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Summary

The works in this thesis are spanned over the historical development in the approach to cryp-
tography: from information-theoretic cryptography, to computational cryptography, and up to
the new approach of rational cryptography.

In the first chapter we prove lower bounds on the size of shares in perfect secret sharing
schemes. We do so for matroidial access structures, using non-Shannon inequalities, by this
circumventing impossibility results regarding Shannon-inequalities. Our work sheds some
light on the problem of proving stronger lower bounds for perfect secret sharing schemes,
which is open for a long time.

In the second chapter we contribute to the theory of average-case complexity initiated by
Levin in 1984, by proving that all natural NP-complete decision problems have average-
case complete versions. While this widens the class of average-case complete distributional
problems, the resulted problems do not seem as natural as one might have expected.

In the third chapter we consider the possibility of basing one-way functions on average-
case hardness. We consider constructing samplers that yield one-way functions from samplers
that output hard-on-average instances. We show limitations on this approach.

Finally, in Chapter 4 we propose a new solution concept for the modeling of cryptographic
protocols as extensive games. Our solution concept is the first that is both sequential and
computational. As an application of our new definition we revisit the problem of removing the
mediator from a correlated equilibrium. We show a new protocol that works for a non-trivial
class of correlated equilibria, that achieves sequential rationality.
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Introduction

Since this thesis is in the published papers format, each chapter contains a detailed introduction
on the subject it handles. In this introduction we will thus concentrate on framing the different
and diverse results in a wider context.

In 1965 Hartmanis and Stearns published their paper On the Computational Complexity
of Algorithms [3], which initiated the study of computational complexity. While during the
1940’s and 1950’s a lot of research was carried on the question of “what can be computed”,
they showed that even when problems can be solved by computers, they can be arbitrarily hard
to compute. While this could look as nothing but “bad news” at first sight, in fact the concept
of computational complexity gave birth to a profound revolution in the field of cryptography,
starting in the mid 1970’s. Until then, cryptography was regarded mainly as establishing
means of secretely communicating in the presence of eavesdroppers. A basic paradigm that
governed all endeavors towards that end, was that the two communicating parties need to
agree on a secret “key”, that is, a secret information known only to them. They can then
use this key to manipulate the information they exchange, and any adversary attempting to
reveal the exchanged information will fail as he lacks the information needed to reverse that
manipulation. Thus, this paradigm is based on a gap in the information between the two
communicating parties and any potential eavesdropper.

However, the aforementioned paradigm bears a few deep problems: the main one is that
the parties need at some point in the time a safe channel to communicate (or, alternatively,
to physically meet), in order to agree on that key; only then they can start communicating
safely. These conditions may not always be met. Another problem this paradigm raises, is
that in all encrypting systems based on it, the security of the system degrades as the amount
of communication grows. Yet another problem, is that the parties need to keep the secret key
safe - once it is revealed, they cannot longer communicate safely.

The new paradigm that initiated the aforementioned revolution, is that there does not nec-
essarily need to be a gap in the information between the communicating parties and the eaves-
dropper. Even if in fact the manipulation can be reversed, that is, given the manipulated
message one can compute the original message, as long as the computational complexity of
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this task is hard enough, the system can be regarded safe (for example, think of a situation
where performing this computation is more expensive than any benefit could be gained by
breaking the system). Thus, this new paradigm builds on the possibility of arguing about the
computational complexity of computational tasks.

This new approach of considering not only “what can be computed”, but rather “what can
be practically computed”, opens a whole new world of possibilities. First of all, it enables
two parties to safely communicate without ever needing to agree on a secret key. This natu-
rally solves all three problems mentioned above. But the impact of this paradigm goes way
beyond safe communication. In the following years, and until today, the academic research of
cryptography has provided cryptographic solutions for a vast variety of tasks, from relatively
simple tasks like electronic signatures to extremely complicated tasks as electronic voting sys-
tems. At the heart of this research lies not only the construction of these systems, but also a
very wide collective endeavor of formulating the right definitions to argue about the security
of these systems. Today’s cryptosystems do not rely on a vague intuition that “breaking the
system is complicated”, but rather meet very rigorous definitions of security, definitions that
withstand constant examining, and that develop as new ideas are discovered, and new possible
attacks on the systems need be considered.

One of the results of this research, however, is that certain tasks are proven to be impossi-
ble to achieve under these definitions, and others, while achievable in theory, are not adopted
in practice as the known solutions require too much computing power from the participating
parties, making them impractical. Starting in the early 2000’s, a new approach was consid-
ered. Until then, as a result of the desire for best possible security, cryptographic definitions
required resistance to any possible malicious behavior of the adversaries. In most cases, this
required assuming that some fraction of the players, “the honest players”, behave “nicely”
unconditionally.

The new approach suggests looking at the parties neither “as malicious as possible” nor as
“unconditionally honest”, but rather as “rational”. Rational parties simply strive to maximize
their gain, regardless of the others (put aside altruism). This view naturally relates to the well-
established field of Game Theory, which studies interaction between rational entities. Indeed,
this line of research combines ideas from both cryptography and game theory, contributing
each one by incorporating ideas from the other. This new approach enables providing crypto-
graphic protocols for a few tasks otherwise provably impossible, and in other cases provides
more practical solutions. Game theory benefits from this approach too. Traditionally, there are
two classic ways to view game theory. One is the descriptive approach, which views game the-
ory as describing the interactive behavior of various entities, and in particular human beings.
If one thinks of game theory as modeling interaction between human beings, it is unjustified
to assume they have unbounded computational power (even if they use computers, as reflected
above). Thus, incorporating computational limitations into the strategic analysis of interaction
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is unavoidable. The other approach is the prescriptive approach. According to this approach,
game theory can be used to prescribe behavior to entities, ensuring rational ones would follow
it. Here too, the question of what prescription should and can be rationally followed cannot
avoid computational limitations of the parties. Just like in cryptography, the computational
limitations of the parties can be exploited to solve classic game-theoretic problems (see Chap-
ter 4 for examples). The fruitfulness of this research direction is yet to be discovered, but
considering the amount of research it produced in the last decade, it seems promising.

The results in this dissertation has a representative in each of the approaches overviewed
above. Chapter 1 deals with lower bounds for perfect secret sharing schemes. Secret sharing
schemes are a cryptographic tool for distributing the access to some information between sets
of parties. In a perfect secret sharing scheme there is a finite set of parties, and a collection
A of “authorized” subsets of the parties called the access structure. A secret-sharing scheme
for A is a method by which a dealer that holds a secret (which we think of as a random
variable) distributes “shares” (pieces of information) to the parties such that (1) any subset in
A can reconstruct the secret from its shares, and (2) any subset not in A cannot reveal any
partial information about the secret in the information-theoretic sense. That is, the collective
information of any authorized set determines the secret, while the collective information of
any unauthorized set does not reveal any information about the secret. Clearly, the access
structure A must be monotone, that is, all supersets of a set in A are also in A.

As opposed to all other works in this dissertation, this work does not involve any aspect
of computation. In the special case of secret sharing schemes one can achieve “perfect secu-
rity”, that is, security that holds even against computationally “all-powerful” malicious parties.
Thus, this cryptographic tool does in fact build on a gap in the information between honest
and dishonest (sets of) parties. We mention however, that on the other hand this model also
does not require that the reconstruction of the secret be computationally efficient (although in
all known constructions it is in fact efficient. Moreover, typically, applications that use secret
sharing schemes as a building block do require so). Because of this property of perfect secret
sharing schemes, a fundamental tool in their analysis is Information Theory, which was intro-
duced by Shannon in 1948 [6]. Since the secret is a random variable, applying on the secret
the scheme by which the dealer distributes the shares to the parties, induces a set of random
variables – one for the share of each party. Given a set of random variables that can be depen-
dent in one another, information theory lets us argue about the amount of entropy in subsets
of random variables, that is, the amount of “uncertainty” in these subsets. Moreover, using the
tools of information theory we can argue about the conditional entropy of random variables,
given other random variables. These arguments take the form of information inequalities. The
basic inequalities that appeared in Shannon’s paper are known as “Shannon inequalities”.

One of the major areas of research in secret sharing schemes is the size of the shares (where
by “size” we mean the number of bits used to represent them). It is easy to show that the size
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of the shares must be at least the size of the secret. Thus, we measure the ratio between the
size of the shares and the size of the secret. An access structure that admits a secret sharing
scheme with the optimal ratio (i.e., where the size of the shares is equal to the size of the
secret), is called an ideal access structure1.

Very little is known about the required size for general access structures. In [4] it is shown
that every access structure has a perfect secret sharing scheme. However, their construction
yields a ratio of exponential size in the number of parties. Other techniques are slightly better
than that of [4], but all yield exponential ratio. On the other hand, the best lower bound, due
to Csirmaz [1], shows that there exists a family of access structures for which every secret
sharing scheme requires a ratio of n/ log(n), where n is the number of parties. Thus, there is
an exponential (in the number of parties) gap between the lower and upper bounds for the size
of shares.

In his paper [1], Csirmaz showed another very interesting and beautiful result: he showed
that Shannon inequalities cannot prove lower bound higher than n for the size of shares. How-
ever, in 1998 Zhang and Yeung [7] discovered new inequalities that cannot be deduced from
the Shannon inequalities. These are the so-called non-Shannon inequalities. Other examples
have been found subsequently. These inequalities gave hope that maybe one can circumvent
Csirmaz’s impossibility result by using these new inequalities.

In the work in chapter 1 we study the power of non-Shannon inequalities. While we
still do not know how to circumvent Csirmaz’s impossibility result and prove super-linear
lower bounds for the aforementioned ratio, using non-Shannon inequalities we manage to
circumvent another impossibility result, which we describe in the following.

An interesting class of access structures are those induced by matroids. A matroid is
an axiomatic abstraction of the notion of linear independence. Matroids induce in a natural
way access structures. We call an access structure induced by a matroid a matroidial access
structure. It is known that all ideal access structures are matroidial. However, the opposite is
not true. That is, there are matroidial access structures that are not ideal. Yet, using similar
arguments to those in Csirmaz’s impossibility result, one can show that for matroidial access
structures too non-trivial lower-bounds cannot be proven by Shannon inequalities.

In the main result in our work we prove, using non-Shannon inequalities, non-trivial lower
bounds for a matroidial access structure, thus circumventing an impossibility result regarding
Shannon inequalities. This work demonstrates the usefulness of non-Shannon inequalities,
and raises some hope that maybe in the future non-Shannon inequalities will enable proving
stronger lower bounds on the size of shares in secret sharing schemes. Our results also solve

1We mention that we disregard some subtleties in this introduction. In particular, there may be access struc-
tures for which the ratio is optimal, yet they are not ideal. This is an artifact of the fact the ratio is defined as a
supremum over all possible secret sharing schemes. See Chapter 1 for more details.
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some combinatorial open questions regarding the size of shares in matroidial access structures.
In Chapter 2 we study average case complexity. In computational complexity, algorithms

are most often measured by the running time they require, as a function of the input length.
Traditional complexity theory studied the worst-case performance of algorithms. Worst-case
complexity accounts an algorithm for the running time on the worst input of every length. In
contrast, average-case complexity considers the average running time of the algorithm over all
inputs of each length. The reasoning behind this approach is that sometimes we can settle for
algorithms that under some distribution on the inputs, fail in rare cases, but otherwise perform
well. Thus, this approach studies the complexity of computational problems under different
distributions. In 1984 Levin [5] initiated the study of average-case complexity. In this paper
he defined, in particular, the following notions:

• distributional problem: a distributional problem is a pair consisting of a decision prob-
lem and a distribution over the strings. (There are various ways to define distributions
on strings, more details can be found in Chapter 2.)

• P-computable distributions: these are distributions on inputs that have strong computa-
tional structure: there exists a polynomial-time algorithm that can output for any two
strings the probability that a string drawn according to this distribution falls within the
interval defined by these two strings (in lexicographical order).

• distNP: the class of all distributional problems consisting of anNP-decision problem
coupled with a P-computable distribution.

• avgP: the class of all distributional problems that can be solved “in polynomial-time on
average”. This is a very important contribution, as it turns out that the “naive” definition
is inadequate.

He considered the class distNP to be the “average-case analogue” of NP . (Restricting the
class of distributions coupled with NP problems is essential for a sensible treatment. See
Chapter 2 for more details.) He then defined a suitable class of reductions between distribu-
tional problems, which we call here AP-reductions, that “preserve easiness on average”. That
is, if A can be AP-reduced to B, then B ∈ avgP implies that A ∈ avgP . He then proved his
main result: that there exists a distNP-complete distributional problem, that is, a problem in
distNP that every problem in distNP can be AP-reduced to it. Thus, this complete problem
is in avgP if and only if distNP ⊆ avgP . This result can be viewed as an average-case
analogue of the famous Cook-Levin Theorem on the NP-completeness of SAT. However,
as not like in the Cook-Levin case, a major deficiency of Levin’s theory was the lack of a
wide variety of “natural” distNP-complete problems. In Chapter 2 we show that every “nat-
ural” NP-complete problem can be coupled with some P-computable distribution to form a
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distNP-complete problem. (The exact meaning of “natural” will be clarified in Chapter 2.)
This substantially widens the class of average-case complete distributional problems. How-
ever, the resulted distributions on the problems do not seem as natural as one might have
expected, which suggests that towards obtaining “natural” complete distributional problems
one must relate to the specific structure of each problem.

In Chapter 3 we consider the challenge of utilizing computational hardness for cryptog-
raphy. A necessary condition for nearly all cryptographic applications studied today (and in
a lot of cases a sufficient condition too), is a computational object called one-way function.
One-way functions are functions that can be efficiently computed (i.e, in polynomial time in
their input-length), but cannot be efficiently inverted. However, proving the existence of one-
way functions seems unreachable these days. The existence of one-way functions implies that
P 6= NP , but solving the problem of P versus NP , which is seemingly an easier task, is an
open question for about half-century. Thus, a line of research studied the possibility of proving
the existence of one-way functions based on the assumption that P 6= NP . More specifically,
these works studied the existence of a (security) reduction from inverting a one-way function
to solving an NP-complete problem. Such reduction would prove that if P 6= NP then
the function is a one-way function. These works presented limitations on possible such re-
ductions. Specifically, these works show that, under certain assumptions, certain reductions
of this type do not exist. However, the assumption that P 6= NP is an assumption about
worst-case hardness. It assumes there are problems inNP that are hard in the worst-case, but
not necessarily that there are problems that are hard on average. On the other hand, even the
assumption that there are NP problems that are hard on average is not known to imply that
one-way functions exist.

Thus, the starting point of the work presented in Chapter 3 is the observation that the re-
ductions studied by these papers are actually supposed to overcome two gaps at once: (1) the
gap between average-case hardness and worst-case hardness; and (2) the gap between one-
way functions and average-case hardness. Since the problem of basing average-case hardness
on worst-case hardness is hard by itself, this work suggest looking at an even “easier” chal-
lenge: the task of basing one-way functions on average-case hardness. One approach to solve
this challenge follows the research line sketched above: to study reductions from inverting a
one-way function to solving an NP-complete problem on average under some distribution.
Such reduction would show that if the NP-complete problem is hard on average under this
distribution then one-way functions exist. But, there is also another approach. The assumption
that there are hard on average problems assumes there exists a search problemR and a sampler
S such that the search problem R is hard on average under the distribution induced by S.

It is an easy exercise to show that the existence of one-way functions is equivalent to
the following claim: there exists a search problem R and a polynomial-time sampler S∗ that
outputs instance-solution pairs of R, such that the distribution of S∗ restricted to the instances
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is hard on average
Thus, assuming there is a hard on average problem, one can start from a search problem

R and a sampler S where the search problem R is hard on average under the distribution
induced by S, and “modify” S to construct a new sampler S∗, that “behaves” similarly to S,
but instead of outputting only instances, S∗ outputs instance-solution pairs (under R). Using
the observation above, this will prove the existence of one-way functions. In fact, one can
relax this construction and still get a one-way function. (For more details see Chapter 3.)

The result in this chapter shows a limitation on this approach too. Specifically, it shows that
(under standard assumptions) there exists a (universal) sampler, such that for every polynomial
λ there is a search problemR such thatR is hard on-average under S, but where every sampler
S∗ as above (for R, S) has randomness complexity at least λ. In other words, the randomness
complexity of S∗, who’s distribution on instances should be “similar” to that of S (namely, it
should dominate that of S, see Chapter 3 for a definition), requires arbitrarily high randomness
complexity (which depends on R). This result is somewhat surprising, as one could expect
that the randomness complexity of S∗ should depend only on S.

The last chapter in this dissertation deals with the intersection of the fields of Cryptography
and Game Theory. If one assigns for each outcome of a cryptographic protocol a payoff for
each party, it is natural to view the protocol as an extensive game. Informally, an extensive
game is a game that proceeds in rounds, where in each round one player takes a move. As
opposed to the traditional cryptographic security outlined above, where we require that the
protocol be resistant to any possible deviation (or at least any such deviation of a “malicious
party”), in a game theoretic analysis we require that the parties, or “players” in the game-
theoretic terminology, be in equilibrium. This means that no player will have an incentive to
deviate given the behavior of the others. That is, while it is possible for players to harm the
others, it will not be in their interest to do so. Over the years many notions of equilibria, or
solution concepts, were developed, for different types of games and different assumptions on
the players. However, none of these solution concepts suits the cryptographic setting. The
reason is that the vast majority of research in game theory considers the players to have no
computational limitations. The relatively few studies on computationally bounded players (a
subfield called bounded rationality in game theory) modeled them in an anachronistic and
unrealistic manner, at least for our purposes (such as being represented as finite automata with
a bounded number of states).

In the past years a few new solution concepts were suggested, to deal with modern notions
of computational bounds. However, none of these considered the sequential nature of crypto-
graphic protocols. Thus, we have today on one hand numerous solution concepts, that arise
from traditional game theory, that deal with sequential games, where players play in rounds,
but where they are computationally unbounded, and on the other hand we have a few solution
concepts, that arise from the study of rational cryptography, for games with computationally
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bounded players, but that suit only normal-form games, that is, games that consist of players
playing exactly one move, all simultaneously.

When applying solution concepts for normal-form games in extensive-form games, the
fundamental problem is the existence of empty threats. Consider a traffic light in a junction
with two cars coming from perpendicular directions, each wanting to enter the junction first.
When we simulate this situation as a normal-form game, the only two equilibria consist of one
player entering and one waiting. In this case no player would like to unilaterally deviate, as
either he will crash the other, or he will loose his precedence. The other two possibilities are
not in equilibrium: if both are waiting each would like to unilaterally enter, and if both are
entering, each would like to avoid the crash and wait.

Now consider a slightly different game, where one player decides on his action, and the
other, a split of a second later, after viewing the first player’s action, decides on his action
too. If we model this game as a normal-form game, we get the same set of equilibria. In
particular, the first player waiting and the second entering, is an equilibrium. Indeed, if the
first player believes the second will enter, he is better-off waiting. However, this equilibrium
does not reflect our intuition about this game. If the first player enters the junction, it is fairly
rational for him to assume the other will avoid entering too. Once the second player is facing
the fact that the first already entered the junction, it is irrational for him to enter too. Thus, if
the second player declares that he enters the junction first, it is an empty threat. There is no
reason for the first player to believe this threat.

The traditional solution for this problem in game theory is the notion of sub-game perfect
equilibrium (SPE), known also as sub-game perfect Nash equilibrium (SPNE). This solution
concept requires that each player plays and declares to play optimally at every possible point
in the game. Thus, for the two drivers from the aforementioned example, the only SPNE is
when the first enters and the second waits.

However, when we try to apply this solution concept for computationally bounded players,
we face a fundamental difficulty: we cannot require computationally bounded players to play
optimally at every point in the game, as this might be computationally intractable. Moreover,
as explained above, most cryptographic protocols actually build on the fact players cannot
play optimally at every point, as this would mean breaking the protocol. Thus, although an
SPNE might exist for protocols when modeled as games, the players typically will not be able
to actually follow it.

We consider a few variants of SPNE and demonstrate why they all fail through simple
examples. We then propose a new solution concept for 2-players cryptographic protocols.
Our first observation is that one does not necessarily have to require optimal behavior at every
point in the game in order to eliminate empty threats, as not every non-optimal behavior carries
a threat. Moreover, as mentioned above, typically players are actually building on the others
not playing optimally. We then proceed to define formally an empty threat, a notion that turns
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out to be quite elusive. The idea behind our definition is demonstrated informally as following.
When am I threatened? I am threatened if I believe that if I will deviate from my strategy, and
then the other will play rationally after facing my deviation, I will improve. But what does it
mean for the other player to play rationally? He too will not believe to any empty threat of
mine. Thus, the rational assumption for me is that after I deviate, the game will proceed with
no empty threats. This leads to a regressive definition. Our new definition, called TFNE, for
Threat-Free Nash Equilibrium, requires that the players be in equilibrium, and in addition that
they will not impose empty threats on one another.

We then turn to define the computational variant of TFNE, called CTFNE, to deal with
computationally bounded players. This raises a few new difficulties, and in particular calls for
a set of new definitions to model the computational setting in a game-theoretic manner. We
formalize in a game-theoretic terminology, in a very rigorous manner, the behavior of inter-
active Turing machines (ITMs), the objects representing players in cryptographic protocols.
Since traditionally computational hardness is stated asymptotically, and correspondingly cryp-
tographic protocols are parameterized by a security parameter, we define sequences of games
with restricted strategies to model the computational inabilities of the players. Towards this
end we define the notion of strategy filters, which state which ITMs are allowed to play in
which games. We also modify the definition of TFNE to deal with a slackness parameter, re-
flecting the fact that in cryptographic protocols players might succeed in breaking the security
with some small probability.

While we end up with quite an involved definition, we attempt to justify our choices, and
disqualify a few alternatives. We also believe that the fact that no other definition was found
until now, although this was an open question for quite a while, might suggest that a simpler
definition might not exist.

To demonstrate the applicability of our definition, we revisit the problem of removing the
mediator from a correlated equilibrium. In a correlated equilibrium (CE) a mediator privately
recommends to each player how to play. The guarantee is that no player can gain by deviating
given the recommendations to the other players. The advantage of correlated equilibrium is
that the recommendations can depend on one another, that is, the resulted equilibrium is not
necessarily a product-distribution. This often results in better payoffs for some or all players,
and in other cases achieves payoffs that are more “fair” (for example, in the traffic light game
above, both equilibria are “unfair”, as in each one of them, one waits and one enters. In a
correlated equilibrium, each can enter with probability 1/2, without the two ever entering
together).

While there exist game-theoretic solutions for games with more than two players, the
case of two players is provably unsolvable in the game-theoretic setting (where players are
computationally unbounded). In 2000, Dodis, Halevy and Rabin [2] showed a very nice cryp-
tographic solution for the case of two players. However, the solution concept they used is
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Nash equilibrium, a solution concept that does not consider the sequential form of their solu-
tion, resulting in a solution that cannot be rationally justified. We show a modification of their
protocol, for a non-trivial subset of CE, and prove it is in CTFNE.
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Chapter 1

Matroids Can be Far From Ideal Secret
Sharing1

Amos Beimel and Noam Livne and Carles Padró
Abstract

In a secret-sharing scheme, a secret value is distributed among a set of parties by giving
each party a share. The requirement is that only predefined subsets of parties can recover
the secret from their shares. The family of the predefined authorized subsets is called the
access structure. An access structure is ideal if there exists a secret-sharing scheme realizing
it in which the shares have optimal length, that is, in which the shares are taken from the
same domain as the secrets. Brickell and Davenport (J. of Cryptology, 1991) proved that ideal
access structures are induced by matroids. Subsequently, ideal access structures and access
structures induced by matroids have received a lot of attention. Seymour (J. of Combinatorial
Theory, 1992) gave the first example of an access structure induced by a matroid, namely the
Vamos matroid, that is non-ideal. Beimel and Livne (TCC 2006) presented the first non-trivial
lower bounds on the size of the domain of the shares for secret-sharing schemes realizing an
access structure induced by the Vamos matroid.

In this work, we substantially improve those bounds by proving that the size of the domain
of the shares in every secret-sharing scheme for those access structures is at least k1.1, where k
is the size of the domain of the secrets (compared to k+Ω(

√
k) in previous works). Our bounds

are obtained by using non-Shannon inequalities for the entropy function. The importance of
our results are: (1) we present the first proof that there exists an access structure induced by
a matroid which is not nearly ideal, and (2) we present the first proof that there is an access

1Appeared in Theory of Cryptography Conference (TCC) 2008.
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structure whose information rate is strictly between 2/3 and 1. In addition, we present a better
lower bound that applies only to linear secret-sharing schemes realizing the access structures
induced by the Vamos matroid.

1.1 Introduction

1.1.1 Ideal Secret-Sharing Schemes and Matroids

Secret-sharing schemes, which were introduced by Shamir [31] and Blakley [5] in 1979, are
nowadays used in many cryptographic protocols. In these schemes there is a finite set of
parties, and a collection A of subsets of the parties (called the access structure). A secret-
sharing scheme for A is a method by which a dealer distributes shares of a secret value to
the parties such that (1) any subset in A can reconstruct the secret from its shares, and (2)
any subset not in A cannot reveal any partial information about the secret in the information-
theoretic sense. Clearly, the access structure A must be monotone, that is, all supersets of a
set in A are also in A.

Ito, Saito, and Nishizeki [18] proved that there exists a secret-sharing scheme for every
monotone access structure. Their proof is constructive, but the obtained schemes are very
inefficient: the ratio between the length in bits of the shares and that of the secret is expo-
nential in the number of parties. Nevertheless, some access structures admit secret-sharing
schemes with much shorter shares. A secret-sharing scheme is called ideal if the shares of
every participant are taken from the same domain as the secret. As proved in [20], this is the
optimal size for the domain of the shares. The access structures which can be realized by ideal
secret-sharing schemes are called ideal access structures.

The exact characterization of ideal access structures is a longstanding open problem, which
has interesting connections to combinatorics and information theory. The most important
result towards giving such characterization is by Brickell and Davenport [8], who proved that
every ideal access structure is induced by a matroid, providing a necessary condition for an
access structure to be ideal. A sufficient condition is obtained as a consequence of the linear
construction of ideal secret-sharing schemes due to Brickell [7]. Namely, an access structure
is ideal if it is induced by a matroid that is representable over some finite field. However, there
is a gap between the necessary condition and the sufficient condition. Seymour [30] proved
that the access structures induced by the Vamos matroid are not ideal. Other examples of non-
ideal access structures induced by matroids have been presented by Matúš [26]. Hence, the
necessary condition above is not sufficient. Moreover, Simonis and Ashikmin [33] constructed
ideal secret-sharing schemes for the access structures induced by the non-Pappus matroid,
which is not representable over any field. This means that the sufficient condition is not
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necessary. Therefore, the study of the access structures that are induced by matroids is useful
in the search of new results about the characterization of ideal access structures.

Another motivation in studying access structures induced by matroids arises from the sep-
aration result of Martı́-Farré and Padró [24]. Namely, by using an old result by Seymour [29],
they generalized the result by Brickell and Davenport [8], proving that in every secret-sharing
scheme whose access structure is not induced by a matroid there is at least one participant
whose domain of shares has size at least k1.5, where k is the size of the domain of secrets. In
other words, by proving that an access structure is not induced by a matroid, we prove a lower
bound of k1.5 for the size of the shares’ domain. Therefore, the access structures that are not
induced by matroids are clearly far from being ideal.

We rephrase the above result using the notion of information rate of [9]. The information
rate of a secret-sharing scheme is log k/ log s, where k is the size of the domain of the secrets
and s is the maximum size of the domains of shares. That is, the information rate is the
relation between the length in bits of the secret and the maximum length of the shares. Ideal
secret-sharing schemes are those having information rate equal to 1. The information rate of
an access structure A is the supermum of the information rates of all secret-sharing schemes
realizing the access structure with a finite domain of shares. Stating the aforementioned result
in the new notation, if A is not induced by a matroid, the information rate of every secret-
sharing scheme for A is at most 2/3, hence the information rate of A is at most 2/3. This is
not the case for the non-ideal access structures induced by matroids, which can be very close
to ideal. An access structure A is nearly ideal if its information rate is 1. A non-ideal but
nearly-ideal access structure is presented in [22, 27].

At this point, two natural open questions arise. First, which matroids induce ideal access
structures? And second, what can be said about the optimal size of the shares’ domain for
access structures induced by matroids?

Even though several interesting results have been given in [33, 26, 27], the first question
is far from being solved. Since an ideal secret-sharing scheme can be seen as a representation
of the corresponding matroid, this question can be thought of as a representability problem.
Very little is known about the second question. For instance, the only known non-trivial lower
bound on the optimal size of the shares’ domain for access structures induced by matroids has
been presented by Beimel and Livne [2]. Specifically, for an access structure induced by the
Vamos matroid, they prove a lower bound of k + Ω(

√
k), where k is the size of the domain of

the secrets.
The best constructions of secret-sharing realizing access structures induced by matroids

are the constructions for general access structures, e.g., in [4, 32, 7, 19]; in these constructions
most access structures induced by matroids require shares of exponential length. However,
prior to this work, even the following question was open.
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Question 1.1. Does there exist a matroid such that its induced access structures are not nearly
ideal?

Observe that the lower bound given in [2] for an access structure induced by the Vamos
matroid does not imply that it is not nearly ideal. For comparison, for general access structures
the best known lower bound is given by Csirmaz [13] who proves that for every n there is an
access structureAn with n participants such that for every secret-sharing scheme realizingAn
there is at least one participant whose share has length at least (n/ log n) log k.

Moreover, the following open problem, which was posed by Martı́-Farré and Padró [23],
was unsolved.

Question 1.2. Does there exist an access structure whose optimal share size is Θ(kα) for some
constant 1 < α < 3/2?

That is, Martı́-Farré and Padró ask if there is an access structure whose information rate is
strictly between 2/3 and 1. As a consequence of the result of [24], if such an access structure
exists, it must be induced by a matroid.

1.1.2 Our Results
In this paper we answer the above two questions about access structures induced by matroids.
Specifically, we prove new lower bounds on the size of the domains of shares in secret-sharing
schemes for the access structures induced by the Vamos matroid, substantially improving the
bound given in [2]. The Vamos matroid induces two non-isomorphic access structures. We
prove for them lower bounds on the size of the domains of shares of, respectively, k10/9 and
k11/10, where k is the size of the domain of the secrets (compared to k + Ω(

√
k) in [2]).

Therefore, we present here the first examples of access structures induced by matroids
that are not nearly ideal, resolving Question 1.1. Moreover, we solve Question 1.2 in the
affirmative: As a consequence of our lower bound and the upper bound of k4/3 that was
proved in [25], the access structures induced by the Vamos matroid are the required examples.

The interest of our result is increased by the use of the so called non-Shannon inequalities
in our proof. By using the basic properties of the entropy function, namely, the so-called
Shannon inequalities, Csirmaz [13] proved the best known lower bounds for secret-sharing
schemes mentioned above. On the negative side, Csirmaz proved that using only Shannon
inequalities one cannot improve his lower bounds by a factor larger than log n. More relevant
to this work, several bounds on the joint entropy of the shares of subsets of parties for access
structures induced by matroids were proved in [2] using Shannon inequalities (see Theorem
1.4 and Theorem 1.5 in Section 1.2 below). However, these bounds are only on the joint
entropy of the shares and the authors of [2] could not use them to prove lower bounds for
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access structures induced by matroids. This is not a coincidence as in [24] it is proved that it
is not possible to obtain bounds for access structures induced by matroids by using only this
technique (since the rank function of the matroid satisfies the Shannon inequalities).

Nevertheless, there exist several inequalities for the entropies of a set of random variables
that cannot be deduced from the Shannon inequalities. These are the so-called non-Shannon
inequalities. The first examples of such inequalities were given by Zhang and Yeung [36],
and other examples have been found subsequently [15]. In this paper, we combine the entropy
inequalities of [2] and the non-Shannon inequality of Zhang and Yeung [36] to obtain a simple
and elegant proof of our result. The inequality of [36] was previously used related to the
Vamos matroid in [16] for proving lower bounds for network coding and in [27] for proving
that this matroid is not asymptotically entropic (the latter result gives an alternative proof
that the access structures induced by the Vamos matroid are not ideal). We believe that non-
Shannon inequalities will be used for proving new lower bounds for secret-sharing schemes,
possibly improving the best known lower bound given by Csirmaz [13].

In addition, by applying a similar technique to the Ingleton’s inequality [17, 28], which
applies only to linear random variables, we obtain a lower bound of k5/4 for the size of the
shares’ domains for linear secret-sharing schemes whose access structures are induced by the
Vamos matroid.

1.2 Preliminaries
In this section we define secret-sharing schemes, review some background on matroids, and
discuss the connection between secret-sharing schemes and matroids. The definition of secret-
sharing presented in this paper uses the entropy function; in the appendix we review the rele-
vant definitions from information theory.

1.2.1 Secret Sharing
Definition 1.2.1 (Access Structure). Let P be a finite set of parties. A collection A ⊆ 2P

is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure is a monotone
collection A ⊆ 2P of non-empty subsets of P . Sets in A are called authorized, and sets not in
A are called unauthorized.

Definition 1.2.2 (Distribution Scheme). Let P = {p1, . . . , pn} be a set of parties, and p0 /∈ P
be a special party called the dealer. An n-party distribution scheme Σ = 〈Π, µ〉with domain of
secretsK is a pair where µ is a probability distribution on some finite setR (the set of random
strings) and Π is a mapping from K × R to a set of n-tuples K1 ×K2 × · · · ×Kn, where Ki
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is called the share-domain of pi. A dealer distributes a secret s ∈ K according to Σ by first
sampling a string r ∈ R according to µ, computing a vector of shares Π(s, r) = (s1, . . . , sn),
and then privately communicating each share si to the party pi.

We next give a definition of secret-sharing scheme using the entropy function. This def-
inition is the same as that of [20, 10] and is equivalent to the definition of [11, 1, 3]. Before
stating the definition, we present some notations. Let A be an access structure on the set of
parties P . We defined a distribution scheme Σ as a probabilistic mapping that given a secret
s generates a vector of shares. It will be convenient to view the secret as the share of the
dealer, and for every T ⊆ P ∪ {p0} to consider the vector of shares of T . Any probability
distribution on the domain of secrets, together with the distribution scheme Σ, induces, for any
T ⊆ P ∪{p0}, a probability distribution on the vector of shares of the parties in T . We denote
the random variable taking values according to this probability distribution on the vector of
shares of T by ST , and by S the random variable denoting the secret (i.e., S = S{p0}). Note
that for disjoint subsets T1, T2, the random variable denoting the vector of shares of T1 ∪ T2
can be written either as ST1∪T2 or as ST1ST2 . For a singleton {b}, we will write Sb instead of
S{b}.

Definition 1.2.3 (Secret-Sharing Scheme). We say that a distribution scheme is a secret-
sharing scheme realizing an access structureA with respect to a given probability distribution
on the secrets, denoted by a random variable S, if the following conditions hold.

CORRECTNESS. For every authorized set T ∈ A, the shares of the parties in T determine
the secret, that is,

H(S|ST ) = 0. (1.1)

PRIVACY. For every unauthorized set T /∈ A, the shares of the parties in T do not disclose
any information on the secret, that is,

H(S|ST ) = H(S). (1.2)

Remark 1.2.1. Although the above definition considers a specific distribution on the secrets,
Blundo et al. [6] proved that its correctness and privacy are actually independent of this
distribution: If a scheme realizes an access structure with respect to one distribution on the
secrets, then it realizes the access structure with respect to any distribution with the same
support.

Karnin et al. [20] have showed that the size of the domain of shares of each non-redundant
party (that is, a party that appears in at least one minimal authorized set) is at least the size of
the domain of secrets. This motivates the definition of ideal secret sharing.
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Definition 1.2.4 (Ideal Secret-Sharing Scheme and Ideal Access Structure). A secret-sharing
scheme with domain of secretsK is ideal if the domain of shares of each party isK. An access
structure A is ideal if there exists an ideal secret-sharing scheme realizing it over some finite
domain of secrets.

1.2.2 Matroids
A matroid is an axiomatic abstraction of linear independence. There are several equivalent
axiomatic systems to describe matroids: by independent sets, by bases, by the rank function,
or, as done here, by circuits. For more background on matroid theory the reader is referred
to [35, 28].

Definition 1.2.5 (Matroid). A matroid M = 〈V, C〉 is a finite set V and a collection C of
subsets of V that satisfy the following three axioms:

(C0) ∅ /∈ C.

(C1) If X 6= Y and X, Y ∈ C, then X * Y .

(C2) If C1, C2 are distinct members of C and x ∈ C1 ∩ C2, then there exists C3 ∈ C such that
C3 ⊆ (C1 ∪ C2) \ {x}.

The elements of V are called points, or simply elements, and the subsets in C are called
circuits.

For example, let G = (V,E) be an undirected simple graph and C be the collection of
simple cycles in G. Then, (E, C) is a matroid.

Definition 1.2.6 (Rank, Independent and Dependent Sets). A subset of V is dependent in a
matroidM if it contains a circuit. If a subset is not dependent, it is independent. The rank of
a subset T ⊆ V , denoted rank(T ), is the size of the largest independent subset of T .

Definition 1.2.7 (Connected Matroid). A matroid is connected if for every pair of distinct
elements x and y there is a circuit containing x and y.

1.2.3 Matroids and Secret Sharing
In this section we describe the results relating ideal secret-sharing schemes and matroids. We
first define access structures induced by matroids.
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Definition 1.2.8. LetM = 〈V, C〉 be a connected matroid and p0 ∈ V . The induced access
structure ofM with respect to p0 is the access structure A on P = V \ {p0} defined by

A def
= {T : there exists C0 ∈ C such that p0 ∈ C0 and C0 \ {p0} ⊆ T} .

That is, a set T is a minimal authorized set of A if by adding p0 to it, it becomes a circuit of
M. We think of p0 as the dealer. We say that an access structure is induced by M, if it is
obtained by setting some arbitrary element ofM as the dealer. In this case, we say thatM is
the appropriate matroid of A, and that A is induced byM with respect to p0.

Remark 1.2.2. The term the appropriate matroid is justified, as if some access structure is
induced by a matroid, this matroid is unique.

The following fundamental result, proved by Brickell and Davenport [8], gives a necessary
condition for an access structure to have an ideal secret-sharing scheme.

Theorem 1.3 ([8]). If an access structure is ideal, then it has an appropriate matroid.

The following result of [21] shows a connection between the rank function of the appro-
priate matroid and the joint entropy of the collections of shares.

Lemma 1.3.1 ([21]). Assume that the access structureA ⊆ 2P is ideal, and let 〈P ∪{p0} , C〉
be its appropriate matroid where p0 /∈ P . Let Σ be an ideal secret-sharing scheme realizing
A where S is the random variable denoting the secret. Then H(ST ) = rank(T ) · H(S) for
any T ⊆ P ∪ {p0}, where rank(T ) is the rank of T in the matroid.

Example 1.3.1. Consider the threshold access structure At, which consists of all subsets
of participants of size at least t, and Shamir’s scheme [31] which is an ideal secret-sharing
scheme realizing it. In this scheme, to share a secret s, the dealer randomly chooses a random
polynomial p(x) of degree t− 1 such that p(0) = s, and the the share of the ith participant is
p(i). The appropriate matroid of At is the uniform matroid with n + 1 points, whose circuits
are the sets of size t+ 1 and rank(T ) = min {|T |, t}. Since every t points determine a unique
polynomial of degree t − 1, in Shamir’s scheme H(ST ) = min {|T |, t}H(S), as implied by
Lemma 1.3.1.

We next quote results from [2] proving lower and upper bounds on the size of shares’
domains of subsets of parties in matroid-induced access structures. These results generalize
the results of [21] on ideal secret-sharing schemes to non-ideal secret-sharing schemes for
matroid-induced access structures.
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Theorem 1.4 ([2]). LetM = 〈V, C〉 be a connected matroid where |V | = n+ 1, and p0 ∈ V .
Furthermore, let A be the induced access structure ofM with respect to p0, and let Σ be any
secret-sharing scheme realizing A. For every T ⊆ V ,

H(ST ) ≥ rank(T ) ·H(S).

Theorem 1.5 ([2]). Let M = 〈V, C〉 be a connected matroid where |V | = n + 1, p0 ∈ V
and let A be the induced access structure ofM with respect to p0. Furthermore, let Σ be any
secret-sharing scheme realizing A, and let λ ≥ 0 be such that H(Sv) ≤ (1 + λ)H(S) for
every v ∈ V \ {p0}. Then, for every T ⊆ V

H(ST ) ≤ rank(T )(1 + λ)H(S) + (|T | − rank(T ))λnH(S). (1.3)

1.2.4 The Vamos Matroid
In this paper we prove lower bounds on the size of shares in secret-sharing schemes realizing
the access structures induced by the Vamos matroid. The Vamos matroid [34] is the smallest
known matroid that is non-representable over any field, and is also non-algebraic (for more
details on these notions see [35, 28]; we will not need these notions in this paper).

Definition 1.5.1 (The Vamos Matroid). The Vamos matroid V is defined on the set V =
{v1, v2, . . . , v8}. Its independent sets are all the sets of cardinality ≤ 4 except for five:
{v1, v2, v3, v4}, {v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8}, and {v5, v6, v7, v8}.

Note that these 5 sets are all the unions of two pairs from {v1, v2}, {v3, v4}, {v5, v6}, and
{v7, v8}, excluding {v1, v2, v7, v8}. The five sets listed in Definition 1.5.1 are circuits in V
while the set {v1, v2, v7, v8} is independent; these facts will be used later.

There are two non-isomorphic access structures induced by the Vamos matroid. First, the
access structures obtained by setting v1, v2, v7, or v8 as the dealer are isomorphic. The other
access structure is obtained by setting v3, v4, v5, or v6 as the dealer.

Definition 1.5.2 (The Access Structures V6 and V8). The access structure V8 is the access
structure induced by the Vamos matroid with respect to v8. That is, in this access structure
the parties are {v1, . . . , v7} and a set of parties is a minimal authorized set if this set together
with v8 is a circuit in V . The access structure V6 is the access structure induced by the Vamos
matroid with respect to v6. That is, in this access structure the parties are {v1, . . . , v5, v7, v8}
and a set of parties is a minimal authorized set if this set together with v6 is a circuit in V .

Example 1.5.1. We next give examples of authorized and non-authorized sets in V6.

1. The set {v5, v7, v8} is authorized, since {v5, v6, v7, v8} is a circuit.
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2. The circuit {v1, v2, v3, v4} is unauthorized, since the set {v1, v2, v3, v4, v6} does not con-
tain a circuit that contains v6. To check this, we first note that this 5-set itself cannot be
a circuit, since it contains the circuit {v1, v2, v3, v4}. Second, the only circuit it contains
is {v1, v2, v3, v4}, which does not contain v6.

3. The set {v1, v2, v7, v8} is a minimal authorized set, since {v1, v2, v6, v7, v8} is a circuit
(as it is dependent, and no circuit of size 4 is contained in it).

1.3 Lower Bounds for the Vamos Access Structure
In this section we prove our main result, stating that the access structures induced by the
Vamos matroid cannot be close to ideal. That is, their information rate is bounded away from
1.

We will use a non-Shannon information inequality proved by Zhang and Yeung [36]. This
inequality was used related to the Vamos matroid in [16] for proving lower bounds for network
coding and in [27] for proving that a function is not asymptotically entropic.

Theorem 1.6 ([36, Theorem 3]). For every four discrete random variables A,B,C, and D
the following inequality holds:

3[H(CD) +H(BD) +H(BC)] +H(AC) +H(AB)

≥ H(D) + 2[H(C) +H(B)] +H(AD) + 4H(BCD) +H(ABC). (1.4)

Seymour [30] proved that V6 and V8 are not ideal. Inequality 1.4 was used in [27] to give
an alternative proof of this fact. We next present the proof of [27]. Assume there is an ideal
secret-sharing scheme realizing the Vamos access structure V6. Define the following random
variables

A
def
= S{v1,v2},

B
def
= S{v3,v4},

C
def
= S{v5,v6},

D
def
= S{v7,v8}. (1.5)

By Lemma 1.3.1 H(ST ) = rank(T )H(S) for every set T ⊆ {v1, . . . , v8}. Since all sets
of size 2 are independent in the Vamos matroid, H(A) = H(B) = H(C) = H(D) =
2H(S). Furthermore, by the definition of the circuits of size 4 in the Vamos matroidH(AB) =
H(AC) = H(BC) = H(BD) = H(CD) = 3H(S) while H(AD) = 4H(S). Finally,
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H(BCD) = H(ABC) = 4H(S). Under the above definition of A,B,C, and D we notice
that the l.h.s. of 1.4 is 33H(S) while the r.h.s. of 1.4 is 34H(S), a contradiction. Note that this
proof strongly exploits the fact that the random variable AD, which corresponds to the shares
of the independent set {v1, v2, v7, v8}, appears in the r.h.s. of 1.4, while the random variables
appearing in the l.h.s. of 1.4 correspond to the shares of circuits in the matroid.

Applying Theorem 1.4 and Theorem 1.5, we can generalize the above proof and prove that
V6 cannot be close to ideal. That is, we can prove that in every secret-sharing scheme realizing
V6, the size of the entropy of the share of at least one party is at least (1 + 1/110)H(S). Using
direct arguments, we prove that the size of the entropy of the share of at least one party is at
least (1 + 1/9)H(S). Before we formally state our result, we prove two lemmas. First, to aid
us in proving the better lower bound, we rearrange Inequality 1.4:

Lemma 1.6.1. For every four discrete random variables A, B, C, and D the following in-
equality holds:

3H(C|D) + 2H(C|B) +H(B|C) +H(A|C)

≥ H(A|D) + 3H(C|BD) +H(BC|D) +H(C|AB). (1.6)

Proof. The claim is proved by a simple manipulation of 1.4. By 1.28, 3H(BCD) = 3H(C|BD)+
3H(BD) and H(ABC) = H(C|AB) + H(AB). Substituting these expressions in 1.4 and
rearranging the terms, we get

3H(CD) + 3H(BC) +H(AC)

≥ H(D) + 2[H(C) +H(B)]

+H(AD) + 3H(C|BD) +H(BCD) +H(C|AB). (1.7)

By 1.28, 2H(BC) = 2H(B) + 2H(C|B), H(BC) = H(C) + H(B|C), and H(AC) =
H(C) +H(A|C). Substituting these expressions in 1.7 and rearranging the terms, we get

3H(CD) + 2H(C|B) +H(B|C) +H(A|C)

≥ H(D) +H(AD) + 3H(C|BD) +H(BCD) +H(C|AB). (1.8)

By 1.28, 3H(CD) = 3H(D) + 3H(C|D), H(AD) = H(D) + H(A|D), and H(BCD) =
H(D) + H(BC|D). Substituting these expressions in 1.8 and rearranging the terms, we
get 1.6.

To prove our lower bounds, we need the following simple lemma whose proof can be
found in [2]. For completeness we present its proof here. Informally, this lemma states that if
a set T is unauthorized and T∪{b} is authorized for some participant b, then guessing b’s share
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given the shares of T is at least as hard as guessing the secret. Otherwise, the unauthorized
set T can guess the share of b, and via the share compute the secret. Since, by the privacy
requirement, the unauthorized set T cannot have any information on the secret, the entropy of
the share must be at least H(S).

Lemma 1.6.2. Let T ⊆ V \ {p0} and b /∈ T such that T ∪ {b} ∈ A and T /∈ A. Then,
H(Sb|ST ) ≥ H(S).

Proof. By applying 1.33 twice,

H(S, Sb|ST ) = H(Sb|ST ) +H(S|Sb, ST ) = H(S|ST ) +H(Sb|S, ST ).

The proof is straightforward from the second equality by taking into account that H(S|ST ) =
H(S), H(S|Sb, ST ) = 0, and that the conditional entropy function is nonnegative.

1.3.1 Proving the Lower Bound for V6
We next state and prove our main result.

Theorem 1.7. In any secret-sharing scheme realizing V6 with respect to a distribution on the
secrets denoted by a random variable S, the entropy of the shares of at least one party is at
least (1 + 1/9)H(S).

Proof. We fix any scheme realizing V6 and define λ as

λ
def
=

max1≤i≤8(H(Svi))

H(S)
− 1.

In particular, for 1 ≤ i ≤ 8:

H(Svi) ≤ (1 + λ)H(S). (1.9)

Recall that H(Sv6) = H(S) as v6 is the dealer. We use the same random variables A,B,C,
and D as defined in 1.5. We will show that Lemma 1.6.1 implies that λ ≥ 1/9.

We start with giving upper-bounds on the terms on the left hand side of 1.6. Recall that v6
is the dealer, C = S{v5,v6}, and D = S{v7,v8}. Thus, since {v5, v7, v8} is authorized,

H(C|D) = H(Sv5|Sv7 , Sv8) +H(Sv6|Sv5 , Sv7 , Sv8) (from 1.33)
≤ H(Sv5) ≤ (1 + λ)H(S). (1.10)

Similarly,

H(C|B) ≤ (1 + λ)H(S). (1.11)

22



Next, recall that B = S{v3,v4}. By applying 1.29 and 1.33,

H(B|C) = H(Sv4|C) +H(Sv3 |Sv4 , Sv5 , Sv6)
≤ H(Sv4) +H(Sv3 , Sv6|Sv4 , Sv5)−H(Sv6|Sv4 , Sv5)
= H(Sv4) +H(Sv3|Sv4 , Sv5) +H(Sv6|Sv3 , Sv4 , Sv5)−H(Sv6 |Sv4 , Sv5).

Therefore, since {v3, v4, v5} is authorized and {v4, v5} is unauthorized,

H(B|C) ≤ H(Sv4) +H(Sv3)−H(S) ≤ (1 + 2λ)H(S).

Similarly,

H(A|C) ≤ (1 + 2λ)H(S). (1.12)

So, the l.h.s. of 1.6 is at most (7 + 9λ)H(S).
We continue by giving lower-bounds on the terms in the right hand side of 1.6. First, by

using 1.32 and 1.33,

H(A|D) = H(Sv1|D) +H(Sv2 |D,Sv1)
≥ H(Sv1|D,Sv2) +H(Sv2|D,Sv1)
≥ 2H(S), (1.13)

where the last inequality is obtained from Lemma 1.6.2 as {v1, v2, v7, v8} is a minimal autho-
rized set. Second, from 1.33 and 1.2 as BD is unauthorized

H(C|BD) ≥ H(Sv6|BD) ≥ H(S). (1.14)

Third, by 1.33, 1.32, and Lemma 1.6.2,

H(BC|D) = H(B|D) +H(C|BD)

≥ H(Sv3 |D) +H(S)

≥ H(Sv3 |D,Sv1) +H(S).

From Lemma 1.6.2 and the fact that {v1, v3, v7, v8} is a minimal authorized set,

H(BC|D) ≥ 2H(S).

Fourth, from 1.33 and 1.2 as AB is unauthorized,

H(C|AB) ≥ H(Sv6|AB) ≥ H(S). (1.15)

So, the r.h.s. of 1.6 is at least 8H(S).
To conclude, we have proved that the l.h.s. of 1.6 is at most (7 + 9λ)H(S) and the r.h.s.

of 1.6 is at least 8H(S). As the l.h.s. of 1.6 should be at least the r.h.s. of 1.6, we deduce that
(7 + 9λ)H(S) ≥ 8H(S), which implies that λ ≥ 1/9.
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By Remark 1.2.1, we can assume without loss of generality that the distribution on the
secrets is uniform, that is, if the domain of secrets is K, then H(S) = log |K|. Furthermore,
by 1.27, if the domain of shares of vi is Ki, then H(Svi) ≤ log |Ki|. Thus, we can reformu-
late Theorem 1.7 as follows.

Corollary 1.7.1. In any secret-sharing scheme realizing V6 with respect to a distribution on
the secrets with support K, the size of the domain of shares of at least one party is at least
|K|1+1/9.

1.3.2 Proving the Lower Bound for V8
In a similar manner to the proof of the lower bound for V6, we prove a slightly weaker lower-
bound for V8. As before, we begin by rearranging Inequality 1.4. The next lemma is proved
similarly to Lemma 1.6.1.

Lemma 1.7.1. For every four discrete random variables A,B,C, and D the following in-
equality holds:

3H(D|C) + 2H(D|B) +H(BD) +H(B|A)

≥ H(D) +H(D|A) +H(B|C) + 4H(D|BC) +H(B|AC). (1.16)

Theorem 1.8. In any secret-sharing scheme realizing V8 with respect to a distribution on the
secrets denoted by a random variable S, the entropy of the shares of at least one party is at
least (1 + 1/10)H(S).

Proof. We fix any scheme realizing V8 and we define λ as in the proof of Theorem 1.7. Then
H(Svi) ≤ (1 +λ)H(S) for every i = 1, . . . , 8. Recall that H(Sv8) = H(S) as v8 is the dealer.
We use the same random variables A,B,C, and D as defined in 1.5. In a similar way as in
Theorem 1.7, we find bounds on the terms of 1.16 to obtain a bound on λ.

Claim 1.8.1. H(B|A) ≤ (1 + 3λ)H(S).

To prove this claim, we first observe that

H(B|A) = H(Sv3 , Sv4|Sv1 , Sv2)
≤ H(Sv3) +H(Sv4 |Sv1 , Sv2 , Sv3)
≤ (1 + λ)H(S) +H(Sv4|Sv1 , Sv2 , Sv3). (1.17)

We now bound H(Sv4|S{v1,v2,v3}). By applying 1.33 twice,

H(Sv4 , Sv5|S{v1,v2,v3}) = H(Sv4|S{v1,v2,v3}, Sv5) +H(Sv5|S{v1,v2,v3})
= H(Sv5|S{v1,v2,v3}, Sv4) +H(Sv4|S{v1,v2,v3}). (1.18)
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Thus, by 1.18

H(Sv4|S{v1,v2,v3}) = H(Sv4|S{v1,v2,v3,v5}) +H(Sv5|S{v1.v2,v3})
−H(Sv5 |S{v1.v2,v3,v4}). (1.19)

We next bound each of the elements of the above sum, and get the desired result. First,

H(Sv5|S{v1,v2,v3,v4}) ≤ H(Sv5) ≤ (1 + λ)H(S).

Second, from Lemma 1.6.2 we have

H(Sv5|S{v1,v2,v3,v4}) ≥ H(S).

Next observe that {v1, v2, v3, v5} is authorized in V8, and henceH(Sv8|S{v1,v2,v3,v5}) = 0, thus,

H(Sv4|S{v1,v2,v3,v5}) = H(S{v1,v2,v3,v5}, Sv4)−H(S{v1,v2,v3,v5})

= H(S{v1,v2,v3,v4,v5})

−[H(Sv8|S{v1,v2,v3,v5}) +H(S{v1,v2,v3,v5})]

= H(S{v1,v2,v3,v4,v5})−H(S{v1,v2,v3,v5,v8})

≤ H(S{v1,v2,v3,v4,v5,v8})−H(S{v1,v2,v3,v5,v8})

= H(Sv4|S{v1,v2,v3,v5,v8})
≤ H(Sv4|S{v1,v2,v5,v8})
= H(Sv4Sv8|S{v1,v2,v5})−H(Sv8|S{v1,v2,v5})
= [H(Sv4|S{v1,v2,v5}) +H(Sv8|S{v1,v2,v4,v5})]
−H(Sv8|S{v1,v2,v5})

≤ H(Sv4) + 0−H(S)

≤ λH(S). (1.20)

In the last steps we used that {v1, v2, v4, v5} is a minimal authorized subset. Now, by summing
up the bounds,

H(Sv4|S{v1,v2,v3}) ≤ λH(S) + (1 + λ)H(S)−H(S) = 2λH(S). (1.21)

Thus, by 1.17 and 1.21, H(B|A) ≤ (1 + 3λ)H(S), which concludes the proof of our claim.
Since {v5, v6, v7} is an authorized set,

H(D)−H(D|C) = (H(Sv7) +H(Sv8|Sv7))
−(H(Sv7|S{v5,v6}) +H(Sv8|S{v5,v6,v7}))

= H(Sv7) +H(S)−H(Sv7|S{v5,v6})− 0

≥ H(S). (1.22)
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Thus, by 1.16 and 1.22,

2H(D|C) + 2H(D|B) +H(BD) +H(B|A)

≥ H(D|A) +H(B|C) + 4H(D|BC) +H(B|AC) +H(S). (1.23)

We next give upper bounds for the terms in the l.h.s. of 1.23. We proved before that
H(B|A) ≤ (1 + 3λ)H(S). For the rest of the terms in the l.h.s. we use straightforward
bounds. First,

H(D|C) = H(Sv7Sv8|C) ≤ H(Sv8|Sv7C) +H(Sv7) ≤ (1 + λ)H(S)

because {v5, v6, v7} is authorized, and similarlyH(D|B) ≤ (1+λ)H(S). Second,H(BD) =
H(S{v3,v4,v7,v8}) = H(Sv8|S{v3,v4,v7}) + H(S{v3,v4,v7}) ≤ 3(1 + λ)H(S), since {v3, v4, v7} is
authorized. Thus, the l.h.s. of 1.23 is less than (8 + 10λ)H(S).

We continue by giving lower bounds for the terms in the r.h.s. of 1.23. First, by Lemma
1.6.2,

H(D|A) = H(Sv8 |S{v1,v2,v7}) +H(Sv7|S{v1,v2}) ≥ 2H(S),

since {v1, v2, v7} is unauthorized and {v1, v2, v5, v7} is authorized. Second,

H(B|C) ≥ H(B|AC) ≥ H(S) (1.24)

since {v1, v2, v5, v6} is unauthorized and {v1, v2, v3, v4, v5, v6} is authorized. Next,H(D|BC) ≥
H(S) since the set {v3, v4, v5, v6} is unauthorized, while {v7, v8} contains the dealer v8. Fi-
nally, H(B|AC) ≥ H(S) by 1.24. Thus, we conclude that the r.h.s. of 1.23 is at least 9H(S).

Finally, the bounds we obtained for both sides of Inequality 1.23 imply that λ ≥ 1/10.

Corollary 1.8.1. In any secret-sharing scheme realizing V8 with respect to a distribution on
the secret with support K, the size of the domain of shares of at least one party is at least
|K|1+1/10.

1.3.3 Lower Bounds for Linear Secret-Sharing Schemes
In the following, we present a lower bound for the size of the shares’ domain that applies
only to linear secret-sharing schemes with access structure V6 or V8. Nearly all known secret-
sharing schemes are linear. A secret-sharing scheme is linear if the distribution scheme is such
that the domain of secrets K, the domain of random strings R, and the domains of shares of
the i-th party Ki, for every i, are vector spaces over some finite field, Π is a linear mapping,
and the distribution on random strings µ is uniform. This bound is obtained in a very similar
way as the previous ones by using an inequality due to Ingleton [17], which applies only to
linear random variables, that is, random variables defined by linear mappings.
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Theorem 1.9 ([17, 28]). For every four linear discrete random variables A, B, C, and D the
following inequality holds:

H(CD) +H(BD) +H(BC) +H(AC) +H(AB)

≥ H(C) +H(B) +H(AD) +H(BCD) +H(ABC). (1.25)

The proof of the next lemma is very similar to the one of Lemma 1.6.1.

Lemma 1.9.1. For every four linear discrete random variables A,B,C, and D the following
inequality holds:

H(C|D) +H(C|B) +H(A|C)

≥ H(A|D) +H(C|BD) +H(C|AB). (1.26)

The following result is proved in a similar way to the proof of Theorem 1.7.

Theorem 1.10. In any linear secret-sharing scheme realizing V6 with respect to a distribution
on the secrets denoted by a random variable S, the entropy of the shares of at least one party
is at least (1 + 1/4)H(S).

Proof. We fix any linear scheme realizing V6 and define

λ
def
= max

1≤i≤8
(H(Svi))/H(S)− 1.

We use the same random variables A,B,C, and D as defined in 1.5. Note that all bounds
proved in Section 1.3.1 apply, in particular, to linear secret-sharing realizing V6. Thus, by 1.10, 1.11,
and 1.12, the l.h.s. of 1.26 is at most (3 + 4λ)H(S). By 1.13, 1.14, and 1.15, the r.h.s. of 1.26
is at least 4H(S). This implies that (3+4λ)H(S) ≥ 4H(S), which implies that λ ≥ 1/4.

Corollary 1.10.1. In any linear secret-sharing scheme realizing V6 with respect to a distribu-
tion on the secrets with support K, the size of the domain of shares of at least one party is at
least |K|1+1/4.

Finally, the same bound applies to the linear secret-sharing schemes with access structure
V8 by duality. The dual of an access structure A is the access structure

A∗ def
= {T ⊆ P : P \ T /∈ A}.

It is well known that, for every linear secret-sharing scheme Σ with access structure A, there
exists a linear secret sharing scheme Σ∗ for A∗ such that the domain of the shares of every
participant is the same for Σ and for Σ∗ (see [14], for instance). Therefore, since V∗8 is isomor-
phic to V6, the bounds in Theorem 1.10 and Corollary 1.10.1 apply also to the access structure
V8.
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1.4 Appendix: Basic Definitions from Information Theory
In this appendix, we review the basic concepts of information theory used in this paper. For a
complete treatment of this subject see, e.g., [12]. All the logarithms here are of base 2.

Given a finite random variable X , we define the entropy of X , denoted H(X), as

H(X)
def
= −

∑
x,Pr[X=x]>0

Pr[X = x] log Pr[X = x].

It can be proved that
0 ≤ H(X) ≤ log | support(X)|, (1.27)
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where | support(X)| is the size of the support of X (the number of values with probability
greater than zero). The upper bound is obtained if and only if the distribution of X is uniform.

Given two finite random variables X and Y (possibly dependent), we define the condi-
tioned entropy of X given Y as

H(X|Y )
def
= H(XY )−H(Y ). (1.28)

For convenience, when dealing with the entropy function, XY will denote X ∪ Y . From the
definition of the conditional entropy, the following properties can be proved:

0 ≤ H(X|Y ) ≤ H(X), (1.29)

H(Y ) ≤ H(XY ), (1.30)

and
H(XY ) ≤ H(X) +H(Y ). (1.31)

Given three finite random variable X , Y and Z (possibly dependent), the following prop-
erties hold:

H(X|Y ) ≥ H(X|Y Z), (1.32)

H(XY |Z) = H(X|Y Z) +H(Y |Z) ≥ H(Y |Z), (1.33)

and
H(XY |Z) ≤ H(X|Z) +H(Y |Z). (1.34)
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Chapter 2

All Natural NPC Problems Have
Average-Case Complete Versions1

Noam Livne
Abstract

The theory of average case complexity studies the expected complexity of computational
tasks under various specific distributions on the instances, rather than their worst case com-
plexity. Thus, this theory deals with distributional problems, defined as pairs each consisting
of a decision problem and a probability distribution over the instances. While for applications
utilizing hardness, such as cryptography, one seeks an efficient algorithm that outputs random
instances of some problem that are hard for any algorithm with high probability, the resulting
hard distributions in these cases are typically highly artificial, and do not establish the hardness
of the problem under ”interesting” or ”natural” distributions. This paper studies the possibility
of proving generic hardness results (i.e., for a wide class of NP-complete problems), under
”natural” distributions. Since it is not clear how to define a class of ”natural” distributions
for general NP-complete problems, one possibility is to impose some strong computational
constraint on the distributions, with the intention of this constraint being to force the distribu-
tions to ”look natural”. Levin, in his seminal paper on average case complexity from 1984,
defined such a class of distributions, which he called P-computable distributions. He then
showed that theNP-complete Tiling problem, under some P-computable distribution, is hard
for the complexity class of distributional NP problems (i.e. NP with P-computable distri-
butions). However, since then very few NP-complete problems (coupled with P-computable
distributions), and in particular ”natural” problems, were shown to be hard in this sense. In

1To appear in Journal of Computational Complexity.
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this paper we show that all naturalNP-complete problems can be coupled with P-computable
distributions such that the resulting distributional problem is hard for distributional NP .

2.1 Introduction
While most of the research in complexity theory concentrates on worst-case complexity, in
practice one would often settle for an algorithm that fails only with a negligible probability
over the relevant distribution of the instances. To address this observation, the theory of av-
erage case complexity, initiated by Levin [8], studies distributional problems, defined as pairs
consisting of some decision (or search2) problem and a probability distribution over all strings.
Feasibly solving such a problem means providing an algorithm that solves all instances and,
loosely speaking, runs in expected polynomial time (or, alternatively, that runs in polynomial
time and decides the problem with high probability over the related distribution of the inputs).

For applications utilizing hardness (such as cryptography), we are typically content with
the mere ability to generate hard instances of some problem, and thus seek for an efficient
probabilistic algorithm that outputs random instances that are hard for any algorithm with
high probability. Such distributions are called samplable distributions, as for any such distri-
bution there exists an algorithm that samples it. It is well-known ([1]) that any NP-complete
decision problem has a distributional version that is complete for NP with samplable distri-
butions. In other words, anyNP-complete decision problem can be coupled with a samplable
distribution such as to form a distributional problem that is hard on the average if and only
if there exists some NP problem that is hard on the average under some samplable distribu-
tion. However, typically these distributions are very artificial, and these results do not imply
hardness of these NP-complete problems under ”natural”, or ”interesting” distributions. On
the other hand, one can show that certain decision problems are complete in this sense un-
der ”natural” distributions, such as the uniform distribution, but in this case, the problems are
somewhat unnatural3 (e.g. Bounded Halting and Tiling [8]). These results, however, do not
show (conditional) hardness of ”natural” NP-complete decision problems under ”natural”
distributions. Loosely speaking, all known results do not eliminate the possibility that even if
P 6= NP , we can solve most NP-complete problems for most practical applications.

This paper studies the possibility of showing generic, ”natural” hardness-on-average re-
sults forNP-complete decision problems, that is, hardness results that apply for a large family
of NP-complete problems under ”simple” distributions. When dealing with the class NP as
a whole, it is not clear how to define “natural” distributions, because these may depend on the

2By a result of Ben-David et al. [1], the discussion here, although focuses on decision problems, holds also
for search problems.

3The notion of a natural decision problem is of course subjective. See further discussion in Section 2.1.4.
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specific combinatorial structure of each problem. One approach to overcome this difficulty
is to define some ”natural” constraint on the probability distributions over the strings (with
the intention of this constraint forcing the distributions to ”look natural”), and then show
that a large family of NP-complete problems can be coupled with these distributions as to
make them hard for NP problems under some (as wide as possible) class of distributions.
In his seminal paper [8], Levin defined such a family of probability distributions, which he
called P-computable distributions. He then showed that some rather artificial decision prob-
lem (namely, the Tiling Problem), when coupled with some P-computable distribution, is hard
for NP with P-computable distributions. (Later, Impagliazzo and Levin [6] showed that any
distributional problem that is hard for NP with P-computable distributions is in fact hard for
NP with samplable distributions.) However, since then very few NP-complete problems,
and in particular ”natural” ones (for example, the 21 problems in Karp’s seminal paper on
NP-completeness [7]), were shown to be complete in this sense. This was raised as an open
problem, for example, in [2].

2.1.1 Our Contribution

In this paper, we show that a very wide family of NP-complete problems (apparently all
known ones, see Section 2.4.1), have P-computable distributions under which they are hard
for NP with samplable distributions. That is, assuming some NP problem is hard on the
average under some samplable distribution (which in particular follows from the assumption
that cryptography is possible), each of these NP-complete decision problems is hard on the
average under some P-computable distribution. We call such a problem average case NP-
complete (or distNP-complete, see Section 2.1.2 for a more detailed definition, or Section
2.2.2 for the formal definition). In Section 2.4.1 we analyze our constructed distributions, and
discuss the interpretation of our result.

In order to further present our result, we review informally the basic notions of Levin’s
theory [8].

2.1.2 Levin’s Theory of Average-Case Complexity

The theory of average case complexity was initiated by Levin [8]. It refers to the complex-
ity of solving problems with respect to certain probability distributions over their instances.
Levin set the foundations to an average case complexity theory analogous to the theory of
NP-completeness. He first had to define which probability distributions will be of interest.
Letting these probability distributions range over all possible probability distributions would
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have collapsed the new theory to classic worst-case complexity4. On the other hand, consider-
ing only the uniform distribution seems quiet arbitrary and limiting. Levin therefore defined a
class of probability distributions, which he called P-computable distributions. These are prob-
ability distributions over all strings, such that the accumulative probability can be computed
in polynomial time (that is, there exists a polynomial time algorithm that given x outputs the
probability that a string smaller or equal lexicographically to x is drawn). Focusing on these
probability distributions, Levin defined:

• The class avgP , which is analogous to P , and consists of the distributional problems
that can be solved “efficiently on the average”.

• The class distNP , which is analogous to NP , and consists of decision problems in
NP paired with P-computable probability distributions.

• A class of reductions, which we call here AP-reductions (for Average-case Preserving
reductions), analogous to polynomial-time reductions (such as Karp or Cook reduc-
tions). Such reductions preserve “easiness on the average”, that is, if a distributional
problem can be AP-reduced to a problem in avgP , then the reduced problem is also in
avgP . Although we did not specify yet what it means to solve a problem on the av-
erage, the crucial point is that these AP-reductions preserve “easiness on the average”
with respect to various different definitions, including the original ones of Levin. The
crucial aspect in these reductions is that instances that occur with some probability are
not mapped to instances that occur with much smaller probability.

Next, Levin showed that there exists a distNP-complete distributional problem, that is,
a problem in distNP that every problem in distNP can be AP-reduced to it. Thus, this
complete problem is in avgP if and only if distNP ⊆ avgP . As mentioned above, a major
deficiency of this theory was the lack of a wide variety of ”natural” NP decision problems
that have a distributional version that is distNP-complete.

2.1.3 An Overview of Our Proof
We show a simple sufficient condition for anNP-complete decision problem to have a distri-
butional version that is distNP-complete. This condition refers to some natural paddability
property. Our technique is based on the construction of a restricted type of Karp-reductions

4For a decision problem L to be hard for any problem in NP under any distribution, one would be forced to
couple L with a distribution that is easy-on-average if and only if P = NP . Thus, for L ∈ NPC, the average-
case complexity of the resulting distributional problem would be equivalent to the worst-case complexity of
L.
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that “preserve order” in some (natural) sense. If such an order preserving reduction exists
from some (decisional part of a) distNP-complete problem to some problem in NP , then
the latter has a probability distribution that when coupled with it, forms a distNP-complete
decision problem. The aforementioned order preserving reduction is related to the paddability
property mentioned above.

Let us demonstrate, informally, the high-level ideas of our technique on SAT. Assume
some standard encoding for SAT (we will freely identify a formula and its representation). Let
(C, µ) be some distNP-complete distributional problem (so, in particular, C ∈ NP and µ is
P-computable), and let h be a Karp reduction (i.e. polynomial-time many-to-one reduction)
from C to SAT such that |x| ≥ |y| if and only if |h(x)| ≥ |h(y)| (we will show in Section 2.3
how to obtain such reductions). We define a new Karp-reduction f such that f(w) “encodes”,
in some explicit form, w itself into the formula h(w). For example, let e0 = (x0 ∨ ¬x0) and
e1 = (x1 ∨¬x1), and assume that the encoding of e1 is lexicographically larger than that of e0
and that the lengths of e0 and e1 are equal. Now define

f(w) = ew1 ∧ ew2 ∧ . . . ∧ ew|w| ∧ h(w) (2.1)

where wi is the i-th bit of w. Note that the “encoding” of w in the left part of the formula
ensures that f has the following properties:

• Invertibility: given f(w) one can compute w.

• Monotonicity: if w is lexicographically larger than w′ then f(w) is lexicographically
larger than f(w′).

• Preserving satisfiability: f(w) preserves the truth value of h(w) (since e0 and e1 are
tautologies).

Thus, f is an “order preserving” reduction of C to SAT.
Let us see how such order preserving reductions (which are defined between standard

decision problems) are related to AP-reductions (which are defined between distributional
problems). We couple SAT with the following probability distribution η:

η(x) =

{
µ(f−1(x)) if x ∈ image(f)
0 otherwise (2.2)

Then the reduction f is a AP-reduction from (C, µ) to (SAT, η), because it maps each instance
of C to an instance of SAT that occurs with exactly the same probability. Since (C, µ) is
distNP-complete, and AP-reductions are transitive, it follows that (SAT, η) is distNP-hard
(under AP-reductions). Furthermore, because of the special properties of f , and since µ is
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P-computable, then so is η. Loosely speaking, since f is monotone, in order to compute the
accumulative probability of w under η, it suffices to compute the accumulative probability of
its inverse under µ; and since f is invertible, we can compute this inverse. It follows that
(SAT, η) is in distNP , and therefore (SAT, η) is distNP-complete. For more details and a
complete proof see Section 2.3.

We have just demonstrated that since such an “order preserving” Karp-reduction exists
between (the decisional part of) some distNP-complete problem and SAT, the later has a
distributional version that is distNP-complete. Moreover, we note that the construction of the
Karp-reduction exploited only the properties of the target problem, SAT. More specifically,
the construction used a technique called “padding”, introduced by Berman and Hartmanis
[4], in order to encode w into h(w). This “paddability” property is a property of decision
problems, rather than of reductions. Using this paddability property one can prove similar
results for other NP-complete problems.

Hence, essentially we “reduced” the problem of showing that an NP-complete decision
problem has a distNP-complete version to the problem of proving some paddability proper-
ties for this decision problem. Although we do not know whether these paddability properties
hold for every decision problem in NP (and showing that they do is at least as hard as prov-
ing P 6= NP), they are very easy to verify for individual problems (as examples see sections
2.3.2, 2.3.3 and 2.3.4). In particular, we have verified that these properties hold for the famous
twenty-one problems treated in Karp’s seminal paper [7]. See further discussion in Section
2.4.1

2.1.4 Reflections on the Notion of Natural Decision Problems
In the context of this paper, a discussion on the notion of natural decision problems can not be
avoided. Most researchers have some intuition on what makes a decision problem ”natural”,
and furthermore, it seems that these intuitions tend to be similar. This suggests the following
(empirically oriented) definition: A decision problem is natural if most researchers would say
it is.

In an attempt to offer a less fluid definition, we suggest the following definition: The
extent to which a decision problem is natural, with respect to some result, is proportional to
the amount of references to that problem that are prior to that result and occur in a different
context. Thus, for example, the Satisfiability is very natural with respect to the Cook-Levin
Theorem, because this problem was defined and studied in many other studies in different
contexts (such as logic) prior to the Cook-Levin Theorem. To the contrary, the sequence
of decision problems constructed in the Hierarchy Theorem of Hartmanis and Stearns [5] is
completely artificial, because these decision problems were first defined in this context (let
alone that they are never mentioned outside the context of the Hierarchy Theorem).
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Organization In section 2.2 we give some definitions that will be used throughout this pa-
per. In Section 2.3 we provide a rigorous presentation of our results, by first showing a suf-
ficient condition for an NP-complete decision problem to have a distributional version that
is distNP-complete, and then, using this sufficient condition to show that some well-known
NP-complete decision problems have distributional versions that are distNP-complete. In
Section 2.4 we discuss some related issues concerning our results.

2.2 Preliminaries

2.2.1 Strings and Functions Over Strings
For a string x, we denote by |x| the length of x, and by x1, x2, . . . , x|x| the bits of x. Through-
out this paper, the symbol “<”, when applied between strings, will denote the standard lexi-
cographical order over all strings (i.e., |y| = |y′| ⇒ x0y < x1y′, and |x| < |x′| ⇒ x < x′).
Given a string x, the strings x − 1 and x + 1 denote, respectively, the strings preceding and
succeeding x.

Given an instance of a decision problem, its characteristic refers to the value of the char-
acteristic function for this instance (i.e., it equals 1 if the problem contains this instance and 0
otherwise).

Definition 2.0.1 (P-invertible function). A function f is P-invertible if it is 1-1, and there is a
polynomial-time algorithm that given x returns f−1(x) if it is defined, and a failure symbol ⊥
otherwise.

Definition 2.0.2 (length-regular function). A function f is length-regular if for every x, y ∈
{0, 1}∗, it holds that |x| ≤ |y| if and only if |f(x)| ≤ |f(y)|.

Note that a function f is length-regular if and only if it satisfies the following two con-
ditions: (1) |x| = |y| if and only if |f(x)| = |f(y)| and (2) |x| > |y| if and only if
|f(x)| > |f(y)|.

Definition 2.0.3 (monotonous and semi-monotonous functions). A function over the strings
is monotonous if it is strictly increasing WRT lexicographical order (i.e., if for every x, y ∈
{0, 1}∗ it holds that x < y if and only if f(x) < f(y)), and is semi-monotonous if for every
n, the function, when restricted to the set of strings of length n, is monotonous. (i.e., if for
every x, y ∈ {0, 1}∗ such that |x| = |y| it holds that x < y if and only if f(x) < f(y)).

While a semi-monotonous function is only monotonous within lengths, a function that is
semi-monotonous and length-regular is monotonous (over all strings) because, in particular,
for a length-regular function f , it holds that |x| > |y| implies |f(x)| > |f(y)|.
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2.2.2 Notions from Average-Case Complexity Theory
We state here the basic definitions from average case complexity theory that will be used
throughout this paper. These are the original definitions used by Levin [8]. For a comprehen-
sive survey on average case complexity, see [3].

Definition 2.0.4 (probability distribution function). A function µ : {0, 1}∗ → [0, 1] is a prob-
ability distribution function if µ(x) ≥ 0 for every x and

∑
x∈{0,1}∗ µ(x) = 1. The accumula-

tive probability function associated with µ is denoted µ and defined by µ(x) =
∑

x′≤x µ(x′).

Definition 2.0.5 (P-computable probability distribution). A probability distribution function µ
is P-computable if there exists a polynomial time algorithm that given x outputs the binary
expansion of µ(x) =

∑
x′≤x µ(x′).

Definition 2.0.6 (distributional problem). A distributional problem is a pair consisting of a
decision problem and a probability distribution function. That is, (L, µ) is the distributional
problem of deciding membership in the set L with respect to the probability distribution µ.

Definition 2.0.7 (distNP). The class distNP consists of all distributional problems (L, µ)
such that L ∈ NP and µ is P-computable.

Definition 2.0.8 (average-case preserving reduction). A function f is an average-case pre-
serving reduction (abbreviated AP-reduction) of the distributional problem (S, µ

S
) to the dis-

tributional problem (T, µ
T
) if f is a Karp-reduction (i.e. many-to-one polynomial-time reduc-

tion) from S to T , and in addition there exists a polynomial q such that for every y ∈ {0, 1}∗,

µ
T
(y) ≥ 1

q(|y|)
·
∑

x∈f−1(y)

µ
S
(x).

In the special case that f is 1-1, which is the case will be used throughout this paper, the
last expression simplifies to the following: For every x it holds that

µ
T
(f(x)) ≥ µ

S
(x)

q(|x|)
.

Note that we use the fact that |f(x)| is polynomially related to |x|.
AP-reductions preserve “easiness on the average” with respect to various definitions. The

reason is that the sum of the probabilities of the preimages of every instance (in the range of
the reduction), is not much larger than the probability of the instance itself. Thus, an AP-
reduction cannot map “typical” instances of the original problem to “rare” instances of the
target problem, on which an “average-case algorithm” can perform exceptionally bad. We
note that AP-reductions are also transitive.
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Definition 2.0.9 (distNP-complete distributional problem). A distributional problem is distNP-
complete if it is in distNP and every problem in distNP is AP-reducible to it.

For sake of completeness, we state here the definition of avgP . However, our results only
refer to AP-reductions, and not to their particular effect on avgP .

Definition 2.0.10 (avgP). The class avgP consists of all distributional problems (L, µ) such
that there exists an algorithm A that decides L and a constant λ > 0 such that

∑
x∈{0,1}∗

µ(x) · tA(x)λ

|x|
<∞

where tA(x) denotes the running time of A on input x.

For a discussion on the motivation for this somewhat non-intuitive definition see [2].
As mentioned above, it can be shown that if (T, µ

T
) is AP-reducible to (S, µ

S
) and (S, µ

S
) ∈

avgP then (T, µ
T
) ∈ avgP too. Thus, a distNP-complete problem is in avgP if and only

if distNP ⊆ avgP . But, as mentioned above, AP-reductions preserve other definitions of
“easiness on the average” too.

2.3 Main Results
We show here a sufficient condition for the existence of a distNP-complete version for
an NP-complete decision problem. This condition is very easy to verify for known NP-
complete decision problems. To justify this claim, we then show that some famous NP-
complete decision problems meet this condition. By doing so we wish to give evidence to our
belief that all known NP-complete decision problems meet this condition (or, at least have
some reasonable encoding such that they do). For a discussion on the generality of our results,
see Section 2.4.1.

We mention that our results can be easily modified to hold with respect to slightly different
definitional variants, like those of [3] (which deal with probability ensembles rather than one
probability distribution over all strings).

2.3.1 The General Technique

Our first technical tool is the following notion of paddability. Its purpose is to transform
general reductions into length-regular ones, by “padding-up” instances to specified lengths.
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Definition 2.0.11 (regular-padding). A decision problem L is regular-paddable if there exists
some strictly increasing function q and a padding function S : 1∗ × Σ∗ 7→ Σ∗ such that:

• S is polynomial-time computable.

• Preserving characteristic: For every x and every n it holds that S(1n, x) ∈ L if and
only if x ∈ L.

• Length-regular5: For every x and every n such that n ≥ |x|, it holds that |S(1n, x)| =
q(n).

We call q the stretch measure of S. The first parameter of S determines the length to which
the string is to be padded. The following holds:

Lemma 2.0.1. If some decision problem is regular-paddable, then every Karp-reduction to it
can be made length-regular.

Proof. We show this by “pumping up” the lengths of all mapped strings. Let L be regular-
paddable via S. Given a Karp-reduction f to L, we choose a strictly increasing polynomial
r such that r(|x|) ≥ |f(x)| for every x, and define f ′(x) = S(1r(|x|), f(x)). One can easily
verify that f ′ is length-regular.

Our main technical tool is the following notion of paddability.

Definition 2.0.12 (monotonous padding). A decision problem L is monotonously-paddable if
there exists a padding function E : Σ∗×Σ∗ 7→ Σ∗ and a decoding function D : N×Σ∗ 7→ Σ∗

such that:

• E and D are polynomial-time computable.

• Preserving characteristic: For every p, x ∈ {0, 1}∗ it holds that E(p, x) ∈ L if and only
if x ∈ L.

• Semi-monotonous: If p < p′, |p| = |p′| and |x| = |x′| then E(p, x) < E(p′, x′).

• Length-regular: If |x| = |x′| and |p| = |p′| then |E(p, x)| = |E(p′, x′)|, and if |x| < |x′|
and |p| ≤ |p′| then |E(p, x)| < |E(p′, x′)|.

• Decoding: For every x, p ∈ {0, 1}∗ it holds that D(|p|, E(p, x)) = p, and D(k, w) = ⊥
if there is no x and p such that |p| = k and E(p, x) = w.

5Since this condition indeed resembles Definition 2.0.2, we allowed ourself this abuse of the term here and in
the following definition.
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Loosely speaking, the first parameter for D defines the part of the string to be regarded as
the “padding”. Note that D is well-defined, that is, if D(k, w) 6= ⊥ then there exists a unique
p such that D(k, w) = p (i.e. a unique p ∈ {0, 1}k such that there exists x ∈ {0, 1}∗ such that
E(p, x) = w). Although Definition 2.0.12 may seem somewhat cumbersome, the following
holds:

Fact 2.1. If the function E is defined such that E(p, x) = ep1ep2 . . . ep|p|g(x), where:

• |e0| = |e1| and e0 < e1.

• The function g(x) is length-regular.

• E(p, x) ∈ L if and only if x ∈ L.

then E is a monotonous padding function for L.

In the example of SAT (used in the introduction), the function g is the identity function,
but generally, the encoding does not necessarily only add some prefix to the string, it can also
change the string in some simple way (for example, in the example of SAT the function g
could also change the indexes of the variables in the original formula).

It is easy to see that famous NP-complete decision problems are both regular-paddable
and monotonously-paddable. For details see Sections 2.3.2, 2.3.3 and 2.3.4.

Theorem 2.2. If L isNP-complete, regular-paddable and monotonously-paddable then there
is a distribution that when coupled with L forms a distNP-complete problem.

Proof. We use the following result of Levin [8]:

Theorem 2.3. There exists a distNP-complete distributional problem.

Let (C, µ) be a distNP-complete distributional problem (where C ∈ NP and µ is
P-computable), let h be a Karp-reduction from C to L, and let E,D be as in Definitions
2.0.11 and 2.0.12. In order for E to “work properly” (that is, to yield a length-regular, semi-
monotonous reduction), it has to be composed (in the appropriate manner), with a length-
regular Karp-reduction. Thus, using Lemma 2.0.1, we transform h to a length-regular Karp-
reduction h′ of C to L. We then define f(x) = E(x, h′(x)). We notice that f enjoys the
following properties:

• f is a Karp-reduction from C to L (since E preserves characteristic).

• f is length-regular (since h′ and E are both length-regular).

• f is semi-monotonous (since h′ is length-regular and E is semi-monotonous).
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• f is P-invertible (see next).

P-invertibility is evidenced by the following algorithm: Given y it first tries to find a number
k such that |f(0k)| = |y| (this can be done, e.g., by computing |f(0)|, |f(02)|, . . . , |f(0|y|)|,
capitalizing on |f(x)| ≥ |x|, which follows from length-regularity). If no such k exists it
returns ⊥. Else, it computes x = D(k, y). If x = ⊥, the algorithm also returns ⊥. Otherwise,
it computes f(x). If the result equals y it returns x, else it returns ⊥.

Note that since f is length-regular and semi-monotonous, f is monotonous over all strings.
Next, we couple the decision problem L with the following probability distribution η:

η(y) =

{
µ(f−1(y)) if y ∈ image(f)
0 otherwise

It is straightforward that indeed η is a probability distribution function. We claim that the
reduction f is a AP-reduction from (C, µ) to the distributional problem (L, η), and that η is
P-computable. Since AP-reductions are transitive, the theorem follows. The first claim is
straightforward, since every instance of C is mapped to an instance of L of exactly the same
probability (i.e., µ(x) = η(f(x))). To see the second claim, recall that µ is P-computable, and
note that the accumulative probability function induced by η, denoted η, satisfies:

η(y) = µ(x) where x is the largest string such that f(x) ≤ y (2.3)

where µ is the accumulative probability function induced by µ. We elaborate. Suppose, as
an intermediate step, that we wish to compute η(x) rather then η(x). Then we can simply
compute y = f−1(x) (which can be done since f is P-invertible), then if y = ⊥ we output 0,
otherwise we output µ(y). Hence, the mere fact that f is P-invertible is sufficient to compute
η(x). Turning to the task of computing η, we notice that since f is also monotonous (over all
strings), for any string x in image(f), it holds that η(x) = µ(f−1(x)). For any other string, its
accumulative probability is equal to that of the largest string in image(f) that is smaller than
it (since all strings between them occur with probability 0). Equation 2.3 follows.

The string max({x|f(x) ≤ y}) can be computed in polynomial time, since the reduction
f is monotonous. An algorithm for computing this string can first compute x = f−1(y). If
x 6= ⊥ it outputs x, else it performs a binary search to find the string x′ such that f(x′) < y
and f(x′ + 1) > y, and outputs x′. We mention that in fact, P-invertibility is implied by
monotonicity (via a binary search), and is mentioned explicitly here only for clarity.

Using Theorem 2.2 we now turn to prove that someNP-complete decision problems have
distNP-complete distributional versions. We have verified that all twenty-oneNP-complete
decision problems that are treated in Karp’s paper [7] do meet the sufficient condition of
Theorem 2.2. In the rest of this section we describe three of them. The first one is SAT,
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which we chose since it is the most canonicalNP-complete decision problem. We then show
that CLIQUE meets this condition, as an example of a typical graph problem. Finally we
provide a proof that the same is true for HAM, the problem of Hamiltonian cycle, since this
proof is a little less straightforward than the other problems in Karp’s paper. We believe that
these three examples in particular, and the fact that same results hold for all NP-complete
decision problems in Karp’s paper, give strong evidence that the results hold for all known
NP-complete decision problems (see further discussion in Section 2.4.1, as well as further
evidence for our claim).

2.3.2 SAT, Revisited
The following theorem can be proved using Theorem 2.2.

Theorem 2.4. SAT has a distributional version that is distNP-complete.

Proof. To show that SAT meets the hypotheses of Theorem 2.2 one can use similar ideas to
those presented in the introduction. We just have to assume some assumptions on the standard
encoding of SAT (e.g. that the encoding acts on each clause, and each variable in the clause,
in a context-free manner).

We choose two strings e0, e1 such that both are encodings of CNF clauses such that:

1. Both clauses are tautologies.

2. e0 < e1.

3. |e0| = |e1|.

We first sketch the ideas used to show SAT is regular-paddable. In order to ”stretch” some
formula φ we ”pad-up” φ by prefixing it with a series of e0’s. Since the added clauses are
tautologies, the padding function does not affect the characteristic of φ.6

Following the ideas in the introduction, by using e0 and e1 to encode 0’s and 1’s, one can
show that SAT is also monotonously-paddable. If it is required that instances of SAT do not
have multiple occurrences of the same clause, then this requirement can be met by allocating
sufficient amount of variables for the padding (i.e., using for the padding variables that are
disjoint to the ones used in the original formula), and using different variables for each clause
in the padding.

6There are some small technicalities to be concerned, like assuring that |e0| divides the difference between
the desired length and the length of the initial formula. However, there are various ways of coping with such
difficulties, e.g., by using various e0’s with different lengths, and by ”normalizing” the lengths of the variables
in φ (see next).
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We did not define here rigorously the encoding of SAT (e.g., how is a variable encoded,
how is a clause encoded, etc). Different encodings will yield different padding functions.
However, Theorem 2.4 can be proved under any reasonable encoding of SAT.

2.3.3 Clique
We consider the CLIQUE decision problem, consisting of all pairs of an undirected graph
G and a natural number k such that there exists a complete induced subgraph of G of size
k. We assume the graph is given as an incidence matrix (which can either be symmetric, or
upper-triangular), that the first row of the matrix is encoded by the leftmost bits, and that k is
represented as a dlog(n)e-bit number to the right of the matrix.

Theorem 2.5. CLIQUE has a distributional version that is distNP-complete.

Proof. It is straightforward to see that CLIQUE is regular-paddable. We simply add ”dummy”
nodes with degree 0 and leave k as is. Thus we can transform any input of size n2 + dlog(n)e
to an input of size m2 + dlog(m)e for any m ≥ n, and thus we can achieve a regular-padding
function with stretch measure q(n) = n2 + dlog ne.

We now show that CLIQUE is monotonously-paddable. The idea is as follows. Given
a graph G = (V,E) where V =

{
v1, v2, . . . , v|V |

}
to be padded with p, we first ”shift” all

vertices by raising their index by |p|, the number of bits we wish to encode (and of course
change the edges accordingly). This ”frees” the vertices indexed lower or equal to |p|. We
then encode the bits of p by edges connected to v1, such that each bit is encoded by the edge
indexed as the bit’s position, and such that the edge will appear if and only if the bit value is
1 (that is, the edge (v1, vi) will appear if and only if pi = 1). Thus, these edges will result in
0’s and 1’s in the first row of the incidence matrix of the graph. This will add a star-shaped
subgraph (rooted at v1) to the original graph. We will ensure that this will not change the
characteristic of the instance.

Formally, for M , an 0-1-matrix of size n×n we define E(p, (M,k)) = (M ′, k) where M ′

is an 0-1-matrix of size (n + |p|) × (n + |p|), such that M ′
i+|p|,j+|p| = Mi,j for 1 ≤ i, j ≤ n,

and M ′
1,j = pj for 1 ≤ j ≤ |p| (where pj is the j-th bit of p). This, of course, may add to the

graph cliques of size 2 (but does not add larger cliques). If k = 2 and the graph did not have a
clique of size 2 (i.e., the graph was edgeless), this could be a problem. To fix this, the padding
function can check (in polynomial time) if indeed k = 2 and the graph is edgeless. If this is
the case, it simply changes k to 3 and we are done.

This transformation preserves the characteristic of the instance. Moreover, we have p
encoded in the most trivial manner, i.e. bit-by-bit, as a prefix of the string E(p, x). It is
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straightforward to see that E meets all the conditions of a monotonous padding function.7

2.3.4 Hamiltonian Cycle
We consider the Hamiltonian Cycle decision problem, denoted HAM. The Hamiltonian Cycle
decision problem consists of all undirected graphs that have a simple cycle that contains all
nodes of the graph. We assume the graph is given as an incidence matrix (which can either be
symmetric, or upper-triangular), and that the first row of the matrix is encoded at the beginning
of the string.

Theorem 2.6. HAM has a distributional version that is distNP-complete.

Proof. We first show that HAM is regular-paddable. We do so by showing that any graph over
n nodes can be transformed in polynomial time into a graph over n + k nodes for any k ≥ 2
such that preserves Hamiltonianicity (thus achieving regular-padding with stretch measure
(n + k)2). Given a graph G = (V,E) where V = {v1, v2, . . . , vn}, and k ≥ 2 we define
G′ = (V ′, E ′) where |V ′| = n+ k. Intuitively, we are going to ”split” vn (an arbitrary choice)
into k+1 nodes, denoted vn, vn+1, . . . , vn+k, and ”force” any Hamiltonian cycle to regard them
as one node, that is, any Hamiltonian cycle in the new graph will have to contain the sub-path8

vn, vn+1, . . . , vn+k (see Figure 2.1). The idea is as follows: after adding the mentioned nodes
to the graph, we connect them such as to form the path mentioned above. We then connect the
last node, vn+k, to all the nodes connected to vn. Formally:

E ′ = E ∪ {(vn+i, vn+i+1)|0 ≤ i ≤ k − 1} ∪ {(u, vn+k)|(u, vn) ∈ E} .

We show that indeed this transformation preserves Hamiltonianicity. For every Hamiltonian
cycle x, vn, y inG (where x and y are sub-paths), the path x, vn, vn+1, . . . , vn+k, y is a Hamilto-
nian cycle inG′ (where (vn+k, y) is a sub-path inG′ because (vn, y) is a sub-path inG, and due
to the construction). On the other hand, for any Hamiltonian cycle in G′, in order to reach the
nodes vn+1, vn+2, . . . , vn+k−1, it has to be of the form x, vn, vn+1, . . . , vn+k−1, vn+k, y, which
implies that x, vn, y is a Hamiltonian cycle in G.

7We note that any other reasonable encoding can be shown do yield the same result. For example, if k was
encoded to the left of the matrix, the constructed reduction here would not be monotonous, since the ”encoding
row” would not be added at the beginning of the string. To fix this, the function E could fix k for every length
of x, thus disabling its effect on the lexicographical order: Given an input (M,k) where M is an n × n matrix,
the reduction would transform it to a matrix M ′ of size 2n× 2n , then add a clique of size n− k to the original
graph, using the added nodes, and connect all nodes of the added clique to all nodes of the original graph. The
reduction would then generate the instance (M ′, n), which has the same characteristic as (M,k).

8Or its reverse. Since the graph is undirected, we regard the cycles as undirected too.
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Figure 2.1: The construction of regular padding.

We turn to show that HAM is monotonously-paddable. The idea is similar to the regular-
padding described above. In order to pad some (incidence matrix of a) graph with the string
p, we first add a path of length roughly |p| to the graph, similarly to the regular-padding
described above (see Figure 2.2). We then encode the bits of p by adding edges within the
path. We do so such that the path will still have to be taken in the natural order of the nodes,
and such that the added edges will be encoded in the prefix, i.e. first row, of the incidence
matrix. In order to achieve the later goal, we ”shift” the nodes of the graph by raising their
indexes, thus enabling the added nodes to posses the smallest indexes, and then replace v1 by
the path v1, v2, . . . , v|p|+2, similarly to the construction of the regular-padding. We then encode
the bits of the padding such that the edge (v1, v3) encodes the first bit (i.e., existence of the
edge encodes a ’1’, and non-existence encodes a ’0’), the edge (v1, v4) encodes the second
bit and so on. We skip (v1, v2) since this edge is necessary in order for the aforementioned
path to exist (i.e., this edge will anyway exist). This construction ensures that the added path
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will still have to be taken in its natural order in any Hamiltonian cycle. We describe the
construction formally. For the n× n incidence matrix M of the graph G = (V,E), we define
E(p,M) = M ′ where M ′ is the incidence matrix of size (n+ |p|+ 1)× (n+ |p|+ 1) of the
graph G′ = (V ′, E ′) where |V ′| = |V |+ |p|+ 1 and

E ′ =
{

(vi+|p|+1, vj+|p|+1)|(vi, vj) ∈ E
}
∪
{

(v1, vi+|p|+1)|(v1, vi) ∈ E
}
∪

{(vi, vi+1)|1 ≤ i ≤ |p|+ 1} ∪ {(v1, vi+2)|pi = 1}

(where pi is the i-th bit of p). The first set in the union above is the original graph, with its
nodes ”shifted” by raising their indexes by |p|+ 2. The second set connects v1 to all the nodes
v|p|+3 is connected to (which are the nodes v1 of the original graph was connected to, with their
indexes ”shifted”). The third set forms the path v1, v2, . . . , v|p|+3. Finally, the last set encodes
p by edges connected to v1 (thus the bits representing them will be encoded in the first row of
the matrix).

We observe that every node that was connected in the original graph to v1 is now connected
to both v1 and v|p|+3, and that v1, v2, . . . , v|p|+3 is a path in the new graph. Setting the bits in
the diagonal all to zeros9, the resulting encoding of M ′ starts with ’01’, followed by the bits
of p. Using similar argument to the one used to prove that the regular-padding preserves
Hamiltonianicity, one can verify that indeed such transformation preserves Hamiltonianicity
too (in particular, note that any Hamiltonian cycle in G′, in order to meet v|p|+2, has to contain
the sequence v1, v2, . . . , v|p|+3 or its reverse). Again, it is straightforward to see that E meets
all the conditions of a monotonous padding function.

We note that the similar decision problem of Parameterized Hamiltonian Cycle, which
consists of all couples of a graph and a natural number k such that there is a simple cycle over
k nodes in the graph, is easier to be shown to have a distNP-complete version. The same is
true for the similar decision problem over directed graphs.

2.4 Conclusions
We discuss some issues related to the results presented in this work. In Section 2.4.1 we dis-
cuss the possibility of generalizing our results to all decision problems in NP , and show that
it seems that this cannot be achieved using our techniques. On the other hand, we provide fur-
ther evidence to our claim that all knownNP-complete problems have distributional versions
which are distNP-complete. In Section 2.4.2 we show that our results hold also with respect

9The bits in the diagonal are meaningless.
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Figure 2.2: The construction of monotonous padding with p =′ 101′.

to different notions of ”easiness on average”. In Section 2.4.3 we suggest a possible interpre-
tation of our results, and finally, in Section 2.4.4 we discuss some directions for improving our
results.

2.4.1 On the Generality of Our Results

A natural question arises regarding our results. Since apparently, for all knownNP-complete
decision problems we can prove that our result hold, can we expect to prove (using our tech-
niques) that our result holds for all NP-complete decision problems? Apparently the answer
is negative. Recall that in order to prove that some NP-complete decision problem has a
distributional version that is distNP-complete, our technique involves proving that this prob-
lem is paddable in some natural sense. However, proving that all NP-complete problems are
paddabale involves, in particular, proving that all NP-complete problems are infinite. But
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such a proof would imply P 6= NP (because if P = NP then any non-empty finite set is
NP-complete). For this reason we cannot hope to do better than prove these results for all
known NP-complete decision problems.

The same phenomena occurs with respect to the isomorphism conjecture of Berman and
Hartmanis [4]. This conjecture states that every two NP-complete decision problems are re-
lated via a 1-1, onto, polynomial-time, and polynomial-time invertible Karp-reduction. Berman
and Hartmanis showed that every two NP-complete decision problems that are paddable in
some simple manner, are related via such a reduction. They observed that the paddability con-
dition holds for numerousNP-complete decision problems and concluded that these problems
are pairwise isomorphic. They conjectured that the same is true for allNP-complete decision
problems. Thus, both their result and ours build on some paddability properties that are very
easy to verify for given NP-complete decision problems, but that are very hard to prove for
all NP-complete decision problems.

The paddability condition required for Berman and Hartmanis’s result is slightly weaker
than ours. Loosely speaking, they do not require monotonicity. However, typically their
padding functions, as ours, encode bit by bit. Thus, ensuring that the padding is added at the
beginning of the string, and that the encoding of 1 is larger than the encoding of 0, results
in a monotonous padding function. To date, no counter-example to Berman and Hartmanis’s
isomorphism conjecture was found. Furthermore, one can show that their paddability condi-
tion is not only sufficient, but is also necessary. That is: If a decision problem is isomorphic
to SAT, then it is paddable in the sense they define10. Thus, the fact that no counter-example
to Berman and Hartmanis’s isomorphism conjecture was found, implies that no non-paddable
decision problem was found. We believe that, although our condition is slightly stronger than
Berman and Hartmanis’s notion of paddability, this gives a strong evidence that all known
NP-complete problems meet our condition too.

2.4.2 The Extension of Our Results to Different Definitions

A different notion of solvability can be considered. While in our definition of avgP we require
that the algorithm solves the decision problem for all instances, one can consider a relaxation
such that the algorithm runs in polynomial time, but solves “almost all instances”, that is, for

10Let f be a 1-1, onto, polynomial-time, and polynomial-time invertible Karp-reduction of L ∈ NPC to SAT.
Then in order to pad the instance x of the problem L with p, we first pad f(x) with p using the padding function
of SAT. Denote the result by w. We then compute f−1(w) to obtain the padded instance. In order to retrieve
the padding from some string y, the decoding function first computes f(y), and then uses the decoding function
of the padding function of SAT to retrieve the padding from f(y). Finally, one has to show that this padding
function is also length-increasing. This can be achieved, e.g., by modifying the padding function of SAT to pad,
instead of p, a longer string, such as p concatenated to itself a polynomial number of times.
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every polynomial p and for every n the probability that given an input of length n the algorithm
errs on it is upper bounded by 1

p(n)
. (Note that in the former definition, the algorithm, although

is permitted to run in super-polynomial time for a negligible fraction of the instances, has to be
correct on all instances.) Since AP-reductions preserve “easiness on the average” also under
this definition of solvability, our results, which refer to AP-reductions, hold also under this
definition.

As mentioned above, our results can be easily modified as to hold for definitional variants
that relate to probability ensembles rather than one probability distribution over all instances
(see [3] for the definitions).

2.4.3 A Possible Interpretation of Our Results
As stated in the introduction, we believe that average-case hardness results, when viewed as
“negative” results (i.e., as results evidencing our inability to solve problems on the average),
are of more interest when shown with respect to more “simple”, or “natural” probability dis-
tributions. Arguably, such distributions are more likely to occur in “real life”. Furthermore,
from the theoretical point of view, hardness under such distributions indicate that the hardness
of the complete problem is not a property of some “esoteric” instances, but rather is “inherent
in the decision problem at large”. The last claim becomes stronger when “simple” is regarded
also as “close to uniform”.

Let us analyze the structure of the probability distribution of the complete distributional
version of SAT implied by the construction presented in the Introduction. (Typically, applying
our technique to other NP-complete decision problems yields similarly structured distribu-
tions.) The complete problem guaranteed by [8] has a probability distribution that is “close
to uniform” in a very strong sense. For simplicity, let us assume we take a complete prob-
lem with uniform probability distribution. Combining Equations 2.1 and 2.2, the left side of
η is uniform over encodings of all strings (under some simple encoding). The right side is
determined by the left, and can be computed in polynomial time from it. Thus, the structure
of the resulting probability distribution is a simple structure from the computational point of
view. From the combinatorial point of view, however, the distribution does not seem to have a
simple interpretation.

A possible interpretation of our result is the following. While in the past it was believed
that the constraint of P-computability was too strong, and that for this reason so few average
case NP-complete problems were found, our work, in some sense, shows the contrary: we
show that in fact a very wide family of known NP-complete decision problems have average
case complete versions, but yet, our constructions yield distributions that does not look as
”natural” as one could expect, and in this sense, the family of P-computable distributions is in
fact not restrictive enough.
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2.4.4 Further Directions
Two natural suggestions for improvement arise. The first is to show (conditional) hardness of
naturalNP-complete problems under distributions that are natural with respect to the specific
combinatorial structure of these problems (for example, random graphs where the edges are
drawn independently with equal probability). Such distributions relate to the underlying com-
binatorial structure of the decision problem, rather than to the strings representing the objects.
However, by nature, such results are not generic, and have to be proven independently for each
problem.

The second, is to show generic results (i.e., that relate to a very wide family of decision
problems), for families of distributions that are defined by a more restrictive condition than
Levin’s P-computability, and hope that such families will yield more ”simple” distributions.
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Chapter 3

On the Construction of One-Way
Functions from Average Case Hardness1

Noam Livne

Abstract

In this paper we study the possibility of proving the existence of one-way functions based
on average case hardness. It is well-known that if there exists a polynomial-time sampler that
outputs instance-solution pairs such that the distribution on the instances is hard on average,
then one-way functions exist. We study the possibility of constructing such a sampler based on
the assumption that there exists a sampler that outputs only instances, where the distribution
on the instances is hard on the average. Namely, we study the possibility of ”modifying” an
ordinary sampler S that outputs (only) hard instances of some search problem R, to a sampler
that outputs instance-solution pairs of the same search problem R. We show that under some
restriction, not every sampler can be so modified. That is, we show that if some hard problem
with certain properties exists (which, in particular is implied by the existence of one-way
permutations), then there exists a polynomial-time sampler S such that for every polynomial
λ, there exists a search problem R such that (1) R is hard under the distribution induced by
S, and (2) there is no sampler S∗ with randomness complexity bounded by λ, that outputs
instance-solution pairs of R, where the distribution on the instances of S∗ is closely related to
that of S (i.e., dominates it). A possible interpretation of our result is that a generic approach
for transforming samplers of instances to samplers of instance-solution pairs cannot succeed.

1Appeared in Innovations in Computer Science (ICS) 2010.
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3.1 Introduction

The existence of one-way functions is a necessary condition for nearly all cryptographic ap-
plications, and is sufficient for a large portion of them. Since establishing the existence of
one-way functions does not seem reachable these days, as it implies that P 6= NP , a line
of papers studied the possibility of proving the existence of one-way functions based on the
assumption that P 6= NP ([3],[4],[2],[1]). These works presented limitations on possible
reductions of the security of one-way functions to NP-hardness. Specifically, these works
show that, under certain assumptions, certain reductions of this type do not exist.

The starting point of this paper is the observation that the transformations studied by these
papers are actually supposed to overcome two gaps at once: (1) the gap between average-case
hardness and worst-case hardness; and (2) the gap between one-way functions and average-
case hardness, where ”average case hardness” refers to a search problem R and a sampler S
such that the search problem R is hard on average under the distribution induced by S. Since
the problem of basing average-case hardness on worst-case hardness is hard by itself, it is
inviting to study the seemingly more modest task of basing one-way functions on average-
case hardness.

The assumption that average case hardness exists (as defined above), implies the existence
of objects (namely, R and S as above) one can hope to base a construction of a one-way
function upon (while to the best of our understanding, the assumption that P 6= NP does not
seem to imply such objects). Indeed, this paper concentrates on the question of constructing a
one-way function from average case hardness, rather than on proving the security of one-way
functions based on average case hardness. Informally, our result gives some restriction on a
certain approach to achieve this construction. In the following we describe our result more
formally.

3.1.1 Main Result

Before describing our result, let us describe the approach we refer to above. How can one
base the construction of a one-way function on the existence of average case hardness? As
aforesaid, the assumption implies a search problemR and a polynomial-time sampler S where
the search problem R is hard under the distribution induced by S. A natural way to go is to
use the following known fact, stated informally (for more details see [5], Section 7.1.1.):

Observation 3.1. If there exists a search problem R and a polynomial-time sampler S∗ that
outputs instance-solution pairs ofR, such that the distribution of S∗ restricted to the instances
is hard on average, then one-way functions exist.
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Using this fact, one can try to construct a new sampler S∗, that ”behaves” similarly to S, but
instead of outputting only instances, S∗ outputs instance-solution pairs (under R). That is, the
distribution induced by S∗, when restricted to the instances only, is similar to the distribution
of S. Thus, the sampler S∗ ”inherits” its hardness from S. In fact, in order for S∗ to inherit
the hardness of S, it is sufficient that the (restricted) distribution of S∗ dominates that of S
(see Section 3.2 for definitions). Upon constructing such S∗, one can use Observation 3.1 to
construct the one-way function. Thus, this approach of basing one-way functions on average
case hardness calls for the following challenge:
Desired Construction:
Given a search problem R and a polynomial-time sampler S, where R is hard under the dis-
tribution induced by S, construct a polynomial-time sampler S∗ that outputs instance-solution
pairs of R, such that the distribution of S∗ restricted to the instances, dominates the distribu-
tion of S.

Informally, our main result is that for any fixed polynomial bounding the randomness
complexity of S∗, the Desired Construction cannot always exist. That is, under plausible as-
sumptions (which in particular are implied by the existence of one-way permutations) there
exists a polynomial time sampler S such that for any polynomial λ there exists a search prob-
lem R such that R is hard under S, but where a sampler S∗ as in the Desired Construction
with randomness complexity bounded by λ, does not exist.

We note, that the search problemR we construct is polynomially bounded (i.e., the lengths
of the solutions are polynomially bounded in the lengths of the instances), but not polynomial
time verifiable. Rather, it can be verified in arbitrarily small super-polynomial time. This still
leaves open the possibility that for any R and S, where R is polynomial time verifiable, the
Desired Construction exists (even for some universal polynomial randomness complexity of
S∗). However, we note that in order for the Desired Construction to yield a one-way func-
tion, there is no need that R be polynomial time verifiable. Thus, one might hope that the
construction exists also when R is not polynomial time verifiable. While we cannot eliminate
this possibility, we can give arbitrarily strong polynomial lower bounds on the randomness
complexity of S∗ that achieves this construction. Interestingly, these lower bounds depend
only on R. That is, the randomness required by S∗ is not a result of the randomness used by
S. (For a discussion on this issue see Section 3.4.2.)

We also note that placing no restrictions on R and S, the result is trivial (even without
fixing the randomness complexity of S∗):

• If the lengths of the solutions in R are not polynomially bounded in the lengths of the
instances, then trivially no such S∗ exists simply because it cannot write the solutions
in polynomial time.
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• If the lengths of the solutions in R are polynomially bounded in the lengths of the
instances, but R is super-exponentially (worst-case) hard, then again no such S∗ exists:
take S to be an ”onto sampler” (i.e., a sampler that outputs any instance with positive
probability). Then the assumption that a sampler S∗ as above exists implies that R can
be solved in the worst case in exponential time, in contradiction: Given some instance
x, one can find an instance-solution pair where the instance is x, by performing an
exhaustive search on the randomness for S∗ until it outputs an appropriate pair (notice
that S∗ outputs for every x a pair where the instance is x, since the distribution on the
instances in S∗ should dominate S).

While for the first case above such R and S can be constructed (simply by padding) from the
basic assumption that hardness on average exists (as defined above), the second case seems to
require a stronger assumption regarding the hardness on average.

3.1.2 Related Work

We mention an observation by Salil Vadhan [6] that is related to this work. Suppose there
exists a unary set in (NP ∩ coNP) \P (where by ”unary” we mean that all strings are in 1∗).
Then there is a search problem R for which it is infeasible to generate instance-solution pairs
although all instances have solutions.

Specifically, let L be a unary set in (NP ∩ coNP) \ P and let R0 (respectively R1) be an
NP-relation for L (respectively L). Consider the NP-relation R = {(x, (b, w)) : (1|x|, w) ∈
Rb}. Then, all instances have solutions under R (as for any x ∈ {0, 1}∗ it holds that either
1|x| ∈ L or 1|x| ∈ L), but any instance-solution sampler for R yields an algorithm for deciding
L because any sample generated on input 1n determines whether or not 1n ∈ L.

Thus, for such R the desired construction does not exist. We note the following corollary:
if we strengthen the assumption and assume that L is hard on average (here there is no need to
specify any distribution, because deciding L depends only on the length of the instances), we
obtain a similar result to our result here. Specifically, take S to be any efficient sampler, then
R is hard under S, but there is no S∗ as above.

It is easy to see that the hypothesis used for this corollary (that there exists a unary set
in (NP ∩ coNP) \ P that is hard on average) implies our hypothesis (see Theorem 3.4),
while the opposite does not seem to be known. This makes our result stronger. Moreover, the
hypothesis of the aforementioned corollary is rather non-standard. In contrast, our hypothesis
is weaker than the existence of onto one-way functions, which is a standard assumption (and,
in particular is implied by the existence of one-way permutations).
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3.1.3 Technique
In the following we explain informally the idea of our proof. Suppose, as a mental experiment,
that for some R and S there does exist S∗ as in the Desired Construction. Then, although R
is hard under S, using S∗ one can sample random instance-solution pairs of R. Intuitively,
given a specific instance one cannot find a solution, but one can always easily find a random
instance together with a solution. Moreover, one can obtain instance-solution pairs that relate
to arbitrary coin-vectors for S∗ at his choice. In light of these observations, the basic idea in
our proof is the following. Given some R′, S ′, we construct R and S such that:

• If R′ is hard under S ′ then R is hard under S (that is, the pair (R, S) ”inherit” the
hardness of the pair (R′, S ′)). This is achieved by ”embedding” R′ in R and S ′ in
S. That is, any instance of R′ is embedded in some instance of R, and any solution
for an instance x of R ”embeds” a solution for the instance of R′ that is embedded
in x. Moreover, roughly speaking, S imposes the distribution of S ′ on the embedded
instances of R′.

• If an S∗ exists for (R, S) then, if (x, y) ∈ R, the solution y helps finding pairs (x̂, ŷ)
for x̂’s that are ”close” to x. That is, for any x̂ that is a neighbour of x under some
(Hamming-like) metric, the solution y contains a coin-vector for S∗ that yield an instance-
solution pair of the form (x̂, ŷ). Thus, on input a specific instance x for which one wants
to find a solution, through repeated invocations of S∗, one can start from an arbitrary
instance-solution pair, and go through a sequence of pairs, where the instance in each
pair is closer to x than the preceding one by one unit under the aforementioned metric,
until reaching x. By choosing an appropriate coin-vector for S∗ from the solution in
each pair, one can indeed have the instance in the next pair closer to x.

Thus, the assumption that S∗ exists for (R, S), yields that it is easy to find an instance-solution
pair with respect to R, for any specific instance. It follows that R is easy in the worst case.
Now, since R ”embeds” R′, it follows that R′ is also easy in the worst case, in contradiction.

It should be noted, however, that in order for this idea to work, some technicalities need
to be dealt with, and these yield some restrictions on R′ and S ′ (but, as aforementioned, in
particular, the assumption that one-way permutations exist yieldsR′ and S ′ as required for our
proof).

3.2 Preliminaries
Standard Notation and Conventions For 1 ≤ i ≤ ` we define e`i , 0i−110`−i. Given a TM
M we denote by 〈M〉 the code of M . We say that a function f is noticeable if there exists
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a positive polynomial q such that for large enough n’s, f(n) ≥ 1/q(n). Given a string x we
denote by |x| the length of x. We use interchangeably the terms search problem and relation.
Given a search problem R we say that x is a YES-instance of R if x has a solution under R,
that is, if there exists y such that (x, y) ∈ R. We say that a search problem is total if all strings
are YES-instances of that problem. We say that a search problem is polynomially bounded if
there exists some polynomial q such that for every y which is a solution for x, it holds that
|y| ≤ q(|x|). When defining strings in the form (·), (·, ·) etc., we implicitly assume some 1-1,
onto, efficient, efficiently invertible encoding2 from

⋃
n∈N (Σ∗)n to Σ∗. We will use the term

support in relation to an ensemble of random variables to denote the sequence of supports of
the variables in the ensemble.

In our proof we would like to enumerate all samplers. However, since any reasonable
definition of a sampler assumes some structural properties (for example, to the least the re-
quirement that it always halt), it is not clear how one can enumerate all samplers. Instead,
we enumerate a superset of the set of samplers, which we call potential samplers, which are
basically just probabilistic TM’s.

Definition 3.1.1 (Potential Sampler). A potential sampler is a TM with 2 input tapes. The
input to the first tape is simply called ”input”, and the input to the second tape is called
”randomness”.

We implicitly assume some enumeration on all such machines. We explain how we in-
terpret a potential sampler. The run of a potential sampler on some input, when not stating
explicitly the randomness, is defined as a random variable (ranging over all strings plus a spe-
cial ”not halting” symbol), which is the result of running the machine on a random infinite
vector of coins (equivalently, one can think of the machine as flipping coins on the fly). We
define the output of a potential sampler given some input and some explicit randomness as the
output on that input and randomness, and for sake of completeness, we define the output in
the case the sampler requires more coins than the explicit randomness, as the failure symbol
⊥.

Definition 3.1.2 (Sampler). A sampler is a potential sampler that on input 1n, with probability
1 halts and outputs a string of length n.

We explain how we interpret a sampler. Typically we will run a sampler on inputs of the
form 1n (which will be referred to as ”input”). In such a case, for a sampler S, the term S(1n)
will be a random variable with values from Σn. Thus, any sampler S defines an ensemble of

2For simplicity we assume |(x, y)| = |x|+ |y|. While this is not the case, it will make the presentation clearer.
Clearly, this technicality can be handled, without any essential change in the statements and proofs.
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random variables {S(1n)}n∈N. When needed, we will relate explicitly to the randomness as (a
second) input to the sampler.

We note, that our rigorous definition of a sampler is for sake of formality of the proof, and
is arbitrary. To the best of our knowledge, if there exists a sampler under any ”reasonable”
definition that generates hard instances of R, then there exists a sampler under our definition
that generates hard instances of R (see definition of hardness below).

Definition 3.1.3 (Onto Sampler). A sampler is an onto sampler if it outputs every string with
positive probability. Formally, a sampler is an onto sampler if its support is {{0, 1}n}n∈N.

Definition 3.1.4. (Randomness Complexity of a Potential Sampler) We say that the function
f is the randomness complexity of some potential sampler, if on input 1n, the maximal number
of coins it uses is f(n).

We also define the following transformation, that transforms any machine M that output
pairs of strings, to a machine M̃ such that on any input and randomness for which M outputs
a pair, M̃ outputs only the first element in the pair:
Unpairing Transformation:
On input 〈M〉 (a code of a potential sampler), the transformation outputs the code of the
following potential sampler M̃ :
On input x and randomness r, the machine M̃ runs M on x with randomness r, if it halts it
checks if the output is a pair, and if it is, it deletes the second element in the pair.

It is easy to see that the transformation is efficiently computable and that the running time
of M̃ is linearly related to that of M . From now on, given a potential sampler M , we denote
by M̃ the potential sampler who’s code is the result of applying the transformation on 〈M〉.

Definition 3.1.5 (Pairs-Sampler). A pairs-sampler is a potential sampler M that on every
input and randomness outputs a pair, and where M̃ is a sampler according to Definition 3.1.2
(that is, on input 1n, with probability 1 M halts and outputs a pair where the first element is
of length n).

Throughout the paper we consider search problems that are not total, along with samplers
that may not output only YES-instances (for these search problems). The following definition
relates to this setting. It states that in the aforementioned setting, a potential solver A fails on
a search problem R under the sampler S if when running A on random instances output by S,
the event that a YES-instance is output and A does not respond with a correct solution, is no-
ticeable. (Trivially, it implies that S must output YES-instances with noticeable probability.)
We then say that R is hard under S if every potential probabilistic polynomial time solver A
fails on R under S.
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Definition 3.1.6. (Failure of a Solver, Hardness of a Search Problem Under a Sampler)
For an algorithm A, a search problem R and a sampler S we say that A fails on R under S if:

Pr
x←S(1n)

[(x,A(x)) 6∈ R ∧ ∃y(x, y) ∈ R]

is noticeable (where the probability is taken both over the randomness of S, and the random-
ness of A).

We say that R is hard under S if every probabilistic polynomial time algorithm fails on R
under S.

We note that one can alternatively define the failure of a solver, instead of failing with no-
ticeable probability (on the aforementioned distribution), as not failing with negligible proba-
bility. The difference is that now we only require that the solver fail infinitely often, and not
on every n. Our main result is true also under that definition, and the changes in the proof are
minor.

Definition 3.1.7 (Domination). Given two ensembles of random variables {Xn}n∈N and {X ′n}n∈N,
we say that {Xn} dominates {X ′n} if there exists a positive polynomial q such that for any n
and any x ∈ X ′n, Pr[Xn = x] ≥ (1/q(n)) Pr[X ′n = x].

As aforementioned, every sampler induces an ensemble of random variables. For brevity,
sometimes we will say that a sampler S dominates a sampler S ′ to mean that the ensemble
induced by S dominates that of S ′.

The following facts, which will be used through the paper, are straightforward:

Fact 3.2. If a sampler S dominates a sampler S ′ and S ′ is an onto sampler then so is S.

Fact 3.3. Let {Xn}n∈N be an ensemble that dominates the ensemble {X ′n}n∈N and let {Sn}n∈N
be a sequence of sets. Suppose Pr[X ′n ∈ Sn] is noticeable. Then Pr[Xn ∈ Sn] is noticeable.

3.3 Main Result
Theorem 3.4. Suppose that there exists a polynomially bounded total search problem R′ that
is hard under some polynomial time onto sampler. Then, there exists a polynomial time sam-
pler S such that for any super-polynomial, time-constructible function τ , and every polynomial
λ(n) ≥ n, there exists a search problem R such that:

• R is hard under S.
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• There is no polynomial time pairs-sampler S∗ with randomness complexity bounded by
λ, such that the first elements in the pairs output by S∗ are distributed in a distribution
that dominates {S(1n)}n∈N, and the second element in every pair is a solution for the
first element with respect to R if such a solution exists, and any string otherwise.

• The relation R is polynomially bounded, and can be verified in time τ(n) using one
oracle call to a verifier for R′.

We note that the resulted search problem R is not total, and that the sampler S does not
output only YES-instances. Nevertheless, the existence of a pairs-sampler S∗ as (asserted not
to exist) in the theorem for such R and S implies the existence of one-way functions.

Proof. Let R′ be a search problem that is hard under the polynomial time sampler S ′, from
the hypothesis. Let τ be some super polynomial time-constructible function (for sake of con-
creteness one can think of τ(n) = nlog

∗(n)). Let τ ′ be a (smaller) super polynomial time-
constructible function to be defined later. Let λ be a polynomial. We define S and R as
follows:
Definition of R:
((〈M〉, x), (w, r1, . . . , r|x|)) ∈ R if and only if the following conditions hold:

• (x,w) ∈ R′

• For all 1 ≤ i ≤ |x| it holds that |ri| ≤ λ(|〈M〉|+ |x|).

• For all 1 ≤ i ≤ |x|, on input 1|〈M〉|+|x| and randomness ri, the potential sampler M̃
outputs (〈M〉, x⊕ e|x|i ) in at most τ ′(|〈M〉|+ |x|) steps.

In the following we describe the main ideas behind the definitions (disregarding issues of
running time and randomness complexity, which will be dealt later). Suppose that M is some
potential sampler (we will eventually considerM = S∗). Then, if (w, r1, . . . , r|x|) is a solution
for (〈M〉, x), then the ri’s, when used as randomness forM (with the appropriate input length),
output an instance-solution pair where in the instance, the first element (the machine code) is
again the code of the same machine M , and the second element in the instance is x with the
i-th bit flipped. Thus, using the appropriate ri from the solution as randomness for M , one
can basically ”flip any bit of x at his choice” without changing the (code of) the machine in
the instance. Now, suppose the machine M is guaranteed to always output legal pairs with
respect to R, when the instance in the pair is a YES-instance. Then, if the new instance (with
the ”flipped” bit) is a YES-instance, the new pair output by M is again a legal pair. It follows,
that if all involved instances are YES-instances, then by repeated invocations of M (each time
using the appropriate ri from the last solution), one can sequentially flip bit after bit, and arrive
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at any desired x′. We then note that if (w, r1, . . . , r|x|) is a solution for (〈M〉, x) under R, then
w is a solution for x under R′. Thus, once arriving at such x′ (i.e., once having M output a
pair ((〈M〉, x′), (w, r1, . . . , r|x|)), indeed w is a solution for x′ under R′. It follows that R′ can
be efficiently solved (in the worst case), in contradiction to the hardness of R′ under S ′.

The following definition of S, together with the hypotheses of the theorem, guarantee that
if a sampler S∗ exists, the idea outlined above works. It also guarantees that R is hard under
S, as required. We elaborate. Since we would like to diagonalize against all possible S∗’s,
roughly speaking, we let S output (the code of) any machine (in the left part of the instance)
with noticeable probability (see Claim 3.5). This implies (by the hypothesis of the theorem)
that any potential S∗ must also output (the code of) any machine with noticeable probability
(as it is required to dominate S). If follows that one can efficiently (i.e., in expected polynomial
time), find randomness for S∗ that yield any desired machine. In particular, one can efficiently
find randomness for S∗ that will make it output its own code (and again, this is true for any
possible S∗). Since S∗ is assumed to output only legal pairs with respect to R when these
exist, the process described above can then be performed, provided that legal solutions always
exist. We will show that Since S̃∗ must be an onto-sampler (since S is an onto sampler and S̃∗
dominates it), and since R′ is total, throughout the process described above solutions indeed
will always exist. Moreover, since the right side of the instances output by S are distributed
similar to S ′, it follows that R together with S ”inherit” the hardness of R′ under S ′.
Definition of S:
On input 1n:

1. Choose i uniformly from [0, n].

2. Choose a potential sampler 〈M〉 uniformly from {0, 1}i.

3. Run S ′ on 1n−i (supplying it with random coins from the randomness tape of S itself)
and denote the output by x.

4. Output (〈M〉, x).

We now formalize the ideas described above. We will use the following simple fact, that
states that every potential sampler is output by S with noticeable probability:

Fact 3.5. For every fixed potential sampler M0, the probability that S(1n) = (〈M0〉, ·) is
noticeable.

Proof. By our definition, on input 1`+|〈M0〉| the sampler S outputs a tuple (〈M〉, ·) where
|〈M〉| = |〈M0〉| with probability 1/(` + |〈M0〉| + 1). Given that this event occurs, the prob-
ability that 〈M〉 = 〈M0〉 is fixed (namely, it is 2−|〈M0〉|). Thus, S outputs a tuple of the form
(〈M0〉, ·) with noticeable probability.
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In the following we show that R and S are as required. Since R′ is polynomially bounded,
and λ is a fixed polynomial, it is straightforward that R too is polynomially bounded. It is
easy to see that for some polynomial q (i.e., which depends on the model of computation) the
relation R can be verified in time q(τ ′(n)) using one oracle call to a verifier for R′. Setting
τ ′ = q−1(τ) we have that the relation R can be verified in time τ(n) using one oracle call to
a verifier for R′. Since τ is super polynomial and time-constructible, it follows that q−1(τ) is
also super polynomial and time-constructible.

We show that R is hard under S. We first explain informally the idea of the proof. Let S0

be some polynomial time onto sampler with randomness complexity bounded by λ. By Fact
3.5 any such S0 is chosen by S with noticeable probability. As we will show, since R′ is total,
and since τ ′ is super-polynomial, for long enough x’s, any instance of the form (〈S0〉, x) is a
YES-instance of R (and thus a solver should succeed on it). The second element in the pair,
x, is chosen by S (independently from the first) according to the distribution of S ′. It follows
that conditioned on some noticeable event:

• The distribution on the x’s is identical to the distribution of S ′.

• The instances are always YES-instances.

Now, if a solver B does not fail on R under S (according to Definition 3.1.6), it does not
fail on R under S conditioned on this event. This follows from (1) the fact that when this
event occurs the instance is a YES-instance (2) the event is noticeable. Thus, failure on R
under the distribution of S conditioned on this event implies failure on R under S (with no
conditioning). Moreover, according to the definition of R, a solution for the instance (〈S0〉, x)
under R contains a solution for the instance x under R′. From all the above it follows that if
B solves R under S, it implicitly solves in particular R′ under S ′. Thus the solver B can be
used to solve R′ under S ′, in contradiction.

We elaborate. Let S0 be some polynomial time onto sampler with randomness complexity
bounded by λ (for example, the sampler that on input 1n outputs the first n coins from the
randomness tape, which has randomness complexity bounded by λ since λ(n) ≥ n). Let
pS̃0

be a polynomial bounding the running time of S̃0. By Fact 3.5, S outputs a tuple of the
form (〈S0〉, x) with noticeable probability. Let n0 be such that for any n ≥ n0 it holds that
τ ′(n+ |〈S0〉|) ≥ pS̃0

(n+ |〈S0〉|) (clearly such number exists as τ ′ is super-polynomial).

Claim 3.5.1. Any instance of the form (〈S0〉, x) where |x| ≥ n0, is a YES-instance of R.

Proof. The claim follows from the following facts:

• Every x has a w such that (x,w) ∈ R′, as R′ is total.
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• S0 is an onto sampler, thus there are r1, . . . , r|x| such that for all 1 ≤ i ≤ |x|, on input
1|〈S0〉|+|x| and randomness ri, the sampler S̃0 outputs (〈S0〉, x⊕ e|x|i ).

• Since the randomness complexity of S0 is bounded by λ, it follows that for all 1 ≤ i ≤
|x|, the randomness ri can be taken such that |ri| ≤ λ(|〈S0〉|+ |x|).

• Since |x| ≥ n0 it follows that pS̃0
(|x| + |〈S0〉|) ≤ τ ′(|x| + |〈S0〉|), thus S0 halts on the

ri’s in at most τ ′(|〈S0〉|+ |x|) steps as required.

Now, suppose to the contrary there exists an algorithmB that succeeds onR under S. That
is,

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R ∧ ∃y((〈M〉, x), y) ∈ R]

is not noticeable. Then (for n ≥ |〈S0〉|):

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R ∧ ∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]

is also not noticeable, as we condition on a noticeable event (by Fact 3.5). Moreover, for large
enough n’s

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R ∧ ∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]

= Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) 6∈ R|〈M〉 = 〈S0〉],

as for large enough n’s, when 〈M〉 = 〈S0〉 there is always a solution (by Claim 3.5.1).
Since S chooses the second element (independent of the first) according to the distribution of
S ′, it follows that for large enough n’s, the last term equals

Pr
x←S′(1n−|〈S0〉|)

[((〈S0〉, x), B((〈S0〉, x))) 6∈ R].

LetB1 denote the algorithm that behaves similar toB but outputs only the first element (out of
the pair) output by B. Then the last term, which by the above is not noticeable, upper bounds

Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) 6∈ R′],

since if B succeeds on the instance (〈S0〉, x) then the first element output by B is a solution
for x under R′. Finally, trivially

Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) 6∈ R′]

≥ Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) 6∈ R′ ∧ ∃w(x,w) ∈ R′]
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(in fact equality holds here as R′ is total), and we conclude that the algorithm B1((〈S0〉, ·))
does not fail with noticeable probability on R′ under S ′, in contradiction to the hardness of R′

under S ′. We conclude that R is hard under S.
We now prove the main claim, i.e., that there does not exist a sampler S∗ as above. Assume

towards contradiction that a sampler S∗ as above does exist. Then, we use (the code of) S∗ to
construct an algorithm A that succeeds (i.e., does not fail with noticeable probability) on R′

under S ′, in contradiction to the assumed hardness of R′ under S ′. In fact, A will solve R′ in
the worst case, in expected polynomial time. We note, that this part of the proof only uses the
fact that S∗ is an onto sampler (which follows from the fact that the sampler S we construct is
an onto sampler). Following is the definition of A. (See elucidating remarks below.)
Definition of A:
Let pS̃∗ be a polynomial bounding the running time of S̃∗. Let n0 be such that for any n ≥ n0

it holds that τ ′(n) ≥ pS̃∗(n) (clearly such number exists as τ ′ is super-polynomial).
On input x of length n (an instance of R′):

1. If n+ |〈S∗〉| < n0 output the answer out of a pre-computed (fixed) table.

2. Invoke S∗(1n+|〈S∗〉|) (supplying it with random coins). Denote the output by ((〈M〉, x(0)), y).

3. If 〈M〉 6= 〈S∗〉 go back to 2. Else, If 〈M〉 = 〈S∗〉, proceed (note that in that case
|x(0)| = |x| = n).

4. Parse y to (w(0), r
(0)
1 , . . . , r

(0)
n ) (the fact that y can be so parsed will be proven later).

5. Let i1, . . . , ih be the locations of the bits that are different between x and x(0).
For j = 1 to h:

Use r(j−1)ij
as randomness for S∗(1n+|〈S∗〉|) to obtain output ((〈M〉, x(j)), (w(j), r

(j)
1 , . . . , r

(j)
n ))

(Again, the fact that the second element in the output of S∗ can be so parsed will
be proven later. Also, we will show that it must hold that 〈M〉 = 〈S∗〉 and x(j) =
x(j−1) ⊕ enij .)

6. Output w(h).

Before proving the correctness and the running time of the algorithm, let us explain infor-
mally its idea. In Lines 2 and 3 the algorithm invokes S∗ (with appropriate input-length) until
it outputs an instance-solution pair where the instance is of the form (〈S∗〉, x(0)) (where, due
to the choice of the input-length, the length of x(0) is |x|). As we will show, this part takes
expected polynomial time. The idea is that once such an instance is output, the string y that
accompanies it is a solution with respect to R (since the instance is a YES-instance and S∗ is
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assumed to output solutions when they exist). Moreover, this solution relates to the machine S∗

itself. That is, y is of the form (w(0), r
(0)
1 , . . . , r

(0)
n ), where the r(0)i ’s can be used as randomness

for S∗ to ”flip” the i-th bit of x(0), and obtain a new pair ((〈S∗〉, x(1)), (w(1), r
(1)
1 , . . . , r

(1)
n )),

where x(1) is Hamming-closer to x by one bit. Then, the same idea is repeated in the loop
in Line 5. At each step j the algorithm chooses the j-th bit that is different between x(0) and
x, and using the appropriate randomness from the previous solution (i.e., r(j−1)ij

) ”flips” it to
become Hamming-closer to x by one bit. After reaching x (that is, after having S∗ output a
pair where the instance is (〈S∗〉, x)), in Line 6, the algorithm outputs w(h), which, by the defi-
nition of R, and since S∗ always outputs legal solutions with respect to R when these exist, is
a solution for x under R′.

We proceed to a formal proof.

Claim 3.5.2. The algorithm A runs in expected polynomial time.

Proof. We first show that the algorithm reaches Line 4 in expected polynomial time. By Fact
3.5 the probability of the event that on input 1n+|〈S

∗〉| the sampler S outputs (〈S∗〉, x(0)) (for
some x(0) with |x(0)| = n) is noticeable in n.

Since by assumption S̃∗ dominates S, it follows that the event that on input 1n+|〈S
∗〉| the

sampler S∗ outputs (〈S∗〉, x(0)) (for some x(0) with |x(0)| = n = |x|) is also noticeable in
n. It follows that the algorithm reaches Line 4 in expected polynomial time. It is easy to see
(considering that the running time of S∗ is polynomial) that Lines 5,6 run in (strict) polynomial
time. The claim follows.

We now prove the correctness of the algorithm. That is, we show that the output of the
algorithm A on input x is always a solution for x under R′.

Claim 3.5.3. If the algorithmA reaches Line 4, then y is a valid solution for (〈M〉, x(0)) under
R.

Proof. We show that when the algorithm reaches Line 4, (〈M〉, x(0)) is a YES-instance, and
therefore y is a valid solution for (〈M〉, x(0)) (as by assumption the second element in every
pair output by S∗ is a solution for the first element with respect to R if such exists).

The proof resembles the proof of Claim 3.5.1. Note that if the algorithm reaches Line 4
then 〈M〉 = 〈S∗〉. We then note that:

• x(0) has a w such that (x(0), w) ∈ R′, as R′ is total.

• S̃∗ is an onto sampler since S is an onto sampler, and S̃∗ dominates S. Thus, there are
r
(0)
1 , . . . , r

(0)
|x| such that for all 1 ≤ i ≤ |x|, on input 1|〈S

∗〉|+n and randomness r(0)i , the

sampler S̃∗ outputs (〈S∗〉, x⊕ e|x|i ).
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• Since the randomness complexity of S∗ is assumed to be bounded by λ, it follows that
for all 1 ≤ i ≤ |x|, the randomness r(0)i can be taken such that |r(0)i | ≤ λ(|〈S∗〉|+ n).

• If A reaches Line 4 then n + |〈S∗〉| ≥ n0 (because of Line 1), thus τ ′(n + |〈S∗〉|) ≥
pS̃∗(n+ |〈S∗〉|). Thus S̃∗ halts on the r(0)i ’s in at most τ ′(|〈S∗〉|+ n) steps as required.

The claim follows.

Finally, we show that the algorithm outputs the correct output. First we note:

Claim 3.5.4. The second element in the output of S∗ in each step j in the loop in Line 5 is a
valid solution for (〈M〉, x(j)) with respect to R.

The proof is identical to the proof of Claim 3.5.3.

Claim 3.5.5. For every j, at the end of step j in the loop in Line 5 the Hamming distance
between x(j) and x is h− j.

Proof. By Claims 3.5.3 and 3.5.4, and since by assumption the second element in every pair
output by S∗ is a solution for the first element with respect to R if such exists, it follows that
throughout the algorithm, ”all r(j)i ’s are correct” (formally, for every 0 ≤ j ≤ h and every
1 ≤ i ≤ n, any r(j)i is such that S∗(1n+|〈S∗〉|) with randomness r(j)i outputs a pair of the form
((〈S∗〉, x(j) ⊕ eni ), ·)). Since in step j the algorithm A chooses to run S∗ on r(j−1)ij

, where ij is
the j-th bit that is different between x(0) and x, it follows that x(j+1) is Hamming-closer to x
than x(j) by one bit. The claim follows.

It follows that x(h) = x. Since (w(h), r
(h)
1 , . . . , r

(h)
n ) is a solution for (〈M〉, x(h)) under R

(again, by Claim 3.5.4), by the definition of R it follows that w(h) is a solution for x(h) = x
under R′. The theorem follows.

3.4 Conclusion

3.4.1 On Our Assumptions
We have shown that if there exists a polynomially bounded total search problem that is hard
under some polynomial time onto sampler, then there exist efficiently samplable distributions
that are hard on average, but that cannot be transformed into one-way functions (in the manner
we described).

We note that the hypothesis of the theorem is implied by the existence of one-way permuta-
tions, is further implied by the weaker assumption of the existence of onto one-way functions
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(where by ”onto” we mean that the function’s image is Σ∗), and is even weaker than the latter.
Thus, our assumptions are plausible. In fact, one does not even have to assume that S ′ is an
onto sampler. If S ′ is a sampler with the property that the size of its image is noticeable, it can
be made onto by standard (straightforward) techniques without harming the hardness of any
search problem under this sampler.

It might seem contradictory at first sight that we mention that our hypothesis is implied
by an assumption that in fact yields the existence of one-way functions. But, our result is
essentially about approaches to construct one-way functions, and not about their existence.
Thus, a way to interpret the result, is that if onto one-way functions exist, then a certain way
to prove the existence of one-way functions cannot work (although one-way functions in fact
do exist under this assumption).

3.4.2 On Restricting the Randomness Complexity of S∗

To the best of our knowledge, it is unknown if restricting the randomness of the pairs-sampler
S∗ is with loss of generality. It is fairly easy to see that if the answer to the following (open,
to the best of our knowledge) question is affirmative, then restricting the randomness of the
pairs-sampler S∗ is without loss of generality.

Open Question 3.6. There exists a (universal) polynomial q such that for every pairs-sampler
S∗ such that S̃∗ is an onto sampler, there exists a pairs-sampler S∗∗ such that S̃∗∗ is an onto
sampler and such that:

• For every n, it holds that support(S∗∗(1n)) ⊆ support(S∗(1n)).

• The sampler S̃∗∗ dominates S̃∗.

• The randomness complexity of S∗∗ is bounded by q.

3.4.3 Possible Interpretations of Our Result
First we note that the conclusion of our theorem can be presented in a different way: There
exists a polynomial time sampler S such that for any polynomials q and λ there exists a
polynomial time verifiable search problem R such that R is hard under S, but where any
sampler S∗ as in the Desired Construction must run in time exceeding q and use randomness
exceeding λ. It is easy to modify the proof accordingly (basically, one just has to change the
function τ in the definition of R, to q).

A possible interpretation of our result is as an indication for the generality of the classes for
which one can achieve the Desired Construction. Following the discussion in the Introduction,

70



the most generic manner to achieve the Desired Construction is to achieve it for any R and
S where R is hard under S, and where R is polynomially bounded and exponential time
verifiable. Our result implies that in any such generic construction, the randomness complexity
of S∗ must depend onR. This implication is somewhat surprising, as one might have expected
that once we fixed S, we can fix the randomness complexity of S∗ for any R, with the (very
informal) justification being that the ”random” requirement from S∗ is that its distribution on
the instances dominates S, while the requirement that it outputs instance-solution pairs under
R is ”computational”.

We note, however, that our result does not imply that any ”generic” approach to achieve
the Desired Construction cannot succeed (where by ”generic” we mean a transformation that
works for a wide class of pairs (R, S)). The two main reasons for this statement (besides the
loss of generality implied by the restriction on the randomness complexity of S∗) are:

• The search problem we construct is not polynomial time verifiable (but is ”nearly poly-
nomial time verifiable”). This still leaves open the possibility that any polynomial time
verifiable search problem that is hard on average under some efficient sampler can be
transformed to a one-way function (via the Desired Construction we refer to).

• We require that the desired S∗ relates strictly to R and S. A slightly different approach
could be to first transform R and S to some R1 and S1, and then construct S∗ for R1 and
S1. Our result does not eliminate the possibility that this approach can work for a wide
class of pairs (R, S).
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Chapter 4

Sequential Rationality in Cryptographic
Protocols1

Ronen Gradwohl and Noam Livne and Alon Rosen

Abstract

Much of the literature on rational cryptography focuses on analyzing the strategic prop-
erties of cryptographic protocols. However, due to the presence of computationally-bounded
players and the asymptotic nature of cryptographic security, a definition of sequential ratio-
nality for this setting has thus far eluded researchers.

We propose a new framework for overcoming these obstacles, and provide the first defini-
tions of computational solution concepts that guarantee sequential rationality. We argue that
natural computational variants of subgame perfection are too strong for cryptographic proto-
cols. As an alternative, we introduce a weakening called threat-free Nash equilibrium that is
more permissive but still eliminates the undesirable “empty threats” of non-sequential solution
concepts.

To demonstrate the applicability of our framework, we revisit the problem of implementing
a mediator for correlated equilibria (Dodis-Halevi-Rabin, Crypto’00), and propose a variant
of their protocol that is sequentially rational for a non-trivial class of correlated equilibria.
Our treatment provides a better understanding of the conditions under which mediators in a
correlated equilibrium can be replaced by a stable protocol.

Keywords: rational cryptography, Nash equilibrium, subgame perfect equilibrium, se-
quential rationality, cryptographic protocols, correlated equilibrium

1To appear in Foundations of Computer Science (FOCS) 2010.
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4.1 Introduction
A recent line of research has considered replacing the traditional cryptographic modeling of
adversaries with a game-theoretic one. Rather than assuming arbitrary malicious behavior,
participants are viewed as being self-interested, rational entities that wish to maximize their
own profit, and that would deviate from a protocol’s prescribed instructions if and only if it is
in their best interest to do so.

Such game theoretic modeling is expected to facilitate the task of protocol design, since
rational behavior may be easier to handle than malicious behavior. It also has the advantage
of being more realistic in that it does not assume that some of the parties honestly follow the
protocol’s instructions, as is frequently done in cryptography.

The interplay between cryptography and game theory can also be beneficial to the latter.
For instance, using tools from secure computation, it has been shown how to transform games
in the mediated model into games in the unmediated model.

But regardless of whether one analyzes cryptographic protocols from a game theoretic
perspective or whether one uses protocols to enhance game theory, it is clear that the results
are meaningful only if one provides an adequate framework for such analyses.

4.1.1 Computational Nash Equilibrium
Applying game-theoretic reasoning in a cryptographic context consists of modeling interaction
as a game, and designing a protocol that is in equilibrium. The game specifies the model of
interaction, as well as the utilities of the various players as a function of the game’s outcome.
The protocol lays out a specific plan of action for each player, with the goal of realizing some
pre-specified task. Once a protocol has been shown to be in equilibrium, rational players are
expected to follow it, thus reaching the desired outcome.

A key difficulty in applying game-theoretic reasoning to the analysis of cryptographic pro-
tocols stems from the latter’s use of computational infeasibility. Whereas game theory places
no bounds on the computational ability of players, in cryptography it is typically assumed that
players are computationally bounded. Thus, in order to retain the meaningfulness of crypto-
graphic protocols, it is imperative to restrict the set of strategies that are available to protocol
participants. This gives rise to a natural analog of Nash equilibrium (NE), referred to as com-
putational Nash equilibrium (CNE): any polynomial-time computable deviation of a player
from the specified protocol can improve her utility by only a negligible amount (assuming
other players stick to the prescribed strategy).

Consider, for example, the following (two-stage, zero-sum) game (related to a game stud-
ied by Ben-Sasson et al. [4] and Fortnow and Santhanam [7]), which postulates the existence
of a one-way permutation f : {0, 1}n 7→ {0, 1}n.
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Example 4.0.1. (One-way permutation game):

1. P1 chooses some x ∈ {0, 1}n, and sends f(x).

2. P2 sends a message z ∈ {0, 1}n.

3. P2 wins (gets payoff 1) if z = x (and gets -1 otherwise).

In classical game theory, in all NE of this game P2 wins, since there always exists some z
such that z = x. However, in the computational setting, the following is a CNE: both players
choose their messages uniformly at random (resulting in an expected loss for P2). This is true
because if P2 chooses z at random, then P1 can never improve his payoff by not choosing
at random. If P1 chooses x at random, then by the definition of a one-way permutation, any
computationally-bounded strategy σ2 of P2 will be able to guess the value of x with at most
negligible (in n) probability. Thus, the expected utility of P2 using σ2 is negligible, and so he
loses at most that much by sticking to his CNE strategy (i.e. picking some z at random).

4.1.2 Computational Subgame Perfection

The notion of CNE serves as a first stepping stone towards a game-theoretic treatment of
cryptographic protocols. However, protocols are typically interactive, and CNE does not take
their sequential nature into consideration.

In traditional game theory interaction is modeled via extensive games. The most basic
equilibrium notion in this setting is subgame perfect equilibrium (SPE), which requires play-
ers’ strategies to be in NE at any point of the interaction, regardless of the history of prior
actions taken by other players. Basically, this ensures that players will not reconsider their
actions as a result of reaching certain histories (a.k.a. “empty threats”).

As already noted in previous works (cf. [16, 19, 26]), it is not at all clear how to adapt
SPE to the computational setting. A natural approach would be to require the strategies to be
CNE at every possible history. However, if we condition on the history, then this means that
different machines can and will do much better than the prescribed equilibrium strategy. For
example, in the one-way permutation game of Example 4.0.1, given any message history, a
machine M can simply have the correct inverse hardwired.

Although this requirement can be relaxed to ask that the prescribed strategy should be
better than any other fixed machine on all inputs, this again may be too strong, since a fixed
machine can always do better on some histories. Therefore, it seems that we must accept
the following: for any machine M , with high probability over possible message histories,
the prescribed strategy does at least as well as M . However, it turns out that this approach
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also fails to capture our intuitive understanding of a computational SPE (CSPE). Consider the
following (two-stage) variant of the one-way permutation game from Example 4.0.1:

Example 4.0.2. (Modified one-way permutation game):

1. P1 chooses some x ∈ {0, 1}n, and sends f(x).

2. P2 sends a message z ∈ {0, 1}n.

3. If exactly one of P1 and P2 send message 0, both players get payoff −2. If both players
send message 0, both players get payoff +2. Otherwise, P2 wins (with payoff +1) if and
only if z = x, and the non-winning player loses (with payoff −1).

Using a similar argument to the one applied in Section 4.1.1, it can be shown that the
strategies in which both players choose a message uniformly at random from {0, 1}n \ {0}
satisfy the above “probabilistic” variant of CSPE. However, this equilibrium does not match
our intuitive understanding of SPE: P1 will prefer to send message 0 regardless of P2’s strat-
egy, knowing that P2 will then respond with 0 as well. The threat of playing uniformly from
all other messages is empty, and hence should not be admitted by the definition.2

The examples above are rather simple, so it is reasonable to expect that issues arising in
their analyses are inherent in many other cryptographic protocols. This raises the question of
whether a computational variant of SPE is at all attainable in a cryptographic setting.

At the heart of this question is the fact that essentially any cryptographic protocol carries
some small (but positive) probability of being broken. This means that, while there may be
a polynomial-time TM that can “perform well” on the average message history, there is no
single TM that will do better than all other TMs on every history (as for any history there
exists some TM that has the corresponding “secret information” hardwired).

This state of affairs calls for an alternative approach. While such an approach should be
meaningful enough to express strategic considerations in an interactive setting, it should also
be sufficiently weak to be realizable. As demonstrated above, any approach for tackling this
challenge should explicitly address the associated probability of error. It should also take
asymptotics into consideration.

4.2 Our Results
We propose a new framework for guaranteeing sequential rationality in a computational set-
ting. Our starting point is a weakening of subgame perfection, called threat-free Nash equi-

2We note that a simple change to the payoffs yields a game whose empty threat is more “typical”: For the
case in which both players send message 0, let P2’s payoff be −3/2.
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librium, that is more permissive, but still eliminates the undesirable empty threats of non-
sequential solution concepts.

To cast our new solution concept into the computational setting, we develop a methodology
that enables us to “translate” arguments that involve computational infeasibility into a purely
game theoretic language. This translation enables us to argue about game theoretic concepts
directly, abstracting away complications that are related to computation.

In order to demonstrate the applicability of our framework, we revisit the problem of im-
plementing a mediator for correlated equilibria [6], and propose a protocol that is sequentially
rational for a non-trivial class of correlated equilibria (see Section 4.2.3 for details). Our treat-
ment provides a better understanding of the conditions under which mediators in a correlated
equilibrium can be replaced by a stable protocol.

4.2.1 Threat-Free Nash Equilibria
We introduce threat-free Nash equilibria (TFNE), a weakening of subgame perfection whose
objective is to capture strategic considerations in an interactive setting. Loosely speaking, a
pair of strategies in an extensive game is a TFNE if it is a NE, and if in addition no player is
facing an empty threat at any history.

The problem of empty threats is the following: in a NE of an extensive game, it is possible
that a player plays sub-optimally at a history that is reached with probability 0. The other
player may strategically choose to deviate from his prescribed strategy and arrive at that his-
tory, knowing that this will cause the first player to play an optimal response rather than the
prescribed one. In an SPE this problem is eliminated by requiring that no player can play sub-
optimally at any history, and so no other player will strategically deviate and take advantage
of this.

The main observation leading to the definition of TFNE is that the above requirement may
be too strong a condition to eliminate such instability: if an optimal response of a player
decreases the utility of the other, then this other player would not want to strategically deviate.
By explicitly ruling out this possibility, the instability caused by empty threats is eliminated,
despite the equilibrium notion being more permissive than subgame perfection.

To make this precise, we give the first formal definition of an empty threat in extensive
games. The definition is regressive: Roughly speaking, a player i is facing a threat at a his-
tory if there is some deviation at that history, along with a threat-free continuation from that
history onwards, so that i increases his overall expected payoff when the players play this new
deviation and continuation.

We note that the notion of TFNE is strong enough to eliminate the undesirable strategy of
playing randomly in the modified OWP game from Example 4.0.2 – Claim 4.0.2 shows that
in any computational TFNE of this game the second player outputs 0 after history 0.
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4.2.2 Strategy-Filters and Tractable Strategies

To cast the definition of TFNE into a computational setting, we map the given protocol into
a sequence of extensive games using strategy-filters that map computable strategies into their
“strategic representation” (the strategic representation corresponds to the strategy effectively
played by a given interactive Turing machine). We can then apply pure game theoretic solution
concepts, and in particular our newly introduced concept of TFNE, to understand the strategic
behavior of players.

Similarly to the definition of CNE, the computational treatment departs from the traditional
game theoretic treatment in two crucial ways. First of all, our definition is framed asymptot-
ically (in order to capture computational infeasibility), whereas traditional game-theory is
framed for finitely sized games. Second, it allows for a certain error probability. This is
an artifact of the (typically negligible) probability with which the security of essentially any
cryptographic scheme can be broken.

Given a cryptographic protocol, we consider a corresponding sequence of extensive games.
The sequence is indexed by a security parameter k and an error parameter ε. For each game, we
“constrain” the strategies available to players to be a subset of those that can be generated by
PPT players in the protocol. Intuitively, the game indexed by (k, ε) contains those strategies
that run in time polynomial in k and “break crypto” with probability at most ε. We also
require that strategy-filters be PPT-covering: that for any polynomially-small ε, every PPT is
eventually a legal strategy, far enough into the sequence of extensive games.

Using this framework we formalize the notion of a computational threat-free Nash equi-
librium (CTFNE). To the best of our knowledge this is the first attempt at analyzing sequential
strategic reasoning in the presence of computational infeasibility.

4.2.3 Applications

Our treatment provides a powerful tool for arguing about the strategic behavior of players in a
cryptographic protocol. It also enables us to isolate sequential strategic considerations that are
suitable for use in cryptographic protocols (so that the solution concept is not too weak and
not too strong).

As a warm up, we demonstrate the applicability of our framework and solution concept to
the “coin-flipping game” that corresponds to Blum’s coin-flipping protocol [5]. One may view
this as playing the classic game of match pennies without simultaneity (but with cryptogra-
phy). We show that it is possible to exploit the specific structure of the game to implement a
correlating device resulting in a CTFNE. This is in contrast to the general approach of [6] that
only enables one to argue CNE. This result already demonstrates the added strength of our
framework and definition.
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We then revisit the general problem of implementing a mediator for correlated equilib-
ria [6], and propose a protocol that is sequentially rational for a non-trivial class of correlated
equilibria. In particular, our protocol is in a CTFNE for correlated equilibria that are convex
combinations of Nash equilibria and that are “undominated”: There does not exist any convex
combination of Nash equilibria for which both players get a strictly higher expected payoff.

Our treatment explores the conditions under which mediators in a correlated equilibrium
can be replaced by a stable protocol, and sheds light on some structural properties of such
equilibria.

Finally, we prove a general theorem that identifies sufficient conditions for a TFNE in
extensive games. Namely, we show that if an undominated NE has the additional property
that no player can harm the other by a unilateral deviation, then that NE must also be threat-
free.

4.2.4 Related Work
This paper contributes to the growing literature on rational cryptography. Many of the papers
in this line of research, such as [6, 13, 15, 1, 9, 20, 22, 16, 18, 19, 17, 26, 23, 2, 10], explore
various solution concepts for cryptographic protocols viewed as games (often in the context
of rational secret-sharing). Aside from the works of Lepinski et al. [15, 20], Ong et al. [26],
and Gradwohl [10], who work in a different model3, all prior literature has considered solution
concepts that are non-sequential. More specifically, they all use variants of NE such as strict
NE, NE with stability to trembles, and everlasting equilibrium.

An additional related work is that of Halpern and Pass [14], in which the authors present a
general framework for game theory in a setting with computational cost. While their approach
to computational limitations is more general than ours, they only address NE. Finally, Fortnow
and Santhanam [7] study a different framework for games with computational limits, but also
only in the context of NE.

4.2.5 Future Work
One potential application of our new definition is an analysis of rational secret-sharing pro-
tocols. While the design of such a protocol that is in a CTFNE is not within the scope of
the current paper, we do provide some intuition about why known gradual release protocols
satisfy a slightly weaker solution concept. Consider the following simple setting: each of two
players knows a bit, and the XOR of the two bits is the secret. Secret exchange protocols, for

3More specifically, [15, 20] make strong physical assumptions, [26] assume the existence of a fraction of
honest (non-rational) players, and [26, 10] work in an information-theoretic setting.
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example [21], allow the players to exchange their respective bits and thus learn the secret in
such a way that even if one of the players cheats, he can reconstruct the secret with probability
at most ε more than the other player. Then under the assumptions on players’ utilities used
by [17], any unilateral deviation from this protocol can get the deviating player an increase of
onlyO(ε) in utility. However, since the other player can always correctly guess the secret with
almost the same probability (up to the additive ε), the potential benefit to a player of deviating,
causing the other to deviate, and so on, is also at most O(ε). Thus, this protocol is in a com-
putational variant of ε-NE and is also ε-threat-free. The reason this is weaker than our current
solution concept is that we require the benefit from a threat or a deviation to be negligible,
whereas in [21] the ε is polynomially-small (in the number of rounds of the protocol).

There are numerous other compelling problems left for future work. The first problem is
to extend our definition to games with simultaneous moves. While we do offer a partial ex-
tension tailored to the problem of implementing a mediator, the problem of defining CTFNE
for general games with simultaneous moves is open. Such a definition would be particularly
useful for a sequential analysis of protocols with a simultaneous channel. Another natural ex-
tension of the definition is to multiple players, as opposed to 2. Such an extension comes with
its own challenges, particularly with regard to the possibility of collusion. A third extension
is to incorporate the threat-freeness property with stronger variants of NE, such as stability
with respect to trembles, strict NE, or survival of iterated elimination of dominated strategies.
Finally, we would like to find more applications for our definition. One particularly interest-
ing problem is to extend our results on the implementation of mediators to a larger class of
correlated equilibria.

4.3 Game Theory Definitions

4.3.1 Extensive Games
Informally, a game in extensive form can be described as a game tree in which each node is
owned by some player and edges are labeled by legal actions. The game begins at the root,
and at each step follows the edge labeled by the action chosen by the current node’s owner.
Utilities of players are given at the leaves of the tree. More formally, we have the following
standard definition of extensive games (see, for example, Osborne and Rubinstein [27]):

Definition 4.0.1 (Extensive game). A 2-person extensive game is a tuple Γ = (H,P,A, u)
where

• H is a set of (finite) history sequences such that the empty word ε ∈ H . A history
h ∈ H is terminal if {a : (h, a) ∈ H} = ∅. The set of terminal histories is denoted Z.
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• P : (H \ Z) → {1, 2} is a function that assigns a “next” player to every non-terminal
history.

• A is a function that, for every non-terminal history h ∈ H \ Z, assigns a finite set
A(h) = {a : (h, a) ∈ H} of available actions to player P (h).

• u = (u1, u2) is a pair of payoff functions ui : Z 7→ R.

We will denote the two players by P1 and P2 and by Pi and P−i, where i ∈ {1, 2} and −i
is shorthand for 2− i.

Definition 4.0.2 (Behavioral strategy). Behavioral strategies of players in an extensive game
are collections σi = (σi(h))h:P (h)=i of independent probability measures, where σi(h) is a
probability measure over A(h).

For any extensive game Γ = (H,P,A, u), any player i, and any history h satisfying
P (h) = i, we denote by Σi(h) the set of all probability measures over A(h). We denote
by Σi the set of all strategies σi of player i in Γ. For each profile σ = (σ1, σ2) of strategies,
define the outcome O(σ) to be the probability distribution over terminal histories that results
when each player i follows strategy σi. Note that if both σ1 and σ2 are deterministic (i.e.
deterministic on every history), then so is the outcome O(σ).

4.3.2 Nash Equilibrium
Each profile of strategies yields a distribution over outcomes, and we are interested in profiles
that guarantee the players some sort of optimal outcomes. There are many solution concepts
that capture various meanings of “optimal,” and one of the most basic is the Nash equilibrium
(NE).

Definition 4.0.3 (Nash equilibrium (NE)). An ε-Nash equilibrium of an extensive game Γ =
(H,P,A, u) is a profile σ∗ of strategies such that for each player i,

E [ui (O(σ∗))] ≥ E
[
ui
(
O(σ∗−i, σi)

)]
− ε

for every strategy σi of player i. It is a NE if the above holds for ε ≤ 0 and a strict NE if it
holds for some ε < 0.

One of the premises behind the stability of profiles that are in an ε-NE is that players will
not bother to deviate for a mere gain of ε. For applications in cryptography we will generally
have ε be some negligible function, and this corresponds to our understanding that we do not
care about negligible gains.
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4.3.3 Subgame Perfect Equilibrium
One of the problems with NE in extensive games is the presence of empty threats: a player’s
equilibrium strategy may specify a sub-optimal strategy at a history that is reached with prob-
ability 0. The other player, knowing this, may strategically deviate to reach that history, pre-
dicting that the first player will also deviate. For more details and explicit examples see any
textbook on game theory, such as [27].

The most basic solution to the problem of empty threats is to refine the NE solution, and
require a strategy profile to be in a NE at every history in the game. This results in a profile
that is in subgame perfect equilibrium (SPE).

Definition 4.0.4 (Subgames of extensive game). For any 2-person extensive game Γ = (H,P,A, u)
and any non-terminal history h ∈ H , the subgame Γ|h is the 2-person extensive game Γ|h =
(H|h, P |h, A|h, u|h), where

• h′ ∈ H|h if and only if h ◦ h′ ∈ H ,

• P |h(h′) = P (h ◦ h′),

• A|h(h′) = A(h ◦ h′), and

• ui|h(h′) = ui(h ◦ h′).

For each profile σ = (σ1, σ2) of strategies and history h ∈ H , define the conditional
outcome O(σ)|h to be the probability distribution over terminal histories that results when the
game starts at a history h, and from that point onwards each player i follows strategy σi.

Definition 4.0.5 (Subgame perfect equilibrium (SPE)). An ε-subgame perfect equilibrium of
an extensive game Γ = (H,P,A, u) is a profile σ∗ of strategies such that for each player i and
each non-terminal history h ∈ H ,

E [ui (O(σ∗)|h)] ≥ E
[
ui
(
O(σ∗−i, σi)|h

)]
− ε

for every strategy σi of player i. It is an SPE if the above holds for ε = 0 and a strict SPE if it
holds for some ε < 0.

4.3.4 Constrained Games
In the standard game theory literature, where there are no computational constraints on the
players, the available strategies σi of player i are all possible collections (σi(h))h:P (h)=i, where
σi(h) is an arbitrary distribution over A(h). In our setting, however, we will only consider
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strategies that can be implemented by computationally bounded ITMs. This requires being
able to constrain players’ strategies to a strict subset of the possible strategies. One natural way
to restrict the strategies is to allow only a subset of all distributions overA(h) at each history h.
However, this does not enable us to capture more elaborate restrictions, and specifically ones
that might result from requiring strategies to be implementable by polynomial time ITMs. (For
example, a player might have for every possible history a strategy that plays best response on
that history, but no strategy that plays best response on all histories.) To capture these more
elaborate restrictions, we consider player i strategies that are restricted to an arbitrary subset
Ti of all possible (mixed) strategies. Given a pair T = (T1, T2) of such sets we can then
define a constrained version of a game, in which only strategies that belong to these sets are
considered.

Definition 4.0.6 (Constrained game). Let Γ = (H,P,A, u) be an extensive game and let
T = (T1, T2), where Ti ⊆

⊗
h:P (h)=i Σi(h) for each i ∈ {1, 2}. The T -constrained version of

Γ is the game in which the only allowed strategies for player i belong to Ti.

NE of constrained games are defined similarly to regular NE, except that players’ strategies
and deviations must be from the constraint sets.

Definition 4.0.7 (NE in constrained games). An ε-Nash equilibrium of a (T1, T2)-constrained
version of an extensive game Γ = (H,P,A, u) is a profile σ∗ ∈ (T1, T2) of strategies such that
for each player i,

E [ui (O(σ∗))] ≥ E
[
ui
(
O(σ∗−i, σi)

)]
− ε

for every strategy σi ∈ Ti of player i. It is a NE if the above holds for ε ≤ 0 and a strict NE if
it holds for some ε < 0.

4.4 Threat-Free Nash Equilibrium
Our starting point is the inadequacy of subgame perfection in capturing sequential rational-
ity in a computational context. As argued in Section 4.1.2, it is unreasonable to require
computationally-bounded players to play optimally at every node of a game. In particular,
in cryptographic settings this requires breaking the security of the protocol, which is assumed
impossible under the computational constraints.

A possible idea might be to require that players “play optimally at every node of the game,
under their computational constraints.” However, this idea cannot be interpreted in a sensible
way. Computational constraints must be defined “globally,” and thus the notion of playing
optimally under some computational constraint on a particular history is senseless. In par-
ticular, for any history of some cryptographic protocol, there is a small machine that plays
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optimally on this specific history unconditionally (and breaks “cryptographic challenges” ap-
pearing in this history, by having the solutions hardwired). This machine is efficient, and so
meets essentially any computational constraint. So, while under computational constraints
every machine fails on cryptographic challenges in most histories, for every history there is a
machine that succeeds. We thus assume that a player chooses his machine before the game
starts, and cannot change his machine later.

4.4.1 A New Solution Concept
In light of the above discussion, it seems like the solution concept we are looking for has to
reconciliate between the following seemingly conflicting properties:

1. It implies an optimal strategy for the players under their computational constraints,
which implies non-optimal play on certain histories.

2. It does not allow empty threats, thus implying “sequential rationality.”

The crucial observation behind our definition is that in order to rule out empty threats, one
does not necessarily need to require that players play optimally at every node, because not
every non-optimal play carries a threat to other players. In fact, in a typical cryptographic pro-
tocol, the security of each player is building on other players not playing optimally (because
playing optimally would mean breaking the security of the protocol). Thus, a player’s “decla-
ration” to play non-optimally does not necessarily carry a threat: the other players may even
gain from it. More generally, even in non-cryptographic protocols, at least in 2-player perfect
information games, we can use the following observation: in any computational challenge,
either a player gains from the other not playing optimally, or, if he does not gain, he can avoid
introducing that computational challenge to the other player.4

Following the above observation, we introduce a new solution concept for extensive games.
The new solution concept requires that players be in NE, and moreover, that no player impose
an empty threat on the other. At the same time, it does not require players to play optimally at
every node. In other words, players may (declare to) play non-optimally on non-equilibrium
support, yet this declaration of non-optimal play does not carry an empty threat. We call our
new solution concept TFNE, for threat-free Nash equilibrium.

To make the above precise, we introduce a formal definition of an empty threat. An empty
threat occurs when a player threatens to play “non-rationally” on some history in order to
coerce the other player to avoid this history. Crucially, empty threats are such that, had the

4This is indeed an informal statement. In fact, we should add the disclaimer that computational hardness for
one player does not necessarily have to stem from the strategy of the other. For example, the utility function may
be computationally hard.
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threatened not believed the threat, had he deviated accordingly, and had the threatening player
played “rationally,” the threatened player would have benefitted. To rephrase our intuition:
a player faces an empty threat with respect to some strategy profile if by deviating from his
prescribed strategy, and having the other player react “rationally,” he improves his payoff (in
comparison with sticking to the prescribed strategy and having the other player react “ratio-
nally” from then on).

But what does it mean for the other player to react “rationally”? The other player may
assume, recursively, that the first player will play a best response, and will not carry out empty
threats against him, and so on, leading to a regressive definition.

4.4.2 Vanilla Version
Before giving the general definition of TFNE that we will use, we present a simpler version
that has no slackness parameter and that works for games without constrained strategies.

For a player i and a history h, two strategies σi and πi are equivalent for player i on h if
P (h) = i and σi(h) = πi(h), or P (h) 6= i. Two strategies differ only on the subgame h if
they are equivalent on every non-terminal history that does not have h as a prefix. Formally,
they are equivalent on every history in H \ {h′ ∈ H : h′ = h ◦ h′′ for some h′′}. For a history
h ∈ H , a strategy σ, and a distribution τ = τ(h) on A(h), let

Cont(h, σ, τ)
def
=
{
π : (π differs from σ only on the subgame h) & (π(h) = τ(h))

}
.

We now proceed to define a threat. For simplicity, we will do so for generic games, in which
each player’s possible payoffs are distinct. For such games, the set Cont(h, σ, τ) always con-
tains exactly one “threat-free” element (defined below).

Definition 4.0.8 (Threat). Let Γ = (H,P,A, u) be an extensive game with distinct payoffs.
Let σ be a strategy profile, and let h ∈ H . Player i = P (h) is facing a threat at history
h with respect to σ if there exists a distribution τ = τ(h) over A(h) such that the unique
π ∈ Cont(h, σ, τ) and π′ ∈ Cont(h, σ, σ) that are threat-free on h satisfy

E [ui (O(π))] > E [ui (O(π′))] ,

where strategy π is threat-free on h if for all h′ 6= ε satisfying h ◦ h′ ∈ H player P (h ◦ h′) is
not facing a threat at h ◦ h′ with respect to π.

Note that if h is such that for all a ∈ A(h) it holds that h ◦ a ∈ Z, then any profile π is
threat free on h.
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Definition 4.0.9 (Threat-free Nash equilibrium). Let Γ = (H,P,A, u) be an extensive game.
A strategy profile σ∗ is a threat-free Nash equilibrium (TFNE) if:

1. σ∗ is a NE of Γ, and

2. for any h ∈ H , player P (h) is not facing a threat at history h with respect to σ∗.

Note that in every profile that is in a TFNE, the effective play matches some SPE profile
(more precisely, there is an SPE profile that yields exactly the same distribution on outcomes).
This and other properties of threats and TFNE are formalized in the companion paper to this
work [11].

In the definition of a threat we used the fact that Cont(h, σ, τ) and Cont(h, σ, σ) each
contain exactly one profile that is threat-free on h. To show that this must be the case, we
have the following proposition, which is not unlike the fact that generic games have unique
subgame perfect equilibria.

Proposition 4.0.1. For any extensive game Γ = (H,P,A, u), strategy profile σ, player i,
history h ∈ H \Z with P (h) = i, and distribution τ over A(h), the set Cont(h, σ, τ) contains
exactly one profile that is threat-free on h.

Proof. For any history h ∈ H \ Z, let height(h) be the maximal distance between h and a
descendant of h (i.e. the leaf that is furthest away from h but lies on the subtree rooted by h).
The proof of the proposition is by induction on height(h).

For the base case height(h) = 1, note that there is exactly one element in Cont(h, σ, τ)
and that this profile is threat-free on h (since h is a last move of the game).

Next, suppose the claim of the proposition holds for all histories h with height(h) < k.
We will prove that it holds for histories h with height(h) = k. To this end, fix such a history
h0, and suppose the children of h0 in the game tree are h1, . . . , ht. Suppose also that P (h0) = i
and P (h1) = . . . = P (ht) = −i, and note that this is without loss of generality.

Consider the profile π0 that is identical to σ except at history h, and fix π0(h) = τ(h). We
now repeat the following process in succession for each j ∈ {1, . . . , t}: For any such j, let

TF(hj)
def
=

{
π ∈

⋃
τ j

Cont(hj, πj−1, τ j) : π is threat-free on hj
}
.

We then choose a profile πj ∈ TF(hj) that satisfies

u−i
(
πj
)
≥ u−i (π

′′)
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for all π′′ ∈ TF(hj). Because payoffs for player −i are distinct, it must be the case that there
exists a unique maximal πj . That is, there can be no π′′ that is different from πj and has the
same payoff for player −i.

After doing this for all hj ∈ {h1, . . . , ht} we have a profile πt that we claim is threat-
free on h. To see this, observe that for all j ∈ {1, . . . , t}, πj is threat-free on hj because
we chose it to be a threat-free profile from Cont(hj, πj−1, τ ′′). However, since for each j we
chose a maximal τ j , there are no threats at the histories hj either. Finally, uniqueness of πj is
guaranteed by the fact that for each j, our choice of a maximal τ j was unique.

4.4.3 Round-Parameterized Version

For games induced by cryptographic protocols we will need a more general definition of
TFNE. We assume that in these games players alternate moves, and thus there is a natural
notion of the “rounds” in the game: Player i makes a move in round 1, then player −i makes
a move in round 2, and so on until the end of the game.

For the general definition, we introduce a few modifications to the vanilla version:

• We add a slackness parameter ε. This is necessary for our applications in order to handle
the probability of error inherent in almost all cryptographic protocols.

• We allow players to be threatened at rounds, rather than just specific histories. This is
needed because when we add the slackness parameter, a player might be threatened at a
set of histories, where the weight of each individual threat does not exceed the slackness
parameter, but the overall weight does.

• Finally, for a player to be threatened, we require that he improve on all threat-free
continuations π. The reason we need this is that in the general case, there may be more
than one π that is threat-free. If a player deviates from his prescribed behavior, he cannot
choose which (threat-free) continuation will be played.

The definitions below make use of the notion of a round R strategy of player i: This is
simply a function mapping every history h that reaches round R to a distribution over A(h).
For a round R ∈ N we let σi(R) represent player i’s round R strategy implied by σ. Let
σ(R) = (σ1(R), σ2(R)), and let

Cont(σ(1), . . . , σ(R))
def
=
{
π ∈ T : π(S) = σ(S) ∀S ≤ R

}
,

where T = (T1, T2) consists of constraints for players’ strategies.
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Definition 4.0.10 (ε-threat). Let Γ = (H,P,A, u) be an extensive game with constraints
T = (T1, T2). Let ε ≥ 0, let σ ∈ T be a strategy profile, and let R ∈ N be a round of Γ. Player
i = P (R) is facing an ε-threat at round R with respect to σ if there exists a round R strategy
τ = τ(R) for player i such that

(i) the set Cont(σ(1), . . . , σ(R−1), τ(R)) is nonempty, and

(ii) for all π ∈ Cont(σ(1), . . . , σ(R−1), τ(R)) and π′ ∈ Cont(σ(1), . . . , σ(R)) that are
ε-threat-free on R

E [ui (O(π))] > E [ui (O(π′))] + ε,

where strategy π is ε-threat-free on R if for all rounds S > R it holds that player P (S) is not
facing an ε-threat at round S with respect to π.

Note that if R is the last round of the game, then any profile π ∈ T is ε-threat-free on R.
Using Definition 4.0.10, we can now define an ε-TFNE.

Definition 4.0.11 (ε-threat-free Nash equilibrium). Let Γ = (H,P,A, u) be an extensive game
with constraints T = (T1, T2). A strategy profile σ∗ ∈ T is an ε-threat-free Nash equilibrium
(ε-TFNE) if:

1. σ∗ is an ε-NE of Γ, and

2. for any round R of Γ, player P (R) is not facing an ε-threat at round R with respect to
σ∗.

As is the case for Definition 4.0.8, Definition 4.0.10 (and hence Definition 4.0.11) would
not be (semantically) well-defined if either one of the sets Cont(σ(1), . . . , σ(R−1), τ(R)) or
Cont(σ(1), . . . , σ(R)) would not contain at least one profile π that is ε-threat-free on R. The
following proposition shows that this can never be the case.

Proposition 4.0.2. Let Γ = (H,P,A, u) be an extensive game with constraints T = (T1, T2).
Let ε ≥ 0, let σ ∈ T be a strategy profile, and let R be a round of Γ. For any round R strategy
τ = τ(R) for player i = P (R), if the set Cont(σ(1), . . . , σ(R−1), τ(R)) is nonempty then it
contains at least one profile π that is ε-threat-free on R.

Proof. For any round R of Γ, let height(R) be the distance between h and the last round of Γ.
The proof of the proposition is by induction on height(R).

For the base case height(R) = 0, note that, by the hypothesis of the proposition, the set
Cont(σ(1), . . . , σ(R−1), τ(R)) is nonempty. Since R is the last round of the game, the set
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contains exactly one profile, (σ(1), . . . , σ(R−1), τ(R)), and this profile is vacuously ε-threat-
free on R.

Next, suppose the claim of the proposition holds for all rounds R with height(R) < k.
We will prove that it holds for round R satisfying height(R) = k. Let i = P (R), and assume
that there exists some π′ ∈ Cont(σ(1), . . . , σ(R−1), τ(R)). We would like to show that
Cont(σ(1), . . . , σ(R−1), τ(R)) contains at least one profile π that is ε-threat-free on R.

By the inductive hypothesis we have that, for any round R + 1 strategy τ ′ of player −i, if
the set Cont(σ(1), . . . , σ(R − 1), τ(R), τ ′(R + 1)) is nonempty then it contains at least one
profile that is ε-threat-free on R+ 1 (since height(R+ 1) < k). We will choose a profile that
has a maximal τ ′ as follows. Let

TF(R + 1)
def
=

{
π ∈

⋃
τ ′

Cont(σ(1), . . . , σ(R− 1), τ(R), τ ′(R + 1)) : π is ε-threat-free on R + 1

}
,

and note that TF(R + 1) must be nonempty. This is because there always exists at least one
τ ′ for which Cont(σ(1), . . . , σ(R− 1), τ(R), τ ′(R+ 1)) is nonempty: namely, we could have
τ ′(R + 1) = π′(R + 1). Since Cont(σ(1), . . . , σ(R − 1), τ(R), π′(R + 1)) is nonempty by
assumption, it must contain a profile that is ε-threat-free onR+1 (by the inductive hypothesis).

We now choose a profile π ∈ TF(R + 1) that satisfies

u−i (π) ≥ u−i (π
′′)− ε

for all π′′ ∈ TF(R + 1). So now we have a profile π ∈ Cont(σ(1), . . . , σ(R−1), τ(R)),
which we claim is ε-threat-free on round R. To see this, note that π is ε-threat-free on R + 1
by the way we chose it (i.e. a profile from Cont(σ(1), . . . , σ(R − 1), τ(R), τ ′(R + 1)) that is
ε-threat-free on R + 1). However, since we chose a maximal τ ′ (up to ε), there is no ε-threat
at round R + 1 either. Thus π is ε-threat-free on R.

4.5 The Computational Setting

In the following we explain how to use the notion of TFNE for cryptographic protocols. In
Section 4.5.1 we describe how to view a cryptographic protocol as a sequence of extensive
games. In Section 4.5.2 we show how to translate the behavior of an interactive TM to a
sequence of strategies. In Section 4.5.3 we show how to express computational hardness in
a game-theoretic setting. Finally, in Section 4.5.4 we give our definition of computational
TFNE.
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4.5.1 Protocols as Sequences of Games
When placing cryptographic protocols in the framework of extensive games, the possible mes-
sages of players in a protocol correspond to the available actions in the game tree, and the
prescribed instructions correspond to a strategy in the game.

The protocol is parameterized by a security parameter k ∈ N. The set of possible messages
in the protocol, as well as its prescribed instructions, typically depend on this k. Assigning
for each k and each party a payoff for every outcome, a protocol naturally induces a sequence
Γ(k) = (H(k), P (k), A(k), u(k)) of extensive games, where:

• H(k) is the set of possible transcripts of the protocol (sequences of messages exchanged
between the parties). A history h ∈ H(k) is terminal if the prescribed instructions of the
protocol instruct the player whose turn it is to play next to halt on input h.

• P (k) : (H(k) \ Z(k)) → {1, 2} is a function that assigns a “next” player to every non-
terminal history.

• A(k) is a function that assigns to every non-terminal history h ∈ H(k) \ Z(k) a set
A(k)(h) = {m : (h ◦m) ∈ H(k)} of possible protocol messages to player P (k)(h).5

• u(k) = (u
(k)
1 , u

(k)
2 ) is a vector of payoff functions u(k)i : Z(k) → R.

A sequence Γ = {Γ(k)}k∈N of games defined as above is referred to as a computational game.

Remark 4.0.1. In the following we will consider games played by Turing machines. Thus,
actions will be represented by strings. As opposed to traditional game theory, where players
are computationally unbounded, in our case the names of the actions will be significant. For
example, in the One-way Permutation Game, if we encode player 1’s action f(x) by the string
x for every x ∈ {0, 1}k, then inverting the one-way permutation becomes easy for player 2.
However, to avoid too much notation, we will identify actions with their string representation.
The reader should keep in mind, however, that actions are always strings, and that changing
the string representation of actions might be with loss of generality.

4.5.2 Strategic Representation of Interactive Machines
Protocols are defined in terms of interactive Turing machines (ITMs) – see [8] for a formal
definition. More specifically, the prescribed behavior for each player is defined via an ITM,
and any possible deviation of this player corresponds to choosing a different ITM. In order

5We can interpret “disallowed” messages in the protocol as abort, and define “abort” as a possible protocol
message. This will imply that every execution of the protocol corresponds to some history in the game.
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to argue about the protocol in a game-theoretic manner we formalize, using game-theoretic
notions, the strategic behavior implied by ITMs. We believe this formalization is necessary
for our treatment or any game-theoretic analysis of ITMs, in particular because, to the best
of our knowledge, it has never been done before. However, because this section somewhat
departs from the main thrust of the paper, the reader may skip to Section 4.5.3, keeping the
following (informally stated) conclusion in mind: The strategic behavior of an ITM for player
i in a protocol may be seen as a collection of independent distributions on actions, one for
each of player i’s histories that are reached with positive probability given the ITM of player
i and some strategy profile of the other players. We refer to this collection as the behavioral
reduced strategy induced by the ITM.

When considering some computational game Γ(k) in a sequence Γ = {Γ(k)}k∈N and an
ITM “playing” this game (with input 1k), the machine does not, strictly speaking, define a
strategy. Informally, the machine specifies how to play only on histories that are not incon-
sistent with the specification on earlier histories in the game. That is, an ITM for player i
specifies distributions on actions for all histories on which it is player i’s turn, except those it
cannot reach based on its own specification on earlier histories. This is the case, because when
fixing the other player’s moves, the distribution on actions the machine plays on a history that
cannot be reached is simply undefined, as we are conditioning on an event with probability 0.
In the following, we show that the prescribed behavior of an ITM can be seen as a convex com-
bination of reduced strategies (which we call mixed reduced strategy), to be defined next. We
then define the natural analogue of behavioral reduced strategy, and argue that for every mixed
reduced strategy there exists a behavioral reduced strategy that is outcome-equivalent. We will
eventually use behavioral reduced strategies to describe the behavior induced by ITMs.

Definition 4.0.12 (Reduced strategy (adapted from [27])). Given a game Γ = (H,P,A, u),
a (pure) reduced strategy for player i is a function σi whose domain is a subset of {h ∈
H|P (h) = i} with the following properties:

• For every h in the domain of σi it holds that σi(h) ∈ A(h).

• h = (a1, . . . , am) is in the domain of σi if and only if for any 1 ≤ ` ≤ m− 1 such that
P (a1, . . . , a`) = i it holds that (a1, . . . , a`) is in the domain of σi and σi(a1, . . . , a`) =
a`+1.

Definition 4.0.13 (Mixed reduced strategy). A mixed reduced strategy for player i is a distri-
bution over reduced strategies for player i.

Given an ITM for Γ(k), for every instance of internal randomness for that machine (i.e.,
a vector of coins), the induced behavior of that ITM is exactly a reduced strategy. This is
the case because for every profile of pure strategies (or reduced pure strategies) of the other
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players, the randomness naturally defines an action for every history that is consistent with its
previous actions (the sequence of these actions, together with the profile, defines the outcome
of the game), and on the other hand, naturally the randomness does not define an action for
histories that are not consistent with that randomness (as with that randomness the machine
will never reach these histories). It follows that an ITM defines a distribution over reduced
(pure) strategies, i.e., a mixed reduced strategy. We now formalize this claim.

Definition 4.0.14 (Induced mixed reduced strategy of an ITM). Let M be a probabilistic ITM
for player i in the extensive game Γ. Assume that M halts for any infinite vector of coins and
any sequence of messages sent by the other players, and let t be a bound on the number of
coins it reads. Let r be a (sufficiently long) coin vector for M . Then the induced pure reduced
strategy σ(r)

i of M with randomness r is defined as follows:

• h = (a1, . . . , am) is in the domain of σ(r)
i if and only if:

– P (a1, . . . , am) = i;

– For any 1 ≤ ` ≤ m− 1 such that P (a1, . . . , a`) = i it holds that (a1, . . . , a`) is in
the domain of σ(r)

i and when M with randomness r participates in an interaction,
conditioned on the sequence of sent messages being (a1, . . . , a`) (where a`+1 is a
message sent by the ITM representing player P (a1, . . . , a`) for any 1 ≤ ` ≤ m−1),
the message sent by M is a`+1.6

• For any h = (a1, . . . , am) in the domain of σ(r)
i , the action σ

(r)
i (a1, · · · , am) is the

message sent by M with randomness r conditioned on the sequence of sent messages
being (a1, . . . , am).

The mixed reduced strategy induced by M is now defined as follows: the probability
assigned to any pure reduced strategy σ is the probability that the induced reduced strategy of
M with randomness r is σ, where r is uniformly chosen from Ut.

In [27] it is shown that for perfect-recall extensive games (which are the only games we
will consider here), every mixed strategy has a behavioral strategy that is outcome equiv-
alent. (Two strategies are outcome-equivalent if for every profile of pure strategies of the
other players the two strategies induce the same distribution on outcomes; A mixed strategy
is a distribution on pure strategies). Next, we define the behavioral analogue of a mixed re-
duced strategy, and argue that the same holds for mixed and behavioral reduced strategies:
For perfect-recall extensive games, every mixed reduced strategy has a behavioral reduced
strategy that is outcome equivalent.

6For completeness, we may assume that whenever M outputs on history h an action that is not in A(h), we
interpret it as abort, which is denoted in the induced game by ⊥ and is always a legal action.
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Definition 4.0.15 (Behavioral reduced strategy). Given a game Γ = (H,P,A, u), a behav-
ioral reduced strategy for player i is a collection σi = (σi(h))h∈H of independent probability
measures, whereH is a subset of {h ∈ H|P (h) = i}, with the following properties:

• σi(h) is a probability measure over A(h) for every h inH.

• h = (a1, . . . , am) is inH if and only if for any 1 ≤ ` ≤ m−1 such that P (a1, . . . , a`) = i
it holds that (a1, . . . , a`) ∈ H and σi(a1, . . . , a`)(a`+1) > 0.

Claim 4.0.1. Every mixed reduced strategy has a behavioral reduced strategy that is outcome
equivalent.

Proof Sketch 4.0.1. Every pure reduced strategy σi for player i can be extended to a (full)
pure strategy by assigning arbitrary values to all histories in {h : P (h) = i} for which σi is
undefined. The two strategies will be outcome-equivalent, as the outcome is only affected by
the consistent histories of σi. It follows that every mixed reduced strategy can be extended to
a mixed (full) strategy that is outcome-equivalent.

On the other hand, every behavioral strategy σi = (σi(h))h:P (h)=i can be restricted to a
behavioral reduced strategy by restricting the collection of probability measures accordingly.
Again, the two strategies will be outcome-equivalent, as the distribution on outcomes is only
affected by the consistent histories of σi.

Finally, as mentioned above, in [27] it is shown that for perfect-recall extensive games,
every mixed strategy has a behavioral strategy that is outcome equivalent.

Thus, given some mixed reduced strategy we extended it to a mixed strategy that is outcome-
equivalent, then transform it to a behavioral strategy that is outcome-equivalent, and finally
we restrict the resulting behavioral strategy to an outcome-equivalent behavioral reduced
strategy.

As argued above, ITMs induce mixed reduced strategies, and by Claim 4.0.1, these induce
behavioral reduced strategies. Thus, in the following we will model ITMs by behavioral
reduced strategies. This is captured by the notion of strategic representation.

Definition 4.0.16 (Strategic representation of an ITM). Let Γ be a game and let i ∈ {1, 2}.
Let M be an ITM for player i. Assume that M halts for any infinite vector of coins and
any sequence of messages sent by the other players. Let σ be the mixed reduced strategy
induced by M . Then the strategic representation of M is the behavioral reduced strategy that
is outcome-equivalent to σ.7

7In certain games there may be more than one behavioral reduced strategy that is outcome-equivalent to σ.
However, our treatment will always be indifferent to the actual choice.
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Similarly, for a sequence of games {Γ(k)}k∈N and an ITM M that takes a security pa-
rameter 1k, the strategic representation of M is the sequence of strategic representations of
M(1),M(12),M(13), . . . .

ε-TFNE for Reduced Strategies

In Section 4.4.3 we presented our general definition of TFNE. However, that definition was
framed for strategies and, following the conclusion of the previous section, we actually care
about reduced strategies. To make Definition 4.0.11 work for reduced strategies we notice that
only two small changes need to be made: We need to define the notion of a round R reduced
strategy, and we need to allow the constraint sets T1 and T2 to include behavioral reduced
strategies.

Definition 4.0.17 (Round R reduced strategy). Let Γ = (H,P,A, u) be an extensive game,
let R be a round of Γ, and let σi be a behavioral reduced strategy of player i = P (R). Then
τ = τ(R) is a round R reduced strategy of player i consistent with σi if the following hold:

• When R = 1, τ(1) is a distribution over A(ε).

• Otherwise, there exists some behavioral reduced strategy πi of player i for which πi(j) =
σi(j) for all j ∈ {1, . . . , R−1}, and such that πi(R) = τi(R).

Throughout the paper, the behavioral reduced strategy σi with which τ(R) is consistent
will be evident from the context, and so we omit reference to this consistency requirement.

Next, we modify the definition of constraints (Definition 4.0.6) by allowing each constraint
set Ti to be a subset of

⊗
h:P (h)=i(Σi(h)∪ ⊥), where σi(h) =⊥ if the history h is not in the

domain of the reduced strategy σi.
Finally, we observe that, following the two modifications above, Definitions 4.0.10 and 4.0.11

work for behavioral reduced strategies as well (replacing “strategy” by “behavioral reduced
strategy” and “round R strategy” by “round R reduced strategy”).

4.5.3 Computational Hardness in the Game-Theoretic Setting
The security of cryptographic protocols stems from the assumption on the limitation of the
computational power of the players. In our strategic analysis of games, we also expect to
deduce the (sequential) equilibrium from this limitation. However, because protocols are pa-
rameterized by a security parameter, a strategic analysis of protocols requires dealing with a
sequence of games rather than a single game. While relating to the sequence of games is cru-
cial in order to express computational hardness (as this hardness is defined in an asymptotic
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manner), this raises a new difficulty: How do we extend the definition of TFNE to sequences
of games?

An appealing approach might be to try to define empty threats for sequences of games.
That is, one might consider the effect of deviations on the expected payoff as k goes to infinity
(much like the derivation of CNE from NE). However, to the best of our understanding this
approach cannot work. Loosely speaking, this is because in order to relate to empty threats one
has to consider deviations in internal nodes of the game tree, and it is not clear how to define
such deviations for sequences of games. Typically, the structure of the game tree changes with
k, so it is not clear even how to define an “internal node” in a sequence of games.

Instead, our approach insists on analyzing empty threats for individual games. Thus, our
solution concept reflects a hybrid approach that relates to a protocol both as a family of indi-
vidual, extensive games and as a sequence of normal-form games. To eliminate empty threats
one must relate to the interactive aspect of each individual game (as this is the setting where
threats are defined). In order to claim players are playing optimally under their computational
constraints, one must think of the protocol as a sequence of one-shot games (because com-
putational hardness is meaningful only when players are required to choose their machines in
advance, and as the traditional notion of hardness is stated asymptotically).

Strategy-filters

When considering computational games Γ = {Γ(k)}k∈N, the computational bounds on the
players will be expressed by restricting the space of available strategies for the players. The
available sequences of reduced strategies for the players will be exactly those that can be
played by the ITMs that meet the computational bound on the players. In our case we will
consider PPT ITMs.

While on the one hand every PPT ITM fails on cryptographic challenges for large enough
values of the security parameter k (under appropriate assumptions), on the other hand, PPT
ITMs can have arbitrarily large size and thus arbitrarily much information hardwired, and
so for every k there is a PPT ITM that breaks the cryptographic challenges with security
parameter k. In our analysis, we would like to “filter” machines according to their ability
to break cryptographic challenges for specific k’s, and allow using them only in games that
correspond to large enough k’s, where these machines fail (and in particular, cannot use hard-
wiring to solve the cryptographic challenges).

To this end, we define the notion of a strategy-filter. For each value k of the security param-
eter and value ε, a strategy-filter maps the ITM M to either⊥ or to its strategic representation,
according to whether M(1k) violates level of security ε or does not (respectively).

Definition 4.0.18 (Strategy-filter). Let Γ = {Γ(k)}k∈N be a computational game and let i be a
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player. A strategy-filter is a sequence Fi = {F (k)
i : M× [0, 1] → Σ

(k)
i ∪ {⊥}}k∈N such that

for every ITM M , every k ∈ N and every ε ∈ [0, 1], it holds that either F (k)
i (M, ε) = ⊥, or

F
(k)
i (M, ε) = σ

(k)
i , where σ(k)

i is the strategic representation of the machine M(1k, ·).

A strategy-filter is meaningful if it allows us to reason about all reduced strategies that are
considered to be feasible, in our case PPT implementable reduced strategies, and in particular
does not filter them out. This is captured in the following definition.

Definition 4.0.19 (PPT-covering filter). A strategy-filter Fi is said to be PPT-covering if for
every PPT ITM M and any positive polynomial p(·) there exists k0 such that for all k ≥ k0, it
holds that F (k)

i (M, 1/p(k)) 6= ⊥.

Typically, protocols have the following security guarantee (under computational assump-
tions): for every i, every PPT ITM M of Pi and every polynomial p(·), there exists k0 such
that for any k ≥ k0, the ITM M does not break level of security 1/p(k) in the protocol
with security parameter k. Such a protocol will naturally have a PPT-covering filter, where if
F

(k)
i (M, ε) 6= ⊥ then the reduced strategy F (k)

i (M, ε) “does not break level of security ε in
the game Γ(k).”

Tractable Reduced Strategies

As reflected above, the asymptotic nature of defining security does not determine any level
of security for any k. Rather, it dictates that any PPT ITM “eventually fails in violating
1/p(k) security” for any p(·) (where “eventually” means for large enough k). Thus, we follow
the same approach in our game theoretic analysis: roughly speaking, our solution concept
requires that ε-security will imply ε-stability for any k (rather than requiring a particular level
of stability for each k). More formally, we require that for any k and any ε, the game induced
by the protocol with security parameter k be in ε-TFNE, given that the available strategies
for the players are those that do not break level of security ε. Thus, for any pair (k, ε) we
will consider the game Γ(k) with available reduced strategies restricted to those that guarantee
ε-security. The following definition derives from a PPT-covering filter, for each such game,
the set of available reduced strategies for each player.

Definition 4.0.20 (Tractable reduced strategies). Let Fi be a PPT-covering filter. For every
k ∈ N and ε ∈ [0, 1] we define the set T (k)

i,ε (Fi) of (k, ε)-tractable reduced strategies for player
i ∈ {1, 2} as

{F (k)
i (M, ε)|M is a PPT ITM and F (k)

i (M, ε) 6= ⊥}.

Whenever Fi will be understood from the context, we will write T (k)
i,ε to mean T (k)

i,ε (Fi).
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4.5.4 Computational TFNE
We can now define our computational variant of TFNE. Roughly, the definition requires that
there exist a family of PPT compatible constraints such that for any k and any ε, the strategies
played by the machines on input security parameter k are in ε-TFNE in the game indexed by
(k, ε).

Definition 4.0.21 (Computational TFNE). Let Γ be a computational game. A pair of PPT
machines (M1,M2) is said to be in a computational threat-free Nash equilibrium (CTFNE)
of Γ if there exists a pair of PPT-covering filters (F1, F2) such that for every k, ε for which
F

(k)
1 (M1, ε) and F (k)

2 (M2, ε) are tractable the profile (F
(k)
1 (M1, ε), F

(k)
2 (M2, ε)) constitutes an

ε-TFNE in the (T
(k)
1,ε , T

(k)
2,ε )-constrained version of Γ(k).

The expressive power of Definition 4.0.21 is illustrated through the following claim, which
refers to Example 4.0.2. We omit the proof, and proceed to more interesting applications in
sections 4.6 and 4.7.

Claim 4.0.2. In the modified one-way permutation game,

(i) the strategy profile in which P1 plays 0 and P2 plays 0 after a history of 0 and randomly
otherwise is a CTFNE, and

(ii) any profile in which P2 plays randomly after history 0 is not a CTFNE.

We note that part (ii) of the claim can easily be extended to profiles in which, after history
0, P2 plays 0 with probability at most 1− p(k) for any polynomial p.

4.6 The Coin-Flipping Game
In the following we describe a classic protocol for coin-flipping, formulated as a sequence of
games (parameterized by a security parameter k). We then show that the prescribed behavior
according to that protocol constitutes a CTFNE in the sequence of games.

Following is an informal description of the sequence of games. We assume some perfectly
binding commitment scheme with the following properties (see Appendix 4.9 for a formal
definition):

• For any security parameter k (which is a common input to the sender and receiver),
the “commit” phase consists of one message from the sender to the receiver, denoted
com(k), which is of length bounded by p(k) for some polynomial p.
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• For any PPT ITM, the advantage in guessing the committed value given the aforemen-
tioned message is negligible in k.

The description defines the legal messages in each game. Recall that at any phase where a
player is supposed to send a message, the move “abort” is legal (and well-defined). Note also,
that any illegal message is interpreted as abort by the other player. The game Γ(k) is defined
as follows:

1. Player 1 chooses a string c of length at most p(k) and sends it to player 2.

2. Player 2 chooses a bit r2, and sends r2 to player 1.

3. Player 1 does one of the following: (1) sends to player 2 decom, where decom is a
legal decommitment to c revealing that the committed value was 1− r2 (in that case the
payoffs are (1,0)); or (2) aborts (in that case the payoffs are (0,1)).

Any other abort results in the aborting player receiving payoff 0, and the other player receiving
1.

We now describe a pair of interactive ITMs for the game Γ(k) that form a CTFNE. We
describe them interleaved, in the form of a protocol. We denote the ITMs playing the strategies
of P1, P2 by M1,M2, respectively.

1. Player 1 chooses a random bit r1, and sends c = com(k)(r1) to player 2 (player 1 also
obtains decom, which is a legal decommitment to c).

2. Player 2 chooses a random bit r2, and sends r2 to player 1.

3. If r1 6= r2, player 1 sends decom to player 2. Else, player 1 aborts.

Theorem 4.0.1. The pair (M1,M2) forms a CTFNE for the protocol above.

Proof. First we define the functions F (k)
1 and F (k)

2 . For any k, the function F (k)
1 never maps to

⊥ (this, roughly speaking, reflects the fact that the protocol is secure against an all-powerful
player 1). For F2 we use the following rule: F (k)

2 (M, ε) = ⊥ if and only if “for security pa-
rameter k, the PPT ITM M guesses the committed value with advantage greater than ε.” More
formally, F (k)

2 (M, ε) = ⊥ if and only if when player 1 sends as the first message a random
commitment of a random bit (i.e., chooses a random bit and then uses the aforementioned
commitment scheme using uniformly random coins), then the message with which M reacts
is the committed value of player 1 with probability greater than 1/2 + ε.

The fact that F1 is PPT-covering is straightforward. The fact that F2 is PPT covering
follows directly from the security of the commitment scheme: For any positive polynomial
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p, every PPT ITM has advantage smaller than 1/p(k) in guessing the committed value with
security parameter k, for large enough k’s.

Next, we need to show that for every k, ε for which F (k)
1 (M1, ε) 6=⊥ and F (k)

2 (M2, ε) 6=⊥
the profile (F

(k)
1 (M1, ε), F

(k)
2 (M2, ε)) constitutes an ε-TFNE in the T = (T

(k)
1,ε , T

(k)
2,ε )-constrained

version of Γ(k). Let k, ε be as above, and let σ = (σ1, σ2) = (F
(k)
1 (M1, ε), F

(k)
2 (M2, ε)). We

first show that σ constitutes an ε-NE in the T -constrained version of Γ(k).
The strategy σ1 chooses a random commitment of a random bit in round 1, and in round

3 decommits whenever it can. It is easy to see that this is optimal, as player 2 always guesses
the committed value with probability 1/2, and so there is no strategy for player 1 for which he
can decommit with probability greater than 1/2 in round 3. It is also easy to see that player
2’s strategy is an ε best-response, as any PPT ITM M2 for player 2 for which F (k)

2 (M2, ε) 6=⊥
does not guess with advantage more than ε. We conclude that σ constitutes an ε-NE in the
T -constrained version of the game Γ(k).

Next, we show that no player is facing an ε-threat with respect to σ at any round of the
T -constrained version of Γ(k). Note that for both players, the expected payoff according to σ
is 1/2. Suppose some player is facing an ε-threat with respect to σ. We divide the proof into
cases.

Case 1 – P1 is facing an ε-threat in round 3: In order for P1 to improve in Step 3 by more
than ε, it must play a round 3 strategy τ(3) in which he sends decom that proves that r1 6= r2
with larger probability than in σ. However, since in σ player 1 sends decom whenever r1 6= r2
(and otherwise no such decom exists, since the commitment is perfectly binding), we conclude
that no such τ(3) exists.

Case 2 – P2 is facing an ε-threat in round 2: According to the constraints, P2 cannot
guess r1 with probability greater than 1/2 + ε. So in order for him to improve by more
than ε, it must be the case that he has some round 2 strategy τ(2), such that in any ε-threat-
free continuation in Cont(σ(1), τ(2)) player 1 aborts with positive probability conditioned on
r1 6= r2. However, any continuation where P1 aborts with zero probability conditioned on
r1 6= r2 (and sends decom) is ε-threat-free, and so there is no deviation for P2 for which he
improves on all ε-threat-free continuation.

Case 3 – P1 is facing an ε-threat in round 1: Since σ is ε-threat-free on round 1, if P1

is threatened in round 1 then he has a round 1 strategy τ(1) so that for all ε-threat-free
profiles in Cont(τ(1)) his expected payoff is greater than 1/2 + ε. Consider the profile
σ′ = (τ(1), σ(2), σ(3)). This profile gives both players an expected payoff of 1/2 (assum-
ing τ(1) aborts with probability 0, which is clearly optimal), and is ε-threat-free on round 2
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(by the same argument as Case 1 above). If σ′ is ε-threat-free on round 1 as well, then P1 does
not improve by more than ε using the deviation τ(1). If σ′ is not ε-threat-free on round 1,
then in any ε-threat-free profile in Cont(τ(1)) player 2’s payoff must be greater than 1/2 + ε.
However, this means that P1’s payoff is less than 1/2, and again he does not improve using the
deviation τ(1). Hence, the postulated τ(1) does not exist, and so P1 is not facing an ε-threat
in round 1.

4.7 Correlated Equilibria Without a Mediator
In one of the first papers to consider the intersection of game theory and cryptography, Dodis,
Halevi and Rabin proposed an appealing methodology for implementing a correlated equilib-
rium in a 2-player normal-form game without making use of a mediator [6]. Under standard
hardness assumptions, they showed that for any 2-player normal-form game Γ and any corre-
lated equilibrium σ for Γ, there exists a new 2-player extensive “extended game” Γ′ and a CNE
σ′ for Γ′, such that σ and σ′ achieve the same payoffs for the players. (Strictly speaking Γ′ is
a sequence of games indexed by a security parameter, and a CNE is defined for a sequence.)
However, as already pointed out by Dodis et al., their protocol lacks a satisfactory analysis of
its sequential nature – the resulting “extended game” is an extensive game, but the solution
concept they use, CNE, is not strong enough for these games.

In the following, we extend the definition of CTFNE to allow handling this setting (that
is, we define CTFNE for extensive games with simultaneous moves at the leaves), give some
justification for our new definition, and then provide a new protocol for removing the mediator
that achieves CTFNE in a wide class of correlated equilibria that are in the convex hull of Nash
equilibria (see definition below).

4.7.1 The Dodis-Halevi-Rabin Protocol
The “extended game” Γ′ consists of 2 phases. In the first phase (“preamble phase”), the players
execute a protocol for sampling a pair under the distribution σ, and in the second phase each
player plays the action implied by the sampled pair, in the original normal-form game. The
CNE of the extended game is the profile that consists of each player playing the protocol
honestly in the first phase, and then in the second phase, if the other player did not abort,
choosing the action by the protocol’s result, and otherwise “punishing” the other player by
choosing a “min-max” action (i.e., choosing an action minimizing the utility resulting from
the other player’s best response).

This profile is indeed a CNE because an efficient player can achieve only a negligible
advantage by trying to break the cryptography in the first phase, cannot achieve any advantage
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by aborting in the first phase (as this minimizes its best possible move in the second phase),
and cannot gain any advantage in the expectation of the payoff by deviating in the second
phase, because the players are playing a pair of actions from a correlated equilibrium.

4.7.2 TFNE for Games with Simultaneous Moves at the Leaves
The definition of an extensive game with simultaneous moves is similar to the definition of an
ordinary extensive game. The main difference is that now the function P maps to (nonempty)
sets of players rather than to single players. The definition of history is then changed to a
sequence of sets of actions rather than a sequence of actions, and the definitions of a strategy
and a payoff function are both also changed accordingly. For a formal definition see Osborne
and Rubinstein [27].

In order to adjust our definition for extensive games with simultaneous moves, we notice
that when a player deviates on a history with a simultaneous move, he cannot expect the
other to react to this deviation (because they both play at the same time). However, in order
to argue that a profile is rational, we still need to require that for every simultaneous move
in the equilibrium support, each player is playing a “best response” given the other player’s
prescribed behavior. This means the prescribed behavior for the players should form some
kind of equilibrium for normal-form games. In our case, the prescribed behavior will form
a NE. The question of what should a CTFNE profile prescribe in off-equilibrium-support
histories is more delicate: Clearly, in order to claim that the profile is “rational,” again we
need some kind of equilibrium for normal-form games. In our case the only deviation will
be prematurely aborting without completing the preamble phase, which leads to the original
normal-form game without agreeing on a sampled pair. In this case one can argue that after
one player aborted, the other (non-aborting) player cannot assume the aborting player will
play his prescribed behavior in the simultaneous move (as he is already not following his
prescribed behavior). However, we argue that it is in fact still rational to assume the aborting
player will play his prescribed behavior. The justification for this claim is essentially the same
as the justification for the rationality of NE. Once there is a prescribed behavior that is a NE,
each player knows the other has no incentive to deviate, and so he also has no incentive to
deviate. The essential difference between a deviation in an extensive game and a deviation in
a simultaneous move, is that in the former, once a player deviated, the other player is facing a
fact. He now has to readjust his behavior according to this deviation. However, in the latter,
there is no point for a player to deviate from the prescribed NE, because the other player will
not know about this deviation prior to choosing his move (if at all). Thus, for terminal leaves
that are off-equilibrium-support (i.e., in the original normal-form game that follows an abort
of some player), we claim it is sufficient for a CTFNE to prescribe a NE as well.

The bottom line of this discussion is that players cannot assume other players will deviate
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from any prescribed NE in any terminal leaf. Thus, our new definition of TFNE for extensive
games with simultaneous moves at the leaves (abbreviated GSML) is essentially the same as
the original definition, except that (i) we require a profile in TFNE to prescribe a NE in any
terminal leaf, and (ii) in the definition of a threat we do not allow a player to assume the other
will deviate from his strategy in any NE at a terminal leaf. In order to formally modify our
definition of TFNE to achieve (ii), essentially we would need to define the only threat-free
continuation on a leaf to be the one that assigns to the players the actions in the prescribed NE
(which expresses the idea that a player is not allowed to assume the other will deviate from
his strategy in any NE).

However, we adopt an equivalent, simpler convention. Given a GSML Γ and a profile σ
that assigns a NE at every simultaneous move, we look at a slightly modified game Γ′: All
simultaneous moves are removed, and instead at each leaf where a simultaneous move was
removed each player is assigned his expected payoff in the corresponding NE for that leaf.
Note that the modified game is now a regular extensive game with no simultaneous moves. We
then “prune” the strategy profile to remove all the distributions on actions on all simultaneous
leaves and denote the resulting profile σ′. We say that σ is a TFNE in Γ if σ′ is a TFNE in Γ′.
We call Γ′ and σ′ the pruned representation of Γ and σ.

The definition of CTFNE for GSML is derived from the above definition of TFNE for
GSML, similarly to the derivation of CTFNE from TFNE in the non-simultaneous case.

A note on the strength of our definition It seems that for general GSMLs our definition is
too strong. The reason is that in certain cases it is computationally intractable for the players to
play the prescribed NE in every leaf (it is easy to construct simple sequences of games where
one cannot assign tractable Nash equilibria at all leaves). While we do not yet know how to
relax our definition to apply to these cases, we believe our definition, when met, is sufficient.

4.7.3 Our Protocol

For a non-trivial class of correlated equilibria, we show how to modify the DHR protocol
to achieve CTFNE. Our basic idea is to use Nash equilibria as “punishments” for aborting
players. That is, if there is a NE that assigns to a player a payoff at most his expected payoff
when not aborting, then assigning this NE in case he aborts serves as a punishment and yields
that the player has no incentive to abort. In the following we characterize a family of correlated
equilibria for which we can use the aforementioned punishing technique, and prove that for
this family we can remove the mediator while achieving CTFNE.

We say that a correlated equilibrium π is a convex combination of Nash equilibria if π is
induced by a distribution on (possibly mixed) Nash equilibria. (The set of such distributions
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is sometimes referred to as the convex hull of Nash equilibria.) Note that any such distribution
is a correlated equilibrium (CE), but the converse is not true.

Let π be a correlated equilibrium for a two-player game Γ that is a convex combination
of a set N of NEs. We say that π is weakly Pareto optimal if there does not exist a different
CE ρ in the convex hull of N for which both E[u1(O(ρ))] > E[u1(O(π))] and E[u2(O(ρ))] >

E[u2(O(π))].
We say that a distribution is samplable if there exists a probabilistic TM that halts on

every infinite randomness vector, and can sample it. This is equivalent to requiring that all
probabilities can be expressed in binary (assuming we work over {0, 1}). Note that every
distribution can be approximated arbitrarily accurately by a samplabale distribution.

Theorem 4.0.2. Assume there exists a non-interactive computationally binding commitment
scheme. Let π be a weakly Pareto optimal correlated equilibrium for a two-player game Γ that
is a samplable convex combination Π of some set of samplable Nash equilibria. Then there
exists an extended extensive game and a profile that achieves the same expected payoffs as π
and is a CTFNE.

Proof. Since Π is samplable, the common denominator of all probabilities in Π is a power of
two. Thus, we can assume Π is a uniform distribution on a sequence of Nash equilibria that
may contain repetitions, where the length of the sequence is a power of two. Let 2` be the
length of that sequence, and let (π0` , . . . , π1`) be that sequence. Note that the distribution π
can now be generated by first choosing uniformly at random a string r in {0, 1}`, and then
choosing a pair of actions according to πr.

Let σ̂i be the NE that assigns the worst payoff for Pi (this value represents the “severest
punishment” for player i).

Our protocol embeds a 2-party string sampling protocol, which is a simple generalization
of the Blum coin flipping protocol [5]. The protocol consists of simply running the Blum pro-
tocol in parallel for a fixed number of times. This protocol, in turn, relies on a perfectly binding
commitment scheme as in Section 4.6, whose formal definition can be found in Appendix 4.9.

As in Section 4.6, we describe the two ITMs that form the protocol in an interleaved
manner. We denote the ITMs playing the strategies of P1, P2 by M1,M2, respectively.

• Round 1: Player 1 chooses uniformly at random a string r = (r1, . . . , r`) from {0, 1}`,
and sends c = (c1 = com(k)(r1), . . . , c` = com(k)(r`)) to player 2 (player 1 also obtains
(decom1, . . . , decom`), where decomi is a legal decommitment with respect to ci and
ri).

• Round 2: If player 1 aborted, the assigned NE is σ̂1. Else, player 2 chooses a uniformly
random string r′ = (r′1, . . . , r

′
`) from {0, 1}`, and sends r′ to player 1.
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• Round 3: If player 2 aborted, the assigned NE is σ̂2. Else, player 1 sends the message
((r1, decom1), . . . , (r`, decom`)).

• If player 1 aborted, the assigned NE is σ̂1. Else, player 2 verifies that decomi is a legal
decommitment with respect to ci and ri for 1 ≤ i ≤ `. If the verification fails (which
is equivalent to an abort of player 1, as it means player 1 sent an illegal message), the
assigned NE is σ̂1. Else, the assigned NE is πr⊕r′ (where ⊕ is bitwise exclusive-or).

Lemma 4.0.1. The pair (M1,M2) forms a CTFNE for the protocol above.

Proof. Let {Γ̃(k)}k∈N be the sequence of games induced by the protocol. Denote the pruned
representation of Γ̃(k) by Γ(k). Let σ̃(k)

1 , σ̃
(k)
2 be the strategies of P1, P2 in the protocol with

security parameter k, and let σ(k)
1 , σ

(k)
2 be their pruned representations. Let σ(k) = (σ

(k)
1 , σ

(k)
2 ).

We prove that {σ(k)} is a CTFNE in {Γ(k)}, which, by the discussion of Section 4.7.2, implies
that {σ̃(k)} is a CTFNE in {Γ̃(k)}.

First we define the functions F (k)
1 and F (k)

2 . For any k, the function F (k)
1 never maps to

⊥ (this, roughly speaking, reflects the fact that the protocol is secure against an all-powerful
player 1, which follows from the perfect binding property of the commitment scheme). For
F2 we use the following rule: F (k)

2 (M, ε) = ⊥ if and only if

E[u
(k)
2 (O(σ

(k)
1 , σ

(k)
M ))] ≥ E[u

(k)
2 (O(σ(k)))] + ε, (4.1)

where σ(k)
M is the strategic representation of machine M and σ(k)

1 is the strategic representation
of machine M1, both with security parameter k. In other words, P2 cannot unilaterally ε-
improve in the (T

(k)
1,ε , T

(k)
2,ε )-constrained version of Γ(k).

The fact that F1 is PPT-covering is straightforward. The fact that F2 is PPT covering
follows from the security of the commitment scheme, as we prove next.

Claim 4.0.3. The strategy-filter F2 is PPT-covering.

Proof. Suppose F2 is not PPT-covering. Then from (4.1) there is a PPT ITM M and a
polynomial p such that

E[u
(k)
2 (O(σ

(k)
1 , σ

(k)
M ))] ≥ E[u

(k)
2 (O(σ

(k)
1 , σ

(k)
2 ))] + 1/p(k) (4.2)

for infinitely many k’s, where σ(k)
M is the strategic representation of the machine M with

security parameter k.

First, we show that we can assume M does not abort in round 2. An abort of P2 leads
to a leaf with σ̂2. But since π is a convex combination of NE’s, following the protocol
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would mean playing a NE. Since by definition σ̂2 is the worst NE for player 2, it follows
that the machine M ′ that behaves the same as M , but whenever M aborts, M ′ instead
follows the protocol, i.e., acts like M2, does at least as well as M . The machine M ′

is well-defined, as the reduced strategy σ
(k)
2 is in fact a full strategy, and is defined

everywhere.8

Since the payoffs in {Γ(k)} are bounded in k and the number of NEs in π is fixed in k,
by (4.2) there exists a polynomial p and (at least one) s ∈ {0, 1}` such that infinitely
often

Pr[O(σ
(k)
1 , σ

(k)
M ) = πs]− Pr[O(σ

(k)
1 , σ

(k)
2 ) = πs] ≥ 1/p(k).

It follows that infinitely often

Pr
(σ

(k)
1 ,σ

(k)
M )

[r ⊕ r′ = s] − Pr
(σ

(k)
1 ,σ

(k)
2 )

[r ⊕ r′ = s] ≥ 1/p(k). (4.3)

Claim 4.0.4. There exists a polynomial q such that for each k satisfying (4.3) there
exists some i ∈ {1, . . . , `} for which

Pr
(σ

(k)
1 ,σ

(k)
M )

[ri ⊕ r′i = si|rj ⊕ r′j = sj ∀j < i]− 1/2 ≥ 1/q(k). (4.4)

Proof. We show that the claim holds with q(k) = 2` · p(k). Suppose towards contradic-
tion this is not the case, and let k be such that (4.3) holds. Suppose (4.4) does not hold
for any i ∈ {1, . . . , `}. Then

Pr
(σ

(k)
1 ,σ

(k)
M )

[r ⊕ r′ = s] − Pr
(σ

(k)
1 ,σ

(k)
2 )

[r ⊕ r′ = s]

= Pr
(σ

(k)
1 ,σ

(k)
M )

[r1 ⊕ r′1 = s1] · Pr
(σ

(k)
1 ,σ

(k)
M )

[r2 ⊕ r′2 = s2|r1 ⊕ r′1 = s1] · . . .

. . . · Pr
(σ

(k)
1 ,σ

(k)
M )

[r` ⊕ r′` = s`|rj ⊕ r′j = sj ∀j < `]− Pr
(σ

(k)
1 ,σ

(k)
2 )

[r ⊕ r′ = s]

<

(
1

2
+

1

q(k)

)`
− 1

2`

<
2`

q(k)
=

1

p(k)
.

8Note that we assume here that there exists such PPT ITM M ′. This may not always be the case. One reason
is that sometimes detecting with probability 1 whether M aborted cannot be done in polynomial time (or at all).
The reason is that any illegal message is regarded as abort, but sometimes a party cannot “know” whether its
message is illegal or not. See [3], Section 6.3 for an example. Another reason could be that in order to “emulate”
M2, the machine M ′ needs to be in some internal state. We note, however, that in our case both problems do not
occur.
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where the first inequality holds since the distribution on r⊕r′ in (σ
(k)
1 , σ

(k)
2 ) is uniform on

{0, 1}` and the second inequality follows from the observation that in (1/2 + 1/q(k))`

we are summing over 2` terms, one equal to 1/2` and the others strictly smaller than
1/q(k). This, of course, yields a contradiction to (4.3).

Since there are infinitely many k’s for which (4.4) holds, and because ` is fixed, there
must exist some i ∈ {1, . . . , `} for which (4.4) holds infinitely often. This, however,
yields a PPT machine A that breaks the hiding property of the commitment scheme, and
is thus a contradiction: Given a commitment c = com(k)(r) for a uniformly chosen ran-
dom bit r, the machineA chooses uniformly at random a string (r1, . . . , ri−1, . . . , ri+1, . . . , r`)
from {0, 1}`−1, and runs M on

(c1 = com(k)(r1), . . . , ci−1 = com(k)(ri−1), c, ci+1 = com(k)(ri+1), . . . , c` = com(k)(r`))

to get output r′. Then, if rj⊕ r′j = sj ∀j < i, algorithm A outputs si⊕ r′i, and otherwise
A outputs a uniformly random bit. Clearly A is a PPT machine. From (4.3) it follows
that infinitely often with probability at least 1/2` it holds that rj ⊕ r′j = sj ∀j < i.
Once r′ is such that rj ⊕ r′j = sj ∀j < i, (4.4) implies that Pr[si ⊕ r′i = ri|rj ⊕ r′j =
sj ∀j < i] ≥ 1/2 + q(k). Thus, in total infinitely often it holds that Pr[si ⊕ r′i = ri] =
(1− 2−`) · 1

2
+ 2−` · (1

2
+ q(k)) = 1

2
+ 2−` · q(k), which means that A breaks the hiding

property of the commitment scheme.

Next, we show that for all k, ε for which F (k)
1 (M1, ε) 6=⊥ and F (k)

2 (M2, ε) 6=⊥ the profile
(F

(k)
1 (M1, ε), F

(k)
2 (M2, ε)) constitutes an ε-TFNE in the T = (T

(k)
1,ε , T

(k)
2,ε )-constrained version

of Γ(k). Let k, ε be as above, and let σ = (σ1, σ2) = (F
(k)
1 (M1, ε), F

(k)
2 (M2, ε)). We first

show that σ constitutes an ε-NE in the T -constrained version of Γ(k). Suppose P1 unilaterally
ε-improves in the T -constrained version of Γ(k). From similar arguments as above we can
assume P1 never aborts. But when P1 never aborts the outcome is exactly π, as the players are
playing πr⊕r′ , and r′ is chosen uniformly at random.

Suppose now that P2 unilaterally ε-improves in the T -constrained version of Γ(k). How-
ever, this is a contradiction to the constraints, that state that for any k P2 cannot unilaterally
ε-improve in the (T

(k)
1,ε , T

(k)
2,ε )-constrained version of Γ(k).

Next, we show that no player is ε-threatened with respect to σ at any round of the T -
constrained version of Γ(k). To this end, suppose towards a contradiction that some player is
ε-threatened with respect to σ. We divide the proof into cases.
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Case 1 – P1 is facing an ε-threat in round 3: In step 3 player 1 has exactly two options: He
can (i) play honestly, send ((r1, decom1), . . . , (r`, decom`)) which he generated in round 1, and
receive E[u1(O(σ))], or he can (ii) abort and receive E[u1(O(σ̂1))]. The value E[u1(O(σ̂1))]
is at most E[u1(O(σ))], and so P1 cannot improve over E[u1(O(σ))]. Hence player 1 is not
facing an ε-threat at round 3.

Case 2 – P2 is facing an ε-threat in round 2: We first note that for any round 1 strategy
for P1 and round 2 strategy for P2, the round strategy of playing honestly in round 3 for P1

is threat-free, since he cannot improve over that strategy (again, since his only deviation is
aborting, which gives him the worst possible NE). Thus, if P2 is ε-threatened at round 2, he
has some round strategy that ε-improves over E[u2(O(σ))] when P1 plays in round 3 (and 1)
according to the protocol. This means that P2 unilaterally ε-improves, which contradicts the
constraints (as well as the ε-NE).

Case 3 – P1 is facing an ε-threat in round 1: If P1 is ε-threatened in round 1, he has
some round 1 strategy τ(1) for which every ε-threat-free continuation ε-improves over every
ε-threat-free continuation of σ1(1). We will describe an ε-threat-free continuation of τ(1) and
an ε-threat-free continuation of σ1(1) that contradict this.

The ε-threat-free continuation of σ1(1): We established in Case 2 that when P1 plays hon-
estly in round 1, if P2 plays honestly in round 2 he is not ε-threatened. We also established
there that P1 playing honestly in round 3 is always ε-threat-free. If follows that the contin-
uation of both players playing honestly in rounds 2 and 3 is an ε-threat-free continuation of
σ1(1). On this profile P1 receives E[u1(O(σ))].

The ε-threat-free continuation of τ1(1): As we established in Case 2, playing honestly
in round 3 is always ε-threat-free for P1. Now, note that there is no profile in which both
players improve simultaneously – because all leaves are Nash equilibria, such a profile would
be a distribution on Nash equilibria that contradicts the Pareto-optimality of π. Note also that
because P1 receives the worst possible payoff when he aborts, it follows that he improves also
conditioned on not aborting (as this can only help him). Thus, in any threat-free continuation
of τ(1), conditioned on P1 not aborting in round 1, P2 again cannot improve over E[u2(O(σ))],
as this again contradicts the Pareto-optimality of π. However, if P2 plays honestly in round 2
and then P1 plays honestly in round 3, then P2 receives exactly E[u2(O(σ))] conditioned on
P1 not aborting in round 1. It follows that this continuation is the best possible for P2, and
thus P2 is not ε-threatened in round 2 of this continuation. It follows that this continuation
is ε-threat-free. However, in this continuation P1 receives E[u1(O(σ))] conditioned on not
aborting, and thus receives at most E[u1(O(σ))] without the conditioning.
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This completes the proof of the theorem.

4.8 A General Theorem
In this section we prove a general theorem identifying sufficient conditions for a strategy
profile to be a TFNE. The first condition is that the profile must be weakly Pareto optimal:

Definition 4.0.22 (Weakly Pareto optimal). A strategy profile σ ∈ T of an extensive game
Γ = (H,P,A, u) with constraints T is weakly Pareto optimal if there does not exist a strategy
profile π ∈ T for which both E[u1(O(π))] > E[u1(O(σ))] and E[u2(O(π))] > E[u2(O(σ))].

Next, we require the profile to be ε-safe. Intuitively, this just means that a player cannot
harm the other too much by a unilateral deviation (as opposed to not being able to gain too
much, which is the NE condition).

Definition 4.0.23 (ε-safe). A strategy profile σ = (σ1, σ2) ∈ T of an extensive game Γ =
(H,P,A, u) with constraints T = (T1, T2) is ε-safe if for each player i,

E [u−i (O(σ))] ≥ E [u−i (O(σ′i, σ−i))]− ε

for every strategy σ′i ∈ Ti of player i.

Finally, we have the following theorem. Note that we are implicitly assuming that the
extensive games in the claim are derived from a cryptographic protocol or some other setting
in which it is natural to discuss the “rounds” of a game.

Theorem 4.0.3. Let Γ = (H,P,A, u) be an extensive game with constraints T = (T1, T2),
and let σ = (σ1, σ2) be a weakly Pareto optimal ε-NE of Γ that is ε-safe. Then σ is an ε-TFNE
of Γ.

We also have the following corollary.

Corollary 4.0.1. Let Γ = (H,P,A, u) be a zero-sum extensive game with constraints T =
(T1, T2), and let σ be an ε-NE of Γ. Then σ is an ε-TFNE of Γ.

The corollary follows from the observation that any ε-NE of a zero-sum game is both
weakly Pareto optimal and ε-safe. Note that the corollary implies the threat-freeness part of
Theorem 4.0.1.

We now prove Theorem 4.0.3.
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Proof. Suppose towards contradiction that at least one of the players is facing an ε-threat with
respect to σ at some round. LetR be the latest such round: that is, player i is facing an ε-threat
at round R with respect to σ, and no player is facing an ε-threat at any round R′ that follows
R.

By Definition 4.0.10 it follows that there exists a round R strategy τ = τ(R) for player i
such that the set Cont(σ(1, . . . , R−1), τ(R)) is nonempty, and such that for all π ∈ Cont(σ(1, . . . , R−
1), τ(R)) and π′ ∈ Cont(σ(1, . . . , R)) that are ε-threat-free on R it holds that

E [ui (O(π))] > E [ui (O(π′))] + ε, (4.5)

where

σ(1, . . . , S)
def
= σ(1), . . . , σ(S)

and

Cont(σ(1, . . . , R))
def
=
{
π ∈ T : π(S) = σ(S) for all S ≤ R

}
.

Note that σ ∈ Cont(σ(1, . . . , R)). Also note that, because R is the latest round on which
an ε-threat occurs, the profile σ is ε-threat-free on R.

Using inequality (4.5) we can then infer that for any π ∈ Cont(σ(1, . . . , R−1), τ(R)) that
is ε-threat-free on R it holds that

E [ui (O(π))] > E [ui (O(σ))] + ε. (4.6)

Let π1 ∈ Cont(σ(1, . . . , R− 1), τ(R)) be one such ε-threat-free profile, and let σ1 =
(π1

i , σ−i).
Fix R1 = R and τ 1 = τ for consistent notation. We next ask, is player i facing an ε-threat

with respect to σ1 at any round R′ that follows R1? If yes, let R2 be the next such round:
there is no R′ between R1 and R2 on which player i is facing an ε-threat with respect to σ1.
By Definition 4.0.10 it follows that there exists a round R2 strategy τ 2 for player i such that
Cont(σ1(1, . . . , R2−1), τ 2(R2)) is nonempty, and such that for all π ∈ Cont(σ1(1, . . . , R2−
1), τ 2(R2)) and π′ ∈ Cont(σ1(1, . . . , R2)) that are ε-threat-free on R2 it holds that

E [ui (O(π))] > E [ui (O(π′))] + ε.

Assume τ 2 is maximal, in the sense that for any π ∈ Cont(σ1(1, . . . , R2−1), τ 2(R2)) that
is ε-threat-free on R2, player i is not facing an ε-threat at round R2 with respect to π. Pick
some arbitrary π2 ∈ Cont(σ1(1, . . . , R2−1), τ 2(R2)), and fix σ2 = (π2

i , σ−i).
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We now repeat the above procedure, finding the next threat to player i and letting him act
on that threat, as follows. For t = 3, 4, . . . we ask, is player i facing an ε-threat with respect
to σt−1 at any round R′ that follows Rt−1? If yes, let Rt be the next such round: there is no R′

between Rt−1 and Rt on which player i is facing an ε-threat with respect to σt−1.
By Definition 4.0.10 it follows that there exists a roundRt strategy τ t for player i such that

Cont(σt−1(1, . . . , Rt−1), τ t(Rt)) is nonempty, and such that for all π ∈ Cont(σt−1(1, . . . , Rt−
1), τ t(Rt)) and π′ ∈ Cont(σt−1(1, . . . , Rt)) that are ε-threat-free on Rt it holds that

E [ui (O(π))] > E [ui (O(π′))] + ε.

Assume τ t is maximal, in the sense that for any π ∈ Cont(σt−1(1, . . . , Rt− 1), τ t(Rt))
that is ε-threat-free on Rt, player i is not facing an ε-threat at round Rt with respect to π. Pick
some arbitrary πt ∈ Cont(σt−1(1, . . . , Rt−1), τ t(Rt)), and fix σt = (πti , σ−i).

Finally, after repeating this for all t until there are no more ε-threats to Pi on any round
that follows R, we are left with a profile σC = (πCi , σ−i) on which player i is not facing an
ε-threat at any round below R.

Fix ρ = σC , and recall that, by construction, ρ−i = σ−i. Because σ is ε-safe, it must be
the case that

E [u−i (O(ρ))] ≥ E [u−i (O(σ))]− ε. (4.7)

We next ask, is player −i facing an ε-threat with respect to ρ at any round S that follows
R? As the following claim shows, the answer is positive:

Claim 4.0.5. Player−i is facing an ε-threat with respect to ρ at some round S that follows R.

Proof. Suppose not. By our construction of ρ, player i is also not facing an ε-threat with
respect to ρ at any round that follows R. This means that the profile ρ is ε-threat-free on
the subgames R.

Since ρ ∈ Cont(σ(1, . . . , R − 1), τ(R)) and since σ ∈ Cont(σ(1, . . . , R)) is ε-threat-
free on R, we can then use (4.6) to infer that

E [ui (O(ρ))] > E [ui (O(σ))] + ε.

However, since ρ = (πCi , σ−i) is a unilateral deviation of player i, this contradicts the
fact that σ constitutes an ε-NE.

Let S1 be the latest round on which P−i is facing an ε-threat with respect to ρ. By
Definition 4.0.10 it follows that there exists a round S1 strategy µ1 for player −i such that
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Cont(ρ(1, . . . , S1−1), µ1(S1)) is nonempty, and such that for all π ∈ Cont(ρ(1, . . . , S1−
1), µ1(S1)) and π′ ∈ Cont(ρ(1, . . . , S1)) that are ε-threat-free on S1 it holds that

E [ui (O(π))] > E [ui (O(π′))] + ε.

Assume µ1 is maximal, in the sense that for any π ∈ Cont(ρ(1, . . . , S1−1), µ1(S1)) that
is ε-threat-free on S1, player −i is not facing an ε-threat at round S1 with respect to π. Pick
some ρ1 ∈ Cont(ρ(1, . . . , S1−1), µ1(S1)) that is ε-threat-free on S1 – such a ρ1 must exist by
Proposition 4.0.2.

Now, note that because S1 was the last round on which P−i is facing an ε-threat, and
because Pi is not facing an ε-threat at any round following R with respect to ρ, it must be the
case that ρ is ε-threat-free on S1. Since ρ ∈ Cont(ρ(1, . . . , S1)) we then have that

E
[
u−i
(
O(ρ1)

)]
> E [u−i (O(ρ))] + ε ≥ E [u−i (O(σ))] ,

where the second inequality follows from (4.7). We now repeat the above procedure, finding
the preceding threat to player −i (but that still follows R) and letting him act on that threat,
as follows. For t = 2, 3, . . . we ask, is P−i facing an ε-threat with respect to ρt−1 at any
round S that follows R? If yes, let St be the latest such round. By Definition 4.0.10 it
follows that there exists a round St strategy µt for player −i such that Cont(ρt−1(1, . . . , St−
1), µt(St)) is nonempty, and such that for all π ∈ Cont(ρt−1(1, . . . , St−1), µt(St)) and π′ ∈
Cont(ρt−1(1, . . . , St)) that are ε-threat-free on St it holds that

E [ui (O(π))] > E [ui (O(π′))] + ε.

Assume µt is maximal, in the sense that for any π ∈ Cont(ρt−1(1, . . . , St− 1), µt(St))
that is ε-threat-free on St, player −i is not facing an ε-threat at round St with respect to π.
Pick some ρt ∈ Cont(ρt−1(1, . . . , St− 1), µt(St)) that is ε-threat-free on St – again, such a ρt

must exist by Proposition 4.0.2.
Now, note that because St was the last round on which P−i is facing an ε-threat, P−i is

not facing an ε-threat with respect to ρt−1 at any round following St. Since ρt−1 was chosen
to be ε-threat free on St−1, player i is not facing an ε-threat with respect to ρt−1 at any round
following St−1. Finally, by construction, Pi is not facing an ε-threat at any round following R
with respect to ρ. Since ρ and ρt−1 are equivalent up to round St−1, it must be the case that Pi
is not facing an ε-threat with respect to ρt−1 at any round between St and St−1 either. Thus,
ρt−1 is ε-threat-free on St. Since ρt−1 ∈ Cont(ρt−1(1, . . . , St)), we then have that

E
[
u−i
(
O(ρt)

)]
> E

[
u−i
(
O(ρt−1)

)]
+ ε

> E [u−i (O(ρ))] + t · ε
≥ E [u−i (O(σ))] + (t− 1) · ε.
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Finally, after repeating this for all t until there are no more ε-threats to P−i at any round
that follows R, we are left with a profile ρD ∈ Cont(σ(1, . . . , R−1), τ(R)) on which both Pi
and P−i are not facing an ε-threat at any round that follows R. We can then use (4.6) to infer
that

E
[
ui
(
O(ρD)

)]
> E [ui (O(σ))] + ε.

Furthermore, ρD satisfies

E
[
u−i
(
O(ρD)

)]
> E

[
u−i
(
O(ρD−1)

)]
+D · ε ≥ E [u−i (O(σ))] ,

since D ≥ 1.
We conclude that on the profile ρD both players strictly improve over σ, contradicting the

weak Pareto optimality of σ. Hence no player is facing an ε-threat with respect to σ at any
round R, and this, coupled with the fact that σ is an ε-NE, yields that profile an ε-TFNE.

Acknowledgments
We thank Eddie Dekel, Oded Goldreich, Ehud Kalai, Eran Omri, and Gil Segev for helpful
conversations, and the anonymous referees for careful reading and insightful comments.

Bibliography
[1] I. Abraham, D. Dolev, R. Gonen, , and J. Halpern. Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation. In
In 25th ACM Symposium Annual on Principles of Distributed Computing, pages 53–62,
2006.

[2] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing.
In Advances in Cryptology Crypto, pages 559–576, 2009. A full version, containing
additional results, is avalable at http://eprint.iacr.org/2009/373.

[3] Y. Aumann and Y. Lindell. Security against covert adversaries: Effi-
cient protocols for realistic adversaries. To appear in Journal of Cryptology.
An extended abstract appeared in TCC 2007. Full version can be found at
http://u.cs.biu.ac.il/ lindell/PAPERS/covert.pdf.

[4] E. Ben-Sasson, A. Tauman-Kalai, and E. Kalai. An approach to bounded rationality. In
Advances in Neural Information Processing Systems, 2007.

112



[5] M. Blum. Coin flipping by telephone. In CRYPTO, pages 11–15, 1981.

[6] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem.
In In Advances in Cryptology Crypto, pages 11–15, 2000.

[7] L. Fortnow and R. Santhanam. Bounding rationality by discounting time. In Proceedings
of the First Symposium on Innovations in Computer Science, 2010.

[8] O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge University Press,
2001.

[9] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In In 5th Intl. Conf. on
Security and Cryptography for Networks (SCN), pages 229–241, 2006.

[10] R. Gradwohl. Rationality in the full-information model. In TCC, 2010.

[11] R. Gradwohl, N. Livne, and A. Rosen. Incredible threats. In preparation.

[12] I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function.
In STOC 2007, pages 1 – 10, 2007.

[13] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: Extended
abstract. In 36th Annual ACM Symposium on Theory of Computing (STOC), pages 623–
632, 2004.

[14] J. Y. Halpern and R. Pass. Game theory with costly computation. In First Symposium on
Innovations in Computer Science, 2010.

[15] S. Izmalkov, S. Micali, , and M. Lepinski. Rational secure computation and ideal mech-
anism design. In FOCS, 2005.

[16] J. Katz. Bridging game theory and cryptography: Recent results and future directions.
In 5th Theory of Cryptography Conference TCC, pages 251–272, 2008.

[17] J. Katz, G. Fuchsbauer, and D. Naccache. Efficient rational secret sharing in the standard
communication model. In TCC, 2010.

[18] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchang-
ing information. In 5th Theory of Cryptography Conference TCC, pages 320–339, 2008.

[19] G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 423–432, 2008.

113



[20] M. Lepinski, S. Micali, and A. shelat. Collusion-free protocols. In STOC, 2005.

[21] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by
flipping a symmetrically-biased coin. In FOCS, pages 11–21, 1983.

[22] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In In Advances in Cryptology Crypto, pages 180–197, 2006.

[23] S. Micali and A. Shelat. Truly rational secret sharing. In 6th Theory of Cryptography
Conference TCC, pages 54–71, 2009.

[24] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments
for np using any one-way permutation. Jour. of Cryptology, 11:87–108, 1998.

[25] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic appli-
cations. In 21st STOC, pages 33–43, 1989.

[26] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and a
rational majority. In Theory of Cryptography Conference TCC, pages 36–53, 2009.

[27] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
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4.9 Appendix: Cryptographic Definitions

4.9.1 One-way Functions and One-way Permutations
A function f is one-way if it is easy to compute but hard to invert given the image of a random
input. More formally,

Definition 4.0.24 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is said to be one-way
if the following two conditions hold:

1. There exists a polynomial-time algorithm that on input x outputs f(x).

2. For every probabilistic polynomial-time algorithm A, every polynomial p(·), and all
sufficiently large n’s

Pr
[
A(1n, f(Un)) ∈ f−1(f(Un))

]
<

1

p(n)
,
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where Un denotes the uniform distribution over {0, 1}n.

In this paper we also deal with one-way permutations, and we note that the above definition
naturally extends to consider permutations.

4.9.2 Commitment Schemes
A commitment scheme is a two-stage interactive protocol between a sender and a receiver.
After the first stage of the protocol, which is referred to as the commit stage, the sender is
bound to at most one value, not yet revealed to the receiver. In the second stage, which
is referred to as the reveal stage, the sender reveals its committed value to the receiver. For
simplicity of exposition, we will focus on bit-commitment schemes, i.e., commitment schemes
in which the committed value is only one bit. A bit-commitment scheme is defined via a triplet
of probabilistic polynomial-time Turing-machines (S,R,V) such that:

• S receives as input the security parameter 1n and a bit b. Following its interaction, it
outputs some information decom (the decommitment).

• R receives as input the security parameter 1n. Following its interaction, it outputs a
state information com (the commitment).

• V (acting as the receiver in the reveal stage9) receives as input the security parameter
1n, a commitment com and a decommitment decom. It outputs either a bit b′ or ⊥.

Denote by (decom|com) ← 〈S(1n, b),R(1n)〉 the experiment in which S and R interact
(using the given inputs and uniformly chosen random coins), and then S outputs decom while
R outputs com. It is required that for all n, every bit b, and every pair (decom|com) that may
be output by 〈S(1n, b),R(1n)〉, it holds that V(com, decom) = b.10

The security of a commitment scheme can be defined in two complementary ways, protect-
ing against either an all-powerful sender or an all-powerful receiver. The former are referred to
as statistically-binding commitment schemes, whereas the latter are referred to as statistically-
hiding commitment schemes. For simplicity, we assume that the associated “error” is zero,
resulting in perfectly-binding and perfectly-hiding commitments schemes.

In order to define the security properties of such schemes, we first introduce the following
notation. Given a commitment scheme (S,R,V) and a Turing machine R∗, we denote by

9Note that there is no loss of generality in assuming that the reveal stage is non-interactive. This is since any
such interactive stage can be replaced with a non-interactive one as follows: The sender sends its internal state to
the receiver, who then simulates the sender in the interactive stage.

10Although we assume perfect completeness, it is not essential for our results.
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view〈S(b),R∗〉(1
n) the distribution of the view of R∗ when interacting with S(1n, b). This view

consists ofR∗’s random coins and of the sequence of messages it receives from S. The distri-
bution is taken over the random coins of both S andR. Similarly, given a Turing machine S∗
we denote by view〈S∗(1n),R〉(1

n) the view of S∗ when interacting withR(1n). Note that when-
ever no computational restrictions are assumed on S∗ or R∗, then without loss of generality
they can be assumed to be deterministic.

Definition 4.0.25 (Perfectly-binding commitment). A bit-commitment scheme (S,R,V) is
said to be perfectly-hiding if it satisfies the following two properties:

• Computational hiding: for every probabilistic polynomial-time Turing machine R∗
the ensembles {view〈S(0),R∗〉(1n)}n∈N and {view〈S(1),R∗〉(1n)}n∈N are computationally
indistinguishable.

• Perfect binding: for every Turing machine S∗

Pr

[
((decom, decom′)|com)← 〈S∗(1n),R(1n)〉 :

V(com, decom) = 0

V(com, decom′) = 1

]
= 0 ,

for all sufficiently large n, where the probability is taken over the random coins ofR.

Perfectly-binding commitments can be constructed assuming the existence of any one-way
permutation [5]. The construction is “non-interactive”, meaning that the commitment phase
consists of a single message sent from the sender S to the receiverR.

Definition 4.0.26 (Perfectly-hiding commitment). A bit-commitment scheme (S,R,V) is said
to be perfectly-hiding if it satisfies the following two properties:

• Perfect hiding: for every Turing machineR∗ the ensembles {view〈S(0),R∗〉(1n)}n∈N and
{view〈S(1),R∗〉(1n)}n∈N are identically distributed.

• Computational binding: for every probabilistic polynomial-time Turing machine S∗
the exists a negligible function µ(n) so that

Pr

[
((decom, decom′)|com)← 〈S∗(1n),R(1n)〉 :

V(com, decom) = 0

V(com, decom′) = 1

]
< µ(n) ,

for all sufficiently large n, where the probability is taken over the random coins of both
S∗ andR.
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Perfectly-hiding commitments can be constructed assuming the existence of any one-way
permutation [24]. This construction is “highly-interactive”, in that the commitment phase
requires the exchange of n − 1 messages between the sender and the receiver, where n is the
security parameter. By relaxing the hiding condition to be only “statistical” it is possible to
weaken the underlying assumption to the existence of one-way functions [12]. Assuming
the existence of collision resistant hash functions, it is possible to construct two-message
statistically-hiding commitments [25, 28].
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