Send votei to each processor.

2. Receive votes from all processors, including itself. (In case no message
is received from processor j, use the value last received from it, and if
no value was ever received use value 0.) Let cnti denote the number
of votes in favor of 1. If cnti > n/2 set maji = 1 and tallyi = cnti,
otherwise set maji = 0 and tallyi = n− cnti.

3. Let C ∈ {L,H} be the value of the global coin, for the current round
(in each round the global coin is flipped anew).

4. If tallyi ≥ C then set votei = maji else set votei = 0.

5. If tallyi ≥ D then decide votei, and proceed for a single additional
iteration (skipping this step in the next iteration).

(Actually, as shown below, if the processor were to decide again in the
next iteration its decision would have been identical.)

Analysis: Let G denote the set of non-faulty (or good) processors. The
following observation regarding members of G is extensively used: In each
iteration, |cnti− cntj | ≤ t, for every i, j ∈ G. Thus, if tallyi ≥ L > n/2+ t
for some i ∈ G then majj = maji for all j ∈ G. Similarly, if tallyi ≥ D

B.4. BIBLIOGRAPHIC NOTES 151

(resp., tallyi ≥ H) for some i ∈ G then tallyj ≥ H (resp., tallyj ≥ L)
for all j ∈ G. Using these facts it follows that

1. If all good processors enter some round with identical votes then they
all decide by the end of the current round, and their decision equals this
vote. This follows since (at this round) this identical vote would have
support of at least |G| ≥ n − t ≥ D. (As a special case, we conclude
that the second requirement of Byzantine Agreement holds.)

2. If at some round a good processor decides v then by the end of the next
round all good processors decide v. Suppose that i ∈ G decides v in the
current round. Then, tallyi ≥ D, and for each j ∈ G it follows that
tallyj ≥ H and so at Step 4 votej = majj = v. Using the previous
fact, the current one follows. (As a special case, we conclude that the
first requirement of Byzantine Agreement holds.)

3. If at some round tallyi ≥ H holds for some i ∈ G then with constant
probability all good processors enter the next round with vote equal to
maji. This follows since with constant probability the outcome of the
global coin is L, in which case for every j ∈ G, tallyj ≥ L = C and so
at Step 4 votej = majj = maji.

4. If at some round tallyi < H holds for all i ∈ G then with constant
probability all good processors enter the next round with vote 0. This
follows since with constant probability the outcome of the global coin
is H .

Thus, the above protocol terminates in constant expected number of rounds,
and the output always satisfies the agreement requirements. This remain
valid even if we use a global coin the outcome of which may be viewed differ-
ently by different processors, as long as for each of the two possible values,
with probability at least p > 0, all non-faulty processors view the outcome
as equal to that value. We comment that such a global coin can be easily
implemented in case t = O(

√
n), by letting each processor toss a local coin,

announce the outcome, and view the outcome of the global coin to be the
majority vote it has received (which, with constant probability, will be iden-
tical at all good processors). We note that t + 1 is a lower bound on the
number of rounds in any correct deterministic protocol. Furthermore, the
above protocol can be adapted to the asynchronous model, whereas there
exist no correct deterministic protocol for the latter model (even for t = 1).

B.4 Bibliographic Notes

Section B.1.1 (approximating the number of DNF satisfying assignments) is
based on [232], Section B.1.2 (finding perfect matching) is based on [277],
and Section B.1.3 (testing polynomial identities) is based on [331, 367]. The

152 APPENDIX B. RANDOMIZED COMPUTATIONS

Randomized Rounding technique was introduced in [315], and the MaxSAT
application described in Section B.1.4 is due to [164]. The primality testing
algorithm described in Section B.1.5 is folklore attributed to several people;
I heard it attributed to M. Blum. Section B.1.6 (random walk algorithm
for testing connectivity) is based on [7], and Section B.1.7 (the randomized
min-cut algorithm) is based on [230].

Section B.2.1 (reduction of approximate counting to deciding and of SAT
to uniqueSAT) is based on [339, 345] and [357], but the presentation in these
sources is quite different. The reduction of Section B.2.2 is based on [244],
where it was used to show (independently of [339]) that BPP ∈ PH; the
current presentation is due to Fortnow (priv. comm. 1997, see [15]). Sec-
tion B.2.3 (self-corrector for the permanent) is based on [254].

Protocol 1 for string equality (in Section B.3.1) is commonly attributed to
M. Rabin and A. Yao, Protocol 2 is due to [281, Sec. 9], and Protocol 3 is due
to E. Kushilevitz (priv. comm. 1998). Section B.3.2 (randomized routing) is
based on [354, 356], and Section B.3.3 (randomized Byzantine Agreement) is
based on [57, 312].

Appendix C

Two proofs

In this appendix we provide proofs of two basic results. The first proof is for a
folklore theorem which asserts that the soundness error in parallel repetition
of interactive proofs deceases exponentially with the number of repetitions.
To the best of our knowledge, a proof of this commonly utilized theorem has
never appeared before. The proof itself is quite easy, but in light of the above
we present it in full detail. The second proof provided in this appendix is for
Theorem 3.11 asserting the existence of a generic hard-core predicate. This
proof is different from the one which has appeared in the original text [183],
and is provided in full detail (rather than in a terse form as in [183]).

C.1 Parallel repetition of interactive proofs

By k parallel repetitions of an interactive proof system, (P, V), we mean
a proof system (Pk, Vk) in which the parties play in parallel k copies of
(P, V). That is, Vk (resp., Pk) generates k independently distributed random-
pads, r1, ..., rk, for V (resp., ω1, ..., ωk for P), and sets its ith message to
β1,i, ..., βk,i, where βj,i = V (rj , α1,j , ..., αi−1,j) (resp., to α1,i, ..., αk,i, where
αj,i = P (ωj , β1,j , ..., βi,j)). We stress that Vk accepts if and only if V would
have accepted in all k copies.1 We are interested in the soundness error of
Vk, which only depends on V and k (and so Pk and P are omitted from the
rest of the discussion). For any pair of interactive machines, A and B, let
use denote by (A,B) the output of A after interacting with B, on common
input x. The Parallel Repetition Theorem for interactive proofs is captured
by the following lemma.

1 The analysis of the case where Vk accepts iff a threshold number of copies accept
is more complex; see [38]. The simple case treated here suffices for “error reduction”
in interactive proofs with one-sided error. A threshold rule is typically employed when
“reducing error” in two-sided error proof system.

153

154 APPENDIX C. TWO PROOFS

Lemma C.1 (folklore): Let V1 be an interactive machine, and Vk be an
interactive machine obtained from V1 by playing k versions of V1 in parallel.
Let

p1(x)
def
= max

P∗
{Pr[(P ∗, V1)(x) = 1]} , and

pk(x)
def
= max

P∗
{Pr[(P ∗, Vk)(x) = 1]} .

Then
pk(x) = p1(x)

k

Proof: Clearly, pk(x) ≥ p1(x)
k. The point is to prove pk(x) ≤ p1(x)

k.
We stress that one may not just assume that the optimal prover strategy
against Vk consists of playing optimally but independently in each of the k
parallel copies. As we shall see below, this conjecture turns out to be correct
in the current setting (but is wrong in related settings such as multi-party
interactive proofs and computationally-sound proofs; see [156, 136, 316, 137]
and [47], respectively). Thus, a proof is due.

The proof uses the notion of the game tree of a proof system. Fixing a
verifier V we consider its interaction with a generic prover on any fixed com-
mon input, denoted x. The verifier’s random choices can be thought of as
corresponding to the contents of its random-tape, called the random-pad. We
assume without loss of generality that V sends the first message and that the
prover sends the last one. In each round, V ’s message is chosen depending
on the history of the interaction so far and according to some probability dis-
tribution induced by V ’s local random-tape. The history so far corresponds
to a fixed subset of possible random-pads, and the possible messages to be
sent correspond to a partition of this subset. Thus, each possible message is
sent with probability proportional to its part in this subset. The above de-
scription corresponds to general interactive proofs. (In case of Arthur-Merlin
games the situation is simpler: V merely tosses a predetermined number of
coins and sends the outcome to the prover.) As to the prover’s messages,
they are chosen arbitrarily (but are of length at most poly(|x|)). The in-
teraction goes on, for at most poly(|x|) rounds at which point the verifier
stops outputting either accept or reject. The messages exchanged till that
point are called a transcript of the interaction between the prover and V .
To simplify the exposition, we augment the transcript of the interaction by
V ’s random-pad. This way, V ’s accept/reject decision is determined by the
augmented transcript (and the input x). The interaction between the prover
and V on common input x may be viewed as a game in which the prover’s
objective is to maximize the probability that V accepts, and V ’s strategy is
fixed but mixed (i.e., probabilistic).

Definition C.2 (the game tree and its value): Let V and x be fixed.

• The tree Tx: The nodes in Tx correspond to prefixes of transcripts of
possible interactions of V with an arbitrary prover. The root represents

C.1. PARALLEL REPETITION OF INTERACTIVE PROOFS 155

the empty interaction and is defined to be at level 0. For every i ≥ 0, the
edges going out from each 2ith level node correspond to the messages V
may send given the history so far. The edges going out from each (2i+
1)st level node correspond to the messages a prover may send given the
history so far. Leaves correspond to augmented transcripts as defined
above, and so their direct ancestors correspond to full transcripts.

• The value of Tx: The value of the tree is defined bottom-up as follows.
The value of a leaf is either 0 or 1 depending on whether V accepts
in the augmented transcript represented by it or not. The value of an
internal node at level 2i is defined as the weighted average of the values
of its children, where the weights correspond to the probabilities of the
various verifier messages. (This definition holds also for the fathers of
leaves, when viewing V ’s random-pad as an auxiliary, fictitious message
sent by V .) The value of an internal node at level 2i−1 is defined as the
maximum of the values of its children. This corresponds to the prover’s
strategy of trying to maximize V ’s accepting probability. The value of
the tree is defined as the value of its root.

We may assume, without loss of generality, that the averages taken in even-
leveled nodes are plain averages (rather than weighted ones). This is justified
by duplicating odd-level nodes. We stress that this modification is applied to
the game-tree (not to the verifier), and results in a tree the correspondence
of which to the proof system is less obvious. Notice that we are dealing
with a general interactive proof, yet our analysis of the game-tree is a mental
experiment (which need not be efficiently implementable).

We consider the game-trees of both the basic proof system and the k-
repeated proof system. Fixing an input, we denote the first tree by T1 and
the second by Tk. There is a natural 1-1 mapping of nodes in Tk to sequences
of k nodes in T1. Going from the leaves of Tk to its root, we prove by induction
that the value of each node is Tk equals the product of the values of the k
nodes to which it is mapped (by the above mapping). The base case (i.e.,
leaves) is obvious, and there are two cases to consider in the induction step.

1. For a prover-node, ~v = (v1, ..., vk), denote its children in Tk by ~w
~i =

(wi1
1 , ..., w

ik

k), where ~i = (i1, ..., ik) and wi
j is the i-th child in T1 of vj .

Then, by definition of the game trees

val(~v) = max
~i

(val(~w
~i)) , and (C.1)

val(vj) = max
i

(val(wi
j)) , for j = 1, ..., k. (C.2)

By induction, for every ~i = (i1, ..., ik),

val(~w
~i) =

k∏

j=1

val(w
ij

j)) (C.3)

156 APPENDIX C. TWO PROOFS

Combining Equations (C.1)–(C.3), and using the “distributive feature”
of maximization, we get

val(~v) = max
~i

(val(~wi))

= max
~i

k∏

j=1

val(w
ij

j)

=

k∏

j=1

max
ij

(val(w
ij

j))

=

k∏

j=1

val(vj)

as required.

2. For a verifier-node, ~v = (v1, ..., vk), denote its children in Tk by ~w
~i =

(wi1
1 , ..., w

ik

k), where~i and the wi
j ’s are as above. Then, by definition of

the game trees

val(~v) = aver~i(val(~w
~i)) , and (C.4)

val(vj) = averi(val(wi
j)) , for j = 1, ..., k. (C.5)

where averi(xi) denotes the average value of the xi’s which are to be
understood from the context. Again, Eq. (C.3) holds by induction, and
so we get

val(~v) = aver~i(val(~wi))

= aver~i

k∏

j=1

val(w
ij

j)

=
k∏

j=1

averij
(val(w

ij

j))

=
k∏

j=1

val(vj)

The lemma follows.

We comment that the above argument generalizes to the case in which the k
copies of V1 are invoked on possibly different inputs. That is,

Lemma C.3 Let V1 be an interactive machine, and Vk be an interactive
machine obtained from V1 by playing k versions of V1 in parallel so that on

C.1. PARALLEL REPETITION OF INTERACTIVE PROOFS 157

input x = (x1, ..., xk) to Vk the ith version of V1 is invoked on xi. Let p1(x)
def
=

maxP∗{Pr[(P ∗, V1)(x) = 1]}, and pk(x)
def
= maxP∗{Pr[(P ∗, Vk)(x) = 1]}.

Then

pk(x1, ..., xk) =

k∏

i=1

p1(xi)

Perspective – parallel repetition in multi-prover interactive proofs.
To demonstrate the dependency of the above lemma on the full-information
setting of interactive proof systems, we reproduce a counter-example to the
analogous claim for two-prover proof systems. (The counter-example is due
to Feige [136], improving over [156].) The basic one-round two-prover system
is as follows.

1. The verifier uniformly selects two bits b1, b2 ∈ {0, 1}, and sends b1
(resp., b2) to the first (resp., second) prover.

2. Each prover is supposed to reply with a pair (i, r) ∈ {1, 2} × {0, 1}.
3. Upon receiving (i1, r1) and (i2, r2), from the first and second prover

respectively, the verifier accepts if and only if (i1, r1) = (i2, r2) and
r1 = bi1 . (That is, both provers should reply with the identity of one
of the provers and the bit sent to it.)

It can be easily shown that the value of this basic game is 1/2. We care
only about the upper bound which is established by noting that in order to
win both provers must send the same message but only one of them knows
the relevant bit of the verifier.2 We now consider the parallel execution of
two copies of the basic game. For clarity, we explicitly present the resulting
parallel game.

1. The verifier uniformly selects four bits b11, b
1
2, b

2
1, b

2
2 ∈ {0, 1}, and sends

(b11, b
2
1) (resp., (b12, b

2
2)) to the first (resp., second) prover.

2. Each prover is supposed to reply with two pair (i1, r1), (i2, r2) ∈ {1, 2}×
{0, 1}.

3. Upon receiving ((i11, r
1
1), (i

2
1, r

2
1)) and ((i12, r

1
2), (i

2
2, r

2
2)), from the first

and second prover respectively, the verifier accepts if and only if (ij1, r
j
1) =

(ij2, r
j
2) and rj

1 = bj
ij

1

, for both j = 1, 2.

It can be shown that the value of this parallel game remains 1/2, thus pro-
viding a dramatic refutation to the naive parallel repetition conjecture for
multi-prover proof systems. In particular, we note that the provers can win
with probability 1/2 if the first (resp., second) prover, upon receiving (b11, b

2
1)

(resp., (b12, b
2
2)), respond with ((1, b11), (2, b

1
1)) (resp., ((1, b22), (2, b

2
2))). The

reason being that these strategies win if and only if b11 = b22 (which happens
with probability 1/2).

2 The lower bound may be established by both provers always replying (1, 0).

158 APPENDIX C. TWO PROOFS

C.2 A generic Hard-Core Predicate

Theorem 3.11, conjectured by Levin [249] and proven by Goldreich and
Levin [183], relates two computational tasks: The first task is inverting a
function f ; namely given y find an x so that f(x) = y. The second task is
predicting, with non-negligible advantage, the exclusive-or of a subset of the
bits of x when only given f(x). More precisely, it has been proved that if f
cannot be efficiently inverted then given f(x) and r it is infeasible to predict
the inner-product mod 2 of x and r better than obvious.

The proof presented here is not the original one presented in [183] (see
generalization in [192]), but rather an alternative suggested by Charlie Rack-
off. The alternative proof, inspired by [8], has two main advantages over the
original one: It is simpler to explain, and it leads to better security (i.e., a
more efficient reduction of inverting f to predicting the inner-product) [250].

Theorem C.4 (Theorem 3.11 – restated): Let b(x, r) denote the inner-
product mod 2 of the binary vectors x and r. Suppose we have oracle access
to a random process bx : {0, 1}n 7→ {0, 1}, so that

Prr∈{0,1}n [bx(r) = b(x, r)] ≥ 1

2
+ ǫ

where the probability is taken uniformly over the internal coin tosses of bx and
all possible choices of r ∈ {0, 1}n. Then we can output, in time polynomial
in n/ǫ, a list of strings which with probability at least 1

2 contains x.

Theorem 3.11 is derived from the above by using standard arguments. We
prove this fact first.

Proposition C.5 Theorem C.4 implies Theorem 3.11.

Proof: We assume for contradiction the existence of an efficient algorithm
predicting the inner-product with advantage which is not negligible, and de-
rive an algorithm that inverts f with related (i.e., not negligible) success
probability. This contradicts the hypothesis that f is a one-way function.
Thus, the proof uses a “reducibility argument” – that is, we reduce the task
of inverting f to the task of predicting b(x, r) from (f(x), r).

Let G be a (probabilistic polynomial-time) algorithm that on input f(x)
and r tries to predict the inner-product (mod 2) of x and r. Denote by ǫG(n)
the (overall) advantage of algorithm G in predicting b(x, r) from f(x) and r,
where x and r are uniformly chosen in {0, 1}n. Namely,

ǫG(n)
def
= Pr [G(f(Xn), Rn) = b(Xn, Rn)]− 1

2

where here and in the sequel Xn and Rn denote two independent random
variables, each uniformly distributed over {0, 1}n. In the sequel we shorthand
ǫG by ǫ.

C.2. A GENERIC HARD-CORE PREDICATE 159

Our first observation is that, on at least an ǫ(n)
2 fraction of the x’s of

length n, algorithm G has an ǫ(n)
2 advantage in predicting b(x,Rn) from f(x)

and Rn. Namely,

Claim: There exists a set Sn ⊆ {0, 1}n of cardinality at least ǫ(n)
2 · 2n such

that for every x ∈Sn, it holds that

s(x)
def
= Pr[G(f(x), Rn)=b(x,Rn)] ≥ 1

2
+
ǫ(n)

2

This time the probability is taken over all possible values of Rn and all
internal coin tosses of algorithm G, whereas x is fixed.

Proof: The observation follows by an averaging argument. Namely, write
Exp(s(Xn)) = 1

2 + ǫ(n), and apply Markov Inequality.2

Thus, we restrict our attention to x’s in Sn. For each such x, the conditions of
Theorem C.4 hold, and so within time poly(n/ǫ(n)) and with probability at
least 1/2 we retrieve a list of strings containing x. Contradiction to the one-
wayness of f follows, since the probability we invert f on uniformly selected

x is at least 1
2 · Pr[Un∈Sn] ≥ ǫ(n)

4 .

C.2.1 A motivating discussion

Let s(x)
def
= Pr[bx(r) = b(x, r)], where r is uniformly distributed in {0, 1}|x|.

Then, by the hypothesis of Theorem C.4, s(x) ≥ 1
2 + ǫ. Suppose, for a

moment, that s(x) > 3
4 +ǫ. In this case, retrieving x by querying the oracle

bx is quite easy. To retrieve the ith bit of x, denoted xi, we uniformly select
r ∈ {0, 1}n, and obtain bx(r) and bx(r ⊕ ei), where ei is an n-dimensional
binary vector with 1 in the ith component and 0 in all the others, and v ⊕ u
denotes the addition mod 2 of the binary vectors v and u. Clearly, if both
bx(r) = b(x, r) and bx(r ⊕ ei) = b(x, r ⊕ ei) then

bx(r)⊕ bx(r ⊕ ei) = b(x, r)⊕ b(x, r ⊕ ei)

= b(x, ei)

= xi

The probability that both equalities hold (i.e., both bx(r) = b(x, r) and bx(r⊕
ei) = b(x, r ⊕ ei)) is at least 1 − 2 · (1

4 − ǫ) = 1
2 + 2ǫ. Hence, repeating the

above procedure sufficiently many times and ruling by majority we retrieve
xi with very high probability. Similarly, we can retrieve all the bits of x,
and hence obtain x itself. However, the entire analysis was conducted under
(the unjustifiable) assumption that s(x) > 3

4 +ǫ, whereas we only know that
s(x) > 1

2 +ǫ.
The problem with the above procedure is that it doubles the original er-

ror probability of the oracle bx on random queries. Under the unrealistic

160 APPENDIX C. TWO PROOFS

assumption, that the bx’s error on such inputs is significantly smaller than 1
4 ,

the “error-doubling” phenomenon raises no problems. However, in general
(and even in the special case where bx’s error is exactly 1

4) the above proce-
dure is unlikely to yield x. Note that the error probability of bx can not be
decreased by querying bx several times on the same instance (e.g., bx may
always answer correctly on three quarters of the inputs, and always err on
the remaining quarter). What is required is an alternative way of using bx –
a way which does not double the original error probability of bx. The key
idea is to generate the r’s in a way which requires querying bx only once per
each r (and xi), instead of twice. The good news are that the error proba-
bility is no longer doubled, since we will only use bx to get an “estimate” of
b(x, r⊕ ei). The bad news are that we still need to know b(x, r), and it is not
clear how we can know b(x, r) without querying bx. The answer is that we
can guess b(x, r) by ourselves. This is fine if we only need to guess b(x, r) for
one r (or logarithmically in |x| many r’s), but the problem is that we need to
know (and hence guess) b(x, r) for polynomially many r’s. An obvious way of
guessing these b(x, r)’s yields an exponentially vanishing success probability.
The solution is to generate these polynomially many r’s so that, on one hand
they are “sufficiently random” whereas on the other hand we can guess all the
b(x, r)’s with non-negligible success probability. Specifically, generating the
r’s in a particular pairwise independent manner will satisfy both (seemingly
contradictory) requirements. We stress that in case we are successful (in our
guesses for the b(x, r)’s), we can retrieve x with high probability. Hence, we
retrieve x with non-negligible probability.

A word about the way in which the pairwise independent r’s are gen-
erated (and the corresponding b(x, r)’s are guessed) is indeed in place. To
generate m = poly(n/ǫ) many r’s, we uniformly (and independently) select

l
def
= log2(m+1) strings in {0, 1}n. Let us denote these strings by s1, ..., sl. We

then guess b(x, s1) through b(x, sl). Let us denote these guesses, which are
uniformly (and independently) chosen in {0, 1}, by σ1 through σl. Hence, the
probability that all our guesses for the b(x, si)’s are correct is 2−l = 1

poly(n/ǫ) .

The different r’s correspond to the different non-empty subsets of {1, 2, ..., l}.
We compute rJ def

=
⊕

j∈J s
j . The reader can easily verify that the rJ ’s are

pairwise independent and each is uniformly distributed in {0, 1}n. The key
observation is that

b(x, rJ) = b(x,
⊕

j∈J

sj) =
⊕

j∈J

b(x, sj)

Hence, our guess for the b(x, rJ)’s is
⊕

j∈J σ
j , and with non-negligible prob-

ability all our guesses are correct.

C.2. A GENERIC HARD-CORE PREDICATE 161

C.2.2 Back to the formal argument

Following is a formal description of the recovering algorithm, denoted A. On

input n and ǫ (and oracle access to bx), algorithm A sets l
def
= ⌈log2(n · ǫ−2 +

1)⌉. Algorithm A uniformly and independently select s1, ..., sl ∈ {0, 1}n, and
σ1, ..., σl ∈ {0, 1}. It then computes, for every non-empty set J ⊆ {1, 2, ..., l},
a string rJ ←⊕

j∈J s
j and a bit ρJ ←⊕

j∈J σ
j . For every i∈{1, ..., n} and

every non-empty J ⊆ {1, .., l}, algorithm A computes zJ
i ← ρJ ⊕ bx(rJ ⊕ ei).

Finally, algorithm A sets zi to be the majority of the zJ
i values, and outputs

z = z1 · · · zn.

Comment: An alternative implementation of the above ideas results in
an algorithm, denoted A′, which fits the conclusion of the theorem. Rather
than selecting at random a setting of σ1, ..., σl ∈ {0, 1}, algorithm A′ tries
all possible values for σ1, ..., σl. It outputs a list of 2l candidates z’s, one per
each of the possible settings of σ1, ..., σl ∈ {0, 1}.

Clearly, A makes n ·2l = n2/ǫ2 oracle calls to bx, and the same amount of
other elementary computations. Algorithm A′ makes the same queries, but
conducts a total of (n/ǫ2) · (n2/ǫ2) elementary computations.

Following is a detailed analysis of the success probability of algorithm A.
We start by showing that, in case the σj ’s are correct, then with constant
probability, zi = xi for all i ∈ {1, ..., n}. This is proven by bounding from
below the probability that the majority of the zJ

i ’s equals xi.

Claim: For every 1≤ i≤n,

Pr

[
|{J : b(x, rJ)⊕bx(rJ ⊕ ei) = xi}| >

1

2
· (2l − 1)

]
> 1− 1

4n

where rJ def
=
⊕

j∈J s
j and the sj ’s are independently and uniformly chosen

in {0, 1}n.

Proof: For every J , define a 0-1 random variable ζJ , so that ζJ equals 1 if
and only if b(x, rJ)⊕bx(rJ ⊕ ei) = xi. The reader can easily verify that each
rJ is uniformly distributed in {0, 1}n. It follows that each ζJ equals 1 with
probability 1

2+ǫ. We show that the ζJ ’s are pairwise independent by showing
that the rJ ’s are pairwise independent. For every J 6= K we have, without
loss of generality, j ∈ J and k ∈ K \ J . Hence, for every α, β ∈ {0, 1}n, we
have

Pr
[
rK =β | rJ =α

]
= Pr

[
sk =β | sj =α

]

= Pr
[
sk =β

]

= Pr
[
rK =β

]

and pairwise independence of the rJ ’s follows. Let m
def
= 2l − 1. Using

162 APPENDIX C. TWO PROOFS

Chebyshev’s Inequality, we get

Pr

[
∑

J

ζJ ≤ 1

2
·m
]
≤ Pr

[∣∣∣∣∣
∑

J

ζJ − (0.5+ǫ) ·m
∣∣∣∣∣ ≥ ǫ ·m

]

<
Var(ζ{1})

ǫ−2 · (n/ǫ2)

<
1

4n

The claim now follows. 2

Recall that if σj = b(x, sj), for all j’s, then ρJ = b(x, rJ) for all non-empty
J ’s. In this case z output by algorithm A equals x, with probability at
least 3/4. However, the first event happens with probability 2−l = 1

n/ǫ2

independently of the events analyzed in the Claim. Hence, algorithm A

recovers x with probability at least 3
4 · ǫ2

n (whereas, the modified algorithm,
A′, succeeds with probability at least 3

4). Theorem C.4 follows.

C.2.3 Improved Implementation of Algorithm A
′

In continuation to the proof of Theorem C.4, we present guidelines for a more
efficient implementation of Algorithm A′. This yields a tighter relationship
between the hardness of inverting the supposedly one-way function and the
hardness of predicting the hard-core predicate. The result as well as the ideas
presented below are due to Levin [250].

In the sequel it will be more convenient to use arithmetic of reals instead
of that of Boolean values. Hence, we denote b′(x, r) = (−1)b(r,x) and b′x(r) =
(−1)bx(r).

1. Prove that Expr(b
′(x, r)·b′x(r+ei)) = 2ǫ·(−1)xi, where ǫ = Prr(bx(r) =

b(x, r)) − 0.5.

2. Let v be an l-dimensional Boolean vector, and let R be a uniformly
chosen l-by-n Boolean matrix. Prove that for every v 6= u ∈ {0, 1}l \
{0}l it holds that vR and uR are pairwise independent and uniformly
distributed in {0, 1}n.

(Each such vR corresponds to a rJ above, with J = {j : vj =1}.)

3. Prove that, with probability at least 1
2 over the choices of R, there exists

u ∈ {0, 1}l so that, for every 1≤ i≤n, the sign of
∑

v∈{0,1}l b′(u, v)b′x(vR+

ei) equals the sign of (−1)xi .

(Hint: Re-do the proof of the Claim of subsection C.2.2, using b′(x, vR) =

b′(xRT , v) and u
def
= xRT .)

C.2. A GENERIC HARD-CORE PREDICATE 163

4. Let B be a fixed 2l-by-2l matrix with the (u, v)-entry being b′(u, v),
and denote by oi an 2l-dimensional vector with the vth entry equal
b′x(vR + ei). Then, Boi is an 2l-dimensional vector with the uth entry
equal to

∑
v∈{0,1}l b′(u, v)b′x(vR + ei).

Consider an algorithm that uniformly selects an l-by-n matrix R, com-
putes yi ← Boi, for all i’s, and forms a 2l-by-n matrix Y in which the
columns are the yi’s. Let Z be a corresponding matrix in which the
(u, i)-entry is 0 if the (u, i)-entry of Y is positive, and is 1 otherwise.
The output is the list of rows in Z.

(Notice that the algorithm makes 2l · n queries to obtain all entries in
the oi’s, that all these queries can be computed within 2ln time, and
so all that remains is to multiply the fixed matrix B by the n vectors,
oi’s.)

(a) Using Item 3, evaluate the success probability of the algorithm
(i.e., the probability that x is in the output list).

(b) Using the special structure of the fixed matrix B, show that the
product Boi can be computed in time l · 2l.

Hint: B is the Sylvester matrix, which can be written recursively
as

Sk =

(
Sk−1 Sk−1

Sk−1 Sk−1

)

where S0 = +1 and M means flipping the +1 entries of M to −1
and vice versa. (Alternatively, note that Bo is the Discrete Fourier
Transform of o.)

It follows that algorithm A′ can be implemented in time n · l2l, which is
Õ(n2/ǫ2).

Further Improvement. We may further improve algorithm A′ by observ-
ing that it suffices to let 2l = O(1/ǫ2) rather than 2l = O(n/ǫ2). Under
the new setting, with constant probability, we recover correctly a constant
fraction of the bits of x rather than all of them. If x were an codeword under
an asymptotically good error-correcting code (cf., [228]), this would suffice.
To avoid this assumption, we modify algorithm A′ so that it tries to recover
certain xors of bits of x (rather than individual bits of x). Specifically, we
use an asymptotically good linear code (i.e., having constant rate, correcting
a constant fraction of errors and having efficient decoding algorithm) [228].
Thus, the modified A′ recovers correctly a constant fraction of the bits in the
encoding of x, under such codes, and using the decoding algorithm – recovers
x.

164 APPENDIX C. TWO PROOFS

Appendix D

Related Surveys by the
Author

Reproduced below are abstracts of other surveys of the author on topics
related to Randomness and Computation. All these surveys are available
from the ECCC, the Electronic Colloquium on Computational Complexity,
accessible by url http://www.eccc.uni-trier.de/eccc/.

On Yao’s XOR-Lemma [with N. Nisan and A. Wigderson, ECCC, TR95-
050, 1995]: A fundamental lemma of Yao states that computational weak-
unpredictability of functions gets amplified if the results of several indepen-
dent instances are XORed together. We survey two known proofs of Yao’s
Lemma, and present a third alternative proof. The third proof proceeds
by first proving that a function constructed by concatenating the values of
the function on several independent instances is much more unpredictable,
with respect to specified complexity bounds, than the original function. This
statement turns out to be easier to prove than Yao’s XOR-Lemma. Using a
result of Goldreich and Levin, and some elementary observation, we derive
Yao’s XOR-Lemma.

Three XOR-Lemmas – An Exposition [ECCC, TR95-056, 1995]: We
provide an exposition of three lemmas which relate general properties of
distributions with the exclusive-or of certain bit locations. The first XOR-
Lemma, commonly attributed to U.V. Vazirani, relates the statistical dis-
tance of a distribution from uniform to the maximum bias of the xor of
certain bit positions. The second XOR-Lemma, due to U.V. Vazirani and
V.V. Vazirani, is a computational analogue of the first: It relates the pseu-
dorandomness of a distribution to the difficulty of predicting the xor of bits
in particular (or random) positions. The third Lemma, due to Goldreich and
Levin, relates the difficulty of retrieving a string and the unpredictability of

165

166 APPENDIX D. RELATED SURVEYS BY THE AUTHOR

the xor of random bit positions. The most notable XOR-Lemma – that is
the so-called Yao XOR-Lemma is not discussed here.

A Sample of Samplers – A Computational Perspective on Sampling
[ECCC, TR97-020, 1997]: We consider the problem of estimating the average
of a huge set of values. That is, given oracle access to an arbitrary function
f : {0, 1}n 7→ [0, 1], we need to estimate 2−n

∑
x∈{0,1}n f(x) upto an additive

error of ǫ. We are allowed to employ a randomized algorithm which may
err with probability at most δ. We discuss lower and upper bounds, algo-
rithms and the ideas underlying their construction, culminating in the best
algorithm known. This algorithm makes O(ǫ−2 · log(1/δ)) queries and uses
n+O(log(1/ǫ))+O(log(1/δ)) coin tosses, both complexities being very close
to the corresponding lower bounds.

Combinatorial Property Testing – A Survey [ECCC, TR97-056, 1997]:
We consider the question of determining whether a given object has a prede-
termined property or is “far” from any object having the property. Specif-
ically, objects are modeled by functions, and distance between functions is
measured as the fraction of the domain on which the functions differ. We con-
sider (randomized) algorithms which may query the function at arguments of
their choice, and seek algorithms which query the function at relatively few
places. We focus on combinatorial properties, and specifically on graph prop-
erties. The two standard representations of graphs – by adjacency matrices
and by incidence lists – yield two different models for testing graph proper-
ties. In the first model, most appropriate for dense graphs, distance between
N -vertex graphs is measured as the fraction of edges on which the graphs
disagree over N2. In the second model, most appropriate for bounded-degree
graphs, distance between N -vertex d-degree graphs is measured as the frac-
tion of edges on which the graphs disagree over dN . To illustrate the two
models, we survey results regarding the complexity of testing whether a graph
is Bipartite. For a constant distance parameter, a constant number of queries
suffice in the first model, whereas Θ̃(

√
N) queries are necessary and sufficient

in the second model.

Notes on Levin’s Theory of Average-Case Complexity [ECCC, TR97-
058, 1997]: In 1984, Leonid Levin has initiated a theory of average-case com-
plexity. We provide an exposition of the basic definitions suggested by Levin,
and discuss some of the considerations underlying these definitions.

Bibliography

[1] W. Aiello, M. Bellare and R. Venkatesan. Knowledge on the Average –
Perfect, Statistical and Logarithmic. In 27th ACM Symposium on the Theory

of Computing, pages 469–478, 1995.

[2] W. Aiello and J. H̊astad. Perfect Zero-Knowledge Languages can be Recog-
nized in Two Rounds. In 28th IEEE Symposium on Foundations of Computer

Science, pages 439–448, 1987.

[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACM

Symposium on the Theory of Computing, pages 99–108, 1996.

[4] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded mea-
sure. In 17th Conference on the Foundations of Software Technology & The-

oretical Computer Science, Springer-Verlag, Lecture Notes in Computer Sci-
ence (Vol. 1346), pages 235–249, 1997.

[5] M. Ajtai, J. Komlos, E. Szemerédi. Deterministic Simulation in LogSpace.
In 19th ACM Symposium on the Theory of Computing, pages 132–140, 1987.

[6] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic con-
stant depth circuits. In 26th IEEE Symposium on Foundations of Computer

Science, pages 11–19, 1985.

[7] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász and C. Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems. In
20th IEEE Symposium on Foundations of Computer Science, pages 218–223,
1979.

[8] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:
Certain Parts are As Hard As the Whole. SIAM Journal on Computing,
Vol. 17, April 1988, pages 194–209.

[9] N. Alon. Eigenvalues and expanders. Combinatorica, Vol. 6, pages 83–96,
1986.

[10] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm
for the Maximal Independent Set Problem. J. of Algorithms, Vol. 7, pages
567–583, 1986.

167

168 BIBLIOGRAPHY

[11] N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth. Construction of Asymp-
totically Good, Low-Rate Error-Correcting Codes through Pseudo-Random
Graphs. IEEE Transactions on Information Theory, Vol. 38, pages 509–516,
1992.

[12] N. Alon, O. Goldreich, J. H̊astad, R. Peralta. Simple Constructions of Almost
k-wise Independent Random Variables. Journal of Random structures and

Algorithms, Vol. 3, No. 3, (1992), pages 289–304.

[13] N. Alon and V.D. Milman. λ1, Isoperimetric Inequalities for Graphs and
Superconcentrators, J. Combinatorial Theory, Ser. B, Vol. 38, pages 73–88,
1985.

[14] N. Alon and J.H. Spencer. The Probabilistic Method, John Wiley & Sons,
Inc., 1992.

[15] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolin and L. Trevisan, Weak Random
Sources, Hitting Sets, and BPP Simulations. To appear in SIAM Journal on

Computing. Preliminary version in 38th IEEE Symposium on Foundations

of Computer Science, pages 264–272, 1997.

[16] R. Armoni. On the derandomization of space-bounded computations. In
the proceedings of Random98, Springer-Verlag, Lecture Notes in Computer
Science, pages 49–57.

[17] R. Armoni, M. Saks, A. Wigderson and S. Zhou. Discrepancy sets and pseu-
dorandom generators for combinatorial rectangles. In 37th IEEE Symposium

on Foundations of Computer Science, pages 412-421, 1996.

[18] R. Armoni, A. Ta-Shma, A. Wigderson and S. Zhou. SL ⊆ L4/3. In 29th

ACM Symposium on the Theory of Computing, pages 230–239, 1997.

[19] S. Arora and C. Lund. Hardness of Approximations. In Approximation

Algorithms for NP-hard Problems, D. Hochbaum ed., PWS, 1996.

[20] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verifi-
cation and Intractability of Approximation Problems. Journal of the ACM,
Vol. 45, pages 501–555, 1998. Preliminary version in 33rd IEEE Symposium

on Foundations of Computer Science, 1992.

[21] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-
tion of NP. Journal of the ACM, Vol. 45, pages 70–122, 1998. Preliminary
version in 33rd IEEE Symposium on Foundations of Computer Science, 1992.

[22] S. Arora and S. Sudan. Improved low degree testing and its applications. In
29th ACM Symposium on the Theory of Computing, pages 485–495, 1997.

[23] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations

and Advanced Topics. McGraw-Hill Publishing Company, London, 1998.

[24] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium

on the Theory of Computing, pages 421–429, 1985.

BIBLIOGRAPHY 169

[25] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time
has Two-Prover Interactive Protocols. Computational Complexity, Vol. 1,
No. 1, pages 3–40, 1991. Preliminary version in 31st IEEE Symposium on

Foundations of Computer Science, 1990.

[26] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in
Polylogarithmic Time. In 23rd ACM Symposium on the Theory of Comput-

ing, pages 21–31, 1991.

[27] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-
tial Time Simulations unless EXPTIME has Publishable Proofs. Complexity

Theory, Vol. 3, pages 307–318, 1993.

[28] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System
and a Hierarchy of Complexity Classes. Journal of Computer and System

Science, Vol. 36, pp. 254–276, 1988.

[29] L. Babai, N. Nisan and M. Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. Journal of Computer and

System Science, Vol. 45(2), pgaes 204–232, 1992.

[30] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: Efficient
Algorithms). MIT Press, 1996.

[31] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,
Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 377–
391.

[32] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries. In
7th STACS, Springer Verlag, Lecture Notes in Computer Science (Vol. 415),
pages 37–48, 1990.

[33] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revis-
ited: The Cascade Construction and its Concrete Security. In 37th IEEE

Symposium on Foundations of Computer Science, pages 514–523, 1996.

[34] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message
Authentication. In Crypto96, Springer Lecture Notes in Computer Science
(Vol. 1109), pages 1–15.

[35] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. In 30th ACM

Symposium on the Theory of Computing, pages 419–428, 1998.

[36] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In Crypto98, Springer
Lecture Notes in Computer Science (Vol. 1462), pages 26–45.

[37] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92,
Springer-Verlag Lecture Notes in Computer Science (Vol. 740), pages 390–
420.

170 BIBLIOGRAPHY

[38] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive
Proofs. Computational Complexity, Vol. 4, No. 4, pages 319–354, 1993.

[39] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography: the
Case of Hashing and Signing. In Crypto94, Springer-Verlag Lecture Notes in
Computer Science (Vol. 839), pages 216–233, 1994.

[40] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography and
Application to Virus Protection. In 27th ACM Symposium on the Theory of

Computing, pages 45–56, 1995.

[41] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-
Approximability – Towards Tight Results. SIAM Journal on Computing,
Vol. 27, No. 3, pages 804–915, 1998.

[42] M. Bellare and S. Goldwasser. The Complexity of Decision versus Search.
SIAM Journal on Computing, Vol. 23, pages 97–119, 1994.

[43] M. Bellare, S. Goldwasser, C. Lund and A. Russell. Efficient probabilistically
checkable proofs and applications to approximation. In 25th ACM Symposium

on the Theory of Computing, pages 294–304, 1993.

[44] M. Bellare, S. Goldwasser and D. Micciancio. “Pseudo-random” Number
Generation within Cryptographic Algorithms: the DSS Case. In Crypto97,
Springer Lecture Notes in Computer Science (Vol. 1294), pages 277–291.

[45] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methods for
Message Authentication using Finite Pseudorandom Functions. In Crypto95,
Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 15–28.

[46] M. Bellare, S. Halevi, A. Sahai and S. Vadhan. Trapdoor Functions and
Public-Key Cryptosystems. In Crypto98, Springer Lecture Notes in Com-
puter Science (Vol. 1462), pages 283–298.

[47] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols? In 38th IEEE Symposium on

Foundations of Computer Science, pages 374–383, 1997.

[48] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chaining.
In Crypto94, Springer-Verlag Lecture Notes in Computer Science (Vol. 839),
pages 341–358.

[49] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. Journal

of the ACM, Vol. 39, pages 214–233, 1992.

[50] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for
Designing Efficient Protocols. In 1st Conf. on Computer and Communica-

tions Security, ACM, pages 62–73, 1993.

[51] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution.
In Crypto93, Springer-Verlag Lecture Notes in Computer Science (Vol. 773),
pages 232–249, 1994.

BIBLIOGRAPHY 171

[52] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The
Three Party Case. In 27th ACM Symposium on the Theory of Computing,
pages 57–66, 1995.

[53] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How
to Sign with RSA and Rabin. In EuroCrypt96, Springer Lecture Notes in
Computer Science (Vol. 1070), pages 399–416.

[54] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In 35th

IEEE Symposium on Foundations of Computer Science, pages 276–287, 1994.

[55] M. Bellare and M. Sudan. Improved non-approximability results. In 26th

ACM Symposium on the Theory of Computing, pages 184–193, 1994.

[56] C.H. Bennett, G. Brassard and J.M. Robert. Privacy Amplification by Public
Discussion. SIAM Journal on Computing, Vol. 17, pages 210–229, 1988.
Preliminary version in Crypto85, Springer-Verlag Lecture Notes in Computer
Science (Vol. 218), pages 468–476 (titled “How to Reduce your Enemy’s
Information”).

[57] M. Ben-Or. Another advantage of free choice: Completely Asynchronous
Byzantine Agreement. In 2nd ACM Symposium on Principles of Distributed

Computing, pages 27–30, 1983.

[58] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali
and P. Rogaway. Everything Provable is Probable in Zero-Knowledge. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 37–56, 1990

[59] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-
active Proofs: How to Remove Intractability. In 20th ACM Symposium on

the Theory of Computing, pages 113–131, 1988.

[60] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM

Symposium on the Theory of Computing, pages 1–10, 1988.

[61] G.R. Blakley. Safeguarding Cryptographic Keys. In Proc. of National Com-

puter Conf., Vol. 48, AFIPS Press, pages 313–317, 1979.

[62] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys., Vol. 1,
pages 175–193, 1983.

[63] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133–137,
February 1982. See also SIGACT News, Vol. 15, No. 1, 1983.

[64] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-
Random Number Generator. SIAM Journal on Computing, Vol. 15, 1986,
pages 364–383.

[65] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,
pages 1084–1118, 1991. (Considered the journal version of [67].)

172 BIBLIOGRAPHY

[66] M. Blum, W. Evans, P. Gemmell, S. Kannan and M. Naor. Checking the cor-
rectness of memories. In 32nd IEEE Symposium on Foundations of Computer

Science, pages 90-99, 1991.

[67] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its
Applications. In 20th ACM Symposium on the Theory of Computing, pages
103–112, 1988. See [65].

[68] M. Blum and O. Goldreich. Towards a Computational Theory of Statistical
Tests. In 33rd IEEE Symposium on Foundations of Computer Science, pages
406–416, 1992.

[69] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryp-
tion Scheme which hides all partial information. In Crypto84, Lecture Notes
in Computer Science (Vol. 196) Springer-Verlag, pages 289–302.

[70] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-
cations to Numerical Problems. Journal of Computer and System Science,
Vol. 47, No. 3, pages 549–595, 1993.

[71] M. Blum and S. Kannan. Designing Programs that Check their Work. In
21st ACM Symposium on the Theory of Computing, pages 86–97, 1989.

[72] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–
864, 1984. Preliminary version in 23rd IEEE Symposium on Foundations of

Computer Science, 1982.

[73] D. Boneh, R. DeMillo and R. Lipton. On the Importance of Checking Cryp-
tographic Protocols for Faults. In EuroCrypt97, Springer Lecture Notes in
Computer Science (Vol. 1233), pages 37–51, 1997.

[74] R. Boppana, J. H̊astad, and S. Zachos. Does Co-NP Have Short Interactive
Proofs? Information Processing Letters, 25, May 1987, pp. 127-132.

[75] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random Number Gen-
erators. Journal of the ACM, Vol. 36, pages 129–141, 1989.

[76] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans. on

Inform. Th., Vol. 25, pages 232–233, 1979.

[77] G. Brassard. Quantum Information Processing: The Good, the Bad and the
Ugly. In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294),
pages 337–341.

[78] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages
156–189, 1988. Preliminary version by Brassard and Crépeau in 27th IEEE

Symposium on Foundations of Computer Science, 1986.

[79] G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Cir-
cuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science
(Vol. 263), pages 223–233, 1987.

BIBLIOGRAPHY 173

[80] G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-
Knowledge Computationally Convincing Protocols. Theoretical Computer

Science, Vol. 84, pages 23–52, 1991.

[81] C. Cachin and U. Maurer. Unconditional security against memory-bounded
adversaries. In Crypto97, Springer Lecture Notes in Computer Science
(Vol. 1294), pages 292–306.

[82] R. Canetti. Studies in Secure Multi-Party Computation and Applications.
Ph.D. Thesis, Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel, June 1995.
Available from
http://theory.lcs.mit.edu/∼tcryptol/BOOKS/ran-phd.html.

[83] R. Canetti. Towards Realizing Random Oracles: Hash Functions that Hide
All Partial Information. In Crypto97, Springer Lecture Notes in Computer
Science (Vol. 1294), pages 455–469.

[84] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Record 98-18 of the Theory of Cryptography Library, url http:

//theory.lcs.mit.edu/∼tcryptol. June 1998.

[85] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. In
Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages
90–104.

[86] R. Canetti, G. Even and O. Goldreich. Lower Bounds for Sampling Algo-
rithms for Estimating the Average. Information Processing Letters, Vol. 53,
pages 17–25, 1995.

[87] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-
party Computation. In 28th ACM Symposium on the Theory of Computing,
pages 639–648, 1996.

[88] R. Canetti and R. Gennaro. Incoercible Multiparty Computation. In 37th

IEEE Symposium on Foundations of Computer Science, pages 504–513, 1996.

[89] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,
Revisited. In 30th ACM Symposium on the Theory of Computing, pages
209–218, 1998.

[90] R. Canetti, D. Micciancio and O. Reingold. Using one-way functions to
construct Hash Functions that Hide All Partial Information. In 30th ACM

Symposium on the Theory of Computing, pages 131–140, 1998.

[91] R. Canetti, S. Halevi and A. Herzberg. How to Maintain Authenticated
Communication in the Presence of Break-Ins. In 16th ACM Symposium on

Principles of Distributed Computing, pages 15–24, 1997.

[92] R. Canetti and A. Herzberg. Maintaining Security in the Presence of Tran-
sient Faults. In Crypto94, Springer-Verlag Lecture Notes in Computer Science
(Vol. 839), pages 425–439.

174 BIBLIOGRAPHY

[93] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer

and System Science, Vol. 18, 1979, pages 143–154.

[94] G.J. Chaitin. On the Length of Programs for Computing Finite Binary
Sequences. Journal of the ACM, Vol. 13, pages 547–570, 1966.

[95] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of

the ACM, Vol. 28, pages 114–133, 1981.

[96] S. Chari, P. Rohatgi and A. Srinivasan. Improved Algorithms via Approxi-
mation of Probability Distributions. In 26th ACM Symposium on the Theory

of Computing, pages 584–592, 1994.

[97] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, Plenum
Press, pages 199–203, 1983.

[98] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party unconditionally Secure
Protocols. In 20th ACM Symposium on the Theory of Computing, pages
11–19, 1988.

[99] D. Chaum, A. Fiat and M. Naor. Untraceable Electronic Cash. In Crypto88,
Springer-Verlag Lecture Notes in Computer Science (Vol. 403), pages 319–
327.

[100] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. H̊astad, D. Ranjan, and
P. Rohatgi. The Random Oracle Hypothesis is False. Journal of Computer

and System Science, Vol. 49, No. 1, pages 24–39, 1994.

[101] B. Chor and C. Dwork. Randomization in Byznatine Agreement. Advances

in Computing Research: A Research Annual, Vol. 5 (Randomness and Com-
putation, S. Micali, ed.), pages 443–497, 1989.

[102] B. Chor, J. Friedmann, O. Goldreich, J. H̊astad, S. Rudich and R. Smolen-
sky. The bit extraction problem and t-resilient functions. In 26th IEEE

Symposium on Foundations of Computer Science, pages 396–407, 1985.

[103] B. Chor and N. Gilboa. Computationally Private Information Retrieval. In
29th ACM Symposium on the Theory of Computing, pages 304–313, 1997.

[104] B. Chor and O. Goldreich. On the Power of Two–Point Based Sampling.
Jour. of Complexity, Vol 5, 1989, pages 96–106. Preliminary version dates
1985.

[105] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity. SIAM Journal on Computing,
Vol. 17, No. 2, pages 230–261, 1988.

[106] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information
Retrieval. Journal of the ACM, Vol. 45, No. 6, pages 965–982, 1998.

[107] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Verifiable Secret Shar-
ing and Achieving Simultaneity in the Presence of Faults. In 26th IEEE

Symposium on Foundations of Computer Science, pages 383–395, 1985.

BIBLIOGRAPHY 175

[108] R. Cleve. Limits on the Security of Coin Flips when Half the Processors
are Faulty. In 18th ACM Symposium on the Theory of Computing, pages
364–369, 1986.

[109] A. Cohen and A. Wigderson. Dispensers, Deterministic Amplification, and
Weak Random Sources. 30th IEEE Symposium on Foundations of Computer

Science, 1989, pages 14–19.

[110] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley
& Sons, Inc., New-York, 1991.

[111] R. Cramer and I. Damg̊ard. New Generation of Secure and Practical RSA-
based Signatures. In Crypto96, Springer Lecture Notes in Computer Science
(Vol. 1109), pages 173–185.

[112] R. Cramer and I. Damg̊ard. Linear Zero-Knowledge – A Note on Efficient
Zero-Knowledge Proofs and Arguments. In 29th ACM Symposium on the

Theory of Computing, pages 436–445, 1997.

[113] R. Cramer and I. Damg̊ard. Zero-Knowledge Proofs for Finite Field Arith-
metic; or: Can Zero-Knowledge be for Free? In Crypto98, Springer Lecture
Notes in Computer Science (Vol. 1462),

[114] R. Cramer, I. Damg̊ard, and T. Pedersen. Efficient and provable security
amplifications. In Proc. of 4th Cambridge Security Protocols Workshop,
Springer, Lecture Notes in Computer Science (Vol. 1189), pages 101–109.

[115] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels.
In EuroCrypt97, Springer, Lecture Notes in Computer Science (Vol. 1233),
pages 306–317.

[116] I. Damg̊ard. Collision Free Hash Functions and Public Key Signature
Schemes. In EuroCrypt87, Springer-Verlag, Lecture Notes in Computer Sci-
ence (Vol. 304), pages 203–216.

[117] I. Damg̊ard. A Design Principle for Hash Functions. In Crypto89, Springer-
Verlag Lecture Notes in Computer Science (Vol. 435), pages 416–427.

[118] I. Damg̊ard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Verifier
vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs. In Crypto95,
Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 325–
338, 1995.

[119] A. De-Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function
Securely. In 26th ACM Symposium on the Theory of Computing, pages 522–
533, 1994.

[120] Y. Desmedt. Society and group oriented cryptography: A new concept. In
Crypto87, Springer-Verlag, Lecture Notes in Computer Science (Vol. 293),
pages 120–127.

176 BIBLIOGRAPHY

[121] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89,
Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307–
315.

[122] W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.

on Info. Theory, IT-22 (Nov. 1976), pages 644–654.

[123] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd

ACM Symposium on the Theory of Computing, pages 542–552, 1991. Full
version available from authors.

[124] D. Dolev, M.J. Fischer, R. Fowler, N.A. Lynch and H.R. Strong. An efficient
algorithm for Byzantine Agreement without authentication. Information and

Control, Vol. 52(3), pages 257–274, March 1982.

[125] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agree-
ment. SIAM Journal on Computing, Vol. 12, pages 656–666, 1983.

[126] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE

Trans. on Inform. Theory, Vol. 30, No. 2, pages 198–208, 1983.

[127] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low Communication
Perfect Zero Knowledge Two Provers Proof Systems. In Crypto92, Springer-
Verlag Lecture Notes in Computer Science (Vol. 740), pages 215–227, 1992.

[128] C. Dwork, and M. Naor. An Efficient Existentially Unforgeable Signature
Scheme and its Application. Journal of Cryptology, Vol. 11 (3), pages 187–
208, 1998.

[129] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veličković. Efficient Ap-
proximations of Product Distributions. Random Structures and Algorithms,
Vol. 13, No. 1, pages 1–16, 1998.

[130] S. Even and O. Goldreich. On the Security of Multi-party Ping-Pong Proto-
cols. In 24th IEEE Symposium on Foundations of Computer Science, pages
34–39, 1983.

[131] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing
Contracts. Communications of the ACM, Vol. 28, No. 6, 1985, pages 637–647.

[132] S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital signatures.
Journal of Cryptology, Vol. 9, 1996, pages 35–67.

[133] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Inform. and Control, Vol. 61,
pages 159–173, 1984.

[134] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceedings
of 7th ICALP, Springer-Verlag Lecture Notes in Computer Science (Vol. 85),
pages 195–207, 1980. See [133].

[135] U. Feige. A Threshold of ln n for Approximating Set Cover. In 28th ACM

Symposium on the Theory of Computing, pages 314–318, 1996.

BIBLIOGRAPHY 177

[136] U. Feige. On the success probability of the two provers in One-Round Proof
Systems. In Proc. 6th IEEE Symp. on Structure in Complexity Theory, pages
116–123, 1991.

[137] U. Feige. Error reduction by parallel repetition – the state of the art. Tech-
nical report CS95-32, Computer Science Department, Weizmann Institute of
Science, Rehovot, isreal, 1995.

[138] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. Journal

of Cryptology, Vol. 1, 1988, pages 77–94.

[139] U. Feige, S. Goldwasser, L. Lovász and S. Safra. On the Complexity of
Approximating the Maximum Size of a Clique. Unpublished manuscript,
1990.

[140] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating
Clique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268–
292, 1996. Preliminary version in 32nd IEEE Symposium on Foundations of

Computer Science, 1991.

[141] U. Feige and J. Kilian. Two prover protocols – Low error at affordable rates.
In 26th ACM Symposium on the Theory of Computing, pages 172–183, 1994.

[142] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In 11th

IEEE Conference on Computational Complexity, pages 278–287, 1996.

[143] U. Feige and J. Kilian. Making games short (extended abstract). In 29th

ACM Symposium on the Theory of Computing, pages 506–516, 1997.

[144] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-
Knowledge Proofs Under General Assumptions. SIAM Journal on Com-

puting, Vol. 29 (1), pages 1–28, 1999.

[145] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two
Rounds. In Crypto89, Springer-Verlag Lecture Notes in Computer Science
(Vol. 435), pages 526–544.

[146] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd ACM Symposium on the Theory of Computing, pages
416–426, 1990.

[147] U. Feige, A. Shamir and M. Tennenholtz. The noisy oracle problem. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 284–296.

[148] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing.
In 28th IEEE Symposium on Foundations of Computer Science, pages 427–
437, 1987.

[149] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous
Byzantine Agreement. SICOMP, Vol. 26, pages 873–933, 1997.

[150] A. Fiat. Batch RSA. Journal of Cryptology, Vol. 10, 1997, pages 75–88.

178 BIBLIOGRAPHY

[151] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identifi-
cation and Signature Problems. In Crypto86, Springer-Verlag Lecture Notes
in Computer Science (Vol. 263), pages 186–189, 1987.

[152] J.B. Fischer and J. Stern. An Efficient Pseudorandom Generator Provably
as Secure as Syndrome Decoding. In EuroCrypt96, Springer Lecture Notes
in Computer Science (Vol. 1070), pages 245–255.

[153] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Ra-
bin Bits. In EuroCrypt97, Springer Lecture Notes in Computer Science
(Vol. 1233), pages 267–279, 1997.

[154] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACM

Symposium on the Theory of Computing, pages 204–209, 1987.

[155] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-
tive protocols. In Proc. 3rd IEEE Symp. on Structure in Complexity Theory,
pages 156–161, 1988.

[156] L. Fortnow, J. Rompel and M. Sipser. Errata for “On the power of multi-
prover interactive protocols.” In Proc. 5th IEEE Symp. on Structure in Com-

plexity Theory, pages 318–319, 1990.

[157] M. Franklin and M. Yung. Secure and Efficient Off-Line Digital Money. In
20th ICALP, Springer-Verlag Lecture Notes in Computer Science (Vol. 700),
pages 265–276.

[158] A.M. Frieze, J. H̊astad, R. Kannan, J.C. Lagarias, and A. Shamir. Recon-
structing Truncated Integer Variables Satisfying Linear Congruences. SIAM

Journal on Computing, Vol. 17, pages 262–280, 1988.

[159] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing

Research: a research annual, Vol. 5 (Randomness and Computation, S. Mi-
cali, ed.), pages 429–442, 1989.

[160] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-
trators. Journal of Computer and System Science, Vol. 22, pages 407–420,
1981.

[161] P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes,
RSA Lab., Vol. 2, No. 3, 1997.

[162] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
Testing/Correcting for Polynomials and for Approximate Functions. In 23th

ACM Symposium on the Theory of Computing, pages 32–42, 1991.

[163] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS
Signatures. In EuroCrypt96, Springer-Verlag, Lecture Notes in Computer
Science (Vol. 1070), pages 354–371.

BIBLIOGRAPHY 179

[164] M. Goemans and D. Williamson. New 3/4-approximation algorithms for the
maximum satisfiablity problem. SIAM Journal on Discrete Mathematics,
Vol. 7, No. 4, pages 656–666, 1994.

[165] M. Goemans and D. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, Vol. 42, No. 6, 1995, pages 1115–1145.

[166] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In
Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),
pages 104–110, 1987.

[167] O. Goldreich. A Note on Computational Indistinguishability. Information

Processing Letters, Vol. 34, pages 277–281, May 1990.

[168] O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic

Protocol. Spring 1989. Available from
http://theory.lcs.mit.edu/∼oded/ln89.html.

[169] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-
Knowledge. Journal of Cryptology, Vol. 6, No. 1, pages 21–53, 1993.

[170] O. Goldreich. Three XOR-Lemmas – An Exposition. ECCC, TR95-056,
1995. Available from http://www.eccc.uni-trier.de/eccc/.

[171] O. Goldreich. Foundation of Cryptography – Fragments of a Book. Febru-
ary 1995. Revised version, January 1998. Both versions are available from
http://theory.lcs.mit.edu/∼oded/frag.html.

[172] O. Goldreich. A Sample of Samplers – A Computational Perspective on
Sampling. ECCC, TR97-020, May 1997.

[173] O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC,
TR97-058, Dec. 1997.

[174] O. Goldreich. Secure Multi-Party Computation. In preparation, 1998. Work-
ing draft available from http://theory.lcs.mit.edu/∼oded/gmw.html.

[175] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. Journal of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

[176] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applica-
tions of Random Functions. In Crypto84, Springer-Verlag Lecture Notes in
Computer Science (Vol. 263), pages 276–288, 1985.

[177] O. Goldreich and J. H̊astad. On the Complexity of Interactive Proofs with
Bounded Communication. IPL, Vol. 67 (4), pages 205–214, 1998.

[178] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman.
Security Preserving Amplification of Hardness. In 31st IEEE Symposium on

Foundations of Computer Science, pages 318–326, 1990.

180 BIBLIOGRAPHY

[179] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2,
pages 167–189, 1996. Preliminary versions date to 1988.

[180] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,
pages 169–192. Preliminary version in 17th ICALP, 1990.

[181] O. Goldreich, and H. Krawczyk, On Sparse Pseudorandom Ensembles. Ran-

dom Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163–174.

[182] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom
Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163–1175, 1993.

[183] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-
tion. In 21st ACM Symposium on the Theory of Computing, pages 25–32,
1989.

[184] O. Goldreich and B. Meyer. Computational Indistinguishability – Algorithms
vs. Circuits. Theoretical Computer Science, Vol. 191, pages 215–218, 1998.
Preliminary version by Meyer in Structure in Complexity Theory, 1994.

[185] O. Goldreich and S. Mi-
cali. Increasing the Expansion of Pseudorandom Generators. Manuscript,
1984. Available from http://theory.lcs.mit.edu/∼oded/papers.html

[186] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
Journal of the ACM, Vol. 38, No. 1, pages 691–729, 1991. Preliminary version
in 27th IEEE Symposium on Foundations of Computer Science, 1986.

[187] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th ACM

Symposium on the Theory of Computing, pages 218–229, 1987.

[188] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[189] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Obliv-
ious RAMs. Journal of the ACM, Vol. 43, 1996, pages 431–473.

[190] O. Goldreich, R. Ostrovsky and E. Petrank. Knowledge Complexity and
Computational Complexity. SIAM Journal on Computing, Vol. 27, 1998,
pages 1116–1141.

[191] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Compu-

tational Complexity, Vol. 8, pages 50–98, 1999.

[192] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with
queries: the highly noisy case. In 36th IEEE Symposium on Foundations

of Computer Science, pages 294–303, 1995.

BIBLIOGRAPHY 181

[193] O. Goldreich and S. Safra. A Combinatorial Consistency Lemma with ap-
plication to the PCP Theorem. In the proceedings of Random97, Springer
Lecture Notes in Computer Science (Vol. 1269), pages 67–84. See also ECCC,
TR96-047, 1996.

[194] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Verifier Statistical Zero-
Knowledge equals general Statistical Zero-Knowledge. In 30th ACM Sympo-

sium on the Theory of Computing, pages 399–408, 1998.

[195] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sample
Hierarchy. JCSS, Vol. 59, pages 253–269, 1999.

[196] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-
Knowledge with Applications to the Structure of SZK. In 14th IEEE Con-

ference on Computational Complexity, pages 54–73, 1999.

[197] O. Goldreich and A. Wigderson. Tiny Families of Functions with Random
Properties: A Quality–Size Trade–off for Hashing. Journal of Random struc-

tures and Algorithms, Vol. 11, Nr. 4, December 1997, pages 315–343.

[198] O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and
more). ECCC, TR97-045, 1997.

[199] S. Goldwasser. Fault Tolerant Multi Party Computations: Past and Present.
In 16th ACM Symposium on Principles of Distributed Computing, pages 1–6,
1997.

[200] S. Goldwasser and L.A. Levin. Fair Computation of General Functions in
Presence of Immoral Majority. In Crypto90, Springer-Verlag Lecture Notes
in Computer Science (Vol. 537), pages 77–93.

[201] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer

and System Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version
in 14th ACM Symposium on the Theory of Computing, 1982.

[202] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages
186–208, 1989. Preliminary version in 17th ACM Symposium on the Theory

of Computing, 1985. Earlier versions date to 1982.

[203] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
April 1988, pages 281–308.

[204] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a Private
Code in a Public Network. In 23rd IEEE Symposium on Foundations of

Computer Science, 1982, pages 134–144.

[205] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15th

ACM Symposium on the Theory of Computing, pages 431–439, 1983.

182 BIBLIOGRAPHY

[206] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. Advances in Computing Research: a research annual, Vol. 5
(Randomness and Computation, S. Micali, ed.), pages 73–90, 1989. Extended
abstract in 18th ACM Symposium on the Theory of Computing, pages 59–68,
1986.

[207] S. W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean Park
Press, Revised edition, 1982.)

[208] V. Guruswami, D. Lewin, M. Sudan and L. Trevisan. A tight characterization
of NP with 3 query PCPs. In 39th IEEE Symposium on Foundations of

Computer Science, pages 8–17, 1998.

[209] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Pro-
tocols. In Crypto98, Springer Lecture Notes in Computer Science (Vol. 1462),
pages 408–423.

[210] J. H̊astad. Almost optimal lower bounds for small depth circuits. Advances

in Computing Research: a research annual, Vol. 5 (Randomness and Compu-
tation, S. Micali, ed.), pages 143–170, 1989. Extended abstract in 18th ACM

Symposium on the Theory of Computing, pages 6–20, 1986.

[211] J. H̊astad. Pseudo-Random Generators under Uniform Assumptions. In 22nd

ACM Symposium on the Theory of Computing, pages 395–404, 1990.

[212] J. H̊astad. Clique is hard to approximate within n1−ǫ. Acta Mathematica,
Vol. 182, pages 105–142, 1999. Preliminary versions in 28th ACM Symposium

on the Theory of Computing (1996) and 37th IEEE Symposium on Founda-

tions of Computer Science (1996).

[213] J. H̊astad. Getting optimal in-approximability results. In 29th ACM Sym-

posium on the Theory of Computing, pages 1–10, 1997.

[214] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gener-
ator from any One-way Function. SIAM Journal on Computing, Volume 28,
Number 4, pages 1364–1396, 1999. Combines the results of [220] and [211].

[215] J. H̊astad, S. Phillips and S. Safra. A Well Characterized Approximation
Problem. Information Processing Letters, Vol. 47:6, pages 301–305. 1993.

[216] J. H̊astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a Com-
posite Hides O(n) Bits. Journal of Computer and System Science, Vol. 47,
pages 376–404, 1993.

[217] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk and M. Yung. Proactive
public key and signature systems. In 1997 ACM Conference on Computers

and Communication Security, pages 100–110, 1997.

[218] A. Herzberg, S. Jarecki, H. Krawczyk and M. Yung. Proactive Secret Shar-
ing, or How to Cope with Perpetual Leakage. In Crypto95, Springer-Verlag
Lecture Notes in Computer Science (Vol. 963), pages 339–352.

BIBLIOGRAPHY 183

[219] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In
36th IEEE Symposium on Foundations of Computer Science, pages 538–545,
1995.

[220] R. Impagliazzo, L.A. Levin and M. Luby. Pseudorandom Generation from
One-Way Functions. In 21st ACM Symposium on the Theory of Computing,
pages 12–24, 1989.

[221] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Com-
plexity Based Cryptography. In 30th IEEE Symposium on Foundations of

Computer Science, pages 230–235, 1989.

[222] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provable as
Secure as Subset Sum. Journal of Cryptology, Vol. 9, 1996, pages 199–216.

[223] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-
Way Permutations. In 21st ACM Symposium on the Theory of Computing,
pages 44–61, 1989.

[224] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:
Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theory

of Computing, pages 220–229, 1997.

[225] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),
pages 40–51, 1987.

[226] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In 30th

IEEE Symposium on Foundations of Computer Science, 1989, pages 248–253.

[227] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures.
In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages
150–164.

[228] J. Justesen. A class of constructive asymptotically good alegbraic codes.
IEEE Trans. Inform. Theory, Vol. 18, pages 652–656, 1972.

[229] N. Kahale, Eigenvalues and Expansion of Regular Graphs. Journal of the

ACM, 42(5):1091–1106, September 1995.

[230] D.R. Karger. Global Min-cuts in RNC, and Other Ramifications of a Simple
Min-Cut Algorithm. In 4th SODA, pages 21–30, 1993.

[231] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT?
In 38th IEEE Symposium on Foundations of Computer Science, 1997, pages
406–415.

[232] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-
liability problems. In 24th IEEE Symposium on Foundations of Computer

Science, pages 56-64, 1983. See [233].

[233] R.M. Karp, M. Luby and N. Madras. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, Vol. 10, pages 429–448,
1989.

184 BIBLIOGRAPHY

[234] R.M. Karp, N. Pippinger and M. Sipser. A Time-Randomness Tradeoff.
AMS Conference on Probabilistic Computational Complexity , Durham, New
Hampshire (1985).

[235] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th ACM Symposium on the Theory of Computing, pages 723–732, 1992.

[236] J. Kilian and E. Petrank. An Efficient Non-Interactive Zero-Knowledge Proof
System for NP with General Assumptions. Journal of Cryptology, Vol. 11,
pages 1–27, 1998.

[237] A. Klivans and D. van Melkebeek. Graph Nonisomorphism has Subexpo-
nential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. In 31st

ACM Symposium on the Theory of Computing, pages 659–667, 1998.

[238] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical

Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (first edition)
and 1981 (second edition).

[239] A. Kolmogorov. Three Approaches to the Concept of “The Amount Of In-
formation”. Probl. of Inform. Transm., Vol. 1/1, 1965.

[240] H. Krawczyk. New Hash Functions For Message Authentication. In Eu-

roCrypt95, Springer-Verlag, Lecture Notes in Computer Science (Vol. 921),
pages 301–310.

[241] E. Kushilevitz and N. Nisan. Communication Complexity, Cambridge Uni-
versity Press, 1996.

[242] E. Kushilevitz and R. Ostrovsky. Replication is not Needed: A Single
Database, Computational PIR. In 38th IEEE Symposium on Foundations

of Computer Science, pages 364–373, 1997.

[243] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for
NEXP-time. In 32nd IEEE Symposium on Foundations of Computer Sci-

ence, pages 13–18, 1991.

[244] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing

Letters, 17, pages 215–217, 1983.

[245] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[246] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.

[247] L.A. Levin. Randomness Conservation Inequalities: Information and Inde-
pendence in Mathematical Theories. Inform. and Control, Vol. 61, pages
15–37, 1984.

[248] L.A. Levin. Average Case Complete Problems. SIAM Jour. of Computing,
Vol. 15, pages 285–286, 1986.

[249] L.A. Levin. One-Way Function and Pseudorandom Generators. Combina-

torica, Vol. 7, pages 357–363, 1987.

BIBLIOGRAPHY 185

[250] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),
pages 1102–1103, 1993.

[251] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its

Applications. Springer Verlag, August 1993.

[252] N. Linial, M. Luby, M. Saks and D. Zuckerman. Efficient construction of
a small hitting set for combinatorial rectangles in high dimension. In 25th

ACM Symposium on the Theory of Computing, pages 258–267, 1993.

[253] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, Graduate
Texts in Mathematics (#88), New York, 1982.

[254] R.J. Lipton. New Directions in Testing. In Proc. of DIMACS Workshop on

Distr. Comp. and Crypto., pages 191–202, 1991.

[255] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica,
Vol. 8, pages 261–277, 1988.

[256] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set
Problem. SIAM Journal on Computing, Vol. 15, No. 4, pages 1036–1053,
November 1986. Preliminary version in 17th ACM Symposium on the Theory

of Computing, 1985.

[257] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

[258] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM Journal on Computing, Vol. 17, 1988,
pages 373–386.

[259] M. Luby, B. Veličković and A. Wigderson. Deterministic Approximate Count-
ing of Depth-2 Circuits. In 2nd Israel Symp. on Theory of Computing and

Systems (ISTCS93), IEEE Computer Society Press, pages 18–24, 1993.

[260] M. Luby and A. Wigderson. Pairwise Independence and Derandomization.
TR-95-035, International Computer Science Institute (ICSI), Berkeley, 1995.
ISSN 1075-4946.

[261] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for
Interactive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859–
868, 1992. Preliminary version in 31st IEEE Symposium on Foundations of

Computer Science, 1990.

[262] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimiza-
tion Problems, In 25th ACM Symposium on the Theory of Computing, pages
286–293, 1993.

[263] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo,
CA, 1996.

[264] G.A. Margulis. Explicit Construction of Concentrators. Prob. Per. Infor.

9 (4) (1973), 71–80. (In Russian, English translation in Problems of Infor.

Trans. (1975), 325–332.)

186 BIBLIOGRAPHY

[265] U. Maurer. Secret key agreement by public discussion from common infor-
mation. IEEE Trans. on Inform. Th. , Vol. 39 (No. 3), pages 733–742, May
1993.

[266] R.C. Merkle. Secure Communication over Insecure Channels. Communica-

tions of the ACM, Vol. 21, No. 4, pages 294–299, 1978.

[267] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980

Symposium on Security and Privacy.

[268] R.C. Merkle. A Digital Signature Based on a Conventional Encryption
Function. In Crypto87, Springer-Verlag Lecture Notes in Computer Science
(Vol. 293), 1987, pages 369-378.

[269] R.C. Merkle. A Certified Digital Signature Scheme. In Crypto89, Springer-
Verlag Lecture Notes in Computer Science (Vol. 435), pages 218–238.

[270] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures in Trap-
door Knapsacks. IEEE Trans. Inform. Theory, Vol. 24, pages 525–530, 1978.

[271] S. Micali. Fair Public-Key Cryptosystems. In Crypto92, Springer-Verlag
Lecture Notes in Computer Science (Vol. 740), pages 113–138.

[272] S. Micali. CS Proofs. Unpublished manuscript, 1992.

[273] S. Micali. CS Proofs. In 35th IEEE Symposium on Foundations of Computer

Science, pages 436–453, 1994. A better version is available from the author.
To appear in SIAM Journal on Computing.

[274] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag
Lecture Notes in Computer Science (Vol. 576), pages 392–404.

[275] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin
Games using Hitting Sets. In 40th IEEE Symposium on Foundations of

Computer Science, pages 71–80, 1999.

[276] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University
Press, 1995.

[277] K. Mulmuley and U.V. Vazirani and V.V. Vazirani. Matching is as Easy as
Matrix inversion. Combinatorica, Vol. 7, pages 105–113, 1987.

[278] National Institute for Standards and Technology. Digital Signature Standard

(dss), Federal Register, Vol. 56, No. 169, August 1991.

[279] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of

Cryptology, Vol. 4, pages 151–158, 1991.

[280] M. Naor, L.J. Schulman and A. Srinivasan. Splitters and near-optimal deran-
domization. In 36th IEEE Symposium on Foundations of Computer Science,
pages 182-191, 1995.

[281] J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions
and Applications. SIAM J. on Computing, Vol 22, 1993, pages 838–856.

BIBLIOGRAPHY 187

[282] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Argu-
ments for NP can be Based on General Assumptions. In Crypto92, Springer-
Verlag Lecture Notes in Computer Science (Vol. 740), pages 196–214.

[283] M. Naor and O. Reingold. Synthesizers and their Application to the Parallel
Construction of Pseudo-Random Functions. In 36th IEEE Symposium on

Foundations of Computer Science, pages 170–181, 1995.

[284] M. Naor and O. Reingold. On the Construction of Pseudo-Random Permu-
tations: Luby-Rackoff Revisited. Journal of Cryptology, Vol. 12 (1), pages
29–66, 1999.

[285] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions and other cryptographic primitives. In 38th IEEE Sympo-

sium on Foundations of Computer Science, pages 458–467, 1997.

[286] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Application. In 21st ACM Symposium on the Theory of Computing,
1989, pages 33–43.

[287] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against
Chosen Ciphertext Attacks. In 22nd ACM Symposium on the Theory of

Computing, pages 427-437, 1990.

[288] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
Vol. 11 (1), pages 63–70, 1991.

[289] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-

binatorica, Vol. 12 (4), pages 449–461, 1992.

[290] N. Nisan. RL ⊆ SC. Journal of Computational Complexity, Vol. 4, pages
1-11, 1994.

[291] N. Nisan. Extracting Randomness: How and Why – A Survey. In 11th IEEE

Conference on Computational Complexity, pages 44–58, 1996.

[292] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in
O(log1.5n) space. In 33rd IEEE Symposium on Foundations of Computer

Science, pages 24-29, 1992.

[293] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer

and System Science, Vol. 49, No. 2, pages 149–167, 1994.

[294] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of

Computer and System Science, Vol. 52 (1), pages 43–52, 1996.

[295] A.M. Odlyzko. The future of integer factorization. CryptoBytes (The tech-
nical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12, 1995.
Available from http://www.research.att.com/∼amo

[296] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite Fields:

Theory, Applications and Algorithms, G. L. Mullen and P. Shiue, eds., Amer.
Math. Soc., Contemporary Math. Vol. 168, pages 269–278, 1994. Available
from http://www.research.att.com/∼amo

188 BIBLIOGRAPHY

[297] T. Okamoto. On relationships between statistical zero-knowledge proofs. In
28th ACM Symposium on the Theory of Computing, pages 649–658, 1996.

[298] M. Ogihara. Sparse P-hard sets yield space-efficient algorithms. In 36th IEEE

Symposium on Foundations of Computer Science, pages 354–361, 1995.

[299] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-
Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing and

Systems, IEEE Comp. Soc. Press, pages 3–17, 1993.

[300] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In
10th ACM Symposium on Principles of Distributed Computing, pages 51–59,
1991.

[301] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and
Complexity Classes. In 20th ACM Symposium on the Theory of Computing,
pages 229–234, 1988.

[302] M. Pease, R. Shostak and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, Vol. 27(2), pages 228–234, 1980.

[303] T.P. Pedersen and B. Pfitzmann. Fail-Stop Signatures. SIAM Journal on

Computing, Vol. 26/2, pages 291–330, 1997. Based on several earlier work
(see first footnote in the paper).

[304] E. Petrank and G. Tardos. On the Knowledge Complexity of NP. In 37th

IEEE Symposium on Foundations of Computer Science, pages 494–503, 1996.

[305] B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-Stop

Signatures). Springer Lecture Notes in Computer Science (Vol. 1100), 1996.

[306] B. Pfitzmann and M. Waidner. How to break and repair a “provably secure“
untraceable payment system. In Crypto91, Springer-Verlag Lecture Notes in
Computer Science (Vol. 576), pages 338–350.

[307] B. Pfitzmann and M. Waidner. Properties of Payment Systems: General Def-
inition Sketch and Classification. IBM Research Report RZ2823 (#90126),
IBM Research Division, Zurich, May 1996.

[308] A. Polishchuk and D.A. Spielman. Nearly-linear size holographic proofs. In
26th ACM Symposium on the Theory of Computing, pages 194–203, 1994.

[309] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation

(R.A. DeMillo et. al. eds.), Academic Press, 1977.

[310] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable
as Factoring. MIT/LCS/TR-212, 1979.

[311] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo
TR-81, Aiken Computation Laboratory, Harvard U., 1981.

[312] M.O. Rabin. Randomized Byznatine Agreement. In 24th IEEE Symposium

on Foundations of Computer Science, pages 403–409, 1983.

BIBLIOGRAPHY 189

[313] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols
with Honest Majority. In 21st ACM Symposium on the Theory of Computing,
pages 73–85, 1989.

[314] C. Rackoff and D.R. Simon. Non-Interactive Zero-Knowledge Proof of Knowl-
edge and Chosen Ciphertext Attack. In Crypto91, Springer-Verlag Lecture
Notes in Computer Science (Vol. 576), pages 433–444.

[315] P. Raghavan and C.D. Thompson. Randomized Rounding. Combinatorica,
Vol. 7, pages 365–374, 1987.

[316] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,
Vol. 27 (3), pages 763–803, 1998.

[317] R. Raz, O. Reingold and S. Vadhan. Extracting all the Randomness and
Reducing the Error in Trevisan’s Extractors. In 31st ACM Symposium on

the Theory of Computing, pages 147–158, 1998.

[318] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In 29th ACM

Symposium on the Theory of Computing, pages 475–484, 1997.

[319] A.R. Razborov and S. Rudich. Natural proofs. Journal of Computer and

System Science, Vol. 55 (1), pages 24–35, 1997.

[320] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM,
Vol. 21, Feb. 1978, pages 120–126.

[321] J. Rompel. One-way Functions are Necessary and Sufficient for Secure Sig-
natures. In 22nd ACM Symposium on the Theory of Computing, 1990, pages
387–394.

[322] R. Rubinfeld and M. Sudan. Robust Characterizations of Polynomials with
Applications to Program Checking. SIAM J. of Computing, Vol. 25, No. 2,
pages 252–271, 1996. Preliminary version in 3rd SODA, 1992.

[323] S. Rudich. Super-bits, Demi-bits, and NP̃/qpoly-Natural proofs. In the
proceedings of Random97, Springer Lecture Notes in Computer Science
(Vol. 1269), pages 85–93.

[324] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-
Knowledge. In 38th IEEE Symposium on Foundations of Computer Science,
pages 448–457, 1997.

[325] M. Saks. Randomization and derandomization in space-bounbded computa-
tion. In 11th IEEE Conference on Computational Complexity, pages 128–149,
1996.

[326] M. Saks, A. Srinivasan and S. Zhou. Explicit dispersers with polylog degree.
In 27th ACM Symposium on the Theory of Computing, pages 479–488, 1995.

190 BIBLIOGRAPHY

[327] M. Saks and S. Zhou. RSPACE(S) ⊆ DSPACE(S3/2). In 36th IEEE

Symposium on Foundations of Computer Science, pages 344–353, 1995.

[328] A. Samorodnitski, M. Sudan and L. Trevisan. Probabilistic Checkable Proofs
with Amortized Query Complexity 1. In preparation. See [346, 329].

[329] A. Samorodnitski and L. Trevisan. A PCP Characterization of NP with
Optimal Amortized Query Complexity. Submitted, 1999.

[330] C.P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of

Cryptology, Vol. 4, pages 161–174, 1991.

[331] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, Vol. 27, pages 701–717, 1980.

[332] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.

Jour., Vol. 27, pages 623–656, 1948.

[333] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.

Jour., Vol. 28, pages 656–715, 1949.

[334] A. Shamir. How to Share a Secret. Communications of the ACM, Vol. 22,
Nov. 1979, pages 612–613.

[335] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–
877, 1992. Preliminary version in 31st IEEE Symposium on Foundations of

Computer Science, 1990.

[336] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS Report
TM-125, 1979.

[337] A. Shen. IP = PSPACE: Simplified proof. Journal of the ACM, Vol. 39,
No. 4, pages 878–880, 1992.

[338] D. Simon. Anonymous Communication and Anonymous Cash. In Crypto96,
Springer Lecture Notes in Computer Science (Vol. 1109), pages 61–73.

[339] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM

Symposium on the Theory of Computing, pages 330–335, 1983.

[340] M. Sipser. Private communication, 1986.

[341] M. Sipser. Expanders, randomness, or time versus space. Journal of Com-

puter and System Science, Vol. 36(3), pages 379–383, 1988. Preliminary
version in Structure in Complexity Theory, 1986.

[342] M. Sipser. Introduction to the Theory of Computation, PWS Publishing
Company, 1997.

[343] R.J. Solomonoff. A Formal Theory of Inductive Inference. Inform. and

Control, Vol. 7/1, pages 1–22, 1964.

[344] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer

Science, Vol. 3, pages 1–22, 1977.

BIBLIOGRAPHY 191

[345] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACM

Symposium on the Theory of Computing, pages 118–126, 1983.

[346] M. Sudan and L. Trevisan. Probabilistic Checkable Proofs with Low Amor-
tized Query Complexity. In 39th IEEE Symposium on Foundations of Com-

puter Science, pages 28–37, 1998.

[347] A. Ta-Shma. Note on PCP vs. MIP. Information Processing Letters, Vol. 58,
No. 3, pages 135–140, 1996.

[348] A. Ta-Shma. On extracting randomness from weak random sources. In 28th

ACM Symposium on the Theory of Computing, pages 276–285, 1996.

[349] A. Ta-Shma. Almost optimal dispersers. In 30th ACM Symposium on the

Theory of Computing, pages 196–202, 1998.

[350] S. Toueg, K.J. Perry and T.K. Srikanth. Fast distributed agreement. SIAM

Journal on Computing, Vol. 16(3), pages 445–457, 1987.

[351] L. Trevisan. Private communication, 1997. See [172, Sec. 5.2].

[352] L. Trevisan. When Hamming meets Euclid: The Approximability of Geomet-
ric TSP and MST. In 29th ACM Symposium on the Theory of Computing,
pages 21–29, 1997.

[353] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-
Random Generators. In 31st ACM Symposium on the Theory of Computing,
pages 141–148, 1998.

[354] L.G. Valiant. A scheme for fast parallel communication. SIAM Journal on

Computing, Vol. 11 (2), pages 350–361, 1982.

[355] L.G. Valiant. A theory of the learnable. Communications of the ACM,
Vol. 27/11, pages 1134–1142, 1984.

[356] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communica-
tion. In 13th ACM Symposium on the Theory of Computing, pages 263–277,
1981.

[357] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.
Theoretical Computer Science, Vol. 47 (1), pages 85–93, 1986.

[358] U.V. Vazirani. Randomness, Adversaries and Computation. Ph.D. Thesis,
EECS, UC Berkeley, 1986.

[359] U.V. Vazirani and V.V. Vazirani. Efficient and Secure Pseudo-Random Num-
ber Generation. In 25th IEEE Symposium on Foundations of Computer Sci-

ence, pages 458–463, 1984.

[360] U.V. Vazirani and V.V. Vazirani. Random Polynomial Time Equal to Semi-
Random Polynomial Time. In 26th IEEE Symposium on Foundations of

Computer Science, pages 417–428, 1985.

192 BIBLIOGRAPHY

[361] M. Wegman and L. Carter. New Hash Functions and their Use in Authenti-
cation and Set Equality. Journal of Computer and System Science, Vol. 22,
1981, pages 265–279.

[362] A. Wigderson. The amazing power of pairwise independence. In 26th ACM

Symposium on the Theory of Computing, pages 645–647, 1994.

[363] A. D. Wyner. The wire-tap channel. Bell System Technical Journal, Vol. 54
(No. 8), pages 1355–1387, Oct. 1975.

[364] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE

Symposium on Foundations of Computer Science, pages 80–91, 1982.

[365] A.C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE

Symposium on Foundations of Computer Science, pages 1-10, 1985.

[366] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium

on Foundations of Computer Science, pages 162–167, 1986.

[367] R. Zippel. Probabilistic algorithms for sparse polynomials. Proc. Int’l. Symp.

on Symbolic and Algebraic Computation, Springer-Verlag Lecture Notes in
Computer Science (Vol. 72), pages 216–226, 1979.

[368] D. Zuckerman. Simulating BPP Using a General Weak Random Source.
Algorithmica, Vol. 16, pages 367–391, 1996.

[369] D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Ran-

dom structures and Algorithms, Vol. 11, Nr. 4, December 1997, pages 345–
367.

[370] U. Zwick. Approximation algorithms for constraint satisfaction problems
involving at most three variables per constraint. In 9th SODA, 1998, pages
201–210.

Index

Adleman, L., 32, 35
Ajtai, M., 102, 147
Amplifying Reductions, see Reduc-

tion
Approximation

♯P, 143–145
counting satisfying assignments

to a DNF, 93, 112, 134–
135

Hardness, see Hardness of Ap-
proximation

MaxSAT, 139–140
Argument systems, see Computationally-

Sound proofs
Arora, S., 73

Babai, L., 70–72
Bellare, M., 7
Ben-Or, M., 71
Blum Integers, 19, 131
Blum, M., 3, 4, 36, 74, 78, 88, 110,

152
Blum-Goldwasser Scheme, 20
Blum-Micali Generator, 88
BPP, see Complexity classes
Brassard, G., 74
Byzantine Agreement, 33, 148, 150–

151

Chaitin, G.J., 78, 109
Chaum, D., 74
Chebyshev Inequality, 114
Chernoff Bound, 115
Chinese Reminder Theorem, 49, 148
Coercibility, 3
Collision-Free Hashing, 65

Commitment schemes, 55
Complexity classes

♯P, 71, 72, 143, 146
AC0, 92, 125
AM, 50, 125
BPL, 125
BPP, 49, 50, 55, 56, 112, 119
coRP, 50, 119
Dtime, 117
E, 125
EXP, 66, 125
IP, see Interactive Proofs
L, 125
MA, 50, 125
NEXP, 71–73, 125
NL, 125
non-uniform, 120–122
NP, 13, 35, 41, 44–46, 53, 57,

58, 66, 71–74, 93, 117
NP-Complete, 125
NP-Hard, 125
Ntime, 117
oracle machines, 122–123
P, 116
P/poly, 49, 120
PH, 126
Polynomial-time Hierarchy, 126
probabilistic, 117–119
PSPACE, 46, 71, 126
RL, 126
RP, 119
SC, 126
space complexity, 123–124

Complexity Theory
average case complexity, 124,

146–147

193

194 INDEX

constant-depth circuits, 92
Natural Proofs, 91
Random Oracle Hypothesis, 46
relativization, 46

Computational Indistinguishability,
3, 8, 10, 13, 17, 36, 53,
80, 82, 83, 110

multiple samples, 85, 86
non-triviality, 86
The Hybrid Technique, 84, 85,

88, 91
Computational Learning Theory, 91
Computationally-Sound proof sys-

tems, 65–67
Arguments, 14, 65, 74, 75
CS-proofs, 66, 74, 75
non-interactive, 67

Cook Reduction, see Reduction
Cryptographic Protocols, 25–28
Crépeau, C., 74
CS-Proofs, see Computationally-Sound

proofs

Diffie, W., 2, 35
Digital Signatures, 21–25, 128–130

Blind, 25
Fail-stop, 25

Dispersers, see Pseudorandom Gen-
erators

Electronic Cash, 3
Encryption Schemes, 16–21, 127–

128
Chosen Ciphertext Attack, 20
Indistinguishability, 16, 17
Non-Malleable, 21
Private-Key, 16, 18, 20, 21
Probabilistic, 17–20
Public-Key, 16, 17, 19–21
Randomized RSA, 19
Semantic Security, 16, 17

Error Correcting Codes, 72, 73, 149,
163

Even, S., 41
EXP, see Complexity classes

Expander Graphs, 101, 102
random walks on, see Pseudo-

random Generators
Extractors, see Pseudorandom Gen-

erators

Feige, U., 72
Feldman, P., 74
Fiat-Shamir Scheme, 15
Fingerprints, 148
Fischer, M., 36
Fortnow, L., 47, 71, 72
Fourier coefficients, 100

Goldreich, O., 4, 36, 37, 71, 111,
158, 165

Goldwasser, S., 2–4, 15, 35, 36,
70–72, 74, 78, 110, 111

Graph Connectivity, 141–142

Hard-Core Predicate, see One-Way
Functions

Hardness of Approximation
Chromatic Number, 61
Max3SAT, 61
MaxClique, 61, 62, 73
Set Cover, 61
The PCP connection, 60–62,

73
Hellman, M.E., 2, 35
History

Cryptography, 35–37
Probabilistic Proofs, 70–74
Pseudorandomness, 110–111

Hoefding Inequality, 116
H̊astad, J., 37, 62, 111

Identification scheme, 15
Impagliazzo, R., 37, 111
Information theoretic secrecy, 28,

32–33
Interactive Proof systems, 43–51,

70–72
algebraic methods, 46, 71, 74
Arthur-Merlin, 44, 50, 70

INDEX 195

constant-round, 49, 50, 93, 111
for Graph Non-Isomorphism,

45, 71
for PSPACE, 46–49, 71, 74
Hierarchy, 49–50, 74
linear speed-up, 49
Multi-Prover, see Multi-Prover

Interactive Proofs
power of the prover, 50, 74
Proofs of Knowledge, see Proofs

of Knowledge
public-coin, 44, 50, 93
two-sided error, 44, 50
variants, 50
Zero-Knowledge, see Zero-Knowledge

proofs

Karloff, H., 47, 71
Karp Reduction, see Reduction
Kilian, J., 71, 74
Knowledge Complexity, 53
Knuth, D.E., 9
Kolmogorov Complexity, 78, 109
Kolmogorov, A., 78, 109
Komlos, J., 102

L, see Complexity classes
Leftover Hash Lemma, see Univer-

sal Hashing
Levin, L.A., 37, 72, 111, 124, 158,

162, 165, 166
Linear Feedback Shift Registers, 9,

100
Lipton, R., 35
Lovasz, L., 72
Low Degree Tests, 59, 60, 73, 75
Luby, M., 37, 99, 111
Lund, C., 47, 71–73

Markov Inequality, 113
Merkle, R.C., 4, 35
Message Authentication Schemes,

21–23, 129–130
Micali, S., 2–4, 15, 35–37, 70, 71,

74, 78, 88, 110, 111

Min-Cuts in graphs, 142–143
MIP, see Multi-Prover Interactive

Proofs, 73
Motwani, R., 73
Multi-Prover Interactive Proof sys-

tems, 63–65, 68, 70–72
Zero-Knowledge, see Zero-Knowledge

proofs

Naor, J., 100
Naor, M., 37, 100
Nisan’s Generator, 95
Nisan, N., 47, 71, 91, 95, 111
Nisan-Wigderson Generator, 91, 93,

108, 111
Nisan-Zuckerman Generator, 95
Noisy Channel, 33
Non-Interactive probabilistic proof

systems, 67–68
CS-Proofs, 67
Zero-Knowledge, 14, 67

Non-Malleable Cryptography, 38
NP, see Complexity classes

Oblivious Transfer, 35
One-Way Functions, 7–8, 11, 25,

35, 53, 55, 86, 124
Hard-Core Predicate, 10, 19,

87–88, 111
permutations, 8, 10, 14
Rabin function, 131
RSA, 3, 4, 6, 8, 19, 24, 32,

130–131
The Factorization Assumption,

130
trapdoor permutations, 8, 15,

19, 21, 27, 130–131
Open Problems

Cryptography, 37–38
Probabilistic Proofs, 74–75
Pseudorandomness, 112

PCP, see Probabilistically Check-
able Proofs, 72, 73

Perfect matchings in graphs, 135–
138

196 INDEX

Perfect Secrecy, 16, 28, 33
Polynomial-Time Hierarchy, 71
Primality Testing, 140–141
Proactive Security, 3, 34
Probabilistically Checkable Proof

systems, 56–64, 66, 71, 74
adaptive, 61, 63
algebraic methods, 74
Approximation, see Hardness

of Approximation
for NEXP, 63
for NP, 57–63, 72–74
free-bit complexity, 62
non-adaptive, 59, 60, 63
non-binary queries, 59, 63
proof length, 62
query complexity, 62

Program Checking, 71, 72
Self-Correcting, 60, 71, 73, 146–

147
Proofs of Knowledge, 15, 68
Protocols, see Cryptographic Pro-

tocols
Pseudorandom Functions, 11–12,

18, 90–91, 111
Pseudorandom Generators, 9–12,

81–91
archetypical case, 81–91, 110–

112
derandomization, 84–85, 91–

93, 111, 112
discrepancy sets, 101, 112
Dispersers, 106–108
expander random walks, 73,

101–103
Extractors, 106–108, 111, 112
Functions, see Pseudorandom

Functions
general paradigm, 77–81, 109–

110
hitting sets, 101
pairwise independence, 73, 98–

99, 115
samplers, 103–105

small bias, 59, 73, 100–101,
148

special purpose, 97–109, 111
universal sets, 101
unpredictability, 87, 88, 92, 110
versus space, 93–97, 111, 112

PSPACE, see Complexity classes

Quantum Cryptography, 33

Rabin, M., 4, 35, 152
Rackoff, C., 3, 15, 36, 70, 74, 158
Random Access Machine, 72
Random Oracle Hypothesis, see Com-

plexity Theory
Random Oracle Model, see The Ran-

dom Oracle Model
Random Walks

on expanders, see Pseudoran-
dom Generators

on graphs, 139–140
Randomized Rounding

of linear programs, 139–140
of semidefinite programs, 140

Randomized routing, 149
Reduction

Amplifying Reductions, 60
Cook, 123
Karp, 123
many-to-one, 123
randomized, 143–147
SAT to uniqueSAT, 145
Self-Reducibility, 51, 146–147
Turing, 123

Refereed Games, 68
Rivest, R.L., 2, 32, 35, 36
Rogaway, P., 7
Rompel, J., 37
RP, see Complexity classes
RSA, see One-Way Functions

Safra, S., 72, 73
Samplers, see Pseudorandom Gen-

erators
Secrecy

INDEX 197

Perfect, see Perfect Secrecy
Security

“Provable”, 31
choice of assumptions, 28, 30
meaning of asymptotics, 6–7,

29
need for assumptions, 28
Perfect, see Perfect Secrecy,

33
Proactive, see Proactive Se-

curity
quantity rather than quality,

31
Session-Key, 3, 38
too much?, 16, 22, 31

Self-Reducibility, see Reduction
Downwards, 71

Shamir, A., 32, 35, 47, 71
Shannon, C.E., 16, 28, 35, 77
Signatures, see Digital Signatures
Simulation Paradigm, 8–9, 36
Simulations using Weak Random

Sources, 108
Solomonov, R.J., 78
Sudan, M., 73, 137
Szegedy, M., 72, 73
Szemerédi, E., 102

Testing polynomial identity, 138–
139

The Random Oracle Model, 11, 34,
38

Threshold Cryptography, 3, 33–34
Transparent Proofs, 72
Trevisan, L., 107, 111

Universal Hashing, 23, 89, 143
Extraction Property, 107, 143
Leftover Hash Lemma, 143
Mixing Property, 95

Universal One-Way Hash Functions,
24

Vazirani, U.V., 165
Vazirani, V.V., 165

Wigderson, A., 4, 36, 37, 71, 91,
111

Yao, A.C., 3, 30, 36, 37, 78, 88,
110, 111, 152, 165

Yung, M., 37

Zero-Knowledge proof systems, 12–
15, 51–56, 70, 71

Almost-Perfect, 52, 55
applications, 14
Arguments, 14
auxiliary input, 13
black-box simulation, 13
Computational, 53, 75
constant-round, 75
for 3-Colorability, 53
for NP, 14, 53, 71, 75
Knowledge Complexity, 53
Multi-Prover, 65, 71
non-interactive, see Non-Interactive

proofs
Perfect, 14, 52, 55
Statistical, 52, 55

ZK, see Zero-Knowledge proof sys-
tems

Zuckerman, D., 95, 111

