
Thesis for the degree
Doctor of Philosophy

By
Or Shalom Meir

Advisor: Prof. Oded Goldreich

June 2010

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

 בניות קומבינטוריות של מערכות
הוכחה הסתברותיות

Combinatorial Constructions of
Probabilistic Proof Systems

עבודת גמר (תזה) לתואר

דוקטור לפילוסופיה

מאת
אור שלום מאיר

סיוון ה'תשע"א

מוגשת למועצה המדעית של
מכון ויצמן למדע
רחובות, ישראל

מנחה: פרופ' עודד גולדרייך

1

Abstract

Probabilistic proof systems is a paradigm of complexity theory whose study evolves around
questions such as “how can we use randomness to prove and verify assertions?”, “what do we
gain from using randomness in verification procedures?”, and “what assertions can be verified by
probabilistic verification procedures?”. The study of those questions has began in the 1980’s, and
led to several of the most important achievements of complexity theory since then.

Many of the key results regarding probabilistic proof systems rely on sophisticated algebraic
techniques. While those algebraic techniques are very important and useful, they seem to give little
intuition as to why those results hold. Given this state of affairs, it is an important goal to gain a
better understanding of those results and the reasons for which they hold. In her seminal paper,
Dinur (J. ACM 54(3)) has made a big step toward achieving this goal by giving an alternative proof
of one of the key results in this area, namely the PCP theorem, using a combinatorial approach.
Her proof is not only considerably simpler than the original proof, but also seems to shed more
light on the intuitions that underlie the theorem.

In this thesis, we pursue this direction further, by providing alternative proofs for several key
results about probabilistic proof systems. Our alternative proofs do not use algebra (or use almost
no algebra), and are more intuitive, in our opinion. In particular:

• We show that it is possible to prove that IP = PSPACE using general error correcting codes
and their tensor products, instead of low degree polynomials.

• We provide a combinatorial construction of PCPs with verifiers that are as efficient as those
obtained by the algebraic methods.

• We provide an (almost) combinatorial construction of PCPs of length n · (log n)O(log logn),
coming very close to the state of the art obtained by algebraic constructions (whose proof

length is n · (log n)O(1)).

• We provide a combinatorial construction of PCPs with sub-constant soundness error that
match the state of the art obtained by algebraic constructions, and along the way develop a
technique of derandomized parallel repetition.

2

Acknowledgement

It is my pleasure to express my deepest gratitude to Oded Goldreich, my advisor. I feel that Oded
has taught me how to do research, and has influenced considerably on my perspective of theoretical
computer science, and of what does it mean to be a scientist in general. I also deeply appreciate his
kindness and his devotion to his students. Not less important, working with Oded has been a very
fun experience, and I enjoyed and learned very much from our conversations, both on professional and
non-professional subjects.

I would like to thank to Gillat Kol for being a great friend throughout my graduate studies, and
making my time at the Weizmann institute the enjoyable experience it was. I would also like to thank
Tal Kramer, Shira Kritchman, Inbal Talgam, Irit Dinur, Dana Moshkovitz, Zvika Brakersky, Chandan
Dubey, Anat Ganor, Elazar Goldenberg, and Shachar Lovett for being such a fun and interesting com-
pany. As for Irit, I am also grateful to her for a much fun and educating collaboration, and of course,
for her paper that led me to this thesis.

As always, I am grateful to my parents for their everlasting support, care and love.

3

This thesis is based on the following works:

• “IP = PSPACE using Error Correcting Codes”, by the author [Mei10b].

• “Combinatorial PCPs with Efficient Verifiers”, by the author [Mei09].

• “Combinatorial PCPs with Short Proofs” by the author [Mei10a].

• “Derandomized Parallel Repetition of Structured PCPs” by Irit Dinur and the author [DM10].

Contents

Contents 4

1 Introduction 8
1.1 Interactive Proof Systems . 9
1.2 Probabilistic Proof Systems . 9

2 IP = PSPACE using Error Correcting Codes 12
2.1 Introduction . 12
2.2 Preliminaries . 14
2.3 Tensor Product Codes and Multiplication Codes . 15

2.3.1 Tensor Product of Codes . 15
2.3.2 Multiplication codes . 18

2.4 The Sum-Check Protocol Revisited . 19
2.5 A Proof of coNP ⊆ IP . 22

2.5.1 Proof overview . 22
2.5.2 Full proof . 24

2.5.2.1 Proof of Lemma 2.5.2 . 25
2.6 The Proof of IP = PSPACE . 27

2.6.1 Proof overview . 28
2.6.2 The full proof . 29

3 Combinatorial PCPs with efficient verifiers 33
3.1 Introduction . 33

3.1.1 Background and Our Results . 33
3.1.2 Our Techniques . 34

3.1.2.1 On Dinur’s proof of the PCP theorem 34
3.1.2.2 On Dinur and Reingold’s construction of PCPPs 35
3.1.2.3 Our construction vs. the DR construction 35

3.2 Preliminaries and Our Main Results . 36
3.2.1 Notational Conventions . 36
3.2.2 PCPs . 36
3.2.3 PCPs of Proximity . 37

3.2.3.1 The definition of PCPPs . 37
3.2.3.2 Constructions of PCPPs and our results 40

3.2.4 Error Correcting Codes . 41
3.2.5 Routing networks . 41

3.3 Overview . 42
3.3.1 The structure of the construction . 42

3.3.1.1 Assignment testers . 42

4

CONTENTS 5

3.3.1.2 The iterative structure . 43
3.3.1.3 The structure of a single iteration . 43

3.3.2 Our circuit decomposition method . 44
3.3.2.1 The DR decomposition . 45
3.3.2.2 Our decomposition . 45

3.3.3 The tensor product lemma . 46
3.3.3.1 Warm-up: Ignoring issues of robustness 47
3.3.3.2 The actual proof . 47

3.3.4 Efficiency issues . 48
3.3.4.1 Modifying the formalism . 48
3.3.4.2 Efficient implementation of the tensor product lemma 49
3.3.4.3 A finer analysis of Dinur’s amplification theorem 49
3.3.4.4 Increasing the representation size . 50
3.3.4.5 Bounding the fan-in and fan-out . 50
3.3.4.6 Revisiting known PCP techniques . 50

3.3.5 Organization of the rest of this chapter . 51
3.4 Super-Fast Assignment Testers: Definitions and Main Theorem 51

3.4.1 DR-style assignment testers . 52
3.4.2 Super-fast assignment testers . 53

3.4.2.1 The size of the input circuit . 53
3.4.2.2 The size and number of the output circuits 54
3.4.2.3 The queries sets . 54
3.4.2.4 Syntactic modifications . 55
3.4.2.5 The final definition . 55

3.4.3 Main theorem . 56
3.5 Tools for Constructing Assignment Testers . 57

3.5.1 Reverse Listers . 58
3.5.2 On the Proof Length of Assignment Testers . 59
3.5.3 Dinur’s Amplification Theorem . 60
3.5.4 Composition of Assignment Testers . 61
3.5.5 Efficiently verifiable error-correcting codes . 64
3.5.6 Robustization of Assignment Testers with Block Access 64
3.5.7 Increasing the Representation Size, and Universal Circuits 68

3.5.7.1 Proof overview . 69
3.5.7.2 Universal circuits . 72

3.5.8 Bounding the fan-in and fan-out of input circuits 73
3.6 Proof of the Main Theorem . 74

3.6.1 Circuit Decompositions with Matrix Access . 75
3.6.2 The main lemmas and the proof of the main theorem 76

3.7 Circuit Decomposition Lemma . 81
3.7.1 Overview . 81

3.7.1.1 Warm-up: ignoring efficiency considerations 82
3.7.1.2 Obtaining a super-fast circuit decomposition 85

3.7.2 Proof of the circuit decomposition lemma . 86
3.7.2.1 The block structure of D . 86
3.7.2.2 The proof strings of D . 87
3.7.2.3 The output circuits of D . 88

3.8 Tensor Product Lemma . 90
3.8.1 Proof overview . 91

CONTENTS 6

3.8.1.1 The rejection ratio of A′ . 91
3.8.1.2 Implementing AI efficiently . 92
3.8.1.3 Showing that the queries of AI are contained in columns 94

3.8.2 Robustization of decompositions with matrix access 94
3.8.3 The intermediate assignment tester AI . 96

3.8.3.1 The proof strings of AI . 98
3.8.3.2 The block access circuit BAI . 98
3.8.3.3 The implementation of AI . 99
3.8.3.4 The reverse lister of AI . 102
3.8.3.5 The parameters of AI . 103

3.8.4 Proof of the Tensor Product Lemma . 104

4 Combinatorial PCPs with Short Proofs 107
4.1 Introduction . 107

4.1.1 Background and Our Results . 107
4.1.2 Our techniques . 108

4.2 Preliminaries . 110
4.2.1 PCPs . 110
4.2.2 Error Correcting Codes . 110
4.2.3 Routing networks . 110

4.3 PCPs and Linear PCPPs. 111
4.3.1 Linear PCPPs . 111
4.3.2 Constructing PCPs from linear PCPPs . 112

4.4 A Generalization of the Robustization Technique . 114
4.4.1 Background on robustness and robustization . 114
4.4.2 Our generalized robustization . 115

4.5 Construction of Linear PCPPs with
√
n Queries . 116

4.5.1 Simultaneous linear verifiers . 116
4.5.2 Linear PCPPs from simultaneous linear verifiers 117
4.5.3 Construction of simultaneous linear verifiers . 118

4.5.3.1 A simple case . 118
4.5.3.2 The case of colorable constraint systems 119
4.5.3.3 The general case . 121

4.6 Proof of the main theorem . 123

5 Combinatorial PCPs with Low Soundness Error 125
5.1 Introduction . 125
5.2 Preliminaries . 130

5.2.1 Direct product testing [IKW09] . 130
5.2.2 Sampling tools . 131
5.2.3 Constraint graphs and PCPs . 133
5.2.4 Basic facts about random subspaces . 134
5.2.5 Similarity of distributions . 136
5.2.6 Expanders . 136

5.3 Main theorem . 137
5.4 PCPs with Linear Structure . 139

5.4.1 de Bruijn graphs as routing networks . 140
5.4.2 Proof overview . 141
5.4.3 Detailed proof . 142

CONTENTS 7

5.5 Derandomized Parallel Repetition of Constraint Graphs with Linear Structure 143
5.5.1 The construction of G′ . 144
5.5.2 The specialized direct product test . 145
5.5.3 The soundness of the derandomized parallel repetition 146

5.5.3.1 Proof of Proposition 5.5.6 . 148
5.5.3.2 Proof of Proposition 5.5.7 . 149

5.6 Decodable PCPs . 150
5.6.1 Recalling the definition of PCPPs . 151
5.6.2 The definition of decodable PCPs . 152

5.6.2.1 Recalling the definition of [DH09] . 153
5.6.2.2 Uniquely-decodable PCPs . 154

5.6.3 Decoding graphs . 156
5.6.3.1 The definition of decoding graphs . 156
5.6.3.2 Additional properties of decoding graphs 157
5.6.3.3 General udPCPs and decoding graphs 158

5.6.4 Our construction of dPCPs, Theorem 5.1.6 . 159
5.6.5 Proof of the result of [MR08], Theorem 5.1.2 . 160

5.7 Decoding PCPs with Linear Structure . 162
5.7.1 Auxiliary propositions . 163
5.7.2 Embedding decoding graphs on de Bruijn graphs 164

5.8 Derandomized Parallel Repetition of Decoding Graphs with Linear Structure 166
5.8.1 The construction of G′ and its parameters . 167
5.8.2 The soundness of G′ . 168

5.8.2.1 Proof of Proposition 5.8.2 . 170
5.8.2.2 Proof of Proposition 5.8.4 . 172

5.9 The Analysis of the Specialized Direct Product Test . 172
5.9.1 The P 2-test . 172

5.9.1.1 The proof of Lemma 5.9.2 . 174
5.9.1.2 Proofs of Auxiliary Claim . 177

5.9.2 The proof of Theorems 5.5.4 and 5.8.5 . 177

Bibliography 182

Chapter 1

Introduction

Mathematicians have used mathematical proofs in order to establish their claims for thousands of years.
However, it was only in the late 19th century when mathematicians began to study the notion of a
mathematical proof itself. This study has lead to questions such as “Can any valid mathematical claim
be demonstrated by a mathematical proof?” and “Is there a systematic way for finding mathematical
proofs?”. The second question has lead to the birth of theoretical computer science, when Alan Turing
has shown that there does not exist an algorithm for finding mathematical proofs. Since then, the
notion of a proof has been of utmost importance to theoretical computer science, and in fact the central
question of this field - often phrased as whether P is equal to NP - is a question about the relation
between algorithms and proofs.

During the 1980’s, computer scientists began to study models for proving claims other than math-
ematical proofs. Let us consider the situation in which an expert wishes to convince a skeptic in the
validity of some claim. In the model of mathematical proofs, the expert would simply write the proof
on a paper and hand it to the skeptic, and the skeptic would read the proof and verify that it indeed
follows the rules of logic. Now, computer scientists raised the following questions: “What if we allowed
the skeptic to ask the expert questions? What if we allowed the skeptic to toss coins during the veri-
fication of the proof? What if the skeptic would have been willing to risk accepting a false claim with
an extremely small probability?”. It turns out that different models of proofs, which allow randomness
and interaction between the expert and the skeptic, allow for establishing a rich family of claims that
can not be demonstrated in the classic model of a mathematical proof. For example, there can be no
mathematical proof that would convince a color-blind skeptic that two cards are of a different color.
But, if the color-blind skeptic could shuffle cards randomly and ask the expert to distinguish them, then
the expert would have no problem convincing the skeptic that the cards are indeed distinguishable.

The study of such alternative models of proofs, known as “probabilistic proof systems”, has resulted
in a line of interesting and surprising discoveries regarding the power of such models [GMR89, Bab85,
GMW91, LFKN92, Sha92, FGL+96, AS98, ALM+98] (see also [Gol08] for a primer on the subject).
Those discoveries are not only interesting in their own right, but have also played a key role in many of
the achievements of theoretical computer science in the last two decades, and have contributed to the
understanding of many other subjects. For example, the study of “Probabilistically Checkable Proofs”
(PCPs) has played a key role in understanding the inherent hardness of finding approximate solutions to
computational problems, and the study of “zero knowledge proofs” has been essential to the theoretical
study of cryptographic protocols.

A common theme that is shared by many of the key results about probabilistic proof systems is
the use of algebraic techniques. Usually, such works construct a probabilistic proof system by going
along the following lines: Given the claim to be verified, they begin with “arithmetizing” the claim,
i.e., reducing the claim to a related “algebraic” claim about polynomials over finite fields. In the next
step, they construct a probabilistic proof system for proving the algebraic claim. Constructing the proof

8

CHAPTER 1. INTRODUCTION 9

system for the algebraic claim, in turn, relies on arsenal of tools that employ the algebraic structure of
polynomials. While those algebraic techniques are very important and useful, it seems somewhat odd
that one has to go through algebra in order to prove those theorems, which do not refer to algebra.
Furthermore, those techniques seem to give little intuition as to why those results hold.

Given this state of affairs, it is an important goal to gain a better understanding of those results
and the reasons for which they hold1. In her seminal paper, Dinur [Din07] has made a big step toward
achieving this goal by giving an alternative proof of one of the key results in this area, namely the PCP
theorem, using a combinatorial approach2. Her proof is not only considerably simpler than the original
proof, but also seems to shed more light on the intuitions that underlie the theorem.

In this thesis, we pursue this direction further, by providing alternative proofs for several key results
about probabilistic proof systems. Our alternative proofs do not use algebra (or use almost no algebra),
and are more intuitive, in our opinion. We focus on two types of proof systems, namely, interactive
proof systems and probabilistically checkable proofs. In the following two sections, we describe those
types of proof systems, and along the way describe our results and the structure of this thesis.

1.1 Interactive Proof Systems

In the settings of interactive proofs [GMR89], a computationally unbounded prover (i.e., an expert)
wishes to convince a polynomial-time verifier (i.e., a skeptic) of the validity of some claim. The verifier
and the prover may toss coins and may interact with each other, but may only exchange a polynomial
number of messages. The proof system must satisfy the following property: if the claim is correct, then
the prover can always convince the verifier. On the other hand, if the claim is incorrect, then no matter
what strategy the prover employs, the probability that it manages to fool the verifier to accepting the
claim is small. Such systems are interesting in their own right, but also have several applications in
theoretical computer science, and in particular they provide the framework for defining zero knowledge
proofs, which are essential for theoretical cryptography [GMR89, GMW91].

A celebrated theorem of [LFKN92, Sha92] established that the class of claims that can be proved
using such a proof system is exactly the class of claims that can be decided using polynomial space, or
formally that IP = PSPACE. This theorem is fundamental to our understanding of both interactive
proofs and polynomial space computations, and in addition has important applications in theoretical
computer science.

While the original proof of the aforementioned theorem relies on low degree polynomials, it is com-
monly believed that the intuition for the proof should be explained in terms of error correcting codes.
In Chapter 2, we provide evidence for this intuition by showing an alternative proof of the theorem that
uses error correcting codes instead of low degree polynomials. This chapter was published separately
as [Mei10b].

1.2 Probabilistic Proof Systems

In the setting of probabilistically checkable proofs (PCPs [BFLS91, FGL+96]), we consider again a prover
that wishes to convince a polynomial-time verifier of the validity of a claim. However, this time the
interaction of prover and the verifier is extremely limited: the prover may only send to the verifier an
alledged proof of the claim, and may not interact with the verifier any further. The verifier, in turn, may
read only few bits of the alledged proof, although it may choose which bits to read. Again, we require

1This goal was stated and advocated for the first time by [GS00]
2We mention that the works of [GS00, DR06] have mades advances toward this goal prior to Dinur’s work [Din07],

but fell short of obtaining Dinur’s result.

CHAPTER 1. INTRODUCTION 10

that if the claim is correct, then there is always a proof that will convince the verifier. On the other
hand, if the claim is incorrect, then no matter what proof is provided to the verifier, the probability
that the verifier will accept the claim is small.

At first glance, this proof system may seem very weak, and it may not be clear that it can prove any
interesting claims. Surprisingly, the PCP theorem of [AS98, ALM+98] asserts that any claim that can
be decided within the complexity class NP (roughly, any claim that has a short mathematical proof),
can also be proved in a proof system of the PCP type. This theorem is one of the major achievements
of complexity theory. Besides of being interesting in its own right, the theorem has also found many
applications, most notably in establishing limits on the accuarcy of approximation algorithms.

As discussed above, the original proof of the PCP theorem of [AS98, ALM+98], as well as its ex-
tensions [BSGH+06, BSS06, BSGH+05, MR08, DH09], were based on algebraic machinery, while the
later work of Dinur [Din07] has suggested a simpler and more intuitive proof of the PCP theorem,
which was based on a combinatorial approach. However, Dinur’s approach fell short of proving the later
improvements of the theorem. The second part of this thesis is devoted to the goal of matching these
improvements (originally obtained by algebraic techniques) using a combinatorial approach. Specifically,
this thesis deals the following aspects:

• Efficiency: As mentioned above, the defining feature of PCPs is that they allow verifying the
validity of the claim by reading only few bits of the proof. This means that the verification pro-
cedure may potentially be extremely efficient, and in particular may run in time that is much
shorter than the proof length. Indeed, in state of the art algebraic PCPs [BSGH+05], the verifi-
cation procedure runs in time that is poly-logarithmic in the length of the proof. On the other
hand, the work of [Din07] yields a much slower verification procedure, which runs in time that is
polynomial in the length of the proof. We note that the running time of the verification procedure
is not only interesting for its own sake: The difference between the efficiency of the verification
procedures of [BSGH+05] and [Din07] is crucial for some applications (in particular, instance
checking [BFL91, BK95]) .
In Chapter 3, we show a combinatorial construction of PCPs whose verification procedure runs
in poly-logarithmic time, thus matching the state of the art algebraic PCPs. This chapter was
published separately as [Mei09].

• Length: One important parameter of PCP systems is the length of the proofs they employ. More
specifically, given a claim that can be proved both by a standard (mathematical) proof and by a
probabilistically checkable proof (PCP), the question is how long should the PCP be compared
to the standard proof? In the original PCP theorem [AS98, ALM+98], if the standard proof is of
length n, then the length of the corresponding PCP is some fixed polynomial in n. However, in
subsequent improvements of the PCP theorem [BSS08, Din07]3, the PCP is of length only n · logc n
(for some constant c). The combinatorial approach of [Din07] yields PCPs whose length matches
the PCPs of [AS98, ALM+98], but falls short of matching the shorter PCPs.
In Chapter 4, we show how to construct PCPs of length n · (log n)log logn based on a combinatorial
approach, thus almost matching the state of the art PCPs. It should be mentioned that our
constuction does use algebra at one point, but this use is a very restricted one, and is confined to
the construction of error correcting codes with a simple multiplication property. This chapter was
published separately as [Mei10a].

• Soundness error: An additional important parameter of the PCP systems is their soundness
error, which is the probability that the verifier accepts false claims. In the original PCP theorem
of [AS98, ALM+98] as well as in the work of [Din07], the soundness error is a constant independent

3Here we refer to a different part in the work of [Din07] than the parts discussed in the rest of this document.

CHAPTER 1. INTRODUCTION 11

of the claim length. However, subsequent improvements of the theorem [DFK+99, MR08, DH09]
have shown that the soundness can be pushed to be a decreasing function of the input length, and
can be traded with the other parameters of the PCP.
In Chapter 5, we consider PCPs with low soundness error in a range of parameter that is especially
important for applications of PCPs to lower bounds of approximation algorithms. The state of
the art for such PCPs are the works of [MR08, DH09], which achieve their results by combining
a folklore algebraic construction of PCPs with a novel combinatorial method. In Chapter 5, we
show that the algebraic component in the constructions of [MR08, DH09] can be replaced with a
combinatorial substitute. Our works thus yields a fully combinatorial construction of PCPs with
low soundness error which matches the state of the art parameters. Along the way, we develop a
technique of derandomized parallel repetition, which may be interesting in its own right.
This chapter is based on a joint work with Irit Dinur [DM10].

Chapter 2

IP = PSPACE using Error Correcting
Codes

2.1 Introduction

The IP theorem [LFKN92, Sha92] asserts that IP = PSPACE, or in other words, that any set in
PSPACE has an interactive proof. This theorem is fundamental to our understanding of both interac-
tive proofs and polynomial space computations. In addition, it has important applications, such as the
existence of program checkers for PSPACE-complete sets, and the existence of zero knowledge proofs
for every set in PSPACE. Indeed, the theorem is one of the major achievements of complexity theory.
We note that an additional proof of the IP theorem has been suggested by [She92], and also that the
work of [GKR08] implicitly gives an alternative proof of the IP theorem.

The known proofs of the IP theorem go roughly along the following lines: Suppose that we are given
a claim that can be verified in polynomial space, and we are required to design an interactive protocol
for verifying the claim. We begin by expressing the claim as a quantified Boolean formula, using the
PSPACE-completeness of the TQBF problem. Then, we “arithmetize” the formula, transforming
it into a claim about the value of a particular arithmetic expression. Finally, we use the celebrated
sum-check protocol in order to verify the value of the arithmetic expression. One key point is that the
sum-check protocol employs the fact that certain restrictions of the arithmetic expression are low-degree
polynomials.

While the arithmetization technique used in the proof turned out to be extremely useful, it seems
somewhat odd that one has to go through algebra in order to prove the theorem, since the theorem itself
says nothing about algebra. The intuition behind the use of algebra in the proof is usually explained by
the fact that low-degree polynomials constitute good error correcting codes.

In order to demonstrate this intuition, let us consider the special case of proving that coNP ⊆ IP,
which amounts to designing a protocol for verifying that a given Boolean formula has no satisfying
assignments. In this case, the main difficulty that the verifier faces is that it has to distinguish between
a formula that has no satisfying assignments and a formula that has only one satisfying assignment. If
we consider the truth tables of those formulas, then the verifier has to distinguish two exponential-length
strings that differ only on at one coordinate, which seems difficult to do in polynomial time. However, if
the verifier could access an encodings of the truth tables via an error correcting code, then its task would
have been easy: An error correcting code has the property that any two distinct strings are encoded
by strings that differ on many coordinates, even if the original strings were very close to each other.
Therefore, if the verifier could access an error-correcting encoding of the truth table of the formula,
it could just pick a random coordinate of the encoding and check that it matches the encoding of the
all-zeroes truth table.

12

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 13

The role of algebra in the proof of the IP theorem is now explained as follows: The arithmetization
technique transforms the formula into a low-degree polynomial. Since low-degree polynomials are good
error correcting codes, the arithmetization should have a similar effect to that of encoding the truth
table of the formula via an error correcting code. Morally, this should help the verifier in distinguishing
between satisfiable and unsatisfiable formulas.

While the above intuition is very appealing, it is not clear what is the relation between this intuition
and the actual proof, and whether the actual proof indeed implements this intuition. In particular, the
polynomial that is obtained from the arithmetization of a formula is not the encoding of the formula’s
truth table by the corresponding polynomial code1, but rather an arbitrary polynomial that agrees with
the formula on the Boolean hypercube. Furthermore, the known proofs of the IP theorem use algebraic
manipulations that can not be applied to general error correcting codes. Those considerations give raise
to the natural question of whether the foregoing intuition is correct or not. In other words, we would
like to know whether the error correcting properties of polynomials are indeed the crux of the proof of
the IP theorem, or are there other properties of polynomials that are essential to the proof.

In this chapter, we show that the IP theorem can actually be proved by using only error correcting
codes, while making no reference to polynomials. We believe that this establishes a rigorous basis for
the aforementioned intuition. While our proof is somewhat more complicated than the previous proofs
of the IP theorem, we believe that it is valuable as it explains the role of error correcting codes in the
IP theorem.

Our techniques. Our proof relies heavily on the notion of tensor product of codes, which is a classical
operation on codes. The tensor product operation generalizes the process of moving from univariate
polynomials to multivariate polynomials, in the sense that if we view univariate polynomials as error
correcting codes, then multivariate polynomials are obtained by applying the tensor product operation
to univariate polynomials. We refer to error correcting codes that are obtained via the tensor product
operation as “tensor codes”.

Our first main observation is the following. Recall that in the proof of the IP theorem, the sum-
check protocol is applied to multivariate polynomials. We show that the sum-check protocol can in fact
be applied to any tensor code. Specifically, we note that tensor codes have the following property: A
codeword c of a tensor code can be viewed as a function from some hypercube [`]m to a finite field F,
such that if a function f : [`]→ F is defined by an expression of the form

f(xi) =
∑
xi+1

. . .
∑
xm

c (r1, . . . , ri−1, xi, xi+1, . . . , xm)

then f is a codeword of some other error correcting code. We observe that this is the only property that
is required for the sum-check protocol to work, and therefore the protocol can be used with any tensor
code. In other words, the essential property of multivariate polynomials that is used in the sum-check
protocol is the fact that multivariate polynomials are tensor codes.

Our next step is to use the foregoing observation to prove that coNP ⊆ IP without using polynomials.
To this end, we replace the multivariate polynomials used in the proof with general tensor codes. In
particular, we replace the polynomial that is obtained from the arithmetization with a tensor codeword
that agrees with the formula on the Boolean hypercube. We perform this replacement by generalizing
the arithmetization technique to work with general error correcting codes instead of polynomials. This
generalization is done by constructing “multiplication codes”, which are error correcting codes that
emulate polynomial multiplication, and may be of independent interest.

1In other words, the polynomial generated by the arithmetization is not the low-degree extension of the truth table.
To see this, note that the arithmetization of an unsatisfiable formula may produce a non-zero polynomial. For example,
the arithmetization of the unsatisfiable formula x ∧ ¬x is x · (1− x), which is not the zero polynomial.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 14

Finally, we consider the proof of the full IP theorem, i.e, IP = PSPACE. To this end, we devise a
protocol for verifying the validity of a quantified Boolean formula. In the known proofs of the IP theorem,
when considering quantified Boolean formulas we encounter the following obstacle: The arithmetization
of a quantified formula results in an arithmetic expression that contains polynomials of very high degree,
and not low degree as required by the sum-check protocol. This issue translates in our proof to certain
limitations of the aforementioned multiplication codes.

Recall that the proofs of the IP theorem by [Sha92, She92] resolve the foregoing issue by performing
algebraic manipulations on the arithmetic expression to ensure that the involved polynomials are of
low degree. Obviously, such a solution can not applied in our setting. Instead, we build on an idea
from [GKR08], which shows that one can use the sum-check protocol to reduce the degree of the
polynomials. While their technique still uses the algebraic structure of polynomials, we show that this
technique can be adapted to our setting, allowing us to show that IP = PSPACE.

The adaptation of [GKR08] is done by generalizing the sum-check protocol, and observing that it
can be used to reduce the task of evaluating a coordinate of a tensor codeword to the task of evaluating
a coordinate of another tensor codeword. This generalization may be of independent interest.

The organization of this chapter. In Section 2.2, we review the basic notions of error correcting
codes and define the notation that we use. In Section 2.3, we review the notion of tensor product codes,
and introduce the notion of multiplication codes. In Section 2.4, we revisit the sum-check protocol and
generalize it. In Section 2.5, we prove that coNP ⊆ IP, and along the way present our generalization
of the arithmetization technique. Finally, in Section 2.6, we prove the full IP theorem.

Remark regarding algebrization. Recall that the IP theorem is a classical example for a non-
relativizing result. Recently, [AW08] suggested a framework called “algebrization” as a generalization of
the notion of relativization, and showed that the IP theorem relativizes in this framework, or in other
words, the IP theorem “algebrizes”. We note that while our proof of the IP theorem does not seem to
algebrize, one can generalize the algebrization framework to include our proof as well. Some details are
given in a remark at the end of Section 2.5.

2.2 Preliminaries

For any n ∈ N we denote [n]
def
= {0, 1 . . . , n− 1} - note that this is a non-standard notation. Similarly,

if x is a string of length n over any alphabet, we denote its set of coordinates by [n], and in particular,
the first coordinate will be denoted 0.

Throughout the chapter, we will refer to algorithms that take as input a finite field F. We assume
that the finite field F is represented, say, by a list of its elements and the corresponding addition and
multiplication tables.

For any two strings x, y of equal length n and over any alphabet, the relative Hamming distance

between x and y is the fraction of coordinates on which x and y differ, and is denoted by δ(x, y)
def
=

|{xi 6= yi : i ∈ [n]}| /n.
All the error correcting codes that we consider in this chapter are linear codes, to be defined next.

Let F be a finite field, and let k, ` ∈ N. A (linear) code C is a linear one-to-one function from Fk to F`,
where k and ` are called the code’s message length and block length, respectively. We will sometimes
identify C with its image C(Fk). Specifically, we will write c ∈ C to indicate the fact that there exists
x ∈ Fk such that c = C(x). In such case, we also say that c is a codeword of C. The relative distance of a
code C is the minimal relative Hamming distance between two different codewords of C, and is denoted

by δC
def
= minc1 6=c2∈C {δ(c1, c2)}.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 15

Due to the linearity of C, there exists an n× k matrix G, called the generator matrix of C, such that
for every x ∈ Fk it holds that C(x) = G · x. Observe that given the generator matrix of C one can
encode messages by C as well as verify that a string in F` is a codeword of C in time that is polynomial
in `. Moreover, observe that the code C always encodes the all-zeroes vector in Fk to the all-zeroes
vector in F`.

We say that C is systematic if the first k symbols of a codeword contain the encoded message, that
is, if for every x ∈ Fk it holds that (C (x))|[k] = x. By applying Gaussian elimination to the generator
matrix of C, we may assume, without loss of generality, that C is systematic.

The following fact asserts the existence of (rather weak) linear codes. Such codes are all we need for
this chapter.

Fact 2.2.1. The exists an algorithm that when given as input k ∈ N and δ ∈ (0, 1) and a finite field F
such that |F| ≥ poly (1/ (1− δ)), runs in time that is polynomial in k, log |F|, and 1/ (1− δ), and outputs

the generator matrix of a linear code C over F that has message length k, block length `
def
= k/poly (1− δ),

and relative distance at least δ.

Fact 2.2.1 can be proved via a variety of techniques from coding theory, where many of them do not
use polynomials (see, e.g., [Var57, ABN+92, GI05]2).

2.3 Tensor Product Codes and Multiplication Codes

In this section we review the notion of tensor product of codes (in Section 2.3.1) and introduce the notion
of multiplication codes (in Section 2.3.2). We note that while the tensor product is a standard operation
in coding theory, and a reader who is familiar with it may skip Section 2.3.1, with the exception of
Propositions 2.3.7 and 2.3.8 which are non-standard. On the other hand, the notion of multiplication
codes is a non-standard notion that we define for this work (though it may be seen as a variant of the
notion of error correcting pairs, see [Köt92, Pel92, Sud01, Lect. 11 (1.4)]).

2.3.1 Tensor Product of Codes

In this section we define the tensor product operation on codes and present some of its properties.
See [MS88] and [Sud01, Lect. 6 (2.4)] for the basics of this subject.

Definition 2.3.1. Let R : FkR → F`R , C : FkC → F`C be codes. The tensor product code R ⊗ C is a
code of message length kR · kC and block length `R · `C that encodes a message x ∈ FkR·kC as follows:
In order to encode x, we first view x as a kC × kR matrix, and encode each of its rows via the code R,
resulting in a kC · `R matrix x′. Then, we encode each of th columns of x′ via the code C. The resulting
`C × `R matrix is defined to be the encoding of x via R⊗ C.

The following fact lists some of the basic and standard properties of the tensor product operation.

Fact 2.3.2. Let R : FkR → F`R, C : FkC → F`C be linear codes. We have the following:

1. An `C × `R matrix x over F is a codeword of R⊗ C if and only if all the rows of x are codewords
of R and all the columns of x are codewords of C.

2. Let δR and δC be the relative distances of R and C respectively. Then, the code R⊗C has relative
distance δR · δC.

2We note that the work of [GI05] does make use of polynomials, but this use of polynomials can be avoided at the
expense of having somewhat worse parameters, which we can still afford. Also, we note that the work of [ABN+92] requires
|F| ≥ exp (1/ (1− δ)), but this limitation can be waived by means of concatenation.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 16

3. The tensor product operation is associative. That is, if D : FkD → F`D is a code then (R⊗ C)⊗D =
R⊗ (C ⊗D).

The following standard feature of tensor codes will be very useful.

Fact 2.3.3. Let R and C be as before and let r ∈ R and c ∈ C. Define the tensor product r ⊗ c of r
and c as the `C × `R matrix defined by (r ⊗ c)i,j = ci · rj. Then, r ⊗ c is a codeword of R⊗ C.

Proof. Observe that each row of r⊗c is equal to r multiplied by a scalar, and therefore it is a codeword
of R. Similarly, each column of r ⊗ c is a codeword of C. By Item 1 of Fact 2.3.2, it follows that
r ⊗ c ∈ R⊗ C, as required. �

The associativity of the tensor product operation allows us to use notation such as C ⊗C ⊗C, and
more generally:

Notation 2.3.4. Let C : Fk → F` be a code. For every m ∈ N we denote by Cm : Fkm → F`m the code
C ⊗ C ⊗ . . .⊗ C︸ ︷︷ ︸

m

. Formally, Cm = Cm−1 ⊗ C.

Notation 2.3.5. When referring to the code Cm and its codewords, we will often identify the sets of
coordinates [km] and [`m] with the hypercubes [k]m and [`]m respectively. Using the latter identification,
one can view a string x ∈ Fkm as a function x : [k]m → F, and view strings in F`m similarly. With a
slight abuse of notation, we say that Cm is systematic if for every codeword c ∈ Cm, the restriction of c
to [k]m equals the message encoded by cm. It is easy to see that if C is systematic (in the usual sense),
then Cm is systematic as well.

Using Fact 2.3.2, one can prove by induction the following.

Fact 2.3.6. Let C : Fk → F` be a code. Then, the codewords of Cm are precisely all the functions
f : [`]m → F such that the restriction of f to any axis-parallel line of the hypercube is a codeword
of C. That is, a function f : [`]m → F is a codeword of Cm if and only if for every 1 ≤ t ≤ m and
i1, . . . , it−1, it+1, . . . , im ∈ [`] it holds that the function f(i1, . . . , it−1, ·, it+1, . . . , im) is a codeword of C.

Less standard features. We turn to prove two less standard features of the tensor product operation
that will be useful in Section 2.4. The following claim expresses a coordinate of a tensor codeword using
an expression of a “sum-check” form. We will use this claim later to show that one can use the sum-check
protocol to evaluate the coordinates of a tensor codeword.

Claim 2.3.7. Let C : Fk → F` be a systematic code, and let m ∈ N. Then, for every coordinate
(i1, . . . , im) ∈ [`]m there exist scalars αt,j ∈ F (for every 1 ≤ t ≤ m and j ∈ [k]) such that for every
codeword c ∈ Cm it holds that

c(i1, . . . , im) =
∑
j1∈[k]

α1,j1 ·
∑
j2∈[k]

α2,j2 · . . .
∑
jm∈[k]

αm,jm · c(j1, . . . , jm)

Furthermore, the coefficients αt,j can be computed in polynomial time from the tuple (i1, . . . , im) and the
generator matrix of C.

Proof. By induction on m. Suppose that m = 1. In this case, c is a codeword of C. Let i1 ∈ [`].
Since C is a linear function, it holds that c(i1) is a linear combination of the elements of the message
encoded by c. Since C is systematic, it holds that c (0) , . . . , c(k − 1) are equal to the message encoded
by c. Thus, we get that c(i1) is a linear combination of c (0) , . . . , c(k − 1), as required. Furthermore,
the corresponding coefficients α1,j are simply the corresponding row in the generator matrix of C.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 17

We now assume that the claim holds for some m ∈ N, and prove it for m + 1. Let C : Fk → F` be
a systematic code, let c ∈ Cm+1, and let (i1, . . . , im+1) ∈ [`]m+1 be a coordinate of c. We first observe
that by Fact 2.3.6, it holds that c(·, i2, . . . , im+1) is a codeword of C. Thus, by the same considerations
as in the case of m = 1, it follows that there exist coefficients α1,j1 ∈ F for j1 ∈ [k] such that

c(i1, . . . , im+1) =
∑
j1∈[k]

α1,j1 · c(j1, i2, . . . , im+1)

Next, observe that Fact 2.3.6 implies that for every j1, it holds that c(j1, ·, . . . , ·︸ ︷︷ ︸
m

) is a codeword of Cm.

The induction hypothesis now implies that there exist coefficients αt,j ∈ F (for every 2 ≤ t ≤ m+ 1 and
j ∈ [k]) such that for every j1 ∈ [k] it holds that

c (j1, i2, . . . , im+1) =
∑
j2∈[k]

α2,j2 · . . .
∑

jm+1∈[k]

αm+1,jm+1 · c(j1, . . . , jm+1)

Note that the latter coefficients αt,j do not depend on j1. It follows that

c(i1, . . . , im+1) =
∑
j1∈[k]

α1,j1 ·
∑
j2∈[k]

α2,j2 · . . .
∑

jm+1∈[k]

αm+1,jm+1 · c(j1, . . . , jm+1)

as required. Furthermore, it is easy to see that the coefficients αt,j can indeed be computed in polynomial
time. �

The following claim says that the intermediate sum that occurs in a single step of the sum-check
protocol is a codeword of C. This is the key property used in each single step of the sum-check protocol.

Claim 2.3.8. Let C : Fk → F` be a code, let m ∈ N, and let c ∈ Cm. Then, for every sequence of
scalars αt,j (for every 2 ≤ t ≤ m and j ∈ [`]) it holds that the function f : [`]→ F defined by

f(j1) =
∑
j2∈[`]

α2,j2 ·
∑
j3∈[`]

α3,j3 · . . .
∑
jm∈[`]

αm,jm · c(j1, . . . , jm)

is a codeword of C.

Proof. The proof is by induction on m. For m = 1 the claim is trivial. We assume that the claim holds
for some m ∈ N, and prove it for m+ 1. Let C : Fk → F` be a code, let c ∈ Cm+1, and let αt,j be scalars
for every 2 ≤ t ≤ m+ 1 and j ∈ [`]. We wish to show that the function f : [`]→ F defined by

f(j1)
def
=
∑
j2∈[`]

α2,j2 · . . .
∑

jm+1∈[`]

αm+1,jm+1 · c(j1, . . . , jm+1)

is a codeword of C. To this end, let us observe that Fact 2.3.6 implies that for every jm+1 ∈ [`], the
function gj2 : [`]m → F defined by

gjm+1(j1, , . . . , jm)
def
= c(j1, . . . , jm, jm+1)

is a codeword of Cm. Therefore, by the induction hypothesis, the function hjm+1 : [`]→ F defined by

hjm+1(j1)
def
=

∑
j2∈[`]

α2,j2 · . . .
∑
jm∈[`]

αm,jm · gjm+1(j1, . . . , jm)

is a codeword of C. Now, observe that we can express f as

f(j1) =
∑

jm+1∈[`]

αm+1,jm+1 · hjm+1(j1)

In other words, it holds that f is a linear combination of codewords of C. By the linearity of C, it
follows that f is a codeword of C. �

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 18

2.3.2 Multiplication codes

The arithmetization technique, which transforms a Boolean formula into a low-degree polynomial, uses
two basic properties of polynomials: The first property is that low-degree polynomials form a linear
subspace. The second property is that the product of two low-degree polynomials is a low-degree
polynomial (provided that the field is sufficiently large compared to the degree). Therefore, in order
to generalize the arithmetization technique to use general error correcting codes, we would like to have
error correcting codes with similar properties. The first property is attained by every linear code. The
challenge is to obtain codes emulating the second “multiplication” property. To this end, we use the
following notation.

Notation 2.3.9. Let F be a finite field, let ` ∈ N, and let u, v ∈ F`. Then, we denote by u · v the string
in F` defined by

(u · v)i = ui · vi

We can now phrase the multiplication property of polynomials as follows. If c1 and c2 are codewords
of polynomial codes (of sufficiently low degree), then c1 · c2 is a codeword of a another polynomial code
(of a higher degree). The following proposition shows that one can construct codes with such property
without using polynomials.

Proposition 2.3.10. For every k ∈ N, δ ∈ (0, 1) and a finite field F such that |F| ≥ poly (1/ (1− δ)),
there exists a triplet (CA, CB, CM) of systematic linear codes over F that have the following properties:

1. Multiplication: For every cA ∈ CA and cB ∈ CB it holds that cA · cB ∈ CM .

2. CA and CB have message length k, and CM has message length k2.

3. CA, CB, and CM all have block length `
def
= k2/poly (1− δ), and relative distance δ.

Furthermore, the exists an algorithm that when given as input k, δ, and F, runs in time that is polynomial
in k, log |F|, and 1/ (1− δ), and outputs the generating matrices of CA, CB and CM .

Remark 2.3.11. Again, it is trivial to construct codes as in Proposition 2.3.10 using polynomials.
Indeed, taking CA, CB, and CM to be Reed-Solomon codes of appropriate degree would yield codes
with the same multiplication property and with better parameters. The novelty of our proof of Proposi-
tion 2.3.10 is that the construction of the codes is based on generic codes, and not on polynomial codes.
Specifically, we will only use the tensor product operation.

Proof. The algorithm begins by invoking the algorithm of Fact 2.2.1 on input k,
√
δ, and F. This results

in a code C with message length k, relative distance
√
δ, and block length3 `C = k/poly

(
1−
√
δ
)
≤

k/poly (1− δ). Next, the algorithm sets ` = `2
C and constructs the generating matrices of the codes CA,

CB, and CM that are defined as follows:

1. The codewords of CA are precisely all the `C × `C matrices cA such that all the rows of cA are
identical and are equal to some codeword of C.

2. CB is defined similarly to CA, but with columns instead of rows.

3. The code CM is the code C2.

3The inequality can be seen by defining α
def
= 1 − δ, noting that

√
δ =
√

1− α ≤
√

(1− α/2)
2

= 1 − α/2, and then

observing that the latter yields 1−
√
δ ≥ 1− (1− α/2) = (1− δ)/2.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 19

It is easy to see that CA, CB, and CM have the required parameters and that their generating matrices
can be constructed in polynomial time. It remains to show that for every cA ∈ CA and cB ∈ CB it holds
that cA · cB ∈ CM . To this end, recall that cA is an `C × `C matrix all of whose rows are equal to some
codeword cr of C, whereas cB is an `C × `C matrix all of whose columns are equal to some codeword
cc of C. Finally, observe that cA · cB = cr ⊗ cc, so it follows by Fact 2.3.3 that cA · cB ∈ C2 = CM , as
required. �

It is important to note that the multiplication of the codes of Proposition 2.3.10 is much more
limited than the multiplication of polynomial codes. Specifically, the multiplication of polynomials can
be applied many times. That is, if c1, . . . , ct are codewords of polynomial codes, then c1 · . . . · ct is also
a codeword of a polynomial code, as long as the degrees of c1, . . . , ct are sufficiently small compared to
t and |F|. On the other hand, Proposition 2.3.10 only allows the multiplication of two codewords. This
limitation is the reason that our emulation of the arithmetization technique in Section 2.5 is somewhat
more complicated than the standard arithmetization.

Remark 2.3.12. It is possible to generalize the construction of Proposition 2.3.10 to allow multipli-
cation of more codewords. However, the generalized construction yields codes with block length that
is exponential in the number of multiplications allowed, and therefore we can only afford a constant
number of multiplications.

The tensor product of multiplication codes. The following proposition shows that applying the
tensor product operation preserves the multiplication property of codes.

Proposition 2.3.13. Let C1, C2, and C3 be codes of the same block length such that for every two
codewords c̃1 ∈ C1 and c̃2 ∈ C2 it holds that c̃1 · c̃2 ∈ C3. Then, for every m ∈ N, and for every c1 ∈ Cm

1 ,
c2 ∈ Cm

2 , it holds that c1 · c2 ∈ Cm
3 .

Proof. Let ` ∈ N be the block length of C1, C2, and C3, and fix m ∈ N. Let c1 ∈ Cm
1 , c2 ∈ Cm

2 be
codewords. We view c1, c2 and c1 ·c2 as functions from [`]m to F. By Fact 2.3.6, for every 1 ≤ t ≤ m and
i1, . . . it−1, it+1, . . . , im ∈ [`] it holds that c1(i1, . . . , it−1, ·, it+1, . . . , im) and c2(i1, . . . , it−1, ·, it+1, . . . , im)
are codewords of C1 and C2 respectively. The multiplication property of C1, C2, and C3 now implies
that for every 1 ≤ t ≤ m and i1, . . . it−1, it+1, . . . , im ∈ [`] it holds that

(c1 · c2) (i1, . . . , it−1, ·, it+1, . . . , im)

is a codeword of C3. By applying Fact 2.3.6 in the opposite direction, the latter claim implies that c1 · c2

is a codeword of Cm
3 , as required. �

2.4 The Sum-Check Protocol Revisited

In this section, we show a generalization of the sum-check protocol, which views the sum-check protocol
as a protocol for reducing the evaluation of one tensor codeword to the evaluation of another tensor
codeword. We will use this generalization both in the proof of coNP ⊆ IP and of IP = PSPACE. In
order to explain this idea and explain why it is useful, we need the following definition of “consistency”,
which generalizes the notion of the encoding of a message.

Definition 2.4.1. Let C : Fk → F` be a systematic code, let k′,m ∈ N be such that k′ ≤ k. We say
that a codeword c : [`]m → F of Cm is consistent with a function f : [k′]m → F if c agrees with f on [k′]m.

Let φ be a (possibly quantified) Boolean formula over m variables (if φ is quantified, then m is the
number of free variables). We say that c is consistent with φ if c is consistent with the truth table of φ,
viewed as a function from {0, 1}m to F.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 20

Remark 2.4.2. Observe that every codeword is consistent with the message it encodes. In particular,
if k′ = k in the above definition, then c is consistent with f if and only if c is the encoding of f . On the
other hand, if k′ < k, then there may be many codewords of Cm that are consistent with f .

As an example for the notion of consistency, note that the arithmetization of a Boolean formula φ
yields a multivariate polynomial that is consistent with φ. Observe, however, that the latter polynomial
is not the encoding of the truth table of φ via a Reed-Muller code; that is, this polynomial is not the
low-degree extension of the truth table of φ. Thus, the arithmetization also provides an example for the
difference between the encoding of a truth table and a codeword that is consistent with the truth table.

Now, our generalization of the sum-check protocol says roughly the following: Let c be a codeword
of a code Cm, and let d be a codeword of a code Dm that is consistent with the message encoded by
c. Then, the sum-check protocol reduces the task of verifying a claim of the form c(i) = u to the task
of verifying a claim of the form d(r) = v (where i and r are coordinates of c and d respectively, and
u, v ∈ F).

Such a reduction is useful, for example, when the verifier can compute d(r) easily, but can not
compute c(i) efficiently without the help of the prover. As a concrete example, consider the case where
c is the low-degree extension of the truth table of a formula φ and d is the polynomial obtained from the
arithmetization of φ. Then, the sum-check protocol reduces the (hard) task of evaluating the low-degree
extension (i.e., computing c(i)) to the (easy) task of evaluating the arithmetization polynomial (i.e.
computing d(r)). A related example is the original proof of coNP ⊆ IP, where the sum-check protocol
is used to reduce the evaluation of an exponential sum (which is hard for the verifier) to the evaluation
of the polynomial obtained from the arithmetization (which is easy for the verifier).

We first give an informal statement of the reduction, and then give the formal statement.

Theorem 2.4.3 (The sum-check protocol, informal). Let C and D be codes, and let c ∈ Cm and d ∈ Dm

be codewords such that d is consistent with the message encoded by c. Then, there exists an interactive
protocol that takes as input a claim of the form “c

(
i
)

= u” and behaves as follows:

• Completeness: If the claim is correct (i.e., c
(
i
)

= u), then the protocol outputs a correct claim
of the form “d(r) = v”.

• Soundness: If the claim is incorrect (i.e., c
(
i
)
6= u), then with high probability the protocol either

rejects or outputs an incorrect claim of the form “d(r) = v”.

Theorem 2.4.4 (The sum-check protocol, formal). There exists a public coin interactive protocol be-
tween an unbounded prover and a polynomial time verifier that behaves as follows:

• Input: The parties enter the protocol with a common input that contains the following:

– A finite field F.

– The generating matrices of systematic codes C : FkC → F`C and D : FkD → F`D where
kD ≥ kC and D has relative distance δD.

– A pair
(
i, u
)
, where i ∈ [`C]m and u ∈ F.

• Output: At the end of the protocol, the verifier either rejects, or outputs a pair (r, v), where
r ∈ [`D]m and v ∈ F.

The output satisfies the following condition. For every two codewords c ∈ Cm, d ∈ Dm such that d is
consistent with the message encoded by c, the following holds:

• Completeness: If c
(
i
)

= u, then there exists a strategy for the prover that makes the verifier
output with probability 1 a pair (r, v) such that d (r) = v.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 21

• Soundness: If c
(
i
)
6= u, then for every strategy taken by the prover, the probability that the

verifier outputs a pair (r, v) for which d (r) = v is at most m · (1− δD).

Furthermore, the output r depends only on the randomness used by the verifier.

Remark 2.4.5. The statement of Theorem 2.4.4 may seem confusing, since the codewords c and d are
not given to the prover and verifier in any way. In fact, the codewords c and d are chosen by the prover,
and may be chosen arbitrarily, subject to d being consistent with the message encoded by c.

However, in this work we will use Theorem 2.4.4 as a sub-protocol of higher level protocols. In those
applications, the prover will be forced to use specific choices of c and d in order to convince the verifier
of the high level protocol. In particular, those specific choices of c and d will be determined by the high
level protocol.

Proof. Let F, C, D, m be as in the theorem. For convenience, throughout the description of the
protocol we fix specific choices of the codewords c and d as in the theorem. However, the strategy of
the verifier described below does not depend on the specific choice of c and d. Note that the strategy of
the prover must depend on the choice of c and d.

We begin with recalling that by Claim 2.3.7, there exist scalars αt,j ∈ F for 1 ≤ t ≤ m and j ∈ [k]
such that for every choice of c it holds that c

(
i
)

= u if and only if∑
j1∈[kC]

α1,j1 ·
∑

j2∈[kC]

α2,j2 · . . .
∑

jm∈[kC]

αm,jm · c(j1, . . . , jm) = u

Moreover, the coefficients αt,j can be computed efficiently. We know that c is systematic, and that d
is consistent with the message encoded by c, and therefore c and d agree on [kC]m. Hence, in order to
verify that c

(
i
)

= u, it suffices to verify that∑
j1∈[kC]

α1,j1 ·
∑

j2∈[kC]

α2,j2 · . . .
∑

jm∈[kC]

αm,jm · d(j1, . . . , jm) = u

From this point on, the prover and verifier compute the above exponential sum exactly as in the standard
sum-check protocol, except that univariate polynomials are replaced by codewords of D. Details follow.

The verifier and prover engage in an iterative protocol of m iterations. Let v0
def
= u. When the parties

enter the t-th iteration, the prover should convince the verifier that the following equality holds for some
r1, . . . , rt−1 ∈ [`] and vt−1 that are determined in the previous iterations.∑

jt∈[kC]

αt,it · . . .
∑

jm∈[kC]

αm,im · d(r1, . . . , rt−1, jt, . . . , jm) = vt−1

To this end, let us consider the function h : [`]→ F defined by

h(jt) =
∑

jt+1∈[jC]

αt+1,jt+1 · . . .
∑

jm∈[kC]

αm,jm · d(r1, . . . , rt−1, jt, . . . , jm)

Observe that by Claim 2.3.8 the function h is a codeword of D. This follows by applying Claim 2.3.8
to the function d(r1, . . . , rt−1, ·, ·, . . . , ·), while recalling that this function is a codeword of Dm−t+1 by
Fact 2.3.6.

The verifier expects an honest prover to send the function h (represented by its truth table). Let
h′ : [`] → F be the function sent by the prover. The verifier checks that h′ is a codeword of D, and
that

∑
jt∈[kc]

at,it · h′(jt) = vt−1, and rejects if any of the checks fails. Next, the verifier chooses rt ∈ [`]

uniformly at random and sends it to the prover. The parties now enter the (t+ 1)-th iteration of the

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 22

protocol with vt
def
= h′(rt). Finally, at the end of the protocol, the verifier outputs the pair (r, v) where

r
def
= (r1, . . . , rm) and v

def
= vm.

The completeness of the protocol is clear, and analysis of the soundness works exactly as the standard
sum-check protocol. In particular, if the parties enter an iteration with a false claim, then one of the
following two cases must hold:

• the verifier rejects, since h′ does not pass the checks, or,

• h′ is a codeword of D but is not equal to h, in which case it holds that h′(rt) 6= h(rt) with
probability at least δD.

Thus, the probability that the parties enter the next iteration with a true claim is at most 1− δD.
The “furthermore” part of the theorem, which says that r depends only on the randomness used by

the verifier, follows immediately from the description of the protocol. �

2.5 A Proof of coNP ⊆ IP

In this section we prove that coNP ⊆ IP using tensor codes. We begin with an overview of the proof,
and then provide the full details.

2.5.1 Proof overview

In order to prove that coNP ⊆ IP, it suffices to design a protocol for verifying that a Boolean formula
is unsatisfiable. For every Boolean formula φ, let us denote by hφ the encoding of the truth table of
φ via some tensor code of relative distance at least 1

2
. Observe that if φ is unsatisfiable then hφ is

the all-zeroes codeword, since the encoding of the all-zeroes message via a linear code is always the
all-zeroes codeword. On the other hand, if φ is satisfiable then hφ is non-zero on at least 1

2
fraction of

its coordinates.

A toy problem. We begin by making the unjustified assumption that for every formula φ and coordi-
nate i of hφ we can compute hφ(i) efficiently. Under this assumption, it is easy to show that coNP ⊆ RP.
This is true since we can use the following randomized algorithm for checking the unsatisfiability of a
formula: When given as input a formula φ, the algorithm chooses a coordinate i uniformly at random,
and accepts if and only if hφ(i) = 0.

Of course, the above assumption seems unjustified. The point is that, while we may not be able to
compute hφ(i) efficiently, we can devise an interactive protocol that allows an efficient verifier to verify
the value of hφ(i). By using this protocol inside the aforementioned “algorithm”, we obtain a protocol
for verifying the unsatisfiability of a Boolean formula. It remains to show how to construct a protocol
for verifying the value of hφ(i).

Proof via Arithmetization. We now show a protocol for verifying the value of hφ(i) that uses
arithmetization, and we will later show how to avoid the use of arithmetization. Let φ a Boolean
formula over n variables, and let pφ the polynomial that is obtained from the arithmetization of φ. We
observe that pφ is consistent with the formula φ, and it can be shown that pφ is a codeword of some
tensor code4. Therefore, we can use the sum-check protocol of Theorem 2.4.4 to reduce the task of

4To see it, assume that pφ is an n-variate polynomial whose individual degrees are bounded by some number d. It
turns out that the family of such polynomials is a tensor code. Specifically, if we let RS denote the Reed-Solomon code of
univariate polynomials of degree at most d, then it is well-known that the aforementioned family of polynomials is exactly
RSn.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 23

verifying a claim of the form hφ(i) = u to the task of verifying a claim of the form pφ(r) = v. Finally,
observe that the verifier can compute the value pφ(r) by itself, and thus verify that pφ(r) = v. This
concludes the description of the protocol.

Proof via Error Correcting Codes. In order to remove the use of arithmetization in the foregoing
protocol, we examine the properties of the polynomial pφ on which we relied, and construct a codeword
cM,φ that has the same properties without using polynomials. Specifically, the codeword cM,φ will possess
the following properties:

1. cM,φ is a codeword of some tensor code.

2. cM,φ is consistent with φ.

3. For every coordinate j, the value cM,φ(j) can be computed in polynomial time.

It can be observed that those properties are the only properties of p that we needed. This yields the
following protocol: In order to verify a claim of the form hφ(i) = u, the verifier reduces it to a claim
of the form cM,φ(r) = v using the sum-check protocol of Theorem 2.4.4. Then, the verifier computes
cM,φ(r) by itself, and accepts if and only if cM,φ(r) = v.

Specialized formulas and the construction of cM,φ. In general, we do not know how to construct
the above codeword cM,φ for every formula φ, but only for “specialized formulas”, which will be discussed
shortly. To resolve this issue, the protocol begins by transforming φ into an equivalent specialized
formula φsp, and then proceeds as before while working with φsp. This issue is a direct consequence
of the limitation of our multiplication codes that allows only one multiplication, as discussed after
Proposition 2.3.10.

A “specialized formula” is a formula φ that can be written as φ = φonce ∧ φeq, where φonce is a
read-once formula, and φeq is a conjunction of equality constraints. The point is that since φonce and φeq

are very simple, it is easy to evaluate the encoding of their truth tables via any (tensor) code. Now, we
let cA,φonce and cB,φeqbe the encodings of φonce and φeq via the multiplication codes of Proposition 2.3.10,
and set cM,φ = cA,φonce · cB,φeq . It is easy to see that the codeword cM,φ is consistent with φ. Moreover,
the codeword cM,φ is easy to evaluate, since cA,φonce and cB,φeq are easy to evaluate.

We stress that while cA,φonce and cB,φeq are the unique encodings of the truth tables of φonce and
φeq (via the corresponding codes), the codeword cM,φ is not the encoding of the truth table of φ (via
the corresponding code), but merely a codeword that is consistent with φ. This is a side-effect of the
multiplication operation.

Comparison with the arithmetization technique. We view the construction of the codeword cM,φ

as a generalization of the arithmetization technique, since it produces a codeword that has essentially the
same properties of the polynomial pφ, but does it using any tensor code and not necessarily a polynomial
code. However, one should note that, while the codeword cM,φ can be used to replace pφ in the above
argument, it may not do so in every argument that involves arithmetization (e.g. some of the proofs of
the PCP theorem). That is, our technique should be thought as a generalization of the arithmetization
technique only in the context of the IP theorem.

Moreover, our construction of the codeword cM,φ can only be applied to specialized formulas, while
the arithmetization technique can be applied to any formula.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 24

2.5.2 Full proof

We turn to describe the full details of the proof. We begin by defining the notion of “specialized formula”
mentioned above.

Definition 2.5.1. A specialized formula is a formula φ that can be written as φ = φonce ∧ φeq, where

1. φonce is a read-once formula, i.e., every variable occurs in φonce exactly once, and

2. φeq is a conjunction of equality constraints over the variables of φ.

We can now state the “arithmetization generalization” discussed above, that is, the construction of the
codeword cM,φ.

Lemma 2.5.2. Let F be a finite field, and let CM : F4 → F` be the multiplication code generated by
Proposition 2.3.10 for k = 2 and any relative distance δ. Then, there exists a polynomial time algorithm
that behaves as follows:

• Input: The algorithm is given as input a specialized Boolean formula φ over n variables, the
generator matrix of CM , and a coordinate i ∈ [`]n.

• Output: The algorithm outputs cM,φ

(
i
)
, where cM,φ is a fixed codeword of (CM)n that is consistent

with φ and is determined by φ.

We prove Lemma 2.5.2 in Section 2.5.2.1, but first, we show how to prove that coNP ⊆ IP based
on Lemma 2.5.2. To this end, we use the following standard fact that says that every formula can be
transformed into an “equivalent” specialized formula.

Fact 2.5.3. Let φ be a Boolean formula over n variables, and let m be the total number of occurrences
of variables in φ. Then, there exists a specialized formula φsp over m variables that is satisfiable if and
only if φ is satisfiable. Furthermore, φsp can be computed in polynomial time from φ. We refer to φsp

as the the specialized version of φ.

Proof. φsp is obtained from φ by applying the standard transformation for making each variable appear
at most three times. That is, φsp is constructed by

1. Replacing each occurrence of a variable in φ with a new variable, which may be thought as a
“copy” of the original variable.

2. Adding equality constraints for each pair of variables that are copies of the same variable in φ.

It is easy to see that φsp satisfies the requirements. �

Theorem 2.5.4. coNP ⊆ IP

Proof. We design a protocol for verifying the unsatisfiability of a Boolean formula. Let φ be a Boolean
formula over n variables and m occurrences, and let φsp be its specialized version constructed by
Fact 2.5.3. It suffices to design a protocol for verifying the satisfiability of φsp.

Let F be a finite field of size at least 4m, let CM be the code generated by Proposition 2.3.10 for k = 2
and relative distance δ = 1− 1/2m, and let cM = cM,φsp be the codeword whose existence is guaranteed
by Lemma 2.5.2. Let H : F2 → F`H be any systematic linear code of distance at least 1 − 1/2m (for
example, one may use the |F|-ary Hadamard code), and let h = hφsp be the encoding of the truth table
of φsp via Hm. Note that h is the (unique) encoding of the truth table of φsp via Hm, but may be hard
to evaluate, while cM is merely a codeword of (CM)m that is consistent with φsp, but is easy to evaluate.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 25

Observe that if φsp is unsatisfiable then h is the all-zeroes function, while if φsp is satisfiable then at
least

(
1− 1

2m

)m ≥ 1
2

fraction of the entries of h are non-zero. Thus, it suffices to check that a random
coordinate of h is non-zero.

At the beginning of the protocol, the verifier chooses a uniformly distributed tuple i ∈ [`H]m, and
sends it to the prover. The prover should prove to the verifier that h(i) = 0. To this end, the prover and
the verifier engage in the sum-check protocol of Theorem 2.4.4 with C = H, D = CM , c = h, d = cM ,
i = i, and u = 0. If the verifier does not reject at this stage, then the sum-check protocol outputs a pair
(r, v) that is expected to satisfy cM (r) = v. Finally, the verifier uses the algorithm of Lemma 2.5.2 to
compute cM (r), accepts if cM (r) = v, and rejects otherwise.

For the completeness of the protocol, note that if φsp is unsatisfiable, then h(i) = 0. Therefore,
by the completeness of the sum-check protocol of of Theorem 2.4.4, there exists a prover strategy that
guarantees that the verifier does not reject and outputs a pair (r, v) such that cM (r) = v. It is easy to
see that if the prover uses this strategy, the verifier will always accept.

For the soundness of the protocol, observe that if φsp is satisfiable, then h(i) 6= 0 with probability at
least 1

2
. Conditioned on h(i) 6= 0, the soundness of Theorem 2.4.4 guarantees that with probability at

least m · (1− δCM) ≥ 1
2
, the verifier either rejects or outputs a pair (r, v) such that cM (r) 6= v, in which

case the verifier rejects in the next step. It follows that if φ is satisfiable, then the verifier rejects with
probability at least 1

4
, which suffices for our purposes. �

2.5.2.1 Proof of Lemma 2.5.2

We turn to proving Lemma 2.5.2. Let φ be a specialized Boolean formula over n variables, and let
(CA, CB, CM) be the multiplication code generated by Proposition 2.3.10 for k = 2 and any relative
distance δ. We seek to construct a codeword cM = cM,φ of (CM)n that is consistent with φ, and such
that the value of cM at any coordinate can be computed in polynomial time.

Recall that φ can be written as φ = φonce ∧ φeq, where φonce is a read-once formula and φeq is a
conjunction of equalities. Furthermore observe that the formulas φonce and φeq can be computed from
φ in polynomial time, by simply letting φeq be the conjunction of all the equality constraints in φ.

We now show how to construct the codeword cM that is consistent with φ. Let cA be the encoding
of the truth table of φonce via (CA)n, and let cB be the encoding of the truth table of φeq via (CB)n.

We choose cM
def
= cA · cB. Observe that cA · cB is indeed consistent with φ, and that it is a codeword of

(CM)n by Proposition 2.3.13.
It remains to show that for every coordinate i of cM , the value cM(i) can be computed efficiently.

Let ` denote the block length of CA, CB, and CM . Propositions 2.5.6 and 2.5.8 below imply that for
every i ∈ [`]n, the values cA(i) and cB(i) can be computed efficiently. It follows that for every i ∈ [`]n,
we can compute the value cM(i) efficiently by first computing cA(i) and cB(i) and then setting cM(i) =
cA(i) · cB(i). This concludes the proof of Lemma 2.5.2 up to the proofs of Propositions 2.5.6 and 2.5.8.

We stress that while cA and cB are the unique encodings of φonce and φeq via (CA)n and (CB)n

respectively, cM is merely a codeword of (CM)n that is consistent with φ, and not the encoding of φ via
(CM)n. The reason is that, if we consider two messages x, y ∈ F2, then CA(x) · CB(y) is a codeword of
CM that is consistent with x · y, but is not the encoding of x · y via CM ; in particular, note that the
message length of CM is greater than the length of x · y.

Notation 2.5.5. In the statements of the following propositions, we denote by C : F2 → F`C a fixed
arbitrary code, and for every Boolean formula ϕ over n variables, we denote by cϕ the encoding of the
truth table of ϕ via Cn.

Proposition 2.5.6 (Codeword for read-once formulas). There exists a polynomial time algorithm such
that when the algorithm is given as input a read-once Boolean formula ϕ, the generator matrix of a code
C, and a coordinate i of cϕ, the algorithm outputs cϕ(i).

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 26

Proof. We show a recursive construction of a codeword cϕ, and use it later to derive a recursive
algorithm for computing the coordinates of cϕ. We have the following recursive construction:

1. If ϕ = xt for some Boolean variable xt, then cϕ is the encoding of the vector (0, 1) via C (recall
that the message length of C is 2).

2. Suppose that ϕ = ¬ϕ′ for some Boolean formula ϕ′ over n variables. Let 1n be the all-ones function
that maps all the elements of {0, 1}n to 1, and let c1n be the encoding of 1n via Cn. Then, it holds
that cϕ = c1n − cϕ′ .

3. Suppose that ϕ = ϕ1∧ϕ2 for some Boolean formulas ϕ1 and ϕ2 over n1 and n2 variables respectively.
Observe that ϕ1 and ϕ2 must be over disjoint sets of variables, since by assumption every variable
occurs in ϕ exactly once. Let us relabel the variables of ϕ such that the first n1 variables are the
variables of ϕ1 and the last n2 variables are the variables of ϕ2. We now obtain that cϕ = cϕ1⊗cϕ2 .

4. If ϕ = ϕ1 ∨ ϕ2, then cϕ can be constructed from cϕ1 and cϕ2 using the de Morgan laws and the
previous cases.

The above recursive construction immediately yields the following recursive algorithm for computing
cA,ϕ(i) where i = (i1, . . . , , in) ∈ [`C]n:

1. If ϕ = xt, then the algorithm computes cϕ directly by encoding the vector (0, 1) with C, and
outputs cϕ(i).

2. Suppose that ϕ = ¬ϕ′. In this case, the algorithm computes c1n(i) and cϕ′(i) and outputs c1q(i)−
cϕ′(i). The value cϕ′(i) is computed recursively. In order to compute c1n(i), observe that c1n =
c11 ⊗ . . .⊗ c11︸ ︷︷ ︸

n

. It therefore follows that

c1n(i) = c11(i1) · . . . · c11(in)

Thus, in order to compute c1n(i), the algorithm computes c11 by encoding the vector (1, 1) with
C, and outputs c11(i1) · . . . · c11(in).

3. Suppose that ϕ = ϕ1 ∧ ϕ2. Again, we assume that the first n1 variables of ϕ are the variables of
ϕ1, and that the last n2 variables of ϕ are the variables of ϕ2. Also, observe that n = n1 + n2.
Then, it holds that

cϕ(i) = cϕ1(i1, . . . , in1) · cϕ2(in1+1, . . . , in)

The algorithm thus computes cϕ1(i1, . . . , in1) and cϕ2(in1+1, . . . , in) recursively and outputs their
product.

Clearly, the above algorithm is efficient, and computes cϕ(i) correctly. �

Remark 2.5.7. Note that the assumption that every variable occurs exactly once in ϕ is critical for
the proof of Proposition 2.5.6. Specifically, this assumption is used in handling the case of ϕ = ϕ1 ∧ϕ2,
and allows us to simulate the effect of multiplication using the tensor product operation (i.e., by setting
cϕ = cϕ1 ⊗ cϕ2). Without the assumption, it could be the case that ϕ1 and ϕ2 have common variables,
which would imply that cϕ 6= cϕ1 ⊗ cϕ2 .

Proposition 2.5.8 (Codeword for equality constraints). There exists a polynomial time algorithm such
that when the algorithm is given as input a Boolean formula ϕ which is a conjunction of equality con-
straints, the generator matrix of C, and a coordinate i of cϕ, the algorithm outputs cϕ(i).

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 27

Proof. We first deal with the special case in which ϕ is satisfied if and only if all its variables are equal
to each other. Let i ∈ [`C]n be a coordinate. We wish to compute cϕ(i) efficiently. By Claim 2.3.7, there
exist scalars αt,j ∈ F (for every 1 ≤ t ≤ n and j ∈ {0, 1}) such that

c(i) =
∑

j1∈{0,1}

α1,j1 ·
∑

j2∈{0,1}

α2,j2 · . . .
∑

jn∈{0,1}

αn,jn · cϕ(j1, . . . , jn)

By our assumption on ϕ, each term cϕ(j1, . . . , jn) in the above exponential sum is 1 if j1 = . . . = jn and
0 otherwise. It thus follows that

cϕ(i) =
n∏
t=1

αt,0 +
n∏
t=1

αt,1

Now, the above sum is easy to compute, since by Claim 2.3.7 the coefficients αt,j can be computed
efficiently.

We turn to consider the general case, in which ϕ may be any conjunction of equality constraints over
its variables. In this case, one can partition the variables of ϕ to sets S1, . . . , St such that two variables
are in the same set if and only if they are equal in every satisfying assignment of ϕ. For each such Sj,
let ϕj be the formula over the variables in Sj that is satisfied if and only if all the variables in Sj are
equal. Observe that

ϕ = ϕ1 ∧ . . . ∧ ϕt
Let us relabel the variables of ϕ such that the first |S1| variables are the variables of S1, the next |S2|
variables are the variables of S2, etc. After the relabeling, it holds that

cϕ = cϕ1 ⊗ . . .⊗ cϕt

Therefore, if we let i be any coordinate of cϕ and denote i|Sj the restriction of i to Sj, it holds that

cϕ(i) = cϕ1(i|S1) · . . . · cϕt(i|St)

Now, each of the formulas ϕj matches the special case we already dealt with, and therefore we can
efficiently compute the value cϕj(i|Sj). We can thus compute cϕ1(i|S1) efficiently as well, as required. �

Remark regarding algebrization. Recall that the arithmetization technique is the only non-relativizing
ingredient of the proof of the IP theorem. Indeed, a main motivation of the algebrization framework
of [AW08] was to try to capture the arithmetization technique. While our arithmetization generaliza-
tion (Lemma 2.5.2) does not seem to fit into the algebrization framework, one can prove the following
“algebrization-like” variant of this lemma: Let O = {On : {0, 1}n → {0, 1}}n be an infinite sequence of
Boolean oracles, and let us denote CA,O = {CA,On}n where CA,On is the encoding of the truth table On
by (CA)n. Then, there exists an algorithm that given oracle access to CA,O satisfies the following re-
quirement: when the algorithm is given as input a specialized formula ϕ that contains oracle predicates
from the sequence O and a coordinate i of cM,ϕ, the algorithm outputs cM,ϕ(i). Here cM,ϕ is a codeword
of (CM)n that is consistent with ϕ, as before.

2.6 The Proof of IP = PSPACE

In this section, we finally prove the IP theorem, that is,

Theorem 2.6.1. IP = PSPACE.

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 28

Since TQBF is a PSPACE-complete problem, it suffices to devise an interactive protocol for verifying
the validity of a quantified Boolean formula. Recall that a quantified Boolean formula is a logical
expression of the form

Q1
y1∈{0,1}

Q2
y2∈{0,1}

. . . Qn
yn∈{0,1}

φ(y1, . . . , yn) (2.1)

where φ is a Boolean formula and each Qi denotes one of the quantifiers ∃ and ∀. A quantified Boolean
formula is said to be valid if and only if the expression evaluates to 1 (i.e., evaluates to True). We wish
to design an interactive protocol which takes as an input a quantified Boolean formula, such that if the
formula is valid the verifier accepts with probability 1, and otherwise accepts with probability at most
1
2
.

We begin with an overview of the proof in Section 2.6.1, and then give the full details in Section 2.6.2.
We mention that our proof borrows ideas from the work of [GKR08].

2.6.1 Proof overview

The formulas ψi. Given a quantified formula as in (2.1), we define the following quantified formulas

ψt(y1, . . . , yt) = Qt+1
yt+1∈{0,1}

. . . Qn
yn∈{0,1}

φ(y1, . . . , yn)

That is, ψt is a formula in which y1, . . . , yt are free variables and yt+1, . . . , yn are bounded variables. In
particular, ψ0 is the original quantified formula and ψn is the formula φ. We also consider the encodings
of the truth table of ψt via (CA)t and (CB)t, and denote them by cA,t and cB,t (where (CA, CB, CM) are
the multiplication codes of Proposition 2.3.10).

We mention that the actual proof will work with the specialized version φsp instead of φ itself (see
Definition 2.5.1 and Fact 2.5.3). We ignore this technicality throughout this overview.

The structure of the protocol. Our interactive protocol begins by reducing the task of verifying
the validity of Formula (2.1) to the task of verifying a claim of the form

cA,1(i1) = vA,1 and cB,1(i1) = vB,1 (2.2)

where i1 is a coordinate of cA,1 and cB,1 - note that i1 is shared by both equalities in (2.2).
Next, the protocol proceeds to work in iterations: The prover and the verifier enter the t-th iteration

with a claim of the form
cA,t(it) = vA,t and cB,t(it) = vB,t (2.3)

Throughout the t-th iteration, the parties engage in a sub-protocol, in order to reduce the task of
verifying the claim in (2.3) to the task of verifying a claim of the same form about cA,t+1 and cB,t+1.

Eventually, the parties end up with a claim about cA,n and cB,n. This means that the prover is
required to prove a claim about encodings of the truth table of ψn = φ, which can be done in the same
way as in the proof of coNP ⊆ IP: The parties engage in the sum-check protocol in order to reduce the
claim about cA,n and cB,n to a claim about a codeword of (CM)n that is consistent with the truth table
of φ, and then the verifier checks the latter claim by itself, by using the “arithmetization generalization”
(Lemma 2.5.2).

A single iteration. We now describe how a single iteration of the protocol is performed. Let us focus
on the t-th iteration, and assume that Qt+1 = ∀ (the case where Qt+1 = ∃ is similar). We consider the
codeword cM,t of (CM)t constructed by setting each coordinate j of cM,t as follows:

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 1) (2.4)

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 29

Observe that cM,t is indeed a codeword of (CM)t and that it is consistent with the truth table of ψt.
Recall that our purpose is to reduce the verification of the claim in (2.3) to the verification of the same
claim for t + 1. The codeword cM,t serves as a “bridge” between those two claims: On the one hand,
cM,t is consistent with the message encoded by cA,t and cB,t, whereas on the other hand cM,t is related
to cA,t+1 and cB,t+1 by Equality (2.4). Our strategy is to first reduce the verification of the claim about
cA,t and cB,t to the verification of a claim about cM,t, and then reduce the latter to the verification of a
claim about cA,t+1 and cB,t+1.

More specifically, the parties begin the iteration by reducing the task of verifying the claim in (2.3)
to the task of verifying an equality of the form

cM,t(r) = vM,t (2.5)

Such a reduction can be done by invoking the sum-check protocol of Theorem 2.4.4 twice in parallel,
once with C = CA and D = CM , and once with C = CB and D = CM , with the verifier using the same
randomness for both invocations. The reason for using the same randomness for both invocations is
that we want both invocations to output the same coordinate r.

Next, the prover sends to the verifier two functions fA and fB, which are expected to be ct+1,A(r, ·)
and ct+1,B(r, ·) respectively. The verifier checks that fA and fB are indeed codewords of CA and CB
respectively, and that fA(0) · fB(1) = vM,t, where vM,t is the value from Equality (2.5). Finally, the
verifier chooses a random coordinate s, and the parties enter the next iteration with the claim

cA,t+1(r, s) = fA(s) and cB,t+1(r, s) = fB(s)

2.6.2 The full proof

Fix a quantified formula
Q1

y1∈{0,1}
. . . Qn

yn∈{0,1}
φ(y1, . . . , yn) (2.6)

where φ is a Boolean formula over n variables and m occurrences of variables.

Moving to specialized formulas. Our first step is moving to work with specialized formulas, which
will allow us to use the “arithmetization generalization” (Lemma 2.5.2). To this end, consider the
specialized version φsp of φ, whose existence is guaranteed by Fact 2.5.3, and let us denote its variables
by x1, . . . , xm. Recall that each variable xi′ of φsp is treated as a “copy” of some variable yi. Let us
relabel the variables of φsp such that for each 1 ≤ i ≤ n, the variable xi is a copy of yi. Now, consider
the formula

Q1
x1∈{0,1}

. . . Qn
xn∈{0,1}

∃
xn+1∈{0,1}

. . . ∃
xm∈{0,1}

φsp(x1, . . . , xm) (2.7)

Observe that that Formula (2.6) is valid if and only if Formula (2.7) is valid. For the rest of the proof,
we will work with the Formula (2.7). For convenience, we will denote Formula (2.7) as

Q1
x1∈{0,1}

. . . Qm
xm∈{0,1}

φsp(x1, . . . , xm) (2.8)

even though we know that Qn+1 = . . . = Qm = ∃.

The formulas ψi and their encodings. As in the above overview, we define formulas ψt, but this
time we define those formulas with respect to φsp. That is, for every 1 ≤ t ≤ m, we define

ψt(y1, . . . , yt) = Qt+1
xt+1∈{0,1}

. . . Qm
xm∈{0,1}

φsp(x1, . . . , xm)

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 30

Let (CA, CB, CM) be the multiplication codes that result from invoking the algorithm of Proposi-

tion 2.3.10 with k
def
= 2, δ

def
= 1− 1

2(m+1)2
, and with sufficiently large finite field F, and let ` be their block

length. For every 1 ≤ t ≤ m, we define cA,t and cB,t to be the encodings of the truth table of ψt via
(CA)t and (CB)t respectively.

A single iteration. The behavior of the parties in a single iteration is encapsulated in the following
theorem, which we first state informally and give the formal statement.

Theorem 2.6.2 (Single iteration, informal). There exists an interactive protocol that takes as input a
claim of the form “cA,t(it) = vA,t and cB,t(it) = vB,t” and and behaves as follows:

• Completeness: If the claim is correct, then the protocol outputs a correct claim of the form
“cA,t+1(it+1) = vA,t+1 and cB,t+1(it+1) = vB,t+1”.

• Soundness: If the claim is incorrect (i.e., either cA,t(it) 6= vA,t or cB,t(it) 6= vB,t), then with high
probability the protocol either rejects or outputs an incorrect claim of the form “cA,t+1(it+1) = vA,t+1

and cB,t+1(it+1) = vB,t+1”.

We turn to state the formal version of the theorem, and to prove it.

Theorem 2.6.3 (Single iteration, formal). Let φsp, m, CA, and CB be defined as above, and for every 1 ≤
t ≤ m−1 let ψt, cA,t, and cB,t be defined as above with respect to φsp. There exists an interactive protocol
between an unbounded prover and a polynomial time verifier that satisfies the following requirements:

• Input: The parties enter the protocol with a common input
(
it, vA,t, vB,t

)
, where it ∈ [`]t and

vA,t, vB,t ∈ F. Additional inputs are the numbers m, t, the generating matrices of CA, CB, CM ,
and the quantified formula in (2.8).

• Output: At the end of the protocol, the verifier either rejects, or outputs a triplet
(
it+1, vA,t+1, vB,t+1

)
,

where it+1 ∈ [`D]t+1 and vA,t+1, vB,t+1 ∈ F.

The output satisfies the following requirements:

• Completeness: If both cA,t
(
it
)

= vA,t and cB,t
(
it
)

= vB,t, then there exists a strategy for the
prover that makes the verifier output with probability 1 a triplet

(
it+1, vA,t+1, vB,t+1

)
such that

cA,t+1

(
it+1

)
= vA,t+1 and cB,t

(
it+1

)
= vB,t+1.

• Soundness: If either cA,t
(
it
)
6= vA,t or cB,t

(
it
)
6= vB,t, then for every strategy taken by the prover,

the probability that the verifier outputs a triplet
(
it+1, vA,t+1, vB,t+1

)
such that both cA,t+1

(
it+1

)
=

vA,t+1 and cB,t
(
it+1

)
= vB,t+1 is at most (t+ 1) · (1− δ) = t+1

2(m+1)2
.

Proof. We begin by defining a codeword cM,t of (CM)t as follows:

1. If Qt+1 = ∀, then for every j ∈ [`]t we define

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 1)

2. If Qt+1 = ∃, then for every j ∈ [`]t we define

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 0)

+cA,t+1(j, 1) · cB,t+1(j, 1)

−cA,t+1(j, 0) · cB,t+1(j, 1)

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 31

Observe that cM,t is consistent with the truth table of ψt, since if we restrict the above equalities to the
Boolean hypercube {0, 1}t then they become

cM,t(j) =

{
cA,t+1(j, 0) ∧ cB,t+1(j, 1) (If Qt+1 = ∀)
cA,t+1(j, 0) ∨ cB,t+1(j, 1) (If Qt+1 = ∃)

Furthermore, observe that cM,t is indeed a codeword of (CM)t for the following reasons: For each
b ∈ {0, 1}, it holds that cA,t+1(·, b) and cB,t+1(·, b) are codewords of (CA)t and (CB)t respectively. Fur-
thermore, by Propositions 2.3.10 and 2.3.13 it holds that the multiplication of codewords of (CA)t and
(CB)t yields a codeword of (CM)t. Finally, (CM)t is a linear code, and therefore a sum of codewords of
(CM)t yields a codeword of (CM)t (this is only relevant for the case that Qt+1 = ∃).

The protocol starts with the parties invoking the sum-check protocol (Theorem 2.4.4) twice in par-
allel, using the same randomness for both invocations: The first invocation is done with C = CA,
D = CM , c = cA,t, d = cM,t, i = it, and u = vA,t, and the second invocation is done with C = CB,
D = CM , c = cB,t, d = cM,t, i = it, u = vB,t. The two invocations result in two pairs (r, vM,t),

(
r, v′M,t

)
,

where r ∈ [`]t and vM,t, v
′
M,t ∈ F - note that r is common to both pairs since the verifier uses the same

randomness for both invocations (see the “Furthermore” part of Theorem 2.4.4). The verifier checks
that vM,t = v′M,t, and rejects otherwise.

Next, the prover should send functions fA, fB : [`]→ F. If the prover is honest, the functions fA, fB
are supposed to satisfy fA(·) = cA,t+1(r, ·) and fB(·) = cB,t+1(r, ·). The verifier checks that fA and fB
are codewords of CA and CB respectively, and rejects otherwise. In addition,

1. If Qt+1 = ∀, the verifier checks that fA(0) · fB(1) = vM,t.

2. If Qt+1 = ∃, the verifier checks that fA(0) · fB(0) + fA(1) · fB(1)− fA(0) · fB(1) = vM,t.

If the above check fails, the verifier rejects. Finally, the verifier chooses a uniformly distributed j ∈ [`],
and outputs the triplet

(
it+1, vA,t+1, vB,t+1

)
, where vA,t+1 = fA(j), vB,t+1 = fB(j), and it+1 is obtained

by appending j to r.
The completeness of the protocol is easy to verify. We turn to prove the soundness of the protocol.

Without loss of generality, suppose that cA,t
(
it
)
6= vA,t and that Qi = ∀- the cases where cB,t

(
it
)
6= vB,t

and Qi = ∃ can be handled similarly. By the soundness part of Theorem 2.4.4, with probability at least
1− t · (1− δ) it holds that either the verifier rejects or cM(r) 6= vM,t. Now, if the verifier does not reject,
then it must hold that fA(0) · fB(1) = vM,t, and therefore fA(0) · fB(1) 6= cM(r). By the definition of
cM , this implies that either fA(0) 6= cA,t+1(r, 0) or that fB(1) 6= cB,t+1(r, 1) - without loss of generality,
assume the first. In this case, fA is a codeword of CA that differs from the codeword cA,t+1(r, ·). Thus,
with probability at least δ, it holds that fA(j) 6= cA,t+1(r, j), or in other words, that cA,t+1(it+1) 6= vA,t+1.
By the union bound, it follows that with probability at least 1−(t+1) ·(1− δ), the verifier either rejects
or cA,t+1(it+1) 6= vA,t+1, as required. �

The full protocol. We finally turn to describe the full protocol for verifying the validity of the
Quantified Formula (2.8). At the beginning of the protocol, the prover sends two functions gA, gB :
[`] → F, that are supposed to be cA,1 and cB,1 respectively if the prover is honest. The verifier checks
that

1. gA(0) · gB(1) = 1 (if Q1 = ∀), or that

2. gA(0) · gB(0) + gA(1) · gB(1)− gA(0) · gB(1) = 1 (if Q1 = ∃),

CHAPTER 2. IP = PSPACE USING ERROR CORRECTING CODES 32

and rejects otherwise. Then, the verifier chooses i1 ∈ [`] uniformly at random and sets vA,1 = gA(i1)
and vB,1 = gB(i1).

The parties then proceed in iterations for 1 ≤ t ≤ m − 1, each iteration invoking the protocol of
Theorem 2.6.3. The parties finish the last iteration with a triplet

(
im, vA,m, vB,m

)
, such that if the

prover is honest it holds that cA,m(im) = vA,m and cB,m(im) = vB,m. Observe that cA,m and cB,m are the
encodings of the truth table of φsp via (CA)m and (CB)m respectively.

By Lemma 2.5.2, there exists a codeword cM,φsp of (CM)m that is consistent with φsp, such that
for every j ∈ [`]m, the value cM,φsp(j) can be computed efficiently (note that cM,φsp is not the same as
the codeword cM,t in the proof of Theorem 2.6.3). The parties now engage in the sum-check protocol
(Theorem 2.4.4) twice: The first invocation is with C = CA, D = CM , c = cA,m, d = cM,φsp , i = im, and
u = vA,m, and the second invocation with C = CB, D = CM , c = cB,m, d = cM,φsp , i = im, u = vB,m.
The two invocations result in two pairs (r, vM), (r′, v′M), where r, r′ ∈ [`]m and vM , v

′
M ∈ F. Finally, the

verifier computes cM,φsp(r) and cM,φsp(r′) by itself, accepts if cM,φsp(r) = vM and cM,φsp(r′) = v′M , and
rejects otherwise.

Remark 2.6.4. The full protocol could be defined slightly differently. Specifically, one could replace the
first stage of the protocol with an additional invocation Theorem 2.6.3 for t = 0. This approach has a
formal problem, since ψ0 is not a function but rather a scalar, but the approach can still be implemented
by a suitable modification of the relevant definitions. We preferred the current presentation.

Analysis. When given as input a quantified formula over n variables and m occurrences, the foregoing
protocol uses O(m2) rounds: In the first stage, the protocol invokes for each 1 ≤ t ≤ m− 1 a sum-check
protocol of t rounds (twice in parallel), and in the second stage a sum-check protocol of m rounds is
invoked (twice). This can be compared to the protocols of [Sha92, She92, GKR08], which use O(n2)
rounds. This difference between our protocol and the previous protocols results from the fact that we
work with the specialized formula (2.7) instead of the original formula (2.6).

The completeness of the protocol is easy to verify. As for the soundness, note that due to con-
siderations similar to those of the proof of Theorem 2.6.3, if the input quantified formula is not valid
then with probability at least δ it holds that either cA,1(i1) 6= vA,1 or that cB,1(i1) 6= vB,1. By ap-
plying the soundness of Theorem 2.6.3 for the m − 1 iterations, we get that with probability at least
1−m ·(m+1) ·(1− δ) it holds that either cA,m 6= vA,m or that cB,m 6= vB,m. Finally, due to the soundness
of the sum-check protocol (Theorem 2.4), we get that with probability at least 1−m · (1− δ) it holds
that either cM,φ(r) 6= vM or that cM,φsp(r′) 6= v′M , in which case the verifier rejects. By applying the
union bound, it follows that if the input quantified formula is not valid, then the verifier rejects with
probability at least 1− (m+ 1)2 · (1− δ) ≥ 1

2
, as required.

Chapter 3

Combinatorial PCPs with efficient verifiers

3.1 Introduction

3.1.1 Background and Our Results

A PCP (Probabilistically Checkable Proof) is a proof system that allows checking the validity of a
claim by reading only a constant number of bits of the proof. The PCP theorem asserts the existence
of PCPs of polynomial length for any claim that can be stated as membership in an NP language.
In this chapter, we consider the efficiency of the verification procedure, and provide a combinatorial
construction of PCPs whose verification procedure is as efficient as the ones obtained from the algebraic
constructions.

Let L be a language in NP, and consider a PCP verifier for verifying claims of the form “x ∈ L”.
Note that, while in order to verify that x ∈ L, the verifier must run in time which is at least linear in
the length of x (since the verifier has to read x), the effect of the proof length on the verifier’s running
time may be much smaller. Using the algebraic techniques, one can construct PCP verifiers whose
running time depends only poly-logarithmically on the proof length. On the other hand, the verifiers
obtained from Dinur’s proof of the PCP theorem are not as efficient, and depend polynomially on the
proof length. While this difference does not matter much in the context of standard PCPs for NP, it is
very significant in two related settings that we describe below.

PCPs for NEXP. While the PCP theorem is most famous for giving PCP systems for languages
in NP, it can be scaled to higher complexity classes, up to NEXP. Informally, the PCP theorem for
NEXP states that for every language L ∈ NEXP, the claim that x ∈ L can be verified by reading a
constant number of bits from an exponentially long proof, where the verifier runs in polynomial time.
Note that in order to meet the requirement that the verifier runs in polynomial time, one needs to make
sure the verifier’s running time depends only poly-logarithmically on the proof length.

The PCP theorem for NEXP can be proved by combining the algebraic proof of the PCP theorem
for NP (of [AS98, ALM+98]) with the ideas of Babai et al. [BFL91]. Dinur’s proof, on the other hand,
is capable of proving the PCP theorem for NP, but falls short of proving the theorem for NEXP due
to the running time of its verifiers. Our first main result in this chapter is the first combinatorial proof
of the PCP theorem for NEXP:

Theorem 3.1.1 (PCP theorem for NEXP, informal). For every L ∈ NEXP, there exists a probabilistic
polynomial time verifier that verifies claims of the form x ∈ L by reading only a constant number of bits
from a proof of length exp (poly (|x|))

Indeed, Theorem 3.1.1 could already be proved by combining the works of [AS98, ALM+98] and
[BFL91], but we provide a combinatorial proof of this theorem.

33

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 34

PCPs of Proximity. PCPs of Proximity ([BSGH+06, DR06]) are a variant of PCPs that allows a
super-fast verification of claims while compromising on their accuracy. Let L ∈ NP and suppose we wish
to verify the claim that x ∈ L. Furthermore, suppose that we are willing to compromise on the accuracy
of the claim, in the sense that we are willing to settle with verifying that x is close to some string in
L. PCPs of Proximity (abbreviated PCPPs) are proofs that allow verifying that x is close to L by
reading only a constant number of bits from both x and the proof. Using the algebraic methods, one can
construct PCPPs with verifiers that run in time which is poly-logarithmic in |x| (see, e.g., [BSGH+05]).
Note that this is highly non-trivial even for languages L that are in P.

One can also construct PCPPs using Dinur’s techniques, but the resulting verifiers are not as efficient,
and run in time poly (|x|). While those verifiers still have the property that they only read a constant
number of bits from x, they seem to lose much of their intuitive appeal. Our second main result in this
chapter is a combinatorial construction of PCPPs that allow super-fast verification:

Theorem 3.1.2 (PCPPs with super-fast verifiers, informal). For every L ∈ NP, there exists a proba-
bilistic verifier that verifies claims of the form “x is close to L” by reading only a constant number of
bits from x and from a proof of length poly (|x|), and that runs in time poly (log |x|).

Again, a stronger version of Theorem 3.1.1 was already proved in [BSGH+05], but we provide a
combinatorial proof of this theorem.

3.1.2 Our Techniques

Our techniques employ ideas from both the works of Dinur [Din07] and Dinur and Reingold [DR06]. In
this section we review these works and describe the new aspects of our work. For convenience, we focus
on the construction of super-fast PCPPs (Theorem 3.1.2).

3.1.2.1 On Dinur’s proof of the PCP theorem

We begin by taking a more detailed look at Dinur’s proof of the PCP theorem, and specifically at
her construction of PCPP verifiers. The crux of Dinur’s construction is a combinatorial amplification
technique for increasing the probability of PCPP verifiers to reject false claims. Specifically, given a
PCPP verifier that uses a proof of length `, and rejects false claims with probability ρ, the amplification
transforms the verifier into a new verifier that rejects false claims with probability 2 · ρ, but uses a proof
of length β · ` for some constant β > 1.

Using the amplification technique, we can construct PCPP verifiers that use proofs of polynomial
length as follows. Let L ∈ NP. We first observe that L has a trivial PCPP verifier that uses proofs of
length poly (n) and has rejection probability 1

poly(n)
- for example, consider the verifier that reduces L to

the problem of 3Sat, then verifies that a given assignment satisfies a random clause. Next, we apply the
amplification to the trivial verifier iteratively, until we obtain a PCPP verifier that rejects false claims
with constant probability (which does not depend on n). Clearly, the number of iterations required is
O (log n), and therefore the final PCPP verifier uses proofs of length βO(logn) · poly (n) = poly (n), as
required.

As we mentioned before, this proof yields PCPP verifiers that run in time poly (n), while we would
have wanted our verifiers to be super-fast, i.e., run in time poly (log n). The reason for the inefficiency
of Dinur’s PCPP verifiers is that the amplification technique increases the running time of the verifier
to which it is applied by at least a constant factor. Since the amplification is applied for O (log n)
iterations, the resulting blow-up in the running time is at least poly (n).

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 35

3.1.2.2 On Dinur and Reingold’s construction of PCPPs

In order to give a construction of PCPPs with super-fast verifiers, we consider another combinatorial
construction of PCPPs, which was proposed by Dinur and Reingold [DR06] prior to Dinur’s proof of the
PCP theorem. We refer to this construction as the “DR construction”. Like Dinur’s construction, the
DR construction is an iterative construction. However, unlike Dinur’s construction, the DR construction
uses only O(log log n) iterations. This means that if their construction can be implemented in a way
such that each iteration incurs a linear blow-up to the running time of the verifiers, then the final
verifiers will run in time poly log n as we desire. Our first main technical contribution is showing that
such an implementation is indeed possible. Providing such an implementation requires developing new
ideas, as well as revisiting several known techniques from the PCP literature and showing that they
have super-fast implementations.

Still, the DR construction has a significant shortcoming: its verifiers use proofs that are too long;
specifically, this construction uses proofs of length npoly logn. Our second main technical contribution is
showing how to modify the DR construction so as to have proofs of length poly (n) while maintaining
the high efficiency of the verifiers.

3.1.2.3 Our construction vs. the DR construction

Following Dinur and Reingold, it is more convenient to describe our construction in terms of “assignment
testers” (ATs). Assignment testers are PCPPs that verify that an assignment is close to a satisfying
assignment of a given circuit. Any construction of ATs yields a construction of PCPs and PCPPs, and
therefore our goal is to construct ATs whose running time is poly-logarithmic in the size of the given
circuit.

The crux of the DR construction is a reduction that transforms an AT that acts on circuits of size
k to an AT that acts on circuits of size kc (for some constant c > 0). Using such a reduction, it is
possible to construct an AT that works on circuits of size n by starting from an AT that works on
circuits of constant size and applying the reduction for O(log log n) times. However, the DR reduction
also increases the proof length from ` to `c

′
(for some constant c′ > c), which causes the final ATs to

have proof length npoly logn. Moreover, the reduction runs in time that is polynomial in the given circuit,
rather than poly-logarithmic. We turn to discuss the issues of improving the proof length and improving
the running time separately.

The proof length A close examination of the DR reduction shows that its superfluous blow-up stems
from two sources. The first source is the use of a “parallel repetition”-like error reduction technique,
which yields a polynomial blow-up to the proof length. This blow-up can be easily reduced by using the
more efficient amplification technique from Dinur’s work.

The second source of the blow-up is the use of a particular circuit decomposition technique. The
DR reduction uses a procedure that decomposes a circuit into an “equivalent” set of smaller circuits.
This part of the reduction yields a blow-up that is determined by the parameters of the decomposition.
The DR reduction uses a straightforward method of decomposition that incurs a polynomial blow-up.
In this chapter, we present an alternative decomposition method that is based on packet-routing ideas
and incurs a blow-up of only a poly-logarithmic factor, as required.

The running time For the rest of the discussion, it would be convenient to view the DR reduction
as constructing a “big” AT that acts on “big” circuits from a “small” AT that acts on “small” circuits.
The big AT works roughly by decomposing the given circuit to an equivalent set of smaller circuits,
invoking the small AT on each of the smaller circuits, and combining the resulting residual tests in a
sophisticated way. However, if we wish the big AT to run in time which is linear in the running time

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 36

of the small AT, we can not afford invoking the small AT on each of the smaller circuits since the the
number of those circuits is super-constant. We therefore modify the reduction so that it does not invoke
the small AT on each of the smaller circuits, but rather invoke it once on the “universal circuit”, and use
this single invocation for testing the smaller circuits. When designed carefully, the modified reduction
behaves like the original reduction, but has the desired poly-logarithmic running time.

In addition to the foregoing issue, we must also show that our decomposition method and Dinur’s
amplification technique have sufficiently efficient implementations. This is easily done for the decom-
position. However, implementing Dinur’s error reduction is non-trivial, and can be done only for PCPs
that possess a certain property. The efficient implementation of Dinur’s error reduction method, and of
several other known PCP techniques, is an additional contribution of this chapter.

Organization of this chapter. In Section 3.2 we cover the relevant background for this chapter and
give a formal statement of our main results. In Section 3.3 we give a high-level overview of this chapter.
In Sections 3.4 and 3.5 we define super-fast assignment testers, which are central for this chapter, and
develop tools for working with those testers. Finally, in Sections 3.6, 3.7, and 3.8, we prove the main
technical results of this chapter. A more detailed description of the organization of this chapter is given
at the end of the overview in Section 3.3.5.

3.2 Preliminaries and Our Main Results

3.2.1 Notational Conventions

For any n ∈ N, we denote [n]
def
= {1, . . . , n}. For any S ⊆ [n] and x ∈ {0, 1}n, we denote by x|S the

projection of x to S. That is, if S = {i1, . . . , is} for i1 < . . . < is, then x|S = xi1 . . . xis
For every functions g, f1, . . . , fm : N → N, we denote by g = poly (f1, . . . , fm) the fact that g is

asymptotically bounded by some polynomial in f1, . . . , fm. We use the notation g = poly log (f1, . . . , fm)
as an abbreviation for g = poly (log f1, . . . , log fm).

For any two strings x, y ∈ {0, 1}n, we denote by dist (x, y) the relative Hamming distance between x

and y, i.e., dist(x, y)
def
= Pri∈[n] [xi 6= yi]. For any string x ∈ {0, 1}∗ and a set S ⊆ {0, 1}∗, we denote

by dist (x, S) the relative Hamming distance between x and the nearest string of length |x| in S, and
we use the convention that dist (x, S) = 1 if no string of length |x| exists in S. In particular, we define
dist(x, ∅) = 1.

For any circuit ϕ, we denote by SAT(ϕ) the set of satisfying assignments of ϕ. We define the size of
ϕ to be the number of wires in ϕ.

3.2.2 PCPs

As discussed in the introduction, the focus of this chapter is on proofs that can be verified by reading
a small number of bits of the proof while running in a short time. It is usually also important to keep
track of the randomness complexity of the verifier. This leads to the following definition of PCPs.

Definition 3.2.1. Let r, q, t : N → N. A (r, q, t)-PCP verifier V is a probabilistic oracle machine that
when given input x ∈ {0, 1}∗, runs for at most t(|x|) steps, tosses at most r(|x|) coins, makes at most
q(|x|) non-adaptive queries to its oracle, and outputs either “accept” or “reject”. We refer to r, q, and
t, as the randomness complexity, query complexity and time complexity of the verifier respectively.

Remark 3.2.2. There is a tight connection between the length of the proof that a PCP verifier uses
to its randomness complexity and query complexity. To see it, note that for an (r, q, t)-PCP verifier V

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 37

and an input x, the verifier V can make at most 2r(|x|) · q(|x|) different queries, and hence the “effective
proof length” of V is upper bounded by 2r(|x|) · q(|x|).

Now that we have defined the verifiers, we can define the languages for which membership can be
verified.

Definition 3.2.3. Let r, q, t : N→ N, let L ⊆ {0, 1}∗ and let ρ ∈ (0, 1]. We say that L ∈ PCPρ [r, q, t]
if there exists an (r, q, t)-PCP verifier V that satisfies the following requirements:

• Completeness: For every x ∈ L, there exists π ∈ {0, 1}∗ such that Pr [V π(x) accepts] = 1.

• Soundness: For every x /∈ L and for every π ∈ {0, 1}∗ it holds that Pr [V π(x) rejects] ≥ ρ.

Remark 3.2.4. Note that Definition 3.2.3 specifies the rejection probability, i.e., the probability of
false claims to be rejected. We warn that it is more common in PCP literature to specify the error
probability, i.e., the probability that false claims are accepted.

Remark 3.2.5. Note that for any two constants 0 < ρ1 < ρ2 < 1, it holds that PCPρ1 [r, q, t] =
PCPρ2 [O (r) , O (q) , O (t)] by a standard amplification argument. Thus, as long as we do not view
constant factors as significant, we can ignore the exact constant ρ and refer to the class PCP [r, q, t].

Remark 3.2.6. The standard notation usually omits the running time t, and refers to the class
PCP [r, q], which equals PCP [r, q, poly(n)].

The PCP theorem is usually stated as NP ⊆ PCP [O (log n) , O(1)], but in fact, the original proof of
[AS98, ALM+98], when combined with earlier ideas of [BFL91], actually establishes something stronger.
In order to state the full theorem, let us say that a function f : N→ N is admissible if it can be computed
in time poly log f(n) (this definition can be extended for functions f of many variables).

Theorem 3.2.7 (implicit in the PCP theorem of [BFL91, AS98, ALM+98]). For any admissible function
T (n) = Ω(n), it holds that

NTIME (T (n)) ⊆ PCP [O (log T (n)) , O(1), poly (n, log T (n))]

In her paper [Din07], Dinur presented a combinatorial proof of the PCP theorem. However, while her
proof matches the randomness and query complexity of Theorem 3.2.7, it only yields a weaker guarantee
on the time complexity of the verifier:

Theorem 3.2.8 (Implicit in Dinur’s PCP theorem [Din07]). For any admissible function T (n) = Ω(n),
it holds that

NTIME (T (n)) ⊆ PCP [O (log T (n)) , O(1), poly (T (n))]

Note that due to the difference in the time complexity, Theorem 3.2.7 implies Theorem 3.1.1 (PCP
theorem for NEXP) as a special case for T (n) = exp (poly (n)), while Theorem 3.2.8 does not. One
contribution of this chapter is a combinatorial proof for Theorem 3.2.7. This proof is actually an
immediate corollary of our proof of Theorem 3.2.16 to be discussed in the next section.

3.2.3 PCPs of Proximity

3.2.3.1 The definition of PCPPs

We turn to formally define the notion of PCPs of Proximity (PCPPs). We use a definition that is more
general than the one discussed in Section 3.1. In Section 3.1, we have described PCPPs as verifiers that
a string x is close to being in a language L ∈ NP by reading a constant number of bits from x and from

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 38

an additional proof. For example, if L is the language of graphs with a clique of size at least n
4

(where
n is the number of vertices in the graph), then one can use a PCPP verifier to verify that x is close to
representing such a graph. We can consider a more general example, in which we wish to verify that x is
close to a graph of n vertices that contains a clique of size m, where m is a parameter given as an input
to the verifier. In such a case, we would still want the PCPP verifier to read only a constant number of
bits of x, but we would want to allow the verifier to read all of m, which is represented using log n bits.
It therefore makes sense to think of PCPP verifiers that are given two inputs:

1. An explicit input that is given on their input tape, and which they are allowed to read entirely.

2. An implicit input to which they are given oracle access, and of which they are only allowed to read
a constant number of bits.

In order to define the languages that such verifiers accept, we need to consider languages of pairs (w, x),
where w is the explicit input and x is the implicit input. This motivates the following definition:

Definition 3.2.9. A pair-language is a relation L ⊆ {0, 1}∗ × {0, 1}∗. For every x ∈ {0, 1}∗, we denote

L(w)
def
= {x : (w, x) ∈ L}.

Using Definition 3.2.9, we can describe the task of PCPP verifiers as follows: Given w, x ∈ {0, 1}∗,
verify that x is close to L(w) by reading all of w and a constant number of bits from x and from an
additional proof. For super-fast verifiers, we would also require a running time of poly (|w| , log |x|). In
the foregoing example of cliques of size k, the explicit input w will be of the form (n,m) and L(w) will
be the set of all graphs of n vertices that contain a clique of size m. Note that in this example w can be
represented using O (log n) bits, so super-fast verifiers will indeed run in time poly-logarithmic in the
size of the graph.

PCPs of Proximity were defined independently by Ben-Sasson et al. [BSGH+06] and by Dinur and
Reingold [DR06]1, where the latter used the term “Assignment Testers”. The question of the efficiency
of the verifiers is more appealing when viewed using the definition of [BSGH+06], and therefore we
chose to present the foregoing intuitive description of PCPPs in the spirit of [BSGH+06]. Below, we
present the definition of PCPPs of [BSGH+05], which is in the spirit of [BSGH+06] but better suits our
purposes. We then state our results according to this definition.

Definition 3.2.10 (PCPP verifier, following [BSGH+05]). Let r, q : N → N and let t : N × N → N.
An (r, q, t)-PCPP verifier is a probabilistic oracle machine that has access to two oracles, and acts has
follows:

1. The machine expects to be given as an explicit input a pair (w,m), where w ∈ {0, 1}∗ and m ∈ N.
The machine also expects to be given access to a string x ∈ {0, 1}m in the first oracle as well as
to a string π ∈ {0, 1}∗ in the second oracle.

2. The machine runs for at most t (|w| ,m) steps, tosses at most r (|w|+m) coins and makes at most
q (|w|+m) queries to both its oracles non-adaptively.

3. Finally, the machine outputs either “accept” or “reject”.

We refer to r, q and t as the randomness complexity, query complexity and time complexity of the verifier
respectively. Note that t(n,m) depends both on |w| and on |x|, while r(n) and q(n) depend only on
their sum. The reason is that we want the time complexity to depend differently on |w| and on |x| (e.g.,
to depend polynomially on |w| and poly-logarithmically on |x|).

1We mention that PCPs of Proximity are related to the previous notion holographic proofs of [BFLS91] and to the
work of [Sze99], see [BSGH+06] for further discussion.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 39

For a PCPP verifier V and strings w, x, π ∈ {0, 1}∗, we denote by V x,π (w) the output of V when
given (w, |x|) as explicit input, x as the first oracle and π as the second oracle. That is, V x,π (w) is a
short hand for V x,π (w, |x|).

Definition 3.2.11 (PCPP). Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair-language and let ρ > 0. We say that
L ∈ PCPPρ [r(n), q(n), t(n,m)] if there exists an (r(n), q(n), t(n,m))-PCPP verifier V that satisfies the
following requirements:

• Completeness: For every (w, x) ∈ L, there exists π ∈ {0, 1}∗ such that Pr [V x,π(w) accepts] = 1.

• Soundness: For every w, x ∈ {0, 1}∗ and for every π ∈ {0, 1}∗ it holds that Pr [V x,π(w) rejects] ≥ ρ·
dist (x, L(w)).

We refer to ρ as the rejection ratio of V .

Notation 3.2.12. Similarly to the PCP case, when we do not view constant factors as significant, we
will drop ρ from the notation PCPPρ [r, q, t], since for every 0 < ρ1 < ρ2 it holds that PCPPρ1 [r, q, t] =
PCPPρ2 [O(r), O(q), O(t)].

We turn to discuss two important features of Definition 3.2.11.

The soundness requirement. Note that in general, the probability that V rejects a pair (w, x) must
depends on the distance of x to L(w). The reason is that if V is given access to some x that is very
close to x′ ∈ L(w), then the probability that it queries a bit on which x and x′ differ may very small.
We mention that the requirement that the rejection probability would be proportional to dist (x, L(w))
is a fairly strong requirement, and that PCPPs that satisfy this requirement are sometimes referred to
in the literature as “Strong PCPPs”. One may also consider weaker soundness requirements. However,
we use the stronger requirement since we can meet it, and since it is very convenient to work with.

PCPPs versus PCPs The following corollary shows that PCPPs are in a sense a generalization of
PCPs:

Corollary 3.2.13 ([BSGH+06, Proposition 2.4]). Let PL ∈ PCPPρ [r(n), q(n), t(n,m)] be a pair-
language, let p : N→ N be such that for every (w, x) ∈ L it holds that |x| ≤ p (n), and define a language

L′
def
= {w : ∃x s.t. (w, x) ∈ PL}. Then it holds that L′ ∈ PCPρ [r(n), q(n), t (n, p(n))].

Proof. Let V be the PCPP verifier for PL. We construct a verifier V ′ for L′ as follows. For any w ∈ L′,
a proof π′ that convinces V ′ to accept w will consist of a string x such that (w, x) ∈ L′ and a proof π
that convinces V to accept (w, x). When invoked, the verifier V ′ simply invokes V on explicit input w,
implicit input x, and proof π. The analysis of V ′ is trivial. �

Remark 3.2.14. The proof of Corollary 3.2.13 is based on a different perspective on PCPPs than the
one we used throughout this section. So far we have treated the implicit input x as a claim to be
verified, and the explicit input w as auxiliary parameters. However, one can also view w as the claim
to be verified and x as the witness for the claim w. In this perspective, the role of the PCPP verifier is
to verify that x is close to being a valid witness for the claim w. While this perspective is often more
useful for working with PCPPs, we feel that it is less appealing as a motivation for the study of PCPPs,
and therefore did not use it in our presentation.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 40

3.2.3.2 Constructions of PCPPs and our results

The following notation is useful for stating the constructions of PCPPs.

Notation 3.2.15. Let T : N × N → N let PL ⊆ {0, 1}∗ × {0, 1}∗ be a pair-language. We say that L
is decidable in time T if there exists a Turing machine M such that when M us given as input a pair
(w, x), the machine M runs in time at most T (|x| , |w|), and accepts if and only if (w, x) ∈ PL,

Super-fast PCPPs were defined and explicitly constructed for the first time by [BSGH+05]. However,
one can obtain a simpler and weaker construction of super-fast PCPPs by combining the techniques of
the earlier works of [BFL91, AS98, ALM+98], their algebraic techniques can be modified and combined
with earlier ideas from [BFL91] to yield the following PCPPs2:

Theorem 3.2.16 (PCPPs that can be obtained from [BFL91, AS98, ALM+98]). For any admissible
function T (n,m) and a pair-language PL that is decidable in time T it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1), poly (n, log T (n,m))]

In her work [Din07], Dinur has also given a construction of PCPPs. Her focus in this part of the work
was giving PCPPs with short proofs, and in order to construct them she combined her combinatorial
techniques with the previous algebraic techniques (i.e., [BSS08]). However, one can also obtain the
following PCPPs using only Dinur’s combinatorial techniques:

Theorem 3.2.17 (PCPPs that can be obtained from [Din07]). For any admissible function T (n,m)
and a pair-language PL that is decidable in time T it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1), poly (T (n,m))]

Again, it can be shown that Theorem 3.2.16 implies Theorem 3.1.2 as a special case for T (n) =
poly (n), while Theorem 3.2.17 does not, due to the difference in the time complexity. Our main
result in this chapter is a combinatorial proof of Theorem 3.2.16. Observe that Theorem 3.2.16 implies
Theorem 3.2.7 using Corollary 3.2.13. We thus focus on proving Theorem 3.2.16.

We conclude the discussion in PCPPs by showing that Theorem 3.2.16 indeed implies a formal
version of Theorem 3.1.2.

Corollary 3.2.18 (Special case of [BSGH+06, Proposition 2.5]). Let L ∈ NP, and let PL be the pair-
language {(λ, x) : x ∈ L} (where λ is the empty string). Then PL ∈ PCPP [O(logm), O(1), poly logm]
(note that here m denotes the length of x).

Proof sketch. The main difficulty in proving Corollary 3.2.18 is that PL may not be decidable in
polynomial time (unless P = NP), and therefore we can not use Theorem 3.2.16 directly. The naive
solution would be to use Theorem 3.2.16 to construct a PCPP verifier V1 for the efficiently decidable
pair-language

PL1 = {(λ, x ◦ y) : y is a valid witness for the claim that x ∈ L}
and then construct a verifier V for PL by asking the prover to provide a witness y in the proof oracle
and emulating the action of V1 on x and y. The problem is that if x is significantly shorter than y, it
might be the case that x is far from L and yet x ◦ y is close to PL1(λ). Instead, we use Theorem 3.2.16
to construct a PCPP verifier V2 for the efficiently decidable pair-language

PL2 =

λ, x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸

|y|/|x|

◦y

 : y is a valid witness for the claim that x ∈ L

2See discussion in [BSGH+06, Sections 1.3 and 2.2] and in [BSGH+05]. The main improvement of [BSGH+05] over

those PCPPs is in the proof length, which is not the focus of the current chapter.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 41

and then construct a verifier V for PL by emulating V2 as before. For more details, see [BSGH+06,
Proposition 2.5]. �

Remark 3.2.19. We have stated Theorems 3.2.16 and 3.2.17 only for pair-languages that are decid-
able in deterministic time, but in fact, one can use them to construct PCPPs for pair-languages that
are decidable in non-deterministic time, using the same proof idea of Corollary 3.2.18. For details,
see [BSGH+06, Proposition 2.5].

3.2.4 Error Correcting Codes

We review the basics of error correcting codes [MS88]. A code C is a one-to-one function from {0, 1}k
to {0, 1}l, where k and l are called the code’s message length and block length, respectively. The rate of

the code C is defined to be RC
def
= k

l
. We say that c ∈ {0, 1}l is a codeword of C if c is an image of C,

i.e., if there exists x ∈ {0, 1}k such that c = C(x). We denote the fact that c is a codeword of C by
c ∈ C. The relative distance of a code C is the minimal relative Hamming distance between two different

codewords of C, and is denoted by δC
def
= minc1 6=c2∈C {dist(c1, c2)}.

3.2.5 Routing networks

In our circuit decomposition method (see Sections 3.3.2 and 3.7) we use a special kind of graphs called
permutation routing networks (see, e.g., [Lei92]). In order to motivate this notion, let us think of the
vertices of the graph as computers in a network, such that two computers can communicate if and only
if they are connected by an edge. There are two special sets of computers in the network: the set of
sources (denoted S), and the set of targets (denoted T). Each computer in S needs to send a message to
some computer in T , and furthermore, each computer in T needs to receive a message from exactly one
computer in S (in other words, the mapping from sources to targets is a bijection). Then, the property
of the routing network says that we can route the messages in the network such that each computer in
the network forwards exactly one message. Formally, we use the following definition of routing networks.

Definition 3.2.20. A routing network of order n is a graph G = (V,E) with two specialized sets S and
T of size n, such that the following requirement holds: For every bijection σ : S → T , there exists a set
P of vertex-disjoint paths in G that connect each v ∈ S to σ(v) ∈ T .

Routing networks were studied extensively in the literature of distributed computing, and several
constructions of efficient routing networks are known. In particular, we use the following fact on routing
networks, whose requirements are satisfied by several constructions.

Fact 3.2.21 (see, e.g, [Lei92]). There exists an infinite family of routing networks {Gn}∞n=1, where the
network Gn being of order n, and such that:

1. Gn has Õ(n) vertices.

2. The in-degree and out-degree of every vertex in the network are upper bounded by a constant, say
2.

3. The family is strongly explicit: For each n ∈ N, there exists a circuit νn of size poly log n that
when given as input the index of a vertex v of Gn, outputs the indices of the neighbors of v via
incoming edges and outgoing edges. Moreover, there exists a polynomial time algorithm that on
input n outputs νn.

4. The vertices of the first layer S are indexed from 1 to n, and the vertices of the last layer T are
indexed from n+ 1 to 2n.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 42

Routing multiple messages. We now discuss a small extension of the property of routing networks
which we use in Section 3.7. Suppose now that each source computer in the network needs to send
at most d messages to target computers, and that each target computer needs to receive at most d
messages from source computers. In such case, we can route the messages such that every computer in
the network forwards at most d messages, as can be seen in the following result.

Proposition 3.2.22 (Routing of multiple messages). Let G = (V,E) be a routing network of order n,
let S, T ⊆ V be the sets of sources and targets of G respectively, and let d ∈ N. Let σ ⊆ S × T be a
relation such that each s ∈ S is the first element of at most d pairs in σ, and such that each t ∈ T is the
second element of at most d pairs in σ. We allow σ to be a multi-set, i.e., to contain the same element
multiple times. Then, there exists a set P of paths in G such that the following holds:

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is s and
whose second vertex in t.

2. Every vertex of G participates in at most d paths in P.

Proof sketch. Without loss of generality, assume that each s ∈ S is the first element of exactly d
pairs in σ, and same for T . Then, we can decompose the relation σ into d disjoint permutations (see,
e.g.,[Cam98, Prop. 8.1.2]). We now find vertex-disjoint paths for each of the permutations separately
as in Definition 3.2.20, and take the union of all the resulting sets of paths. �

3.3 Overview

In this section we give a high-level overview of our construction of PCPPs (which, in turn, implies the
construction of PCPs). For most of this overview we focus on describing the construction itself while
ignoring the issues of efficient implementation. Then, in Section 3.3.4, we describe how this construction
can be implemented efficiently.

3.3.1 The structure of the construction

Our construction and the DR construction share a similar structure. In this section we describe this
structure and discuss the differences between the constructions.

3.3.1.1 Assignment testers

Assignment Testers are an equivalent formulation of PCPPs that was introduced by [DR06]. Both our
construction and the DR construction are more convenient to describe as constructions of assignment
testers than as constructions of PCPP. We therefore start by describing the notion of assignment testers.

An assignment tester is an algorithm that is defined as follows. The assignment tester takes as an
input a circuit ϕ of size n over a set X of Boolean variables. The output of the assignment tester is a
collection of circuits ψ1, . . . , ψR of size s� n whose inputs come from the set X ∪ Y , where Y is a set
of auxiliary variables. The circuits ψ1, . . . , ψR should satisfy the following requirements:

1. For any assignment x to X that satisfies ϕ, there exists an assignment y to Y such that the
assignment x ◦ y satisfies all the circuits ψ1, . . . , ψR.

2. For any assignment x to X that is far (in Hamming distance) from any satisfying assignment to
ϕ, and every assignment y to Y , the assignment x ◦ y violates at least ρ fraction of the circuits
ψ1, . . . , ψR.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 43

There is a direct correspondence between assignment testers and PCPPs: An assignment tester can
be thought of as a PCPP that checks the claim that x is a satisfying assignment to ϕ. The auxiliary
variables Y correspond to the proof string of the PCPP, and the circuits ψ1, . . . , ψR correspond to the
various tests that the verifier performs on the R possible outcomes of its random coins. In particular,
the query complexity of the PCPP can be upper bounded by s. Furthermore, note that the fraction ρ
corresponds to the rejection ratio of the PCPP, and we therefore refer to ρ as the rejection ratio of the
assignment tester. With a slight abuse of notation, we will also say that the circuits ψ1, . . . , ψR have
rejection ratio ρ.

Our main technical result is a combinatorial construction of an assignment tester that has R(n) =
poly (n), s(n) = O(1) and that runs in time poly log n, which implies the desired PCPs. Note that it
is impossible for an assignment tester to run in time poly log n when using the foregoing definition of
assignment testers, since the assignment tester needs time of at least max {n,R · s} only to read the
input and to write the output. However, for now we ignore this problem, and in the actual proof we
work with an alternative definition of assignment testers that uses implicit representations of the input
and the output (see discussion in Section 3.3.4).

3.3.1.2 The iterative structure

Our construction and the DR construction are iterative constructions: The starting point of those
constructions is an assignment tester for circuits of constant size3, which is trivial to construct. Then,
in each iteration, those constructions start from an assignment tester for circuits of size3 k, and use it
to construct an assignment tester for circuits of size ≈ kc0 (for some constant c0 > 1). Thus, if we wish
to construct an assignment tester for circuits of size n, we use O (log log n) iterations.

The key difference between our construction and the DR construction is in the effect of a single
iteration on the number of output circuits R. In the DR construction, each iteration increases the
number of output circuits from R to Rc′ for some constant c′ > c0 (where c0 is the foregoing constant).
Thus, after O(log log n) iterations the final assignment testers have npoly logn output circuits, which in
turn imply a PCPPs that use proofs of length npoly logn and have randomness complexity poly log n.
In contrast, in our construction a single iteration increases the number of output circuits from R to
Õ (Rc0), and thus the final assignment testers have poly(n) output circuits. Such assignment testers
imply a PCPPs that use proofs of length poly(n) and have randomness complexity O(log n), which is
our goal.

3.3.1.3 The structure of a single iteration

We proceed to describe the structure of a single iteration. For the purpose of this description, it is
convenient to assume that we wish to construct an assignment tester for circuits of size n using an
assignment tester for circuits of size nγ for some constant γ < 1 (we take γ = 1/c0, where c0 is the
constant from Section 3.3.1.2).

The general structure of an iteration. We begin with a general description of an iteration that
fits both our construction and the DR construction. Suppose that we wish to construct an assignment
tester A for circuits of size n, and assume that we already have a “small” assignment tester AS that
can take as input any circuit of size n′ ≤ nγ, and outputs R(n′) output circuits of constant size. Let
ρ denote the rejection ratio of AS . When given as input a circuit ϕ of size n over a set of Boolean
variables X, the assignment tester A proceeds in three main steps:

3By “assignment tester for circuits of size k” we refer to an assignment tester that can only take as an input a circuit
of size at most k.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 44

1. The assignment tester A decomposes ϕ, in a way to be explained in Section 3.3.2, into set of
circuits ψ1, . . . , ψm(n) of size s(n) for some m(n), s(n) < nγ (to be specified later).

2. The assignment tester A combines the circuits ψ1, . . . , ψm(n) with the assignment tester AS in some
sophisticated way that resembles the tensor product of error-correcting codes (see Section 3.3.3
for details). The result of this operation is approximately

R′ = R (O (m(n))) ·R (O (s(n)))

circuits ξ1, . . . ξR′ of constant size over variables X ∪ Y ∪ Z, that have rejection ratio Ω (ρ2).

3. The assignment tester A applies an error-reduction transformation (to be specified later) to the
circuits ξ1, . . . , ξR′ obtained in Step 2 in order to increase their rejection ratio back to ρ, and
outputs the resulting circuits.

Our construction versus the DR construction. Our construction differs from the DR iteration
in the circuit decomposition method used in Step 1 and in the error-reduction transformation used in
Step 3. We begin by discussing the latter. The DR construction uses a variant of the parallel repetition
technique in order to do the error reduction. This technique incurs a polynomial blow-up in the number
of output circuits of A, while in order to have the desired number of output circuits we can only afford
a blow-up by a poly-logarithmic factor.

In our construction, we replace the parallel repetition technique with Dinur’s amplification technique
(outlined in Section 3.1.2.1), which only incurs a constant factor blow-up. This is indeed a fairly simple
modification, and the reason that Dinur’s technique was not used in the original DR construction is
that it did not exist at that time. However, we note that in order to use Dinur’s amplification in our
context, we need to show that it can be implemented in a super-fast way, which was not proved in the
original work of Dinur [Din07] (see further discussion in Section 3.3.4).

We turn to discuss the circuit decomposition method used in Step 1. Recall that Step 2 generates
a set of R (O (m(n))) · R (O (s(n))) circuits. Thus, the choice of the functions m(n) and s(n) is crucial
to the number of output circuits of A. In particular, it can be verified that the recurrence relation
R (n) = R (O (m(n))) · R (O (s(n))) is solved to a polynomial only if the product m (n) · s (n) is upper
bounded by approximately n. However, since the decomposition method used in Step 1 must have
certain properties that are needed for Step 2, it is not trivial to find a decomposition method for a good
choice of m(n) and s(n).

The original DR construction uses a straightforward decomposition method that decomposes a circuit
of size n into m (n) = O(n3α) circuits of size s (n) = O(n1−α), where α is a constant arbitrarily close
to 0. Thus, m(n) · s(n) = O(n1+2α), which causes the final assignment testers of the DR construction
to have npoly logn output circuits. Our technical contribution in this regard is devising an alternative
decomposition method that decomposes a circuit of size n into m(n) = Õ (

√
n) circuits of size s(n) =

Õ (
√
n). Thus, m(n) · s(n) = Õ (n), which is good enough to make the whole construction have a

polynomial number of output circuits.

3.3.2 Our circuit decomposition method

In this section we describe the circuit decomposition we use in Step 1 (of Section 3.3.1.3). A circuit
decomposition is an algorithm that takes as input a circuit ϕ over Boolean variables X and “decomposes”
it to set of smaller circuits ψ1, . . . , ψm over Boolean variables X ∪ Y , such that an assignment x to X
satisfies ϕ if and only if there exists an assignment y to Y such that x ◦ y satisfies all the circuits ψi.
Note that a circuit decomposition can be viewed as an assignment tester with the trivial rejection ratio
1
m

. Alternatively, a circuit decomposition can be viewed as a generalization of the Cook-Levin reduction

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 45

that transforms a circuit into a 3-CNF formula, by taking the smaller circuits ψ1, . . . , ψm to be the
clauses of the formula.

In order to be useful for the foregoing construction, a circuit decomposition must have an additional
property, namely, it needs to have “matrix access”: We say that a decomposition has matrix access if it
is possible to arrange the variables in X and the variables of Y in two matrices such that each circuit
ψi reads a constant number of rows of the matrix. The property of matrix access is reminiscent of the
parallelization technique used in the PCP literature, and we refer the reader to Section 3.3.3.2 for more
details regarding how it is used.

3.3.2.1 The DR decomposition

Before describing our decomposition, we briefly sketch the DR decomposition. Given a circuit ϕ of size
n over a variables set X, they transform ϕ into a 3-CNF formula by adding O(n) auxiliary variables Y .
Next, they choose some arbitrarily small constant α > 0 , and arrange the variables in X ∪Y arbitrarily
in an O(nα)×O(n1−α) matrix. Finally, they construct, for each triplet of rows of the matrix, a circuit ψi
that verifies all the clauses that depend on variables that reside only in those three rows (relying on the
fact that each clause depends on three variables). This results in m = O(n3α) circuits of size O(n1−α),
as described in Section 3.3.1.3.

3.3.2.2 Our decomposition

The inefficiency of the DR decomposition results from the fact that we construct a circuit ψi for every
possible triplet of rows, since we do not know in advance which variables will be used by each clause. Prior
works in the PCP literature have encountered a similar problem in the context of efficient arithmetization
of circuits, and solved the problem by embedding the circuit into a deBrujin graph using packet-routing
techniques (see, e.g., [BFLS91, PS94]). While we could also use an embedding into a deBrujin graph
in our context, we actually use a simpler solution, taking advantage of the fact that the requirements
that we wish to satisfy are weaker. We do mention, however, that our solution is still in the spirit of
“packet-routing” ideas.

We turn to sketch the way our decomposition method works. Fix a circuit ϕ of size n, and for
simplicity assume that every gate in ϕ has exactly two incoming wires and two outgoing wires. The
decomposition acts on ϕ roughly as follows:

1. For each gate g in ϕ, the decomposition adds an auxiliary variable kg. Similarly, for each wire
(g1, g2) in ϕ, the decomposition adds an auxiliary variable k(g1g2). For a specific assignment x to ϕ
and each wire (g1, g2) in ϕ, the variables kg1 and k(g1,g2) are supposed to be assigned the bit that
g1 outputs when ϕ is invoked on x.

2. The decomposition arranges the variables in an O (
√
n) × O (

√
n) matrix M such that for each

gate g1 that has outgoing wires to gates g2 and g3, the variables kg1 , k(g1,g2), and k(g1,g3) are in the
same row of M . Then, for each row of M , the decomposition outputs a circuit that checks for
each such triplet of variables in the row that kg1 = k(g1,g2) = k(g1,g3).

3. The decomposition outputs additional circuits that “rearrange” the variables in a new order, by
routing the variables through a routing network, while using additional auxiliary variables to
represent the order of the variables at each intermediate layer of the routing network. After
the routing, the variables are arranged in an O (

√
n) × O (

√
n) matrix N that has the following

property: For each gate g1 of ϕ that has incoming wires from gates g2 and g3, the variables kg1 ,
k(g2,g1), and k(g3,g1) are in the same row of N .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 46

4. Next, for each row of N , the decomposition outputs a circuit that checks, for each gate g1 in the
row that has incoming wires from gates g2 and g3, that the variable kg1 contains the output of g1

when given inputs k(g2,g1) and k(g3,g1) .

5. Finally, D outputs an output circuit that checks that the variable kg that corresponds to the
output gate of ϕ is assigned 1.

The straightforward way for implementing the routing network in Step 3 above is the following: We first
take a routing network GO(n) of order of O(n) (see Fact 3.2.21). We then identify each vertex in the
sources set S of GO(n) with an entry of the matrix M , and each vertex of the targets set T of GO(n) with
an entry of N . Next, we construct a bijection σ that maps each entry of M to its corresponding entry
in N , and construct a set of vertex disjoint paths P that route that connect each vertex v of the sources
set S to the vertex σ(v) in the targets set T (see the definition of routing networks, Definition 3.2.20).
Finally, we add an auxiliary variable for each vertex of GO(n), and for each edge (u,w) that belongs to
one of the paths in P , we output a circuit ψi that checks that the auxiliary variables that correspond
to u and w are equal.

While the foregoing implementation of Step 3 is sound, note that it yields Õ(n) output circuits
of size O(1) - for each vertex of GO(n), we have one output circuit checking equality of two variables.

However, we need a decomposition that outputs Õ(
√
n) circuits of size Õ(

√
n). To this end, we modify

the foregoing implementation by using the possibility to route multiple messages (Proposition 3.2.22).
More specifically, we use a routing network GO(

√
n) of order O(

√
n), and route O(

√
n) messages from

each source and to each target. Here, the sources and targets of GO(
√
n) are the rows of M and N

respectively, the “messages” are again the entries of M and N , and each vertex of GO(
√
n) participates

in the routing of O(
√
n) entries. This method of routing indeed yields a decomposition with Õ(

√
n)

circuits of size Õ(
√
n).

It remains to check that the resulting decomposition indeed has matrix access. To this end, we
arrange the variables X ∪ Y in a Õ(

√
n) × O(

√
n) matrix whose rows consist of: the rows of M ; the

rows of N ; and a row for each vertex of GO(
√
n), where each such row contains one variable. One can

show that each output circuit of the decomposition queries a constant number of rows of this matrix,
by using the fact that the degrees of the vertices of GO(

√
n) are bounded by a constant.

3.3.3 The tensor product lemma

In this section we outline the proof of the following lemma, which is used in Step 2 (of Section 3.3.1.3).

Lemma 3.3.1 (Tensor Product Lemma, simplified). Let D be a circuit decomposition that when given a
circuit of size n outputs m(n) circuits of size s(n) and that has matrix access. Let AS be an assignment
tester that takes as input circuits of size n′ for any n′ ≤ O (max {m(n), s(n)}), outputs R(n′) circuits
of size O(1) and has rejection ratio ρ. Then, we can use D and AS to construct an assignment tester A
that when given as input a circuit of size n, outputs R (O (m(n))) ·R (O (s(n))) circuits of size O(1) and
has rejection ratio Ω(ρ2).

The construction of the assignment tester A from AS and D is somewhat similar to the tensor
product of error correcting codes, hence the name of the lemma. We note that the proof of this lemma
is implicit in [DR06], although they only proved it for their specific choice of D and AS. We stress that
the proof of [DR06] does not maintain the super-fast running time of the assignment tester, and that
one of our main contributions is proving the lemma for super-fast assignment testers (see discussion in
Section 3.3.4).

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 47

3.3.3.1 Warm-up: Ignoring issues of robustness

As a warm-up, we consider the following thought-experiment: Let A′ be an assignment tester that has
rejection ratio ρ. We say that A′ is idealized if when given an input circuit ϕ, the tester A′ rejects every
unsatisfying assignment x of ϕ, and not only unsatisfying assignments that are far from any satisfying
assignment to ϕ. Little more formally, we say that A′ is idealized if for every unsatisfying assignment x
of ϕ and every assignment y to Y , at least an ρ fraction of the output circuits of A′ reject x ◦ y. Of
course, it is impossible to construct an idealized assignment tester with the parameters we desire, but
for the purpose of this warm-up discussion we ignore this fact.

We now show how to prove the tensor product lemma when both A and AS are idealized (we note
that in this case, the assumption that D has matrix access is not needed). When given as input a circuit
ϕ of size n, the assignment tester A acts as follows:

1. The assignment tester A applies the circuit decomposition D to ϕ, resulting in a variable set Y
and in m(n) circuits ψ1, . . . , ψm(n) of size s(n) over X ∪ Y .

2. The assignment tester A applies the assignment tester AS to each of the circuits ψi, each time
resulting in a variables set Zi and in R (s(n)) circuits ξi,1, . . . , ξi,R(s(n)) of size O(1) over X∪Y ∪Zi.

3. The assignment tester A constructs circuits η1, . . . , ηR(s(n)) of size O (m(n)) over X ∪ Y ∪
⋃
i Zi by

defining ηj
def
=
∧m(n)
i=1 ξi,j. Note that those circuits correspond to the columns of the matrix whose

elements are the circuits ξi,j.

4. The assignment tester A applies the assignment tester AS to each of the circuits ηj, each time
resulting in a variables set Wj and in R (O (m(n))) circuits τ1,j, . . . , τR(O(m(n))),j of size O(1) over
X ∪ Y ∪

⋃
i Zi ∪Wj.

5. Finally, A outputs the R (O (m(n))) · R (s(n)) circuits τ1,1, . . . , τR(O(m(n))),R(s(n)) of size O(1) over
X ∪ Y ∪

⋃
i Zi ∪

⋃
jWj.

Clearly, the assignment tester A has the correct number and size of output circuits. It remains to
show that it has rejection ratio Ω(ρ2). Let Y ′ = Y ∪

⋃
i Zi ∪

⋃
jWj be the variables set of A. Fix an

assignment x to X that does not satisfy ϕ and fix some assignment y′ to Y ′. Since x does not satisfy
ϕ, there must exist some circuit ψi that rejects x ◦ y′. This implies that at least an ρ fraction of the
circuits ξi,1, . . . , ξi,R(s(n)) reject x ◦ y′, let us denote those circuits by ξi,j1 , . . . , ξi,jk . Now, observe that
since ξi,j1 , . . . , ξi,jk reject x ◦ y′, the circuits ηj1 , . . . , ηjk must reject x ◦ y′ as well, and that ηj1 , . . . , ηjk
form ρ fraction of the circuits η1, . . . , ηR(s(n)). Finally, for each circuit ηjh that rejects x◦y′, it holds that
at least ρ fraction of the circuits τ1,jh , . . . , τR(O(m(n))),jh reject x ◦ y′, and it therefore follows that at least
ρ2 fraction of the circuits τ1,1, . . . , τR(O(m(n))),R(s(n)) reject x ◦ y′.

3.3.3.2 The actual proof

We turn to discuss the proof of the tensor product lemma for the actual definition of assignment testers,
i.e., non-idealized assignment testers. In this case, the analysis of Section 3.3.3.1 breaks down. To see
it, fix an assignment x to X that is far from satisfying ϕ and an assignment y′ to Y ′. As argued in
Section 3.3.3.1, we are guaranteed that there exists a circuit ψi that is not satisfied by x ◦ y′. However,
we can no longer conclude that ρ fraction of the circuits ξi,1, . . . , ξi,R(s(n)) reject x ◦ y′: This is only
guaranteed when x ◦ y′ is far from any satisfying assignment to ψi, which may not be the case.

The analysis of Section 3.3.3.1 does go through, however, provided that the circuits ψ1, . . . , ψm(n) and
η1, . . . , ηR(O(s(n))) have a property called “robustness” (see Section 3.5.4). The PCP literature contains
few techniques for “robustizing” the output of an assignment tester, provided that the assignment tester
has specific properties. In this chapter, we define and analyze a generalization of the robustization
technique of [DR06], which requires the assignment tester to have the following property:

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 48

Definition 3.3.2. We say that an assignment tester A that outputs circuits of size s is has block access
if the variables in X ∪Y can be partitioned to blocks such that each output circuit of A reads a constant
number of whole blocks.

For example, every assignment tester that has matrix access also has block access, with the blocks
being the rows of the corresponding matrix. We now have the following lemma:

Lemma 3.3.3 (Robustization, simplified). Any assignment tester that has block access can be trans-
formed into a robust one, with a linear blow-up in the number and size of output circuits and a decrease
of a constant factor in the rejection ratio. Furthermore, a similar claim holds circuit decomposition that
has block access.

Therefore, in order to prove the tensor product lemma, it suffices to show that the circuits ψ1, . . . , ψm(n)

and η1, . . . , ηR(s(n)) are have block access. This is easy to do for ψ1, . . . , ψm(n), since the decomposition D
has matrix access by assumption, and thus in particular D has block access.

In order to show that the circuits η1, . . . , ηR(s(n)) have block access, we also need the assignment tester
AS to be oblivious. An assignment tester is said to be oblivious if for every i, the variables in X ∪ Y
that are queried by the i-th output circuit ψi depend only on i, and in particular do not depend on the
input circuit ϕ. The work of [DR06] has showed that every assignment tester can be transformed into
an oblivious one with an almost-linear loss in the parameters.

We now observe that if AS is oblivious, then the variables in X ∪ Y ∪
⋃
i Zi can be arranged in two

matrices, such that each circuit ηj queries a constant number of columns of those matrices. This implies
that the circuits η1, . . . , ηR(s(n)) have block access, by taking the blocks to be the columns of the latter
matrices.

More specifically, we arrange the variables in X ∪ Y in the matrix M which is guaranteed by the
fact that D has matrix access, and arrange the variables

⋃
i Zi in the matrix N whose rows are the sets

Zi. Next, observe that due to the obliviousness of AS, if we consider a single query of an output circuit
ξi,j, then the column of M or N to which the query belongs depends only on j and not on i. Hence,
corresponding queries of ξ1,j . . . , ξO(m(n)),j belong to the same columns, and this implies that ηj queries
only a constant number of columns of M and N , as required.

3.3.4 Efficiency issues

Finally, we explain the modifications that we make to the foregoing construction in order to implement
it efficiently.

3.3.4.1 Modifying the formalism

In Section 3.3.1.1, we defined an assignment tester as an algorithm that takes as input a circuit ϕ of
size n and outputs R circuits ψ1, . . . , ψR of size s. Clearly, such an algorithm must run in time at least
max {n,R · s}. However, we want our assignment testers to run in time poly log n, which is much smaller
than both n and R ·s. We therefore have to use a different notion of assignment tester in order to obtain
the desired running time.

To this end, we use succinct representations of both the input circuit and the output circuits. The
key point is that in order to construct a PCPP for NP, we only need to run our assignment tester on
circuits that are obtained from the standard reduction from NP to Circuit-Sat, and that those circuits
can be succinctly represented using poly log n bits. An assignment tester can therefore be defined4 as

4We mention that this definition of assignment testers can be viewed as a variant of the notion of “verifier specifications”
of [BSGH+05].

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 49

an algorithm that takes as input a succinct representation of a circuit ϕ and an index i, and outputs a
succinct representation of a circuit ψi. Indeed, such an algorithm can run in time poly (log n, log (R · s)).

Using this new definition of assignment testers adds an additional level of complexity to our con-
struction, since we have to implement all the ingredients of our construction (and in particular, the
decomposition method, the tensor product lemma, and Dinur’s amplification theorem) so as to work
with succinct representations.

3.3.4.2 Efficient implementation of the tensor product lemma

Working with succinct representation of circuits instead of with the circuits themselves is especially
difficult in the implementation of tensor product lemma. The main difficulty comes from the need to
generate succinct representations of the circuits η1, . . . , ηR(s(n)) (as defined in Section 3.3.3.1). Recall

that those circuits are defined by ηj
def
=
∧m(n)
i=1 ξi,j. While each of the circuits ξi,j has a succinct represen-

tation, this does not imply that their conjunction has a succinct representation. In particular, a naive
implementation of a representation for ηj would yield a representation of size Ω (m(n)), which we can
not afford.

In order to solve this problem, we observe that the output circuits ψ1, . . . , ψm(n) of D must be “simi-
lar”, since they are all generated by the same super-fast decomposition. We then show that for each j, the
similarity of the circuits ψ1, . . . , ψm(n) can be translated into a similarity of the circuits ξ1,j, . . . , ξm(n),j,
and that this similarity of ξ1,j, . . . , ξm(n),j can be used to construct a succinct representation of ηj.

To be more concrete, we sketch a simplified version of our solution5. Consider the “universal circuit”
U that is given as input a circuit ζ and a string x, and outputs ζ(x). Now, for each i, instead of invoking
AS on ψi, we invoke AS on U , and whenever one of the output circuits ξi,j makes a query to an input bit
of U that corresponds to the circuit ζ, we hard-wiring the answer to the query to be the corresponding
bit of ψi. The circuits ξi,j that are constructed in this manner should simulate the circuits ξij that were
constructed in Section 2. The point is that for any fixed j, the circuits ξ1,j, . . . , ξm(n),j are now identical
to each other, up to the foregoing hard-wiring of the answers to their queries. Using this fact, and the
fact that the representation of each of the circuits ψi is generated by the super-fast decomposition, it is
easy to construct a succinct representation of the circuit ηj. We note that in the actual construction, the
circuit U is not given the circuit ζ but rather an error-correcting encoding of the succinct representation
of ζ, and that U takes as an input an additional proof string.

3.3.4.3 A finer analysis of Dinur’s amplification theorem

In order for our assignment testers to run in time poly log n, we need to make sure that all the steps
taken in a single iteration incur only a constant factor blow-up in the running time. In particular, we
need to show this holds for Dinur’s amplification theorem, since this was not proved in [Din07].

It turns out that in order to analyze the running time of Dinur’s amplification theorem, one should
make additional requirements from the assignment testers. Specifically, recall that the proof of the
amplification theorem works by representing the assignment testers as “constraint graphs”, and by
applying various transformations to those graphs. The running time of those transformations depends
on the explicitness of those graphs. Thus, in order to be able to present a super-fast implementation
of Dinur’s amplification technique, we must make sure that the corresponding constraint graphs are
strongly-explicit.

In the context of assignment testers, a strongly-explicit constraint graph corresponds to an assign-

5We mention that a similar technique was used in [DR06] in order to transform an assignment tester to an oblivious
one.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 50

ment tester that has a super-fast “reverse lister” (a.k.a “reverse sampler”6). A reverse lister for an
assignment tester A is an algorithm that behaves as follows: Suppose that on input ϕ over variables set
X, the assignment tester A outputs circuits ψ1, . . . , ψR over variables set X ∪ Y . Then, given the name
of a variable v ∈ X ∪ Y , the reverse lister allows retrieving the list of all circuits ψi1 , . . . , ψim that take
v as input.

We therefore have to make sure that all the assignment testers we construct in this chapter have cor-
responding super-fast reverse listers, which turns out to be quite non-trivial in some of the constructions.
See Section 3.5.1 for more details regarding the definition of reverse listers.

Remark 3.3.4. We note that reverse listers are also used in the proof of the tensor product lemma,
and not just in the implementation of the Dinur’s amplification theorem.

3.3.4.4 Increasing the representation size

Recall that our iterative construction yields assignment testers that work only for circuits of a given
size, and each iteration increases the size of the circuits that can be handled. Moreover, recall that
super-fast assignment testers work with succinct representations of circuits rather than the circuits
themselves. Therefore, during our iterative construction, we need to make sure that the size of the
succinct representations for which the assignment tester works increases along with the circuits’ size.

In this chapter, we observe that the technique used by [DR06] to transform an assignment tester to
an oblivious one can also be used to increase the size of the succinct representations with which the
assignment tester can work, with the cost of decreasing the corresponding size of the input circuits by a
related factor. This observation essentially removes the need to pay attention to the size of the succinct
representations. See Section 3.5.7 for more details.

3.3.4.5 Bounding the fan-in and fan-out

Throughout this chapter, we consider circuits with unbounded fan-in and fan-out. In particular, our
definition of assignment testers requires an assignment tester to take as input a circuit ϕ with arbitrarily
large fan-in and fan-out. However, it may be easier sometimes to construct an assignment tester that
can only handle input circuits ϕ with bounded fan-in and fan-out. Thus, we would like to reduce the
construction of general assignment testers to the construction of assignment testers that can only handle
circuits with bounded fan-in and fan-out. While such a reduction is trivial to do in polynomial time in
the size of the circuits, it is not clear that this can be done in the super-fast settings, where we only
work with succinct representations.

In this chapter, we observe that the technique of [DR06] mentioned above can also be used to trans-
form assignment testers that can only handle bounded fan-in and fan-out into full-fledged assignment
testers, which can handle arbitrary fan-in and fan-out. This observation simplifies the construction of
assignment testers, and in particular simplifies our circuit decomposition method. See Section 3.5.8 for
more details.

3.3.4.6 Revisiting known PCP techniques

Our construction uses known PCP techniques such as composition (see [BSGH+06, DR06]) and robusti-
zation (see Lemma 3.3.3). However, when using those techniques in our construction, we have to make
sure that those techniques preserve the super-fast running time of the assignment testers, as well as

6The term “reverse sampler” was used in the context of PCPs [BG02]. However, we feel that the term “reverse lister”
is more natural in the context of assignment testers.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 51

super-fast running time of their corresponding reverse listers (needed for the analysis of Dinur’s ampli-
fication theorem). We thus present new implementations of those techniques that meet both the latter
conditions. In particular, we make the following contributions:

1. Composition: While a super-fast implementation of the composition technique has been proposed
in [BSGH+06], their implementation did not preserve the running time of the corresponding reverse
listers. In this chapter, we give a more sophisticated implementation that does preserve the running
time of the reverse listers. See Section 3.5.4 for more details.

2. Robustization: As mentioned in Section 3.3.3.2, in this chapter we present a generalization of
the robustization technique of [DR06]. In particular, the robustization technique of [DR06] works
only for assignment testers that have block access and whose blocks are all of the same size, and
contain only proof bits, while the bits of the tested assignment are read separately. Waiving some
of those restrictions supports a cleaner proof of the Tensor Product lemma (Section 3.3.3).
Implementing the robustization technique for super-fast assignment testers requires the assignment
tester not only to have block access, but also to have block structure that has a strongly explicit
representation. We define this representation and prove a super-fast robustization theorem. See
Section 3.5.6 for more details.

3. Proof length: We revisit the connection between the randomness complexity of a PCP and its
proof length, which is more complicated in the settings of super-fast PCPs than in the common
settings. In the PCP literature it is common to assume that the proof length of PCPs is bounded
by an exponential function in the randomness complexity. It is not clear that this can be assumed
without loss of generality in the setting of super-fast PCPs. However, we show that this assumption
can indeed be made for assignment testers that have super-fast reverse listers. See Section 3.5.2
for more details.

3.3.5 Organization of the rest of this chapter

In Section 3.4, we present the definition of super-fast assignment testers and state our main construction
of assignment testers. In Section 3.5, we develop few generic tools that are used in our construction,
but are also of independent interest, and which were mentioned in Sections 3.3.4.4 and 3.3.4.6 above.
In Section 3.6, we prove our main theorem, relying on the decomposition method and on the tensor
product lemma. In Section 3.7 we present our circuit decomposition method (which was sketched in
Section 3.3.2). Finally, in Section 3.8, we prove the tensor product lemma, which was sketched in
Section 3.3.3.

3.4 Super-Fast Assignment Testers: Definitions and Main

Theorem

Recall that our final goal in this chapter is to construct the PCPPs that were stated in Theorem 3.2.16.
As discussed in Section 3.3.1.1, the work of [DR06] used a different notion of PCPPs, which they named
“assignment testers”. Since our construction of PCPPs is based the work of [DR06], it is more convenient
for us to construct assignment testers rather than to construct the PCPPs as defined in Section 3.2.3.
However, the actual definition of assignment testers used by [DR06] is not suitable for constructing
super-fast PCPPs, and we therefore work with a variant of their definition. In this section, we present
the definition of assignment testers with which we will work throughout this chapter. We note that our
definition of assignment testers borrows ideas from the notion of “verifier specifications” of [BSGH+05],
and may be viewed as a variant of this notion.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 52

This section is organized as follows. In Section 3.4.1, we review a DR-style definition of assignment
testers, which does not support discussion of super-fast verifiers. Then, in Section 3.4.2, we discuss the
modifications that should be made to the DR-style definition in order to support discussion of super-fast
PCPPs, and present the actual definition of assignment testers with which we will work. Finally, in
Section 3.4.3, we state our construction of assignment testers, and prove that this construction implies
the desired construction of PCPPs.

3.4.1 DR-style assignment testers

We begin with some motivation for the notion of assignment testers. Suppose that we wish to construct
a PCPP for every pair-language that can decided in polynomial time. We first observe that it suffices
to construct a PCPP for the pair-language Circuit-Value defined as follows:

Circuit-Value
def
= {(ϕ, x) : x is a satisfying assignment to the circuit ϕ}

To see why, suppose that a pair language PL is decided by a machine M , and consider the following
reduction from PL to Circuit-Value. Given (w, x) ∈ PL, we construct the circuit ϕw that on input
x emulates M(w, x) and outputs the result. Now, the reduction maps the pair (w, x) ∈ PL to the
pair (ϕw, x) ∈ Circuit-Value, and it holds that PL (w) = Circuit-Value(ϕw). Therefore, a PCPP
verifier for Circuit-Value can be used to construct a PCPP verifier for PL.

Next, consider a PCPP verifier V for Circuit-Value. The behavior of V on a circuit ϕ, an
assignment x, and a proof π, can be described as follows: The verifier V tosses r coins and, based on the
coin tosses and on the circuit ϕ, chooses some “test” to be performed on x and π, where the test reads
only q bits of x and π. Now, let us view the action of V differently, and assume that instead of actually
performing the test, V outputs a circuit that performs the test. By running V on all 2r possible coin
tosses, we can view V as a transformation on circuits, that maps a circuit that depends on |x| bits to
2r circuits that depend on q bits. This view of the verifier V leads to the following definition.

Definition 3.4.1 (DR-style Assignment Testers). Let R, s, ` : N→ N and let ρ ∈ (0, 1]. An assignment
tester with outputs’ number R(n), outputs’ size s(n), proof length `(n), and rejection ratio ρ is an algorithm
that satisfies the following requirements:

• Input: The algorithm takes as an input a circuit ϕ of size n over m inputs.

• Output: The algorithm outputs R(n) circuits ψ1, . . . , ψR(n) of size at most s(n) each. The algo-
rithm also outputs sets Q1, . . . , QR(n) ⊆ [m+ `(n)] such that for each i ∈ [R(n)] the circuit ψi has
|Qi| inputs.

• Completeness: For every assignment x ∈ {0, 1}m that satisfies ϕ, there exists a string π ∈
{0, 1}`(n) such that the following holds: For every i ∈ [R(n)] the assignment (x ◦ π)|Qi satisfies ψi.
We refer to π as a proof of x, or as a proof that convinces A that x satisfies ϕ.

• Soundness: For every assignment x ∈ {0, 1}m and for every string π ∈ {0, 1}`(n), the following
holds: For at least ρ · dist (x, SAT(ϕ)) fraction of the indices i ∈ [R(n)], the assignment (x ◦ π)|Qi
does not satisfy ψi. We refer to x as the tested assignment and to π as the proof string.

Remark 3.4.2. Note that Definition 3.4.1 does not measure the query complexity of A, which can be
defined as the maximal size of a set Qi. Needless to say, the query complexity is upper bounded by the
outputs’ size s(n), and this bound suffices for our purposes.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 53

Relation to Definition 3.2.11. It can be seen that the tested assignment x and the proof string π
in Definition 3.4.1 correspond to the implicit input x and to the proof π in Definition 3.2.11, while the
circuit ϕ corresponds to the explicit input. Furthermore, the rejection ratio ρ plays the same role as in
Definition 3.2.11, and the outputs’ number R(n) is simply 2r(n) where r(n) is the randomness complexity
in Definition 3.2.10.

3.4.2 Super-fast assignment testers

We turn to define assignment testers in a way that supports discussion of super-fast verification. We
note that Definition 3.4.1 does not support such a discussion due to the issues discussed next.

3.4.2.1 The size of the input circuit

The first issue that prevents Definition 3.4.1 from supporting super-fast verification concerns the size of
the circuit ϕ. Consider a pair-language PL that can be recognized in time T (n,m), and suppose that
we wish to verify membership in PL in time poly (n, log T (n,m)). If we apply the reduction of PL to
Circuit-Value as was described in Section 3.4.1, the resulting instance of Circuit-Value will be of
length at least T (n,m). Thus, if we use the assignment testers of Definition 3.4.1 to verify PL, then
they will run in time at least T (n,m), since only reading the input circuit ϕw will take that much time.
In order to solve this issue, we observe that while the circuit ϕw is of size poly (T (n,m)), it has a “highly
uniform” structure and can therefore be represented succinctly using only poly log T (n,m) bits. Using
this representation allows speeding-up the running time of the assignment testers. To be more concrete,
we define representations of circuits:

Definition 3.4.3. A circuit ϕrep is said to be a representation of a circuit ϕ if it satisfies the following
requirements:

1. When given as input an index of a gate g of ϕ, the circuit ϕrep outputs the the function that g
computes (one of OR, AND, NOT, or one of the constants 0 and 1), and the numbers of wires
going into and out of g.

2. ϕrep may be given as an additional input an index h of an incoming wire of g, and in such case
ϕrep outputs the index of the gate from which the h-th incoming wire of g comes.

3. Same as Item 2, but for outgoing wires instead of incoming wires.

In addition, we require that, if the circuit ϕ has m inputs, then the input gates are indexed from 1 to
m.

Remark 3.4.4. In order not to confuse ϕrep with ϕ, we will always refer to ϕrep as a “representation”
and to ϕ as a “circuit”. In particular, we will never refer to ϕrep as a “circuit”.

Remark 3.4.5. The requirement that the indices of the input gates are the indices from 1 to m is for
convenience only. Instead, we could have required the representation to allow retrieving the indices of the
input gates. That is, we could have required that given an input coordinate k ∈ [m], the representation
will be able to output the index of the input gate that corresponds to k.

As noted above, we would like the representation ϕrep to be of size poly log |ϕ|. It is well-known that
such a representation exists for every circuit that is obtained from applying the standard reduction of a
Turing machine to a circuit:

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 54

Fact 3.4.6 (Folklore). Let T (n,m) be an admissible function, and let M be a Turing machine that when
given as input a pair (w, x) runs in time T (|w| , |x|). Then, there exists an infinite family of circuits
{ϕn,m}∞n=1,m=1 of size O

(
T (n,m)2) such that for every w, x ∈ {0, 1}∗ it holds that ϕ|w|,|x|(w, x) =

M(w, x). Furthermore, there exists a constant dCL such that for every n,m ∈ N, the circuit ϕn,m has
a representation ϕrep

n,m of size at most logdCL T (n,m), and there exists a Turing machine that on input

(n,m) outputs ϕrep
n,m in time logdCL T (n,m).

We now modify the definition of assignment testers to take as an input the representation ϕrep instead
of the circuit ϕ.

3.4.2.2 The size and number of the output circuits

A similar issue that should be handled is the size of the output circuits. We will sometimes be interested
in assignment testers whose outputs’ size s(n) is larger than poly log T (n,m), and therefore we can not
afford to output the circuits ψ1, . . . , ψR(n). As in the case of the input circuit, we resolve this issue by
modifying the assignment testers such that that they output the representations ψrep

1 , . . . , ψrep
R(n) instead

of the circuits ψ1, . . . , ψR(n).
Another issue we need to deal with is that the outputs’ numberR(n) may be larger than poly log T (n,m),

and therefore we can not afford to output all of the representations ψrep
1 , . . . , ψrep

R(n). This issue is resolved

by modifying the assignment tester such that it gets as an additional input an index i ∈ [R(n)], and
such that it is only required to output the representation ψrep

i , instead of outputting all the representa-
tions ψrep

1 , . . . , ψrep
R(n).

3.4.2.3 The queries sets

The next issue that we need to deal with is that the queries sets Q1, . . . , QR(n) may be larger than
poly log T (n,m), in which case we will not be able to output them. In order to resolve this issue,
we make the following modification to the definition of assignment testers: Instead of requiring the
assignment tester to output a queries set Qi, we only require it to output the κ-th element of Qi, where
κ is given as an extra input.

For convenience, we make two more modifications to the definition of assignment testers:

1. First, instead of defining Qi, . . . , QR(n) to be sets, we define them to be sequences. In particular,
Qi may contain the same query more than once, and its elements are ordered in some fixed order.
As we shall see, making the same query more than once allows us to give different “weight” to the
queries, while the possibility to choose the order of the queries will make it easier to implement
some of the procedures efficiently.
In fact, instead of treating Qi, . . . , QR(n) as sequences, it will be more convenient to treat them
as functions. That is, instead of treating Qi as a sequence in [m+ `(n)]qi , we will treat it as a
function Qi : [qi]→ [m+ `(n)].

2. We allow Q1, . . . , QR(n) to make dummy queries. A dummy query is not directed to any of the
coordinates, and always returns the bit 0. Dummy queries will be represented by the symbol
dummy. Thus, Qi will be a function from [qi] to [m+ `(n)]∪{dummy}. Dummy queries will make it
easier to control the length of the sequencesQ1, . . . , QR(n) without complicating the implementation
of the reverse listers (defined in Section 3.5.1).

The foregoing considerations lead to the following definition:

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 55

Definition 3.4.7. Let q, n ∈ N be natural numbers. A queries function is a function Q : [q] → [n] ∪
{dummy}. For any string x ∈ {0, 1}n, we denote by x|Q ∈ {0, 1}q the string defined by

(
x|Q
)
j

= x|Q(j) if

Q(j) 6= dummy and
(
x|Q
)
j

= dummy otherwise.

Given an assignment tester A and a circuit ϕ, we denote by QA,ϕ
i the i-th queries function computed

by A when invoked on the input circuit ϕ. When A and ϕ are clear from the context, we drop A and ϕ
and write only Qi.

3.4.2.4 Syntactic modifications

Except for the foregoing issues, we make two more syntactic modifications to Definition 3.4.1. Those
modifications are done in order to simplify the presentation of our results, but are not essential:

1. Instead of defining an assignment tester as an algorithm, we define it as a circuit. Recall that a
circuit can only handle inputs of a fixed size, rather than all input sizes. In particular, this means
that the assignment testers defined below can not receive any circuit as an input, but are defined
only for circuits of a fixed size. However, our main theorem (see Theorem 3.4.11 below) states a
construction of a uniform family of assignment tester circuits, so we can still use our assignment
testers for all circuit sizes.

2. An assignment tester should provide two different functionalities: Computing the representation
ψrep
i of the i-th output circuit ψi, and computing the i-th queries function QA,ϕ

i , for every i. In
order to support both functionalities, we think of the assignment tester as having two different
modes of operation: a circuit mode, in which the assignment tester computes ψrep

i , and a query
mode, in which the assignment tester computes the queries function QA,ϕ

i . We can implement this
“two modes view” by modifying the assignment tester such that it takes an additional input bit,
which determines in which mode the assignment tester is invoked.

3.4.2.5 The final definition

We are now ready to present the definition of assignment testers with which we will work throughout
this chapter. In the rest of this chapter, whenever we refer to “assignment testers” we always refer to the
following definition, and never to Definition 3.4.1. The following definition differs from Definition 3.4.1
only in the points discussed above.

Definition 3.4.8 (Assignment Testers, revised). An assignment tester A for circuits of size n with outputs’
number R, outputs’ size s, proof length `, rejection ratio ρ, tester size t, input representation size nrep, and
output representation size srep is a circuit that satisfies the following requirements:

1. Input and output: The assignment tester A operates in two modes:

a) In the circuit mode, A takes as an input a triplet (ϕrep,m, i), where i ∈ [R] and ϕrep is a
representation of a circuit ϕ of size at most n over m inputs. The size of ϕrep is required to
be at most nrep. The tester A then outputs a pair (ψrep

i , qi), where qi is a natural number,
and ψrep

i is a representation of a circuit ψi of size at most s over qi inputs. The size of ψrep
i

is at most srep.

b) In the query mode, A takes as an input a quartet (ϕrep,m, i, κ), where ϕrep, m and i are as in
the circuit mode, and κ ∈ [qi], where qi is as in the circuit mode. The assignment tester A
outputs the κ-th query of ψrep

i , i.e., A outputs QA,ϕ
i (κ), where QA,ϕ

i : [qi]→ [m+ `]∪{dummy}
is as defined in Notation 3.4.7.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 56

2. Completeness: For every assignment x ∈ {0, 1}m that satisfies ϕ there exists a string π ∈ {0, 1}`
such that the following holds: For every i ∈ [R], the assignment (x ◦ π)|Qi satisfies ψi. We refer to
π as a proof of x, or as a proof that convinces A that x satisfies ϕ.

3. Soundness: For every assignment x ∈ {0, 1}m, and for every string π ∈ {0, 1}` the following
holds: For at least ρ · dist (x, SAT(ϕ)) fraction of the indices i ∈ [R], the assignment (x ◦ π)|Qi
does not satisfy ψi. We refer to x as the tested assignment and to π as the proof string.

4. Size: The size of the assignment tester A (as a circuit) is at most t.

We will sometimes refer to n as the input size of A.

Remark 3.4.9. Note that Definition 3.4.8 specifies an upper bound on the size of the assignment tester
(i.e. the tester size t), while Definition 3.4.1 had no restrictions on the running time of the assignment
tester.

Remark 3.4.10. Definition 3.4.8 has more parameters than we would have liked it to have. However,
the most significant parameters are the circuit size n, the outputs’ number R, the outputs’ size s and
the tester size t. The rejection ratio ρ will require only little attention throughout our construction.
Furthermore, as we will see in Sections 3.5.2 and 3.5.7, we do not keep track of the proof length `
throughout this chapter, and the representations’ sizes nrep and srep are of little significance.

3.4.3 Main theorem

The rest of this chapter is devoted to proving the following theorem:

Theorem 3.4.11 (Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1, such
that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) = poly (n), out-
puts’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester size t(n, nrep) =
poly (log n, nrep), input representation size nrep, and output representation size srep(n, nrep) = O(1).
Furthermore, there exists an algorithm that on inputs n and nrep, runs in time poly (log n, nrep) and
outputs An,nrep.

We now show that the main theorem implies the desired construction of PCPPs (Theorem 3.2.16,
restated below), and thus implies the desired construction of PCPs as well (Theorem 3.2.7):

Theorem (3.2.16, restated). For any admissible function T (n,m) and a pair-language PL that is de-
cidable in time T , it holds that

PL ∈ PCPP [O (log T (n,m)) , O(1), poly (n, log T (n,m))]

Proof of Theorem 3.2.16 based on Theorem 3.4.11. The proof is straightforward, and consists
of reducing PL to Circuit-Value as discussed in Section 3.4.1 while using the representation of
the circuit instead of the circuit itself, and then applying the assignment testers of the main theorem
(Theorem 3.4.11) to the resulting representation. Details follow.

Let `(n) denote the proof length of the assignment tester of Theorem 3.4.11. Let T (n,m) and PL be
as in Theorem 3.2.16, and let M be the machine deciding PL in time T . We define a PCPP verifier V for
PL. Let {ϕn,m}∞n=1,m=1 be the infinite family of circuits that is obtained by applying Fact 3.4.6 to M , and
let ϕrep

n,m be the corresponding representation of ϕn,m for every n,m ∈ N. Recall that for every n,m ∈ N,

it holds that ϕn,m is of size at most O
(
T (n,m)2), and that ϕrep

n,m is of size at most logdCL T (n,m), where
dCL is the constant from Fact 3.4.6.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 57

We now describe the action of V when given explicit input w, implicit input x and proof π: The
verifier V begins by computing the representation ϕrep = ϕrep

|w|,|x| of the circuit ϕ = ϕ|w|,|x|. Next, V

computes the representation ϕrep
w of a circuit ϕw that is obtained by hard-wiring w into the first |w|

inputs of ϕ. Observe that PL(w) = SAT(ϕw), and it therefore remains to verify that x is close to
SAT(ϕw).

V proceeds to verify that x is close to SAT(ϕw) as follows: V chooses i ∈ [R (|ϕw|)] uniformly at
random and invokes the assignment tester A = A|ϕw|,|ϕrep

w | of the main theorem on ϕrep
w , in order to obtain

the circuit ψi (of size O(1)) and the queries function Qi : [qi] → [|x|+ `(|ϕw|)] ∪ {dummy}. Finally, V
queries its oracle to obtain (x ◦ π)|Qi and checks that this string satisfies ψi.

We turn to analyze the parameters of V . Let n = |w| and m = |x|. It should be clear that the
verifier V has constant query complexity and rejection ratio. As for the randomness complexity, observe
that V only tosses coins in order to choose i, which can be done using

logR (|ϕw|) = log
(
poly

(
T (n,m)2)) = O (log T (n,m))

coin tosses, since |ϕw| = O
(
T (n,m)2) (due to Fact 3.4.6). Similarly, the proof length of V is poly (T (n,m)).

We conclude by analyzing the time complexity of V : The representation ϕrep can be computed
in time poly log T (n,m) by Fact 3.4.6. The representation ϕrep

w can be computed from ϕrep
w in time

poly (n, log T (n,m)), by hard-wiring w into ϕrep, and changing ϕrep in the straightforward way. By
the main theorem, generating A and invoking it can be done in time poly (n, log T (n,m)) (note that
|ϕw| = poly (T (n,m)) and that |ϕrep

w | = n + poly log T (n,m)). Finally, evaluating the circuit ψi on
(x ◦ π)|Qi can be done in time O(1). �

Our main theorem can be compared to the following constructions of assignment testers of [DR06]
and [Din07] (the running time stated below is implicit in those works):

Theorem 3.4.12 ([DR06, Theorem 1.2]). Same as the main theorem, but with R(n) = npoly logn and
t(n, nrep) = npoly logn + poly (n, nrep).

Theorem 3.4.13 ([Din07]). Same as the main theorem, but with t(n, nrep) = poly(n, nrep).

3.5 Tools for Constructing Assignment Testers

In this section, we develop few tools and techniques that are useful for our purposes as well as of
independent interest. The section is organized as follows:

• In Section 3.5.1, we define the auxiliary notion of “reverse listers”.

• In Section 3.5.2, we discuss the relation between the proof length of assignment testers to their
outputs’ number and size in the setting of super-fast assignment testers, and show that for the
purpose of this chapter we can do not need to keep track of the proof length of our assignment
testers.

• In Section 3.5.3, we adapt the gap amplification technique of Dinur to the setting of super-fast
assignment testers by using reverse listers.

• In Section 3.5.4, we amend the known technique of PCPP composition such that it maintains the
efficiency of the reverse listers of the involved assignment testers.

• In Section 3.5.5, we review useful known facts on error correcting codes in which membership can
be verified efficiently. Such codes are used in Sections 3.5.6, 3.5.7, 3.5.8, and 3.8.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 58

• In Section 3.5.6, we present a super-fast and general variant of the known robustization technique.

• In Section 3.5.7, we present a generic technique for increasing the input representation size of an
assignment tester while losing only a small factor in its input circuit size. This technique reduces
the significance of the input representation size and output representation size of assignment
testers, and simplifies some of our proofs.

• In Section 3.5.8, we show that without loss of generality, it suffices to consider assignment testers
that can only handle input circuits with bounded fan-in and fan-out.

3.5.1 Reverse Listers

In this section we define the notion of reverse lister, which is a variant of the notion of reverse sampler
introduced in [BG02]. Informally, given an assignment tester A that outputs circuits ψ1, . . . , ψR, a
reverse lister for A is a circuit that maintains for each coordinate k the list of all the circuits ψi that
query k.

In the proof of our main result, we use reverse listers in order to analyze the effect of Dinur’s
amplification theorem on the tester size of assignment testers (see Section 3.5.3), as well as in the proof
of the tensor product lemma (see Section 3.8). In addition, as we show in Section 3.5.2, reverse listers
can be used to upper bound the proof length of assignment testers, which relieves us from the need to
keep track of the proof length of our assignment testers.

Before giving the formal definition of reverse listers, we first define the notion of reverse list , which
is the list that is maintained by the reverse lister:

Definition 3.5.1. Let A be an assignment tester with outputs’ number R and proof length `. Let ϕ be
a a circuit over m inputs. For each k ∈ [m+ `], we denote the reverse list of k with respect to A and ϕ
by

RevListA,ϕ(k) =
{

(i, κ) : i ∈ [R] , κ ∈ [qi] , Q
A,ϕ
i (κ) = k

}
We turn to present the formal definition of reverse listers. Note that similarly to an assignment tester,

a reverse lister should provide a few different functionalities. Thus, as in the definition of assignment
testers (Definition 3.4.8), we define the reverse lister as a circuit that has few modes of operation.

Definition 3.5.2. Let A be an assignment tester for circuits of size n, with outputs’ number R, proof
length `, tester size t, and input representation size nrep. A reverse lister RL for A is a circuit that
operates in three modes:

1. Counting mode: When given as input a triplet (ϕrep,m, k), where ϕrep is a representation of a
circuit of size n over m inputs and k ∈ [m+ `], the reverse lister RL outputs |RevListA,ϕ(k)|.
Here, ϕrep is required to be of size at most nrep.

2. Retrieval mode: When given as input a quartet (ϕrep,m, k, v) where ϕrep, m and k are as in the
counting mode, and where v ∈ [|RevListA,ϕ(k)|], the reverse lister RL outputs the v-th element
of RevListA,ϕ(k), according to some arbitrary order.

3. Reverse retrieval mode: When given as input a quintet (ϕrep,m, k, i, κ) where ϕrep, m and k
are as in the counting mode, and where (i, κ) ∈ RevListA,ϕ(k), the reverse lister RL outputs
the index v such that (i, κ) is the v-th element of RevListA,ϕ(k), according to order used in the
retrieval mode.

Remark 3.5.3. We will usually require RL to be of the same size as A, in order to avoid the need to
keep track of the size of the reverse lister in addition to keeping track of the tester size.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 59

3.5.2 On the Proof Length of Assignment Testers

In the PCP literature, it is common to assume that the proof length of a PCPP is upper bounded by
2r · q, where r and q are the randomness and query complexity of the verifier respectively. Alternatively,
in the terminology of assignment testers, the proof length of an assignment tester A is upper bounded
by R · s, where R and s are the outputs’ number and size of A respectively. The justification for this
upper bound is that R · s is the maximal number of different coordinates that the output circuits of A
may query. Hence, the “effective proof length” or the number of “effective coordinates” is at most R · s.

While in principle the assignment tester A can make queries to coordinates that are much larger
than R · s, this upper bound is indeed justified as long as we do not require our assignment testers to
be super-fast. To see it, note that given an assignment tester A with outputs’ number R, outputs’ size
s and proof length `, we can always construct an equivalent assignment tester A′ that has proof length
R · s as follows: Let S ⊆ [m+ `] be the set of “effective coordinates”, i.e., the coordinates that are
queried by at least one output circuit of A. As noted above, it holds that |S| ≤ R · s. We begin the
construction of A′ by choosing an arbitrary one-to-one mapping φ of S into [R · s]. Then, we define A′ to
be the assignment tester that emulates A while redirecting the queries of A via φ. It is easy to see that
A′ has the desired proof length, while having the same outputs’ number and size as A. Furthermore, the
mapping φ can be constructed in time that is polynomial in R, in s and in the tester size t of A. Thus,
if R, s and t are polynomially bounded (as is the case in most interesting cases), this transformation
can be carried out efficiently.

However, note that the foregoing transformation results in A′ having tester size that is at least R · s,
since A′ computes φ, computing φ requires a circuit of size R · s in the worst case. Thus, A′ can not be
super-fast. It is therefore not clear whether we can always assume that the proof length of a super-fast
assignment tester is upper-bounded by R · s. Nevertheless, it turns out that this bound can indeed be
assumed for super-fast assignment testers that have super-fast reverse listers. The reason is that given
a super-fast reverse lister, we can choose a mapping φ that has can be computed by a small circuit, as
shown in the proof of the following result:

Theorem 3.5.4. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s, proof
length `, rejection ratio ρ, tester size t, input representation size nrep and output representation
size srep.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ with the same parameters as A except that its proof length is R · s
and its tester size is t′ = O(t).

2. A reverse lister RL′ for A′ of size at most t′.

Proof sketch. As in the foregoing discussion, we denote by S the set of “effective coordinates” of A,
i.e., the set of coordinates of the proof string that are queried by at least one output circuit of A.
Theorem 3.5.4 is proved by choosing a mapping φ : S → [R · s] that can be computed efficiently using
the reverse lister RL. We then use the construction of A′ described in the foregoing discussion, while
noting that this time the resulting assignment tester A′ has tester size O(t). Details follow.

We define the mapping φ : S → [R · s] as follows. We view the set [R · s] as the set of pairs [R]× [s].
Let ϕ be a circuit of size n and let k ∈ S be an effective coordinate. Observe that this fact that k is an

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 60

effective coordinate implies that the reverse list RevListA,ϕ(k) is non-empty. Now, set φ(k) to be the
first element (i, κ) of RevListA,ϕ(k). It is easy to see that the mapping φ can be computed using the
retrieval mode of the reverse lister RL.

We now construct A′ as follows. A′ has the same output circuits as A. When A′ is required to compute
the queries function QA′,ϕ

i (κ), it first invokes A to compute k = QA,ϕ
i (κ), and then invokes RL to compute

φ(k) and outputs it. It is not hard to verify that A′ has the parameters stated in Theorem 3.5.4, and
that the corresponding reverse lister RL′ can be implemented by a circuit of size O(t). �

Dropping the proof length. Throughout this chapter all of our assignment testers have super-fast
reverse listers. Thus, in order to simplify the presentation of this chapter, we will not keep track of the
proof length of our assignment testers, and will always assume that the proof length is upper bounded
by R · s. This is acceptable, because we can always afford to apply Theorem 3.5.4 to reduce the proof
length to R · S.

3.5.3 Dinur’s Amplification Theorem

In this section we review Dinur’s amplification theorem [Din07]. The amplification theorem provides a
transformation that increases the rejection ratio ρ of a given assignment tester A to a universal constant
ρ0 at the expense of increasing the outputs’ number and tester size of A by a factor of poly (1/ρ) (provided
that the outputs’ size of A is a constant). The original amplification theorem, given in [Din07, Section
9], was proved in a different setting than ours, and also does not analyze the effect of the amplification
on the tester size. Therefore, instead of using the original theorem, we use the following variant, which
can be derived from the original theorem.

Theorem 3.5.5. There exist constants s0 ∈ N and ρ0 ∈ (0, 1), and a polynomial time procedure that
satisfy the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s, rejection
ratio ρ, tester size t, input representation size nrep and output representation size at most srep.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ for circuits of size n with outputs’ number at most poly
(
s, 1

ρ

)
·R, out-

puts’ size s0, rejection ratio ρ0, tester size at most t′
def
= poly

(
s, 1

ρ

)
·(t+ poly (srep, log (R · n))),

input representation size nrep and output representation size s0.

2. A reverse lister RL′ for A′ of size at most t′.

Deriving Theorem 3.5.5 from the original amplification theorem of [Din07] is not very difficult, but
is tedious. Since it is not the focus of this chapter, we have not included its full proof.

Theorem 3.5.5 versus the original theorem of [Din07]. As mentioned above, the main difference
between the original theorem of [Din07] and our Theorem 3.5.5 is the analysis of the tester size. There
are also three minor differences between the original theorem of [Din07] and Theorem 3.5.5: the original
theorem of [Din07] views assignment testers as “constraint graphs”; the original theorem of [Din07] only
states the effect of a single iteration of the amplification, which doubles the rejection ratio ρ, while

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 61

Theorem 3.5.5 states the effect of applying log ρ0
ρ

iterations, which increases the rejection ratio to ρ0;

and that the original theorem of [Din07] refers only to assignment testers with constant output size s
while Theorem 3.5.5 allows an arbitrary value of s.

In order to support arbitrary values of s, we observe that the output size of any assignment tester
can be reduced to from s to a constant while decreasing the rejection ratio ρ by a factor of 1/s. This can
done by composing A with an assignment tester that has input size s, constant output size, and rejection
ratio 1/s, which is trivial to construct - see Section 3.5.4 for details on composition, and Remark 3.6.2
for details on the aforementioned trivial assignment tester.

The relation of reverse listers to Dinur’s amplification theorem. As mentioned in Section 3.5.1,
the proof of Theorem 3.5.5 relies crucially on the assignment tester A having an efficient reverse lister.
To see why the reverse lister is important, recall that in Dinur’s work, an assignment tester is represented
as a “constraint graph”. The point is that the claim that an assignment tester A has a super-fast reverse
lister is equivalent to the claim that A is represented by a strongly explicit constraint graph. Now, recall
that Dinur’s amplification theorem is proved by applying graph transformations to constraint graphs.
The running time of those transformations depends on the explicitness of the constraint graphs, which
is the reason that Theorem 3.5.5 relies on the reverse lister being super-fast.

In order to see the equivalence between the efficiency reverse listers and the explicitness of constraint
graph, recall that a constraint graph is a graph whose the vertices correspond to the coordinates of the
tested assignment and the proof, and whose edges correspond to the output circuits of the assignment
tester. Now, given an assignment tester A that is represented as a constraint graph G, a reverse lister
of A corresponds to a circuit that when given the name of a vertex v of G, lists all the edges that are
adjacent to v. Thus, the reverse lister is indeed the circuit that represents G.

3.5.4 Composition of Assignment Testers

Composition of assignment testers is a technique that allows combining two assignment testers into a
new assignment tester with related parameters. This technique was used, in some form, in most of the
previous PCP constructions, starting from [AS98]. The interested reader is referred to [BSGH+06, DR06]
for a more detailed discussion of this technique. The basic idea of composition is that given an assignment
tester A1, we can decrease the size of its output circuits by applying to them a second assignment tester
A2. The assignment tester A1 is referred to as the “outer” assignment tester, and A2 is referred to as
the “inner” assignment tester.

The composition technique can only be applied when the outer assignment tester is “robust”, where
“robustness” is a strengthening of the standard soundness property (Requirement 3 of Definition 3.4.8).
Recall that, informally, the standard soundness property requires that, when the assignment tester is
invoked on an assignment x that is far from satisfying ϕ, a random output circuit ψi rejects x with
probability ρ. On the other hand, the robustness property requires that for a random output circuit
ψi, the assignment x will be far from satisfying ψi (in expectation). Formally, robustness is defined as
follows:

Definition 3.5.6. An assignment tester A is said to have (expected) robustness ρ if it satisfies the follow-
ing requirement: Let ϕ, ψ1, . . . , ψR, Q1, . . . , QR be as in the definition of assignment testers (Definition
3.4.8). Then, for every assignment x to ϕ and for every proof π it holds that

Ei∈[R]

[
dist

(
(x ◦ π)|Qi , SAT (ψi)

)]
≥ ρ · dist (x, SAT(ϕ)) .

Observe that expected robustness is a strengthening of the rejection ratio parameter. That is, if an
assignment tester that has (expected) robustness ρ, then it must also have rejection ratio at least ρ.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 62

Therefore, whenever we state the robustness of an assignment tester, we avoid stating its rejection ratio.
In Section 3.5.6 we show that every assignment tester whose queries have a certain structure can be
modified into a robust assignment tester.

A composition theorem for super-fast assignment testers has already been proved in [BSGH+05,
Section 7]. However, this theorem does not preserve the efficiency of the reverse listers of the involved
assignment testers. Below we state an alternative composition theorem that does preserve the efficiency
reverse listers, and describe the differences between the proof of this theorem and the proofs of the pre-
vious composition theorems. We note that this theorem works under slightly more restrictive conditions
than the theorem of [BSGH+05], see Remark 3.5.9 below.

Theorem 3.5.7 (Composition Theorem). There exists a polynomial time procedure that satisfies the
following requirements:

• Input:

1. An “outer” assignment tester A1 for circuits of size n with outputs’ number R1, outputs’
size n, robustness ρ1, tester size t1, input representation size nrep, and output representation
size srep

1 . Furthermore, we require that for every input circuit ϕ, all the output circuits of A1

have the same input length (though this length may vary for different input circuits ϕ).

2. An “inner” assignment tester A2 for circuits of size s1 with outputs’ number R2, outputs’
size s1, rejection ratio ρ2, tester size t2, input representation size srep

1 , and output represen-
tation size srep

2 .

3. Reverse listers RL1 and RL2 for A1 and A2 of sizes at most t1 and t2 respectively.

• Output:

1. An assignment tester A′ for circuits of size n with outputs’ number 2 · R1 · R2, outputs’

size O(s2), rejection ratio 1
4
· ρ1 · ρ2, tester size t′

def
= O (t1 + t2) + poly log (n,R1, R2), input

representation size nrep, and output representation size srep
2 + poly log(s2).

2. A reverse lister RL′ for A′ of size at most t′.

Remark 3.5.8. Without loss of generality, we may assume that n > s1 > s2 (the output size of an
assignment tester can always be assumed to be smaller than the input size, since otherwise the assignment
tester is useless). Now, observe that the assignment tester A′ improves over A1 in its outputs’ size, which
is roughly s2 < s1, and improves over A2 in its input size which is n > s1. In other words, the composed
assignment tester A′ combines the good input size of A1 with the good outputs’ size of A2. The cost of
obtaining those improvements is that A′ has larger outputs’ number and tester size than both A1 and
A2.

Remark 3.5.9. Theorem 3.5.7 works under slightly more restrictive conditions than the composition
theorem of [BSGH+05]. Specifically, Theorem 3.5.7 makes the following two additional requirements
from A1 and A2:

The most restrictive requirement is that the output circuits of A1 all have the same input length.
However, we note that this requirement is less restrictive than it may seem. The reason is that in
most applications of the composition technique in the literature, the robustness of the outer assignment
tester is obtained by applying to it some form of “robustizing” transformation, and we can design our
robustization technique (Theorem 3.5.23) such that it will guarantee that A1 satisfies this requirement
of the composition theorem.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 63

Remark 3.5.10. We note that it is not hard to modify an assignment tester such that all its output
circuits have the same input length, by taking each output circuit that has small input length and re-
peating its queries multiple times. However, this transformation does not seem to preserve the efficiency
of the reverse lister of the assignment tester.

In the rest of this section, we describe the difference between the proof of Theorem 3.5.7 and the
proofs of previous composition theorems.

In previous composition theorems, the assignment tester A′ is constructed as follows: Given an input
circuit ϕ, the assignment tester A′ first applies A1 to ϕ, then applies A2 to the resulting output circuit
ψi of A1 and finally outputs the output of A2. However, if A1 and A2 are arbitrary assignment testers,
then it may be difficult to construct an efficient reverse lister for A′. For example, consider the task of
counting the number of output circuits of A′ that query a coordinate k in the input of ϕ. In order to
compute this number, we need to compute the sum, over each output circuit ψi of A1 that queries k, of
the number of output circuits of A2 that query the corresponding input coordinate of ψi. While we can
use RL1 and RL2 to find each of the terms of this sum, the number of those terms may be too large,
and we may not be able to afford to go over all of them. Thus, it is not clear how the sum of those
terms can be computed.

This problem can be easily solved if we are given that, for every output circuit ψi of A1 and for every
coordinate k′ in the input of ψi, the number of output circuits of A2 that query k′ is the same. However,
requiring this property from A2 is too restrictive. Instead, we require that the number of output circuits
of A2 that query k′ depends only on the input length of ψ, and not on ψ itself or on k′. The latter
requirement is sufficient for our purposes, since Theorem 3.5.7 assumes that all the output circuits of
A1 have the same input length. This calls for the following definition:

Definition 3.5.11. We say that an assignment tester A is input-uniform for every assignment length
m ∈ N, the size of the reverse list RevListA,ϕ(k) is the same for all circuits ϕ over m inputs and all
tested assignment coordinates k ∈ [m].

Using the foregoing ideas, we can prove the following composition lemma for the case where A2 is
input-uniform. We do not provide the full proof here, but it can be found in [Mei09, App. A].

Lemma 3.5.12 (Composition Lemma for Input Uniform Inner Testers). Same as Theorem 3.5.7, with
the following differences:

1. A2 is required to be input-uniform.

2. We do not require that R2 ≥ s1.

3. The outputs’ number, output size, rejection ratio, and output representation size of A′ are R1 ·R2,
s2, ρ1 · ρ2 and srep

2 , respectively.

The more general Theorem 3.5.7 now follows as an immediate corollary of Lemma 3.5.13 and the
following lemma, which shows that every assignment tester can be transformed into an input-uniform
one with only a small cost:

Lemma 3.5.13. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s, rejection
ratio ρ, tester size t, input representation size nrep, and output representation size srep.

2. A reverse lister RL for A of size at most t.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 64

• Output:

1. An input-uniform assignment tester A′ for circuits of size n with outputs’ number 2 · R,
outputs’ size O(s), rejection ratio 1

4
·ρ, tester size t′ = t+poly log (n,R), input representation

size nrep, and output representation size srep + poly log(n).

2. A reverse lister RL′ of size at most t′.

Proof Sketch. We begin by defining the proof strings of A′. Let ϕ be a circuit of size n over m inputs,
let x be a satisfying assignment of ϕ, and let π be the proof that convinces A that x satisfies ϕ. Then,
the proof string that convinces A′ that x satisfies ϕ is π′ = x ◦ π.

We turn to describe the behavior of A′. The assignment tester A′ implements the following test:
Suppose that A′ is given a tested assignment x for a circuit ϕ and an alleged proof π′ = x′ ◦ π. We view
x and x′ as partitioned to m/s blocks of size s. Now, with probability 1/2, the tester A′ invokes A to
test that x′ satisfies ϕ using the proof π, and with probability 1/2 checks that x agrees with x′ on a
random block of size s. It is easy to check that A′ has the required parameters, and that both A′ and
RL′ can be implemented in size t′. �

3.5.5 Efficiently verifiable error-correcting codes

Throughout this chapter we use the fact that there exist good error correcting codes that allow an
efficient verification of the claim that for two strings w, x it holds that w = C(x). Formally:

Fact 3.5.14. There exist constants RC and δC such that for every k ∈ N the following holds:

1. There exists a code Ck with message length k, rate RC, relative distance δC and block length lk =
k/RC.

2. There exists a circuit Hk of size O(k) that takes as input strings x ∈ {0, 1}k and w ∈ {0, 1}lk , and
accepts if and only if w = Ck(x).

3. There exists an algorithm that on input k, runs in time poly log k and outputs a representation Hrep
k

of Hk. In particular, Hrep
k is of size at most poly log k.

4. There exists an algorithm that on input x ∈ {0, 1}k, computes Ck(x) in time poly(k).

The codes of Fact 3.5.14 can be constructed from any systematic LDPC code whose parity check
matrix can be represented succinctly. For example, one can use the expander codes of Spielman [Spi96],
while using a strongly explicit expander for the construction.

Remark 3.5.15. We note that the codes of Fact 3.5.14 are stronger than what we need in order to prove
the main results of this chapter. In particular, we could have relaxed Requirement 2 and require only
that the circuit Hk will be of size kpoly log k, which would have made the construction of such codes
much easier. However, the size of the circuit Hk affects the parameters of the robustization theorem
(Theorem 3.5.23). Since this theorem may be useful for future works, we wish to prove it with the best
possible parameters, and hence the use of the stronger requirements in Fact 3.5.14.

3.5.6 Robustization of Assignment Testers with Block Access

In this section, we show that every assignment tester whose queries have a certain block structure can be
transformed into a robust assignment tester. This transformation will allow us to compose assignment
testers in a relatively clean way.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 65

Basically, an assignment tester has “block access” if the coordinates of the tested assignment and the
proof string can be partitioned into blocks, such that each of the output circuits ψi of the assignment
tester queries only on a small number of blocks. While it may be natural to define a block as a set of
coordinates, we prefer a somewhat more involved definition that allows more slackness in the choice of
the blocks, which is similar to the definition of queries functions (Definition 3.4.7). Specifically, instead
of defining a block to be a subset of [m+ `], we use the following definition of a block:

Definition 3.5.16. A block of width w of [m+ `] is a function B : [w] → [m+ `] ∪ {dummy}, where
dummy represents the “dummy query”, which is always answered with 0. We require that every non-
dummy coordinate is queried by B at most once, that is, every k ∈ [m+ `] has at most one preimage
via B. We denote by |B| the width of the block B. With some abuse of notation, we will denote by
k ∈ B the fact that k is a non-dummy coordinate in the image of B.

We turn to define the notion of “block access”.

Definition 3.5.17. Let Q : [q]→ [m+ `]∪ {dummy} be a queries function (as in Definition 3.4.7), and
let B1, . . . Bb be blocks of [m+ `]. We say that Q queries B1, . . . Bb if Q queries all the coordinates in the
blocks consecutively, according to their order within the blocks. More formally, we say that Q queries
B1, . . . Bb if it holds that q =

∑b
j=1 |Bj| and

Q(1) = B1(1), . . . , Q(|B1|) = B1(|B1|)
Q(|B1|+ 1) = B2(1), . . . , Q(|B1|+ |B2|) = B2(|B2|)
...

Q

(
b−1∑
j=1

|Bj|+ 1

)
= Bb(1), . . . , Q

(
b∑

j=1

|Bj|

)
= Bb(|Bb|)

Definition 3.5.18. Let A be an assignment tester with outputs’ number R, outputs’ size s and proof
length `. We say that A has b-block access if for every circuit ϕ over m inputs there exist blocks
B1, . . . , Bp of [m+ `] whose images form a partition of [m+ `], such that the following holds: For each

i ∈ [R] there exist Bj1 , . . . , Bjb′
(for b′ ≤ b) such that the queries function QA,ϕ

i queries Bj1 , . . . , Bjb′
.

For each i ∈ [R], we refer to the corresponding blocks Bj1 , . . . , Bjb′
as the blocks queried by ψi (where

ψi is the i-th output circuit obtained by applying A to ϕ). Note that |Bj| ≤ s for all blocks Bj, since
each circuit ψi has size at most s.

For technical reasons that have to do with the efficiency of the implementation, we also make the
following requirements:

1. We require that every block contains either only tested assignment coordinates, or only proof
coordinates (but in both cases it may contain dummy coordinates). More formally, the image of
each block is either contained in [m] ∪ {dummy} or in [m+ `] ∪ {dummy} \ [m]. We refer to the
first type of blocks as assignment blocks and to the second type of blocks as proof blocks.

2. We require that all the assignment blocks are of the same width.

3. We require that for every assignment block Bj, the number of non-dummy coordinates in the block
image is at least (1/3) fraction of the block width.

4. We require that the assignment blocks will precede the proof blocks in the order of the blocks.

Remark 3.5.19. We stress that the different proof blocks in Definition 3.5.18 may be of different widths.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 66

Every assignment tester that has b-block access and rejection ratio ρ can be transformed into a robust
assignment tester with robustness Ω(ρ/b). However, in order to make the transformation preserve the
efficiency of the assignment tester, we need the assignment tester to have a block structure that can be
efficiently computed. This motivates the following notion of “block access circuit”, which computes the
block structure efficiently.

Before giving the formal definition of block access circuits, we note that similarly to an assignment
tester, a block access circuit should provide few different functionalities. Thus, as in the definitions of
assignment testers and reverse listers (Definitions 3.4.8 and 3.5.2), we define the block access circuit as
a circuit that has a few modes of operation.

Definition 3.5.20. Let A, R, `, b, ϕrep, m, ψ1, . . . , ψR, and B1, . . . , Bp be as in Definition 3.5.18. A
block access circuit BA for A is a circuit that operates in five modes:

1. Number of Blocks mode: When given ϕrep and m, the circuit BA outputs the corresponding
number of blocks p.

2. Block to Coordinate mode: When given ϕrep, m, j ∈ [p], and v ∈ [|Bj|], the circuit BA outputs
Bj(v) and|Bj|.

3. Coordinate to Block mode: When given ϕrep, m and k ∈ [m+ `] , the circuit BA outputs the
unique j ∈ [p] and v ∈ [|Bj|] such that Bj(v) = k.

4. Number of Assignment Blocks mode: When given ϕrep and m, the circuit BA outputs the
corresponding number of assignment blocks.

5. Circuit to Blocks mode: When given ϕrep, m, and i ∈ [R], and v ∈ [b], the circuit BA outputs
the index of the v-th block that is queried by the output circuit ψi, and the number b′ of blocks
that are queried by ψi.

Remark 3.5.21. As in the case of reverse listers, we will always require that the size of BA is upper
bounded by the tester size of A, in order to avoid the need to introduce an extra parameter that measures
the size of BA.

Remark 3.5.22. Note that if an assignment tester A has a block access circuit BA, then the queries of
A are determined by BA, and especially by its Circuit to Blocks mode. In particular, the query mode
of A can be implemented by simple invocations of BA.

We turn to show how to transform any assignment tester that has block access into a robust as-
signment tester. This transformation is a generalization of the robustization technique of [DR06] and
[BSGH+06] (the latter used the term “alphabet reduction”), and is also related to the bundling tech-
nique of [BSGH+06], and to the parallelization technique of [AS98, ALM+98]. We prove the following
result.

Theorem 3.5.23. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n that has b-block access, outputs’ number R,
outputs’ size s, rejection ratio ρ, tester size t, input representation size nrep, and output
representation size srep.

2. A reverse lister RL for A of size at most t.

3. A block access circuit BA for A of size at most t.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 67

• Output:

1. An assignment tester A′ for circuits of size n with robustness Ω (ρ/b), outputs’ number 2 ·R,
outputs’ size O(b · s), tester size t′ = O (t) + b · poly log (R, s, n), input representation size
nrep, and output representation size srep + b · poly log (s).

2. A reverse lister RL′ for A′ of size at most t′.

Furthermore, A′ has the following property: On every input circuit ϕ, all the output circuits of A′ have
the same input length.

Remark 3.5.24. Note that the “furthermore” part is important. The reason is that this property
is required in order to apply the composition theorem while using A′ as the outer verifier. See the
statement of the composition theorem (Theorem 3.5.7) for details.

Proof sketch. Below we sketch the proof of Theorem 3.5.23, and in particular the construction of A′

and the analysis of its robustness. We do not provide here the full proof of Theorem 3.5.23, but it can
be found in [Mei09, App. B].

Let ϕ be a circuit of size n over m inputs. We describe the action of A on ϕ. Let us denote by ` the
proof length of A. Let ψ1, . . . , ψR and Q1, . . . , QR be the output circuits and queries functions obtained
by applying A to ϕ, and let B1, . . . , Bp be the blocks of A that correspond to ϕ.

The basic argument: The basic idea of the proof of Theorem 3.5.23 is as follows. Let x be a
satisfying assignment for ϕ, and let π be the proof of x. We construct the proof π′ that convinces A′

to accept x by encoding each of the strings (x ◦ π)|B1
, . . . , (x ◦ π)|Bm via an error correcting code C

with relative distance δC , and appending the encoding of the blocks to π (specifically, we use the codes
of Section 3.5.5). Let Ej denote the encoding of the (x ◦ π)|Bj via C. The assignment tester A′ is

constructed by modifying the circuits ψ1, . . . , ψR into the following “robustized” circuits ψrob
1 , . . . , ψrob

R :
If a circuit ψi queries the blocks Bj1 , . . . , Bjb′

, then the corresponding circuit ψ′i queries both Bj1 , . . . , Bjb′

and Ej1 , . . . , Ejb′ , and verifies that Bj1 , . . . , Bjb′
satisfy ψi and that Ej1 , . . . , Ejb′ are indeed the correct

encodings of (x ◦ π)|Bj1
, . . . , (x ◦ π)|Bjb′

respectively.

To see why A′ should be robust, consider an assignment x that is ε-far from SAT(ϕ) and some proof
string π′. As a warm-up, assume that π′ consists of a proof π for A, and of the correct encoding Ej of
(x ◦ π)|Bj via C for each block Bj. Furthermore assume that all the blocks B1, . . . , Bp are of the same
width. By the rejection ratio of A, at least ρ · ε fraction of the output circuits ψi of A reject x ◦ π.
We show that for each output circuit ψi that rejects (x ◦ π)|Qi , it holds that x ◦ π′ is Ω (1/b)-far from

satisfying ψrob
i . This will imply that for a random i ∈ [R] it holds that x ◦ π′ is Ω(ρ/b) · ε far from

satisfying ψrob
i (in expectation), and will therefore imply the robustness of A′.

Fix an output circuit ψi of A that rejects x ◦ π. Then, there exists a coordinate k ∈ [m+ `] that is
queries by k and whose value needs to flipped in order to make ψi accept. Let Bj denote the block to
which k belongs. Now, observe that in order to make ψrob

i accept x and π′, at least δC fraction of the
bits of the encoding Ej need to be changed. Moreover, the encoding Ej forms at least Ω (1/b)-fraction
of the input of ψrob

i , since by our assumption all the blocks are of the same width. Thus, it holds that
the input of ψrob

i is Ω (δC/b)-far from SAT(ψrob
i), and the required robustness follows (note that δC is a

universal constant, and hence Ω (δC/b) = Ω (1/b)). We turn to removing the warm-up assumptions.

Dealing with multiple block widths: We first remove the assumption that the blocks B1, . . . , Bp

are of the same width. Recall that we used this assumption in order to argue that the encoding Ej
forms Ω (1/b)-fraction of the input of ψrob

i . If the blocks are not of the same width, then the block Bj

may have a very small width, in which case Ej will only constitute a small part of the input of ψrob
i .

We resolve this issue by making the circuit ψrob
i query the blocks of small width several times, so those

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 68

blocks form a significant portion of its input. This solution uses the convention that an output circuit of
an assignment tester may query the same coordinate more than once (see discussion in Section 3.4.2.3),
so the circuit ψrob

i is allowed to query the same block several times.

Dealing with inconsistencies between x and the Ej’s: It remains to remove the assumption
that the for each j, the string Ej is the correct encoding of (x ◦ π)|Bj . Note that the proof π′ may not
meet this condition. In such a case, the analysis of the basic argument breaks down: Even if we know
that a circuit ψi rejects x and π, and that some bits of (x ◦ π)|Bj need to be flipped to make ψi accept,
one would still may not need to change the string Ej in order to make ψi accept, since Ej may be the
encoding of (x ◦ π)|Bj after flipping these bits. Thus, even though ψi rejects x◦π′ in this case, the string

x ◦ π′ may still be close to satisfying it.
In order to resolve this issue, we consider the assignment xdec and the proof πdec that are obtained

by decoding each string Ej in π′ to the nearest legal codeword of Ck. If xdec is far from SAT(ϕ) then
the basic argument can be used as before, by replacing x with xdec and π with πdec. It thus remains to
deal with the case that xdec is close to SAT(ϕ).

Suppose that xdec is close to SAT(ϕ). Note that this implies that x and xdec are far from each
other, since by assumption x is far from SAT(ϕ). We can thus detect the error in this case by checking
consistency between x and xdec. To this end, we modify A′ to output additional “consistency” cir-
cuits ψcon

1 , . . . , ψcon
R . Each consistency circuit ψcon

i queries some assignment block Bj and its purported
encoding Ej, and checks that Ej is indeed the correct encoding of Ej.

We can now make the following argument: If xdec is far from SAT(ϕ), then the foregoing basic
argument shows that many of the circuits ψrob

i are far from being satisfied by x◦π′ . On the other hand,
if xdec is close to SAT(ϕ), then x is far from xdec and thus many of the circuits ψcon

i are far from being
satisfied by x ◦ π′ . This establishes the robustness of A′.

We note that in the second part of the foregoing argument (i.e., when xdec is close to SAT(ϕ)), one
should be careful about a certain points: In order for the argument to hold, we need to show that if x is
far from xdec then, for a random assignment block Bj it holds that x|Bj is far from xdec

|Bj . To this end, we
construct the consistency circuits ψcon

1 , . . . , ψcon
R such that each coordinate of the tested assignment is

checked by roughly the same number of consistency circuits. More specifically, the consistency circuits
ψcon

1 , . . . , ψcon
R are constructed such that each assignment block is queried by roughly the same number

of consistency circuits. By combining this with the assumptions of Definition 3.5.18 that all assignments
blocks are of the same width, and that in each block the fraction of assignment coordinates is at least
one third of the width, it follows that each coordinate of the tested assignment is checked by roughly
the same number of consistency circuits. �

3.5.7 Increasing the Representation Size, and Universal Circuits

In this section we present a technique for increasing the input representation size of an assignment tester.
Along the way, we construct “universal circuits” (Section 3.5.7.2), which will also be used in the proof
of the tensor product lemma (in Section 3.8)

One of the more cumbersome features of our definition of super-fast assignment testers is the need
to keep track of both the input circuit size and the input representation size, rather than tracking only
the input circuit size. The same holds for the outputs’ size and the output representation size. In this
section we discuss a result which shows that the input representation size of an assignment tester can
always be made as large as we want, while paying a reasonable cost in the input circuit size. This fact
has two useful implications:

1. The input representation size of an assignment tester is of little importance, since it can be made
as large as needed.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 69

2. The output representation size of an assignment tester is of little importance. The reason is
that the output representation size is relevant mostly for the purposes of composition, i.e., in
order to ensure that the output representations of the outer tester are not larger than the input
representation size of the inner tester. Now, since the input representation size of the inner tester
can always be made as large as the output representation size of the outer tester, the output
representation size loses its significance as well.

The formal result is as follows.

Lemma 3.5.25 (Input Representation Lemma). There exists a polynomial time procedure that satisfies
the following requirements:

• Input:

1. An assignment tester A for circuits of size n that has outputs’ number R, outputs’ size s,

rejection ratio ρ, tester size t, input representation size nrep def
= poly log (n) and output repre-

sentation size srep.

2. A reverse lister RL for A of size at most t.

3. A number nrep′ that is represented in unary, such that nrep′ ≥ nrep.

• Output:

1. An assignment tester A′ for circuits of size n′ = n/ (nrep′ · poly log (n)) that has input rep-
resentation size nrep′ , outputs’ number R, outputs’ size s + O(1), rejection ratio ρ′ = Ω(ρ),
tester size t′ = O(t) + poly (log n, nrep), and output representation size srep + poly log (s).

2. An reverse lister RL′ of size at most t′.

Note that the procedure stated in Lemma 3.5.25 indeed increases the input representation size of the
assignment tester from nrep to nrep′, but decreases the input circuit size by a factor of nrep′ · poly log (n).

In Section 3.5.7.1 below, we sketch the proof of Lemma 3.5.25. Then, in Section 3.5.7.2 we define
and construct universal circuits, which are a central gadget of the proof and are also used in the proof
of the tensor product lemma in Section 3.8. We do not provide a the full proof of Lemma 3.5.25, since
it is straightforward (given the sketch below) and is tedious. However, a similar technique is used in the
implementation of the tensor product lemma (Section 3.8).

Remark 3.5.26. We note that the construction of the assignment tester A′ of Lemma 3.5.25 is not a
new one, and in particular, [DR06] used a similar construction in order to transform assignment testers
to oblivious ones. The novelty of this chapter in this context is the observation that this construction
can also be used to increase the input representation size of an assignment tester.

3.5.7.1 Proof overview

The basic idea of how the input representation size can be increased is as follows. Suppose we have the
following objects:

1. A circuit ϕ of size n′ that has a representation ϕrep of size nrep′.

2. An assignment testerA that has input circuit size n ≥ n′·nrep′·poly log (n′) and input representation
size nrep ≥ poly log (n′).

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 70

Suppose now that we wish to invoke A on ϕ and on tested assignment x. The problem is that the input
representation size of A may be much smaller than the size of ϕrep. Thus, we can not apply A directly
to ϕ. Instead, we take the following indirect approach.

Consider a “universal circuit” U that takes as an input a representation ζrep of a circuit ζ and an input
y for ζ, and outputs ζ (y) (where ζrep and ζ are of sizes nrep′ and n′ respectively). As we will see below
(in Section 3.5.7.2), a variant of such a universal circuit can be implemented in size n′ ·nrep′ ·poly log (n′),
and has a representation of size poly log (n′). Now, we construct an assignment tester A′ with input
circuit size n′ and input representation size as follows. When A′ is invoked on input ϕrep and on tested
assignment x, it emulates the invocation of the assignment tester A on input circuit U and on tested
assignment (ϕrep, x). Hopefully, this invocation of A on U is equivalent to the action of A on ϕ, even
though A is not applied to ϕ directly. The emulation of A is done by invoking A on U , obtaining an
output circuit ψi, then fixing the input gates of ψi that correspond to bits of ζrep to the corresponding
values in ϕrep, and finally outputting the resulting circuit.

This construction of A′ essentially emulates the action of A on the circuit ϕ, even though the input
representation size of A may be much smaller than the size of ϕrep. Thus, we effectively increase the
input representation size of A. While this construction almost works, there are few issues that need to
be resolved, to be discussed next.

Using a weaker definition of U . The first issue is that we do not know how to implement the
foregoing definition of U in size n′ · nrep′ · poly log (n′). Thus, we use a weaker definition that still suits
our purposes - instead of requiring U to compute ζ(y) (when given as input the pair (ζrep, y)), we only
require U to verify that ζ accepts y, and to that end allow U to use an “auxiliary witness”. Note that
this weaker definition of U is still useful, since assignment testers too are only required to verify that
the input circuit accepts, and are allowed to use an auxiliary proof.

More specifically, we modify U such that it takes as input a tuple (ζrep, y, z) where z is an auxiliary
string, and act as follows:

1. If y is a satisfying assignment of ξ, then U accepts (ζrep, y, z) for some string z.

2. If y is not a satisfying assignment of ξ, then U rejects (ζrep, y, z) for every string z.

We now modify the definition of A′ as follows: On input representation ϕrep, tested assignment x and
proof string z ◦ π, the assignment tester A′ emulates the invocation of A on input circuit U , on tested
assignment (ϕrep, x, z) and on proof string π.

Encoding ϕrep via an error correcting code. We turn to describe the second issue that should
be resolved. Invoking A on U and on tested assignment (ϕrep, x, z) does not verify that x is close to a
satisfying assignment of ϕ, but rather that the whole triplet (ϕrep, x, z) is close to a satisfying assignment
of U . In particular, it could be that x is far from any satisfying assignment of ϕ, but ϕrep is close to
a representation of a circuit ϕ′ that is satisfied by x. In this case, the triplet (ϕrep, x, z) is close to the
satisfying assignment (ϕrep′, x, z)of U (where ϕrep′ is the representation of ϕ′) even though x is far from
any satisfying assignment of ϕ.

We resolve this issue by constructing an augmented universal circuit Û as follows. The input of Û
consists of the inputs ζrep, y and z of U , and in addition, of a string c that is expected to be the encoding
of ζrep via the error correcting codes of Section 3.5.5. The circuit Û will now accept if and only if U
accepts (ζrep, y, z), and in addition that c is the correct encoding of ζrep. The point is that due to the
distance property of the error correcting code, the string c can not be close to encodings of two distinct
representations at the same time. Therefore, if c is indeed the correct encoding of ϕrep, then except for
an issue to be discussed next, we expect that the tuple (ϕrep, c, x, z) to be close to a satisfying assignment

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 71

of Û if and only if x is close to a satisfying assignment of ϕ. Now, A′ will emulate the invocation of A
on input circuit Û and on tested assignment (ϕrep, c, x, z).

Reweighing c, x and z. The third issue is that if the length of x is very small compared to the length
of the tuple (ϕrep, c, x, z), then it could be the case that x is very far from a satisfying assignment to ϕ,
but the tuple (ϕrep, x, z) is close to a satisfying assignment of Û . A similar consideration applies to the
length of c. In order to resolve this issue, we modify the input of Û such that it contains many copies
of x and of c, thereby increasing the “weight” of x and c within the input of Û . The resulting circuit Û
will reject if the alleged copies of x and c are not equal to one another.

Emulating the invocation of A. Finally, we elaborate a little more on how the emulation of the
invocation of A is performed. Recall that we wish to emulate the invocation of A on Û and on a tested
assignment that consists of ϕrep, of multiple copies of the encoding c of ϕrep, of multiple copies of x, and
of the witness z (where z is provided in the proof string of A′). We perform the emulation by redirecting
the queries functions of A on Û as follows:

1. Whenever an output circuit of A queries a coordinate of one of the multiple copies of x in the tested
assignment of A, the assignment tester A′ redirects the query to the corresponding coordinate of
the unique copy of x in the tested assignment of A′.

2. Whenever an output circuit of A queries a coordinate of z in the tested assignment of A, the
assignment tester A′ redirects the query to the corresponding coordinate of z in the proof string
of A′.

3. The last case, where an output circuit of A queries a coordinate of ϕrepor of c in the tested
assignment of A, is slightly more complicated. The key point is that ϕrep and c are not given in
the tested assignment or proof string of A′, but are rather computed by A′ directly. Thus, instead
of redirecting the query to a coordinate of the tested assignment or proof string of A′, we would
like to force the query to be answered with a known bit.
To this end, we require the proof string of A′ to contain two additional special coordinates, which
should contain 0 and 1. Now, whenever we would like to force the answer to a query to be 0 or 1,
we redirect the query to corresponding special coordinate. In order to force the special coordinates
to contain 0 and 1, we modify the output circuits of A′ such that each output circuit of A′ queries
the special coordinates and checks that they are assigned the correct values.

Wrapping all up. We conclude by reviewing the final construction of A′. When A′ is invoked in
circuit mode on a representation ϕrep of an input circuit ϕ, and on index i ∈ [R], the assignment tester
A′ acts as follows:

1. A′ begins by invoking A to compute the representation of ψi, the i-th output circuit of A when
invoked on the representation Ûrep.

2. A′ computes the encoding c of ϕrepvia the error correcting code of Section 3.5.5.

3. A′ outputs the representation of a circuit ψ′i, which emulates ψi, and in addition queries the two
special coordinates and verifies that they are assigned 0 and 1 as required.

4. A′ computes the queries function QA′,ϕ
i of ψ′i by redirecting the queries function QA,Û

i of ψi as
explained above.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 72

3.5.7.2 Universal circuits

In this section we describe how to construct the universal circuits discussed in Section 3.5.7.1. This
construction is used not only in this section, but also in Section 3.5.7.2 and in the proof of the tensor
product lemma in Section 3.8. We begin by proving the following result:

Lemma 3.5.27. There exists a polynomial time procedure that when given as input numbers n, m ≤ n,
and nrep, outputs a representation U rep = U rep

n,nrep,m (of size poly log (n)) of a circuit U = Un,nrep,m (of
size n · nrep · poly log (n)) that satisfies the following requirements:

1. The circuit U takes as input a representation ζrep (of size at most nrep) of a circuit ζ (of size at
most n) over m inputs, an input y ∈ {0, 1}m to ζ, and an additional string z of length O(n).

2. If y is a satisfying assignment of ζ, then U accepts (ζrep, y, z) for some string z. We refer to z as
the witness that convinces U that y satisfies ζ.

3. If y is not a satisfying assignment of ξ, then U rejects (ζrep, y, z) for every string z.

Proof Sketch. The construction of U is similar to the circuit decomposition method described in
Sections 3.3.2 and 3.7, but is somewhat simpler. We first present a construction of a circuit U of
size n · poly (nrep, log n), and then explain how modify the construction to yield a circuit U of size n ·
nrep · poly log (n).

In order to construct a circuit U of size n · poly (nrep, log n), we view the auxiliary string z as a
sequence of variables, where for each gate g and each wire w there are corresponding variables kg and
kw in z. The variable kg (respectively, kw) is expected to be assigned the value that is output by g
(respectively, carried by w) when ζ is invoked on input y. The variables are expected to be arranged
in z such that each gate variable kg is followed by the variables that correspond to the outgoing wires
of g. That is, z should begin with the variable which corresponds to the first gate, followed by all the
variables that correspond to the outgoing wires of that gate. The next variables in z the variable which
corresponds to the second gate, again followed by all the variables that correspond to the outgoing wires
of that gate, etc. The circuit U acts as follows:

1. The circuit U begins by checking that for each gate g and its outgoing wires w1, . . . , wd (where
d ≤ 2), it holds that kg = kw1 = . . . = kwd , and rejects if one of the checks fails. Clearly, this can
be done in size O(n).

2. Then, the circuit U rearranges the variables in z such that each gate variable kg is followed by the
variables that correspond to the incoming wires of g rather than outgoing wires of g. That is, the
new arrangement should begin with the variable which corresponds to the first gate, followed by
all the variables that correspond to the incoming wires of that gate, and then the same for the
second gate, etc. This rearrangement can be computed in size n ·poly (nrep, log n) by implementing
a standard sorting algorithm, where the poly (nrep) factor is due to the need to invoke ζrep in order
to determine the wires that are connected to each gate in ζ.

3. Finally, the circuit U checks for each gate g and its incoming wires w1, . . . , wd (where d ≤ 2), that
kg is assigned the output of the gate g when given as input the values of kw1 , . . . , kwd . Clearly, this
can be done in size n · poly (nrep), where the poly (nrep) factor is due to the need to invoke ζrep in
order to find the Boolean function computed by each gate.

It should be clear that U is of size n·poly (nrep, log n). In order to reduce the size of U to n·nrep·poly log n,
note that the poly (nrep) factor in the foregoing construction is since each evaluation of the representation
ζrep requires a circuit of size poly (nrep). Now, the crucial observation is that the circuit U does not

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 73

need to evaluate ζrep by itself. Instead, we can require the auxiliary string z to contain the result of
the evaluation of ζrep, and then we require U only to verify the correctness of this result, again using
the auxiliary witness z . The verification of the computation of ζrep can be done in the same way the
verification of the computation of ζ is done by U above, using a circuit of size Õ(nrep). After using this
efficiency improvement, we get an implementation of U of size n · nrep · poly log (n).

It is easy to verify that U has a representation of size poly log (n), and that this representation can
be constructed in polynomial time. We mention that in the foregoing calculations we used the fact that
without loss of generality it holds that nrep ≤ poly (n) and hence poly log (nrep) = poly log (n) . The
assumption that nrep ≤ poly (n) can be made since every circuit of size n has a trivial representation of
size poly (n), and hence there is no need to consider larger representations. �

We turn to state the construction of the augmented circuit Û that was described in the overview.
The following result is a direct corollary of Lemma 3.5.27:

Corollary 3.5.28. There exists a polynomial time procedure that when given as input the numbers
n, m ≤ n, and nrep, outputs a representation Û rep = Û rep

n,nrep,m (of size poly log (n, nrep)) of a circuit

Û = Ûn,nrep,m (of size n · nrep · poly log (n, nrep)) that satisfies the following requirements:

1. The circuit Û takes as input a representation ζrep (of size at most nrep) of a circuit ζ (of size at
most n) over m inputs, a sequence of strings c1, . . . , cα of length O(nrep), a sequence of strings
y1, . . . , yβ of length m, and a string z of length O(n). The numbers α and β are chosen such that
the total length of each of c1 ◦ . . . , ◦cα and y1 ◦ . . . ◦ yβ is at least 1/4 fraction of the input length
of Û .

2. For every representation ζrep and strings c1, . . . , cα, y1, . . . , yβ, there exists a string z such that Û
accepts ζrep, c1, . . . , cα, y1, . . . , yβ and z if and only if the following conditions hold:

a) c1 = . . . = cα and y1 = . . . = yβ.

b) c1 is the encoding of ζrep via the error correcting codes of Fact 3.5.14.

c) y1 is a satisfying assignment of ζ.

As before, we refer to z as the witness that convinces U ′ that y1 satisfies ζ.

3.5.8 Bounding the fan-in and fan-out of input circuits

So far, we discussed circuits with unbounded fan-in and fan-out. In particular, our definition of assign-
ment testers requires an assignment tester to take as input a circuit ϕ with arbitrarily large fan-in and
fan-out. However, it may be easier sometimes to construct an assignment tester that can only handle
input circuits ϕ with bounded fan-in and fan-out. Thus, we would like to reduce the construction of
general assignment testers to the construction of assignment testers that can only handle circuits with
bounded fan-in and fan-out. While such a reduction is trivial to do in polynomial time in the size of
the circuits, it is not clear that this can be done in the super-fast settings, where we only work with
succinct representations.

In this section, we observe that it is possible to transform assignment testers that can only handle
bounded fan-in and fan-out into a full-fledged assignment tester that can deal with arbitrarily large
fan-in and fan-out, while paying a small cost in the parameters. This implies that, in order to construct
a full-fledged assignment tester, it suffices to construct an assignment tester that can only handle input
circuits ϕ with bounded fan-in and fan-out, which may be easier. In particular, we use this observation
in Section 3.7 to simplify our circuit decomposition method. Formally, we observe the following.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 74

Lemma 3.5.29 (Fan-in/out Lemma). There exists a polynomial time procedure that satisfies the fol-
lowing requirements:

• Input:

1. An assignment tester A that is only guaranteed to work for input circuits with fan-in and
fan-out that are upper bounded by 2, and which has input size n, outputs’ number R, outputs’
size s, rejection ratio ρ, tester size t, input representation size nrep and output size srep.

2. A reverse lister RL for A of size at most t.

• Output:

1. An assignment tester A′ that works for arbitrary input circuits, and which has input size
n′ = n/nrep · poly log (n), outputs’ number R′ = O(R), outputs’ size s′ = max {s,O(1)},
rejection ratio ρ′ = Ω(ρ), tester size t′ = O(t) + poly (nrep, log n), input representation size
nrep and output size srep + poly log s.

2. An reverse lister RL′ of size at most t′.

Proof idea. The proof is identical to the proof of the input representation lemma (Lemma 3.5.25) for
nrep′ = nrep, combined with the observation that the augmented universal circuit Û can be implemented
with fan-in and fan-out 2. Little more specifically, A′ acts as follows: when given an input circuit ϕ with
arbitrary fan-in and fan-out, we invoke A on Û , and hardwire the representation of ϕ into the output
circuits of A.

In order for this argument to work, we need to show that Û can indeed be implemented with fan-in
and fan-out 2. This is not hard to prove, but is tedious, and we do not include the proof here. �

Remark 3.5.30. Both the input representation lemma (Lemma 3.5.25) and the above fan-in/out lemma
are instances of a more general phenomena: the augmented universal circuit Û is “complete” for as-
signment testers, in the sense that given an assignment tester that can only take Ûn,nrep,m as an input
circuit, one can construct an assignment tester for arbitrary circuits of size n over m inputs that have
representations of size nrep. In other words, when constructing assignment testers, we can always as-
sume without loss of generality that the input circuit ϕ is the circuit Ûn,nrep,m (for some n, nrep, and
m), and then move to arbitrary circuits using the construction that is used in the proof of the input
representation lemma. We do not use this more general claim in this chapter.

3.6 Proof of the Main Theorem

In this section we state our main lemmas - the decomposition lemma and the tensor product lemma -
and prove the main theorem, restated below, relying on those lemmas.

Theorem (3.4.11, Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1, such
that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) = poly (n), out-
puts’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester size t(n, nrep) =
poly (log n, nrep), input representation size nrep, and output representation size srep(n, nrep) = O(1).
Furthermore, there exists an algorithm that on inputs n and nrep, runs in time poly (log n, nrep) and
outputs An,nrep.

This section is organized as follows: First, in Section 3.6.1, we first define the notion of circuit
decomposition with matrix access, which is used in both lemmas. Then, in Section 3.6.2, we state the
lemmas and prove the main theorem. Recall that our main theorem is the following.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 75

3.6.1 Circuit Decompositions with Matrix Access

A circuit decomposition is an assignment tester with the trivial soundness requirement. That is, the
soundness requirement only requires that if the circuit decomposition is invoked on an input circuit ϕ
and on assignment x that does not satisfy ϕ, then at least one output circuit rejects x ◦ π. Formally, we
define circuit decomposition as follows.

Definition 3.6.1. We say that D is a (circuit) decomposition if D is an assignment tester with rejection
ratio 1/R, where R is the outputs’ number of D.

Remark 3.6.2. As a simple example, one can consider the circuit decomposition that when given an
input circuit ϕ, transforms it into a 3-SAT formula and outputs each of the clauses of the formula as a
separate output circuit. If ϕ is of size n, then this circuit decomposition has outputs’ number O(n) and
outputs’ size O(1).

We turn to define the notion of “matrix access”. Basically, the property of matrix access is a special
case of block access, in which all the blocks are of the same width. In such case, one can think of the
blocks as rows of a matrix. During the course of the proof of the tensor product lemma, we will use
such a decomposition to construct a assignment tester that has block access and whose blocks are the
columns of the latter matrix. To this end, we need to use a little more involved definition of matrix
access:

1. First, recall that the definition of block access requires that each block contained coordinates of
either only the tested assignment or of the proof string. In our case, this requirement should apply
to both the rows and the columns, which is difficult to satisfy while using a single matrix. This
issue is resolved by considering two matrices - one matrix whose rows are the assignment blocks
of the decomposition (the “assignment matrix”), and a second matrix whose rows are the proof
blocks of the decomposition (the “proof matrix”). In this way, the aforementioned requirement of
the definition of block access is trivially satisfied.

2. Next, recall that the definition of block-based assignment tester requires that each assignment
block contains at least (1/3) fraction of non-dummy coordinates. Note that the rows of the
assignment matrix clearly satisfy this property, since a decomposition that has matrix access in
particular has block access with the blocks being the rows of the matrices. However, we must also
guarantee that the columns of the assignment matrix have this property, and we therefore add
this as a requirement to the definition of matrix access.

3. For technical reasons that have to do with the proof of the tensor product lemma, we also require
that every output circuit reads exactly the same numbers of assignment blocks and proof blocks,
and that the assignment blocks precede the proof blocks in the input of each output circuit.

The foregoing considerations lead to the following definition of assignment tester that has matrix access.

Definition 3.6.3. A circuit decomposition D is said to have b-matrix access if it has b-block access, and
for every input circuit ϕ the following hold: Let B1, . . . , Bp be the partition to blocks that corresponds
to ϕ, and let a denote the number of assignment blocks. Then:

1. All the proof blocks Ba+1, . . . , Bp are required to have the same width, denote it wπ. Also, recall
that all the assignment blocks are already required to have the same width by the definition of
block access (Definition 3.5.18), and denote this width by wa.

2. We define the assignment matrix to be the matrix whose rows are the assignment blocks B1, . . . , Ba.
Then, we is required that at least one third of the coordinates of each column of the assignment

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 76

matrix are non-dummy coordinates. Formally, for each v ∈ [wa], we define the v-th column
Cv : [a] → [m+ `] to be the function defined by Cv(j) = Bj(v), and require that for at least one
third of the indices j ∈ [a] it holds that Cv(j) 6= dummy.

3. Every output circuit reads the same number of assignment blocks and the same number of proof
blocks.

4. For every output circuit ψi of D, the assignment blocks precede the output blocks in the input of
ψi.

3.6.2 The main lemmas and the proof of the main theorem

We turn to state our main lemmas and prove the main theorem. The first lemma (the circuit decom-
position lemma) says roughly that for every n there is a super decomposition that has outputs’ number
≈
√
n, outputs’ size ≈

√
n, and O(1)-matrix access. The second lemma (the tensor product lemma) says

roughly that given a super-fast decomposition D for circuits of size nD that has O(1)-matrix access, and
a super-fast assignment tester A for circuits of size nA � nD, we can construct a super-fast assignment
tester A′ for circuits of size nD, provided that nA is slightly larger than both the outputs’ number and
the outputs’ size of D. By combining the two lemmas, we obtain a procedure that takes as input a
super-fast assignment tester for circuits of size ≈

√
n and lifts it to a super-fast assignment tester for

circuits of size n, which is the core of our construction. We begin by stating the circuit decomposition
lemma, which is proved in Section 3.7.

Lemma 3.6.4 (Circuit Decomposition Lemma). There exists a procedure that when given as inputs
numbers n, nrep ∈ N, runs in time poly (log n, nrep) and outputs the following:

1. A circuit decomposition D for circuits of size n that has 6-matrix access, outputs’ number RD(n)
def
=

Õ(
√
n), outputs’ size sD(n)

def
= Õ(

√
n), tester size tD(n, nrep)

def
= poly log n + O(nrep), input repre-

sentation size nrep, and output representation size srep
D (n, nrep)

def
= poly log n+O(nrep).

2. A reverse lister RL for D of size at most tD(n, nrep).

3. A block-access circuit BA of size at most tD(n, nrep).

We proceed to state the tensor product lemma, which is proved in Section 3.8. The general statement
of the lemma is somewhat involved. Therefore, in order to simplify the presentation, we first state a
simplified version of the lemma that is specialized for the range of parameters that we are interested in,
and then state the general version of the lemma.

Lemma 3.6.5 (Tensor Product Lemma, simplified version). There exists a polynomial time procedure
that satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has O(1)-matrix access, outputs’ number
RD, outputs’ size sD, tester size tD = poly log(nD), input representation size poly log(nD),
and output representation size poly log(nD).

2. An assignment tester A for circuits of size nA ≥ Õ (sD) + O(RD) that has outputs’ number
RA, outputs’ size O(1), rejection ratio ρA, tester size poly log(nD), input representation size
poly log(nD) ≥ tD and output representation size O(1).

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 77

4. A block-access circuit BAD for D of size at most tD.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’ size O(1),

rejection ratio Ω (ρ2
A), tester size poly log(nD), input representation size nrep

D , and output rep-
resentation size O(1).

2. An reverse lister RL′ for A′ of size at most t′.

We proceed to state the general version of the lemma. The main changes are the following: the circuit
decomposition D has b-matrix access for arbitrary b (rather than O(1)), has arbitrary tester size tD
and input representation size nrep

D (rather than poly log(nD)), and has arbitrary output representation
size srep

D (rather than poly log(sD)); the assignment tester A has arbitrary outputs’ size sA and output
representation size srep

A (rather than O(1)), and has arbitrary tester size tA and input representation
size nrep

A (rather than poly log(nD)).

Lemma 3.6.6 (Tensor Product Lemma, general version). There exists a polynomial time procedure that
satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has b-matrix access, outputs’ number
RD, outputs’ size sD, tester size tD, input representation size nrep

D , and output representation
size srep

D .

2. An assignment tester A for circuits of size nA that has outputs’ number RA, outputs’ size sA,
rejection ratio ρA, tester size tA, input representation size nrep

A and output representation size
srep
A .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

5. Furthermore, the following inequalities should hold:

nA ≥ b · sD · srep
D · poly log (b, sD) +O(RD · s2

A)

nrep
A ≥ O (tD) + poly (srep

D , b, log sD) + sA · poly log (RD, sD, nD, RA, sA, b) ,

where the degrees of the polynomials and the constants in the big-O notations are unspecified
universal constants.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’ size O(sA),

rejection ratio Ω (ρ2
A/(sA · b)), tester size

t′ = O (tD + sA · tA) + sA · poly (srep
A , log nA, logRA)

+poly (srep
D , b, log sD) + b · poly log (RD, sD, nD, RA, sA, b) ,

input representation size nrep
D , and output representation size srep

A + poly log(sA).

2. An reverse lister RL′ for A′ of size at most t′.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 78

By combining the two main lemmas, we obtain a procedure that allows us to square the input size
of an assignment tester A at the cost of roughly squaring the outputs’ number of A, provided that the
outputs’ size of the original A is constant. In order to use this procedure in our main construction, we
also augment it in two ways:

1. The use of the tensor product lemma decreases7 the input representation size of the assignment
tester A, while we want the input representation size to increase, in order to accommodate the
larger input size. We resolve this issue by invoking the input representation lemma (Lemma 3.5.25)
to increase the input representation size.

2. The use of the tensor product lemma decreases the rejection ratio of the assignment tester, while
we wish to maintain it. In order to do so, we invoke Dinur’s amplification theorem (Theorem 3.5.5)
to increase the rejection ratio back to its original value.

We summarize the resulting procedure in the following lemma, to which we refer as the “single iteration
lemma”, since it will form a single iteration in our construction of assignment testers.

Lemma 3.6.7 (Single Iteration Lemma). Let s0 and ρ0 be the constants stated in the amplification
theorem (Theorem 3.5.5). Then, for every sufficiently large constant c ∈ N, there exists a polynomial
time procedure that satisfies the following requirements:

• Input:

1. An assignment tester A for circuits of size n with outputs’ number R, outputs’ size s0, rejec-

tion ratio ρ0, tester size t, input representation size nrep def
= c · logc n and output representation

size at most s0.

2. A reverse lister RL of size at most t.

• Output:

1. An assignment tester A′ for circuits of size at least n′
def
= n2/poly log n with outputs’ number

O(R2), outputs’ size s0, rejection ratio ρ0, tester size at most t′ = O(t)+poly log (R, n), input

representation size nrep′ def
= c · logc (n′) and output representation size s0.

2. A reverse lister RL′ for A′ of size at most t′.

Proof. Let A be as in the single iteration lemma, and let c ∈ N be some constant that is sufficiently
large to allow the choices of the parameters in the rest of the proof. Let D be the circuit decomposition
that is obtained from the circuit decomposition lemma (Lemma 3.6.4) for input size nD = n2/poly log n
and input representation size nrep

D = poly log n, where nD and nrep
D are chosen such that A and D satisfy

the requirements of the tensor product lemma (Lemma 3.6.6). That is, we choose nD and nrep
D such that

corresponding outputs’ number RD, outputs’ size sD, tester size tD, and output representation size sD
of D satisfy

n ≥ 6 · sD · srep
D · poly log (6, sD) +O(RD) =

√
nD · nrep

D · poly log nD,

nrep ≥ O (tD) + poly (srep
D , 6, log sD) + sA · poly log (RD, sD, nD, RA, sA, 6)

= poly (log nD, n
rep
D) ,

7Note that the input representation size of A′ is nrepD , which is upper bounded by tD, which in turn is upper bounded
by nrepA due to the requirement regarding nrepA .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 79

where the hidden constants are determined by the decomposition and the tensor product lemma. It can
be verified that for sufficiently large choice of the constant c, one can indeed choose nrep

D = poly log n in
a way that satisfies the above inequalities.

We note that the decomposition D has outputs’ number Õ (n), outputs’ size Õ (n), tester size tD
def
=

poly log (n), input representation size nrep
D , and output representation size poly log (n), and that D is

6-matrix based. We also obtain from the circuit decomposition lemma a reverse lister RLD for D and
a block access circuit BAD for D, both of size at most tD.

We now invoke the tensor product lemma on D and A, resulting in an assignment tester A1 for circuits

of size nD with outputs’ number R1
def
= O(R2), outputs’ size s0, rejection ratio ρ1

def
= Ω (ρ2

0/(s0 · 6)) =
Ω(1), tester size

t1
def
= O (tD + s0 · t) + s0 · poly (s0, log n, logR)

+poly (srep
D , 6, log sD) + 6 · poly log (RD, sD, nD, R, s0, 6) ,

= O(t) + poly log (n,R) ,

input representation size nrep
D and output representation size s0. We also obtain a reverse lister RL1 for

A1 of size at most t1.
Next, we apply the input representation lemma (Lemma 3.5.25) to A1, with input representation

size nrep′ def
= c · logc(n2). We therefore obtain an assignment tester A2 for circuits of size

n′
def
= nD/n

rep′ · poly log nD = n2/poly log n

that has outputs’ number R2 = O(R1) = O(R2), outputs’ size s2 = max {s0, O(1)}, rejection ratio

ρ2
def
= Ω(ρ1) = Ω(1), tester size

t2
def
= O(t1) + poly

(
nrep′, log n

)
= O(t) + poly log (n,R) ,

input representation size nrep′ ≥ c · logc(n′) and output representation size max {s0, O(1)}. We also
obtain a reverse lister RL2 for A2 of size at most t2. We mention that in order for us to be able to
apply the input representation lemma, we need nrep

D to be sufficiently large. However, for sufficiently
large choice of the constant c, it is possible to choose nrep

D in a way such that the conditions of both the
tensor product lemma and the input representation lemma are met.

Finally, we apply the amplification theorem (Theorem 3.5.5) to A2, resulting in an assignment tester

A′ for circuits of size n′ with outputs’ number poly
(
s0,

1
ρ2

)
· R2 = O(R2), outputs’ size s0, rejection

ratio ρ0, tester size

t′
def
= poly

(
s0,

1

ρ2

)
· (t2 + poly (s0) + poly log (R2, n

′)) = O(t) + poly log (n,R) ,

input representation size nrep′ and output representation size s0. We also obtain a reverse lister RL′ for
A′ of size at most t′. We now output A′ and RL′ as the required assignment tester and reverse lister. �

We finally turn to prove our main theorem, restated below, by starting from an assignment tester
for circuits of constant size, and applying the single iteration lemma for O(log log n) times.

Theorem (3.4.11, Main Theorem). There exists an infinite family of circuits {An,nrep}∞n=1,nrep=1, such
that An,nrep is an assignment tester for circuits of size n with outputs’ number R(n) = poly (n), out-
puts’ size s(n) = O(1), proof length ` (n) = poly (n), rejection ratio ρ = Ω(1), tester size t(n, nrep) =
poly (log n, nrep), input representation size nrep, and output representation size srep(n, nrep) = O(1).
Furthermore, there exists an algorithm that on inputs n and nrep, runs in time poly (log n, nrep) and
outputs An,nrep.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 80

Proof. Let c be a constant that will be determined later. We will choose c to be sufficiently large to
match the requirements of the single iteration lemma (Lemma 3.6.7). We first show how to construct
assignment testers An,nrep for nrep = c · logc n by iterative application of the single iteration lemma
(Lemma 3.6.7), and then use the input representation lemma (Lemma 3.5.25) to obtain assignment
testers for any desired input representation size. We also mention that in the following proof we do not
prove that the proof length is poly(n), but as in the rest of this chapter, this can be established using
the upper bound ` ≤ R · s (Theorem 3.5.4). Details follow.

Let n ∈ N and let nrep = c · logc n. Let s0 and ρ0 be as in the single iteration lemma. We construct an
assignment tester An,nrep as in the theorem as follows. We begin by constructing an assignment tester A0

for circuits of size n0, where n0 is some sufficiently large constant that is independent of n. We construct

A0 such that it has outputs’ size s0, rejection ratio ρ0, input representation size nrep
0

def
= c · logc n0, and

output representation size s0, and such that its outputs’ number R0, and tester size t0, are constants
independent of n. Such an assignment tester A0 can be constructed, for example, by using the circuit
decomposition lemma8 (Lemma 3.6.4) to generate a circuit decomposition D with input size n0 and
input representation size nrep

0 , and then invoking the amplification theorem (Theorem 3.5.5) to D in
order to yield A0. This also yields a reverse lister RL0 for A0.

Now, for each natural number i ≥ 1, we let Ai and RLi be the assignment tester and reverse lister
that are obtained by invoking the single iteration lemma on the assignment tester Ai−1 and on the
reverse lister RLi−1. We denote by ni the input size of Ai, by Ri the outputs’ number of Ai, and by ti
the tester size of Ai. Let k be the least natural number such that nk ≥ n. We output Ak as our desired
assignment tester An,nrep .

We turn to analyze the parameters of Ak, and start with finding an upper bound on k. By the single
iteration lemma, there exists a constant d such that for every i it holds that ni+1 = n2

i /d · logd n. It

is not hard to show that for every i it holds that ni ≥
(
n0/d · 2d · logd n0

)2i

(see [Mei09, App. C] for

details). Hence, by taking n0 to be sufficiently large such that n0/d · 2d · logd n0 > 1, we get that

k ≤ log2 log(n0/d·2d·logd n0) n = log log n−O(1)

It is not hard to see that Ak has outputs’ size s0, rejection ratio ρ0, input representation size at least
c · logc n, and output representation size s0. We proceed to analyze the outputs’ number and tester size
of Ak. By the single iteration lemma, there exists some constant hR such that for each i ≥ 1 it holds
that Ri ≤ hR · (Ri−1)2. It is not hard to prove by induction that

Ri = h
∑i−1
j=0 2j

R R2i

0 ≤ (hR ·R0)2i ,

and therefore
Rk ≤ (hR ·R0)2k ≤ (hR ·R0)logn ≤ poly(n).

In addition, by the single iteration lemma, there exists some constant ht such that for each i ≥ 1 it
holds that ti ≤ ht · t+ poly log n, and therefore

tk ≤ hkt · t0 + k · hkt · poly log n ≤ poly log n,

as required. Finally, observe that it is possible to compute Ak in time poly log n.
We now consider the case of general values of nrep. Let n, nrep ∈ N. We construct the assignment

tester An,nrep as follows. We first observe that we may assume without loss of generality that nrep ≤
poly(n), since every circuit of size n has a trivial representation of size poly(n). Let n′ = n · nrep ·

8Actually, since we do not need D to have matrix-access here, we can use the simpler decomposition described in
Remark 3.6.2, and thus have an even simpler construction of A0.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 81

poly log n, and let nrep′ = c · logc (n′). We construct the assignment tester An′,nrep′ , and invoke the
input representation lemma (Lemma 3.5.25) on An′,nrep′ to increase its input representation size to nrep.
We then output the resulting assignment tester as An,nrep . It is not hard to check that An,nrep has the
required parameters, and that the latter invocation of the input representation lemma is indeed legal,
since the assignment tester An′,nrep′ indeed satisfies the requirements of the input representation lemma
for sufficiently large choice of c. �

3.7 Circuit Decomposition Lemma

In this section, we prove the circuit decomposition lemma, restated below.

Lemma (3.6.4, Circuit decomposition lemma, restated). There exists a procedure that when given as
inputs numbers n, nrep ∈ N, runs in time poly (log n, nrep) and outputs the following:

1. A circuit decomposition D for circuits of size n that has 6-matrix access, outputs’ number RD(n)
def
=

Õ(
√
n), outputs’ size sD(n)

def
= Õ(

√
n), tester size tD(n, nrep)

def
= poly log n + O(nrep), input repre-

sentation size nrep, and output representation size srep
D (n, nrep)

def
= poly log n+O(nrep).

2. A reverse lister RL for D of size at most tD(n, nrep).

3. A block-access circuit BA of size at most tD(n, nrep).

In Section 3.7.1, we give an overview of the proof which is more detailed than the one given in
Section 3.3.2. Then, in Section 3.7.2, we provide the full proof of the lemma.

Bounding the fan-in and fan-out of circuits. In this section, we describe the construction of a
circuit decomposition D that can only handle input circuits whose fan-in and fan-out are upper bounded
by 2. However, such a decomposition can be transformed into a full-fledged decomposition, which can
deal with arbitrary fan-in and fan-out, by using the fan-in/out lemma (Lemma 3.5.29).

3.7.1 Overview

In this section we give an overview of the construction of the circuit decomposition D from the decom-
position lemma. In order to streamline the presentation, we describe D by describing its action on a
fixed input circuit ϕ of size n over m inputs, on a fixed assignment x ∈ {0, 1}m, and on a fixed proof
string π. As we mentioned above, the fan-in and fan-out of ϕ are assumed to be upper bounded by 2.
Furthermore, recall that we want D to have 6-matrix access, which essentially means that:

1. The assignment x and proof string π should be arranged in two matrices, namely, the assignment
matrix and the proof matrix.

2. Every output circuit of D should query 6 rows of the assignment and proof matrices. Actually, in
this simplified overview, the output circuits of D will query even less than 6 rows of the matrices.

This overview is divided to two parts. First, in Section 3.7.1.1, we describe a construction of D while
ignoring efficiency considerations, which yields a decomposition D that is not super-fast. Then, in
Section 3.7.1.2 we describe how to modify D into a super-fast decomposition.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 82

3.7.1.1 Warm-up: ignoring efficiency considerations

The basic idea. The basic structure of our construction of the decomposition D is similar to the
construction of universal circuits in Section 3.5.7.2, and goes as follows. We require the proof string π
to contain the following values:

• The value that each gate g of ϕ outputs when ϕ is invoked on x. Let us denote by kg the coordinate
of π that contains the value of g.

• The value that each wire (g1, g2) of ϕ carries when ϕ is invoked on x. Let us denote by k(g1,g2) the
coordinate of π that contains the value of (g1, g2).

Then, the output circuits of D should check the following conditions hold:

1. For every input gate g, it holds that πkg equals to the corresponding assignment coordinate.

2. For the output gate gout of ϕ, it holds that πkgout = 1.

3. For every gate g and its outgoing wires (g, g1) and (g, g2), it holds that πkg = πk(g,g1) = πk(g,g2) .

4. For every gate g and its incoming wires (g1, g) and (g2, g), it holds that πkg is indeed the value
that g outputs when given as input πk(g,g1) and πk(g,g2) .

The nontrivial issue, of course, is to arrange the proof string π in a O(
√
n) × O(

√
n) matrix such that

the output circuits of D can verify the foregoing conditions and such that every output circuit queries
only 6 rows of the matrix. Observe that arranging π in such a matrix would have been easy if we only
wanted to verify only one of the Conditions 3 and 4:

• If we only wanted to verify the Condition 3, we could arrange π in a matrix such that for each
a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kg, k(g,g1), and k(g,g2) are in
the same row. Using this arrangement, Conditions 3, 1, and 2 could be verified with each output
circuit of D querying only one row of the matrix.

• On the other hand, if we only wanted to verify the Condition 4, we could arrange π in a matrix
such that for each a gate g and its incoming wires (g1, g) and (g2, g), the coordinates kg, k(g1,g),
and k(g2,g) are in the same row. Using this arrangement, Conditions 4, 1, and 2 could be verified
with each output circuit of D querying only one row of the matrix.

The problem is that we do not know if there is a single arrangement of π in a matrix that allows verifying
both conditions simultaneously. Our first step toward solving the problem is to require π to contain two
matrices M and N , such that each of M and N contains a copy of the value of each gate and each wire,
and such that M is a arranged in the way that allows verifying Condition 3 (as described above), and
N is arranged in a way that allows verifying Condition 4 (as described above). More specifically,

• For each gate g, the proof string π has a coordinate kM,g of the matrix M , and a coordinate kN,g of
the matrix N , where both coordinates should contain the value that g outputs when ϕ is invoked
on the assignment x. The matrices M and N also have similar coordinates kM,(g1,g2) and kN,(g1,g2)

for each wire (g1, g2).

• For each a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kM,g, kM,(g,g1), and
kM,(g,g2) are in the same row of M . Similarly, for each a gate g and its incoming wires (g1, g) and
(g2, g), the coordinates kN,g, kN,(g1,g), and kN,(g2,g) are in the same row of N .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 83

This way, the output circuits of D can verify that M satisfies Condition 3 and that N satisfies Condi-
tion 4, while each output circuit queries only one row of those matrices. By concatenating the matrices
M and N into a single matrix, we arrange π in a single matrix such that the two conditions can be
verified while each output circuit queries only one row of this matrix.

Of course, in order for the foregoing construction of D to be sound, we also need to verify that M
and N are consistent. That is, in addition to verifying the above conditions, the decompositionD must
also verify that for each gate g and wire (g1, g2) it holds that

πkM,g = πkN,g and πkM,(g1,g2) = πkN,(g1,g2) . (3.1)

Moreover, D must verify that Equality 3.1 holds while maintaining the property that each output circuit
queries at most 6 rows of the proof matrix. Overcoming this issue of verifying the consistency of M
and N while maintaining the matrix access property is the main technical challenge that we deal with
in our construction of D.

Verifying the consistency of M and N . We now describe how D checks the consistency of the
matrices M and N . As a warm-up, consider the following naive solution: For each row of M , the
decomposition D will output a circuit ψi that will check the consistency of the coordinates in this row
with the corresponding coordinates in N . This solution does not work, since some of those output
circuits ψi may read too many rows of N . To see it, observe that for the coordinates of a given row of
M , the corresponding coordinates in N may spread over all the rows of N rather then being concentrated
in only 5 rows of N .

On a more intuitive level, the latter naive solution does not work because the order of the coordinates
in M may be very different than the order of the corresponding coordinates in N . Our solution is to
add to the proof matrix auxiliary rows that serve as a “bridge” between M and N , and to add output
circuits of D that check the consistency of those auxiliary rows. More specifically, we add auxiliary rows
and output circuits such that:

• Each auxiliary row v consists of coordinates kv,g and kv,(g1,g2) that correspond to some of the gates
and wires of ϕ. As before, πkv,g is supposed to contain the value that the gate g outputs when ϕ is
invoked on x, and πkv,(g1,g2) is supposed to contain the value that the wire (g1, g2) carries when ϕ

is invoked on x. However, note that each auxiliary row is of width O(
√
n), so it does not contain

a coordinate for every gate and wire.

• For each auxiliary row v, there will be an output circuit of D that checks the consistency of the
row v with at most four other rows of the proof matrix. By saying that an output circuit ψi checks
the consistency of two rows u and v, we mean that ψi checks, for every two coordinates ku,g and
kv,g of u and v that correspond to the same gate g, that πku,g = πkv,g , and the same for the wires.

• We will choose the auxiliary rows and additional output circuits such that all the additional output
circuits are satisfied if and only if M and N are consistent.

It remains to explain how to choose for each auxiliary row v:

• For which gates g and wires (g1, g2) does the auxiliary row v have corresponding coordinates kv,g
and kv,(g1,g2)?

• What are the other rows of the proof matrix with which the auxiliary row v is checked for consis-
tency.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 84

To this end, we use routing networks. Recall that a routing network of order n is a graph with two
special sets S and T , called the “sources” and the “targets”, and that a routing network satisfies the
following property: Suppose that for every source s ∈ S there are d messages that should be sent to
targets in T , and that every target t ∈ T should receive d messages from sources in S. Then, it is
possible to find a collection of paths P in G such that:

• Every message is routed through some path p ∈ P . We say that the path p routes the message if
its connects the source of the message to its target.

• Every vertex of G participates in at most d paths in P .

Let G = (V,E) be a routing network of order O(
√
n) with in-degree and out-degree upper bounded

by 2, and let S and T be its sources and targets respectively. We identify the vertices of G with the
rows of the proof matrix, and in particular we identify the rows of M with the vertices of S, the rows
of N with the vertices of T , and the auxiliary rows of the proof matrix with the other vertices of G.

Now, for each gate g, we view the value that g outputs (under the assignment x) as a message that
should be sent from the row of M that contains the coordinate kM,g to the row of N that contains the
coordinate kN,g, where we view those rows of M and N as a source and a target of G. We also view the
values of wires (g1, g2) as messages in a similar way. Note that, when taking this view, each row of M
needs to send O(

√
n) messages and each row of N needs to receive O(

√
n) messages.

Our next step is to find a collection of paths P along which the messages can be routed, such that
each auxiliary row participates in the routing of at most O(

√
n) messages (i.e., the vertex of G that is

identified with the auxiliary row participates in at most O(
√
n) paths in P). For each auxiliary row v

and a gate g, we define the auxiliary row v to contain a coordinate kv,g that corresponds to g if and
only if the auxiliary row v participates in routing the message that corresponds to the value of g, and
the same goes for each wire (g1, g2).

Finally, we define the output circuits of D that verify the consistency of the auxiliary rows as
follows. For each vertex v of G, the decomposition outputs a circuit ψi that acts as follows. Suppose
that v has outgoing edges to the vertices z1 and z2 of G (recall that the out-degree of G is upper
bounded by 2). Then, the circuit ψi queries the rows that correspond to v, z1, and z2, and performs
the following consistency check. For every gate g whose corresponding message is routed through v, the
circuit ψi verifies that πkv,g = πkz1,g if the message of g is routed through z1, and otherwise ψi verifies
that πkv,g = πkz2,g (since if the message is not routed through z1 then it must be routed through z2).
The circuit ψi also performs an analogous consistency check for every wire (g1, g2) whose corresponding
message is routed through v.

This concludes the description of our way of verifying the consistency of M and N , and in particular
our construction of the auxiliary rows and the output circuits of D. It is not hard to see that if all the
output circuits of D accept, then M and N must be consistent. Observe that every output circuit queries
at most three rows. Moreover, note that every auxiliary row contains at most O(

√
n) coordinates, since

it participates in the routing of at most O(
√
n) messages.

The assignment matrix. Our discussion so far has focused on the proof string π and the arrangement
of its coordinates in the proof matrix. However, we still need to describe the arrangement of the
assignment x in the assignment matrix. We choose the assignment to be of width wa = min {θ(

√
n),m},

and arrange the coordinates of x in this matrix according to their natural order.
Another issue that we ignored so far is that the decomposition D should check the consistency

between the assignment matrix and the proof matrix. More formally, for every tested assignment
coordinate ka ∈ [m] whose corresponding input gate of ϕ is g, the decomposition D should check that
xka = πkM,g . To this end, we choose the ordering of the coordinates of the matrix M such that the
assignment coordinate ka is in the j-th row of the assignment matrix if and only if the corresponding

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 85

proof coordinate kM,g belongs to the j-th row of M . Then, for each j, the decomposition D outputs a
circuit that checks that all the coordinates in the j-th row of the assignment matrix are consistent with
the corresponding coordinates in the j-th row of the proof matrix.

Conclusion. It can be seen that x is a satisfying assignment if and only if there exists a proof string
π that makes all the output circuits ψi accept. Moreover, observe that the number and size of output
circuits of D is indeed Õ(

√
n), and that each output circuit queries at most three rows of the assignment

and proof matrices. This concludes our construction of D that ignores the efficiency issues.

Remark 3.7.1. We mention again that the idea of using routing networks in the construction of PCPs
is not new, and already appeared in several works on PCPs (see, e.g., [BFLS91, PS94]).

3.7.1.2 Obtaining a super-fast circuit decomposition

We turn to explain how to modify the foregoing circuit decomposition such that it will have a super-fast
implementation. The main issue that needs to be resolved is the following: Recall that the decomposition
routes messages on the routing network G. More specifically, the decomposition computes a collection
P of paths on G that connect each coordinate of M to its corresponding coordinate of N , where each
vertex in G participates in at most O(

√
n) such paths. However, those paths can not be computed by

a super-fast decomposition, since merely writing those paths down requires writing Ω(n) bits, which
would force the decomposition to be of size Ω(n) rather than poly log n. In order to resolve this issue,
we modify the decomposition such that it does not compute those paths by itself. Instead, we require
the proof string to contain those paths, and modify the decomposition such that it verifies that the
paths that are given in the proof string are valid.

This idea is implemented as follows: for each coordinate kv,g in the proof string, we add to the row
of kv,g additional log n coordinates that are supposed to be assigned the index of g - we refer to this
index as the label of kv,g. Similarly, for each coordinate kv,(g1,g2), we add to the row of kv,(g1,g2) additional
2 log n coordinates that are supposed to contain the indices of g1 and g2, and refer to the pair of those
indices as the label of kv,(g1,g2). We note that this modification is also performed on rows of M and N .

Now, we modify the output circuits ψi that verify the consistency of the routing as follows. Let ψi
be the output circuit that corresponds to a vertex v, and suppose that v has incoming edges from the
vertices u1 and u2, and has outgoing edges to the vertices z1 and z2. Then, the output circuit ψi reads
the rows that correspond to u1, u2, v, z1, z2, and verifies that the following conditions holds:

1. Every label in the row of v is found either in the row of u1 or in the row of u2.

2. Every label in the row of v is found either in the row of z1 or in the row of z2.

3. If a coordinate k in the row of v has the same label as a coordinate k′ in the row of u1, then
πk = πk′ . The same condition is checked when replacing u1 with either of u2, z1, or z2.

It can be seen that, if all the modified output circuits ψi accept, then we are guaranteed that the
matrices M and N are consistent. In addition to modifying the output circuits as above, we also add
new output circuits ψi that check that the coordinates of M and N have the correct labels, and in
particular that:

• Every gate and every wire has corresponding coordinates in M and in N .

• For each a gate g and its outgoing wires (g, g1) and (g, g2), the coordinates kM,g, kM,(g,g1), and
kM,(g,g2) are in the same row of M .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 86

• For each a gate g and its incoming wires (g1, g) and (g2, g), the coordinates kN,g, kN,(g1,g), and
kN,(g2,g) are in the same row of N .

Note that in the super-fast setting, in which the gate or wire to which a coordinate corresponds is
determined by its label, the latter three conditions must indeed be verified, and can not be assumed
to hold trivially as before. However, it is not hard to construct output circuits of D that verify those
conditions.

It is not hard to see that the decomposition D remains sound after the foregoing modifications.
Moreover, since now D needs not compute the paths P for routing the messages, it can be implemented
in a super-fast way. This concludes the construction.

3.7.2 Proof of the circuit decomposition lemma

Below, we describe how to construct the circuit decomposition D for a given input size n and a given
input representation size nrep. This section is organized as follows: In Section 3.7.2.1, we describe the
block structure of D. In Section 3.7.2.2 we describe the proof strings of D. In Section 3.7.2.3, we describe
the output circuits of D and their queries. The remaining parts of the proof, namely, the construction
of the reverse lister RLD, the construction of the blocks access circuit BAD, and the analysis of the
parameters, are straightforward and will not be discussed.

3.7.2.1 The block structure of D

The assignment blocks. Let wa be the width of the assignment blocks, to be chosen shortly below.
We define the assignment blocks of D on input circuit ϕ as follows: There are dm/wae assignment
blocks, where the first assignment block consists of the coordinates 1, . . . , wa, the second assignment
block consists of the coordinates wa+1, . . . , 2 ·wa, etc. If wa does not divide m, then the last assignment
block consists of the last m mod wa assignment coordinates and of additional wa− (m mod wa) dummy
coordinates.

We now choose wa = min {θ(
√
n),m}, where the constant in the Big-Theta notation is chosen as

follows: Recall that the definition of block access requires that least 1
3

fraction of the coordinates of
every assignment block are non-dummy coordinates. The only assignment block that contains dummy
coordinates is the last block, so we only need to take care of this block. To this end, we need to choose
wa such that, if wa < m, then (m mod wa) ≥ 1

3
· wa. It is not hard to show that one can choose such a

value of wa that satisfies wa = min {θ(
√
n),m}, as required.

The proof blocks. We turn to define the proof blocks of D. Let wr
def
= 3 ·max {

√
n,wa}.We denote

by wπ the width of the proof blocks, and choose it to be wπ
def
= wr · (2 · log n+ 3). the first proof block of

D consists of the coordinates m+ 1, . . . ,m+wπ, the second proof block of D consists of the coordinates
m + wπ + 1, . . . ,m + 2 · wπ, etc. We view each proof block as consisting of 3 · wr strings of length
2 · log n+1, to which we refer as the records of the block, and view each record of consisting of two parts:

1. The label of the record, which consists of two elements in [n] ∪ {⊥} - this part is represented by
the first 2 · (log n+ 1) bits of the record.

2. The value of the record, which is a Boolean value, and is represented by the last bit of the record.

Let G
def
= G√n be the routing network of order

√
n whose existence is guaranteed by Fact ??, and let S

and T be its sets of sources and targets respectively. We define the proof blocks of D to be in one-to-one
correspondence with the vertices of G, where the j-th proof block corresponds to the j-th vertex of G.
We view the

√
n proof blocks which correspond to the vertices in S of G as an

√
n×wπ matrix M , and

the
√
n proof blocks which correspond to vertices in T as an

√
n× wπ matrix N .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 87

3.7.2.2 The proof strings of D

Let x be a satisfying assignment for ϕ. We describe the proof string π that convinces D that x satisfies ϕ.
We consider the collection of all the records in all of the blocks, and view each record as corresponding to
a gate or a wire of ϕ, where each gate (or wire) has many records that correspond to it. The content of
π at a given record depends on whether the record corresponds to a gate or to a wire, and is determined
as follows:

1. If the record corresponds to a gate g, then the first element of the label of the record contains
the index of g (which is a number from 1 to n), and the second element of the label contains the
symbol ⊥. The value of the record is set to be the value that g outputs when ϕ is invoked on the
assignment x.

2. If the record corresponds to a wire (g1, g2), then first element of the label of the record contains
the index of g1 and the second element is of the label contains the index of g2 (recall that those
indices are numbers from 1 to n). The value of the record is set to be the value that is passed
through (g1, g2) when ϕ is invoked on the assignment x.

3. Finally, some records are dummy records that do not correspond to a gate or a wire of ϕ. In this
case, both elements of the label of the record are contain the symbol ⊥, and the value of the record
is arbitrary.

It remains to describe the correspondence between records and gates/wires - note that since the content
of a record is determined by the gate/wire to which it corresponds, this correspondence determines π
completely. We describe this correspondence separately for the matrix M , the matrix N , and the rest
of the proof blocks.

The matrix M . There is a one-to-one correspondence between the records in M and the gates and
wires of ϕ. If there are more records than gates and wires, then the superfluous records are set to be
dummy records.
The order of the records in M is as follows: Each row of M consists of wr/3 triplets of records, where
each such triplet corresponds to a gate g of ϕ and is referred to as the triplet of g in M . Given a gate
g, the triplet of g contains the record that corresponds to g, and also the records that corresponds to
the (at most two) outgoing wires of g. If g has less than two outgoing wires, then the (one or two)
superfluous records are set to be dummy records, which contain only zeroes. The triplets are ordered
in M according to the order of the gates, from the first gate to the last.

The matrix N . The records of N are defined similarly to the records of M , with the following
differences. For each gate g, the triplet of g in N contains the records corresponding to the incoming
wires of g rather than the outgoing wires of g.

The auxiliary rows. Recall that each proof block corresponds to some vertex of the routing network
G, where the matrices M and N correspond to the sources set S and targets set T of G. The correspon-
dence of records to gates and wires in the auxiliary rows will be determined by routing on G, which will
be performed using Proposition 3.2.22, restated below.

Proposition (3.2.22, routing of multiple messages, restated). Let G = (V,E) be a routing network of
order n, let S, T ⊆ V be the sets of sources and targets of G respectively, and let d ∈ N. Let σ ⊆ S × T
be a relation such that each s ∈ S is the first element of at most d pairs in σ, and such that each t ∈ T
is the second element of at most d pairs in σ. We allow σ to be a multi-set, i.e., to contain the same
element multiple times. Then, there exists a set P of paths in G such that the following holds:

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 88

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is s and
whose second vertex in t.

a) Every vertex of G participates in at most d paths in P.

We turn to describing the routing. We construct a relation σ ⊆ S × T (actually, a multiset) as
follows: For each gate g of ϕ, we add σ the pair (s, t), where

1. s ∈ S is the vertex of G that corresponds to the row of M that contains the record of g in M .

2. t ∈ T is the vertex of G that corresponds to the row of N that contains the record of g in N .

We do the same for the wires of ϕ. Now, by Proposition 3.2.22, there exists a collection Pof paths such
that

1. For each (s, t) ∈ σ, there exists a path p ∈ P that corresponds to (s, t), whose first vertex is s and
whose second vertex in t.

2. Every vertex of G participates in at most wr paths in P .

We now define the records of the auxiliary rows. For each gate g, we define the following records: let
(s, t) be the element of σ that corresponds to g, and let p ∈ P be the path that corresponds to (s, t).
Now, for each vertex v on the path p, the auxiliary row v contains a record that corresponds to g. The
same goes for each wire (g1, g2) and the corresponding element (s, t) and path p. If a vertex v of G
participates in less than wr paths, then the remaining records of the auxiliary row v are set to be dummy
records.

This concludes the description of the correspondence between the records and the gates/wires, and
hence concludes the description of the proof string π.

3.7.2.3 The output circuits of D

In this section we describe the output circuits of the circuit decomposition D and their queries. Fix
an input circuit ϕ of size n and over m inputs. Let V denote the vertex set of the routing network G.
We define the outputs’ number RD of D to be |V | + 2 ·

√
n. We view the first |V | output circuits

as being in one-to-one correspondence with the vertices of G, the next
√
n output circuits as being in

one-to-one correspondence with the rows of M and the last
√
n output circuits as being in one-to-one

correspondence with the rows of N .
We describe for each index i ∈ [RD] what the i-th output circuit checks and what blocks it queries.

We consider the following cases:

1. i ≤ |V |: In such case, the i-th output circuit ψi corresponds to some vertex v of G, which in turn
corresponds to the i-th proof block of D. The goal of the output circuit ψi is to check that the
routing at the vertex v is valid - that is, that every record that is routed through v has came
through one of the incoming edges of v and is sent through one of the outgoing edges of v. To this
end, the output circuit ψi queries the blocks that correspond to v and its neighbors, and performs
the following checks:

a) Let u1, . . . , ud (for d ≤ 2) be the vertices of G from which v has incoming edges (if v has no
incoming edges, then this check is skipped). Then, ψi checks for each record of the i-th proof
block that one of the blocks that correspond to u1, . . . , ud contains a record with the same
label and the same value.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 89

b) The same check as the first one, but for vertices of G to which v has outgoing edges, instead
of vertices of G from which v has incoming edges. Again, if v has no outgoing edges, then
this check is skipped.

We note that the output circuit ψi can be implemented in size Õ (
√
n) as follows: For the first

check, ψi constructs a list of all the records that appear in the blocks that correspond to u1, . . . , ud,
and sorts those records according to lexicographic order of their label. Then, ψi sorts the records
that appear in the i-th block according to their label, thus obtaining a second list of records.
Finally, ψi checks that the second list of records is a sub-sequence of the first list of records. The
second check can be implemented similarly. It can be verified that this implementation indeed
requires a circuit of size Õ (

√
n).

2. |V | + 1 ≤ i ≤ |V | +
√
n: Let j

def
= i− |V |. In this case, the output circuit ψi queries the j-th row

of M and checks that it is of the form described in Section 3.7.2.2. That is, ψi checks that the
j-th row of M consists of triplets of records, where each triplet consists of the record of a gate and
of the records of the gate’s outgoing wires, and where the values of the records of each triplet are
equal. More specifically, for every u ∈ [wr], the output circuit ψi performs the following checks for
the u-th triplet of the j-th row:

a) ψi computes the index h
def
= (j − 1) · max {wa,

√
n} + u of the triplet among all the triplets

of M . Let us denote the h-th gate of ϕ by g.

b) ψi checks that the the first record of the triplet corresponds to g, that is, that the first element
of the label of the first record contains h and that the second element contains ⊥.

c) ψi checks that the labels of the two last records of the triplet are the labels of the outgoing
wires of the gate g. If g has only one outgoing wire then g checks that the label of the middle
record is the label of this unique outgoing wire, and that the label of the last record consists
of twice the symbol ⊥. If g has no outgoing wires, then g checks that the labels of both the
last records consist of twice the symbol ⊥.

d) ψi checks that the values of all the three records in the triplet are equal (recall that those
values are supposed to be equal to the value that g outputs when ϕ is invoked on x).

If j ≤ dm/wae, then ψi also queries the j-th row of the assignment matrix, and checks consistency
between this row and the records of M that correspond to input gates. Specifically, observe
that for each assignment coordinate in the j-th row of the assignment matrix, the record of the
corresponding input gate is found in the j-th row of M . The output circuit ϕi checks for each
such assignment coordinate that it is equal to the value of the corresponding record.

3. |V |+
√
n+ 1 ≤ i ≤ |V |+ 2 ·

√
n: Let j

def
= i− |V | −

√
n. In this case, the output circuit ψi queries

the j-th row of N and checks that it is of the form described in Section 3.7.2.2. That is, ψi checks
that the j-th row of N consists of triplets of records where each triplet consists of the record of a
gate and of the records of its incoming wires, and where the value of each gate record is computed
correctly from the values of the records of the incoming wires. To this end, ψi performs the same
checks as in Case 2, with the following differences:

a) Instead of checking for each triplet that the last two records contain the labels of the outgoing
wires, ψi checks that last two records contain the labels of the incoming wires

b) Instead of checking for each triplet that the values of all the three records are the same, ϕi
checks that the value of the first record, which corresponds to the gate g, contains the value

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 90

that g outputs when g is given as input the values of the two last records. If g has only one
incoming wire, then we take only the value of the middle record, and if g has not incoming
wires, then this check is skipped.

c) ψi does not check consistency with the tested assignment.

This concludes the description of the output circuits of D. It should be clear that those circuits are
of size Õ (

√
n). It is also not hard to see that both the circuit decomposition D and the reverse lister

RL can be implemented in size poly log n+O(nrep), using the representation ν of G. The construction
of the block-access circuit BA is straightforward as well, with one caveat: Recall that the definition
of matrix access (Definition 3.6.3) requires that every output circuit ψi of D reads the same numbers
of assignment blocks and proof blocks, and that the assignment blocks precede the proof blocks in the
input of ψi. Thus, we modify the foregoing construction of D such that every output circuit ψi queries
exactly one assignment blocks and five proof blocks in order to meet this requirement. In particular, if
i > |V |, we modify ψi such that it queries the j-th row of M or N five times instead of one. In addition,
if ψi is not among the circuits that check consistency between M and the assignment matrix, then we
modify ψi such that it queries the first row of the assignment matrix and ignores it. This concludes the
construction.

3.8 Tensor Product Lemma

In this section we prove the general version of the tensor product lemma, restated below.

Lemma (3.6.6, Tensor Product Lemma, restated). There exists a polynomial time procedure that satis-
fies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size nD that has b-matrix access, outputs’ number
RD, outputs’ size sD, tester size tD, input representation size nrep

D , and output representation
size srep

D .

2. An assignment tester A for circuits of size nA that has outputs’ number RA, outputs’ size sA,
rejection ratio ρA, tester size tA, input representation size nrep

A and output representation size
srep
A .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

5. Furthermore, the following inequalities should hold:

nA ≥ b · sD · srep
D · poly log(b, sD) +O(RD · s2

A)

nrep
A ≥ O (tD) + poly (srep

D , b, log sD) + sA · poly log (RD, sD, nD, RA, sA, b) ,

where the degrees of the polynomials and the constants in the big-O notations are unspecified
universal constants.

• Output:

1. An assignment tester A′ for circuits of size nD with outputs’ number O(R2
A), outputs’ size O(sA),

rejection ratio Ω (ρ2
A/(sA · b)), tester size

t′ = O (tD + sA · tA) + sA · poly (srep
A , log nA, logRA)

+poly (srep
D , b, log sD) + b · poly log (RD, sD, nD, RA, sA, b) ,

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 91

input representation size nrep
D , and output representation size srep

A + poly log(sA).

2. An reverse lister RL′ for A′ of size at most t′.

This section is organized as follows. In Section 3.8.1 we recall the ideas that underlie the construction
of the assignment tester A′, which were explained in Section 3.3, and sketch the technical complications
that arise when realizing those ideas. In Section 3.8.2, we discuss a robustness property for decom-
positions, which differs from the notion of expected robustness defined in Section 3.5.4, and which is
used in the proof of the tensor product lemma. Next, in Section 3.8.3, we describe the construction of
an “intermediate assignment tester”, which is the key step in the proof of the tensor product lemma.
Finally, in Section 3.8.4, we complete the proof of the tensor product lemma using the intermediate
assignment tester.

3.8.1 Proof overview

Let D be a decomposition that has matrix access and A be an assignment tester as in the tensor product
lemma. For the purpose of this overview, we assume that the matrix access parameter b and the outputs’
size sA of A are constants. We would like to construct an assignment tester A′ for circuits of size nD,
which has outputs’ number ≈ R2

A, outputs’ size sA, and rejection ratio Ω(ρ2
A/b · sA) = Ω(ρ2

A). We begin
by recalling the construction of A′ that was described in Section 3.3: When given as input a circuit ϕ
of size nD, the assignment tester A′ takes the following steps.

1. A′ invokes D on ϕ, thus obtaining circuits ψ1, . . . , ψRD .

2. For each iD ∈ [RD], the assignment tester A′ invokes A on ψiD , resulting in circuits ξiD,1, . . . , ξiD,RA .

3. For each iA ∈ [RA], the assignment tester A′ constructs the circuit ηiA
def
=
∧RD
iD=1 ξiD.iA , which

corresponds to the iA-th column of the matrix whose entries are ξiD,iA .

4. For each iA ∈ [RA], the assignment tester A′ invokes A on ηiA .

The assignment tester A′ finishes by outputting the output circuits of all the invocations of A on the
circuits ηiA .

In this section, it is more convenient for us to view of the construction of A′ in a slightly different
way than the one used in Section 3.3. We first define the “intermediate” assignment tester AI which
on input ϕ produces the circuits η1, . . . , ηRA , and then define A′ to be the result of composing AI and
A. It is not hard to see that those two views are equivalent. We note that the view that is used in this
section is also the view that is used in the work of [DR06].

It can be verified that A′ has the required input size, outputs’ number and outputs’ size. The non-
trivial issues consist of showing that A′ has the required rejection ratio, and that it has a super-fast
implementation. Below, we discuss those two issues in Sections 3.8.1.1 and 3.8.1.2.

3.8.1.1 The rejection ratio of A′

We show that the rejection ratio of A′ is Ω (ρ2
A) in two steps: we first argue that the rejection ratio of

the intermediate assignment tester AI is Ω(ρA), and then we deduce that the rejection ratio of A′, which
is the composition of AI with A, is Ω(ρ2

A). Both steps are non-trivial and require some work, and we
discuss each of them separately.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 92

The rejection ratio of AI. Consider first the step of showing that the rejection ratio of the interme-
diate assignment tester AI is Ω(ρA). Fix an assignment x to ϕ that is far from any satisfying assignment,
and fix a proof string π for AI . We would like to argue that x ◦ π is rejected by Ω(ρA) fraction of the
circuits η1, . . . , ηRA . Observe that since x does not satisfy ϕ, there exists a circuit ψi that rejects x ◦ π.
We would now like to argue that due to the rejection ratio of A, it holds that Ω(ρA) fraction of the
circuits ξi,1, . . . , ξi,RA reject x ◦ π. This, in turn, implies thatΩ(ρA) fraction of the circuits η1, . . . , ηRA
reject x, as required.

However, in order to establish the claim that Ω(ρA) fraction of the circuits ξi,1, . . . , ξi,RA reject x ◦ π,
we need to show that not only that ψi rejects x ◦ π, but that x ◦ π is far from satisfying ψi. To this end,
we require the decomposition D to have a certain robustness property. We then show how to modify D
to satisfy this property, while using the fact that D has matrix access. After robustizing D, the foregoing
analysis of the rejection ratio of AI goes through.

Both the definition of the robustness property of D, and the way to modify D such that it satisfies
this property, are described in Section 3.8.2.

The composition of AI and A. Next, we consider the step of showing that the composition of AI
with A has rejection ratio Ω(ρ2

A). To this end, we show that AI is robust, that is, not only that AI
has rejection ratio Ω(ρA), but it actually has (expected) robustness Ω(ρA) (as defined in Section 3.5.4),
which implies the required. In order to make AI robust, we show that AI has block access, and then
apply the robustization technique of Section 3.5.6 to AI .

It remains to show that AI has block access. Recall that D has matrix access, and that this means
that the tested assignment x and the proof string πD of D can be arranged in two matrices Mx and MD,
such that each output circuit ψi queries only few rows of those matrices. We also define an additional
matrix N whose rows are the proof strings of A for each of the invocations of A on a circuit ψiD . We
now observe that for each of the output circuits ηiA of AI , the queries of ηiA are contained in a constant
number of columns of Mx, Mπ, and N . This implies that the assignment tester AI has O(1)-block access,
with the blocks being the columns of Mx, MD, and N , as required.

We still need to show that the queries of each output circuit ηiA are contained in few columns of Mx,
Mπ, and N . It will be easier to justify this claim after we discuss the efficient implementation of AI .
Thus, we postpone this discussion to Section 3.8.1.3 below.

3.8.1.2 Implementing AI efficiently

We turn to discuss the efficiency of the implementation of AI . As was mentioned in Section 3.3.4, the
main challenge in coming up with a super-fast implementation of AI is the need to represent the circuits

η1, . . . , ηRA succinctly. Recall that ηiA
def
=
∧RD
iD=1 ξiD,iA , and observe that while each of the circuits

ξ1,iA , . . . , ξRD,iA has a succinct representation, this does not imply that the circuit ηiA has a succinct
representation. In particular, a representation of ηiA must represent all the circuits ξ1,iA , . . . , ξRD,iA , and
if those circuits are very different from one another, it may not be possible to have a sufficiently succinct
representation that describes all of them simultaneously.

In order to resolve this issue, we use the notion of universal circuit U of Section 3.5.7.2. Recall that
a universal circuit U takes as input a representation ζrep of a circuit ζ, an assignment y to ζ, and verifies
that ξ accepts y (using an auxiliary witness z). For simplicity, we ignore the auxiliary witness z for the
rest of this overview.

The basic idea of our solution is roughly the following. Fix a tested assignment x and a proof
string πD for D, and let QD

1 , . . . , Q
D
RD

be the query functions of D that correspond to ψ1, . . . , ψRD
respectively. Now, for every iD ∈ [RD], instead of invoking A on the circuit ψiD and on the tested
assignment (x ◦ πD)|QDiD

, we invoke A on the circuit U and on tested assignment that consists of ψrep
iD

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 93

and of (x ◦ πD)|QDiD
. Note that the latter invocation of A verifies essentially the same claim as the first

invocation of A, namely, that ψiD is satisfied by (x ◦ πD)|QDiD
. However, we did gain something: Instead

of invoking A on the RD different circuits ψ1, . . . , ψRD , we now invoke A only on one circuit U , each
time with a different tested assignment. Intuitively, the fact that all the invocations of A are made on
the same circuit U causes the outputs circuits ξ1,iA , . . . , ξRD,iA to be similar to each other, which allows

to construct a succinct representation for the circuit
∧RD
iD=1 ξiD,iA .

More specifically, this idea is implemented as follows: Let us denote by ξiA the iA-th output circuit
of A when invoked on the circuit U . Note that each output circuit ξiA may make queries to either ζrep,
y, or to the proof string of A (here we refer to the proof string of the invocation of A on U). We now
redefine ξiD,iA to be the circuit that is obtained from ξiA by modifying ξiA as follows:

1. We hardwire the representation ψrep
iD

to the inputs of ξiA that correspond to queries to ζrep. That
is, if the κ-th query of ξiA queries the u-th coordinate of ζrep, then we hardwire the u-th bit of the
description of ψrep

iD
to the κ-th input gate of ξiD,iA .

2. We redirect the queries of ξiA to y to (x ◦ πD)|QDiD
, that is, if the κ-th query of ξiA queries the u-th

coordinate of y, then the κ-th query of ξiD,iA queries the u-th coordinate of (x ◦ πD)|QDiD
.

3. We redirect the queries of ξiA to the proof string of A to the iD-th row of the matrix N . That is,
if the κ-th query of ξiA queries the u-th coordinate of the proof string of A, then the κ-th query
of ξiD,iA queries the u-th coordinate of the iD-th row of N .
Here, we use a slightly different definition of the matrix N , and require the iD-th row of N is
contain the proof string that convinces A that the assignment (ψrep

iD
, (x ◦ πD)|QDiD

) satisfies U .

Next, we construct and output the circuits η1, . . . , ηRA , which are defined as before by ηiA
def
=
∧RD
iD=1 ξiD,iA .

It should be clear that this modified version of the circuits ηiA is essentially equivalent to the original
construction of those circuits, and hence the previous analysis of the rejection ratio of AI still applies.

We can now construct a succinct representation ηrep
iA

of a circuit ηiA as follows. Suppose that the
representation ηrep

iA
is required to retrieve information about a gate g of ηiA . Observe that ηiA consists of

circuits ξ1,iA , . . . , ξRD,iA that are all identical to ξiA except for their input gates, which are determined
as listed above. Thus, if g is an internal gate of one of the circuits ξiD,iA , the representation ηrep

iA
simply

invokes the representation ξrep
iA

of ξiA to retrieve the information about the corresponding gate of ξiA and
outputs it. The only non-trivial case is when g is an input gate one of the circuits ξiD,iA , in which case
we consider the following two sub-cases:

1. If g is an input gate that corresponds to a query to ζrep in the input of U , then we would like
to hardwire g to the corresponding bit of the representation ψrep

iD
. To this end, ηrep

iA
invokes D to

compute ψrep
iD

, and hardwires g to the corresponding bit.

2. If g is an input gate that corresponds to a query to y or z in the input of U or to the proof string
of A, then we redirect the query to the corresponding coordinate of the matrices Mx, MD, or N .
This redirection can be computed efficiently using the block-access circuit of D.

This concludes the super-fast implementation of AI .

Remark 3.8.1. The above description ignored the fact that the universal circuit U takes as an additional
input an auxiliary witness z. In the actual proof, we will expect the matrix N to contain the auxiliary
witnesses in addition to the proof strings of A. In particular, for each iD, we will require the iD-th row
of N to contain an auxiliary witness for the iD-th invocation of A. Then, in the construction of ξiD,iA ,
we will redirect queries of ξiA to z the iD-th row of N .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 94

Remark 3.8.2. We mention that due to technical considerations that were discussed in Section 3.5.7.1,
in the actual construction we use the augmented universal circuit Û instead of the universal circuit U .
Recall that Û is similar to U , but also takes as input multiple copies of the encoding of ζrep via an error
correcting code, as well as multiple copies of y.

3.8.1.3 Showing that the queries of AI are contained in columns

Recall that in Section 3.8.1.1, we claimed the the queries of every output circuit ηiAqueries are contained
in a constant number of columns of the matrices Mx, MD and N , where Mx is the assignment matrix,
MD is the proof matrix of D, and N is the matrix whose rows are the proof strings of all the invocations
of A. In this section, we establish this claim and thus conclude this overview.

To this end, recall that the circuits ηiA are defined as ηiA
def
=
∧RD
iD=1 ξiD.iA , where each circuit ξiD.iA

makes at most sA = O(1) queries to the matrices Mx, MD, and N . We show that for each circuit ξiD.iA ,
the columns of Mx, MD, and N to which the queries of ξiD.iA belong depend only on the index iA and
not on the index iD, and this will imply the required claim. In order to show the latter assertion, recall
that the queries of ξiD.iA are obtained from the queries of ξiA . Now, for each query of ξiA we consider
three cases, depending on the part of the input of U at which the query is directed:

• The query of ξiA queries the u-th coordinate of the proof string of A: In this case, the
corresponding query of every circuit ξiD,iA queries the u-th coordinate of the iD-th row of the
matrix N . In other words, the corresponding query of every circuit ξiD,iA always queries the u-th
column of the matrix N , regardless of the the index iD, as required.

• The query of ξiA queries the u-th coordinate of y: In this case, the corresponding query
of each circuit ξiD.iA queries the u-th coordinate of (x ◦ πD)|QiD

. Now, since D has matrix access

(Definition 3.6.3), it holds that (x ◦ πD)|QiD
consists of few rows of Mx followed by few rows of

MD, where the numbers of rows of Mx and MD in (x ◦ πD)|QiD
are independent of the index iD.

It can be seen that this implies that the u-th coordinate of (x ◦ πD)|QiD
is always mapped to the

same column of Mx or MD, regardless of the index iD.

• The query of ξiA queries ζrep: In such case, the circuit ξiD,iA does not make any corresponding
query, and the corresponding input gate ξiD,iA is hardwired to the corresponding bit of the de-
scription of ψrep

iD
. This means that in this case no column of Mx, MD or N is queried, regardless

of the index iD.

It follows that in all the three cases, the the columns of Mx, MD, and N to which the queries of ξiD.iA
belong depend only on the index iA and not on the index iD. We conclude that the queries of every
output circuit ηiA are contained in at most sA = O(1) columns of Mx and MD, as required.

3.8.2 Robustization of decompositions with matrix access

As discussed in Section 3.8.1.1, in order to establish the rejection ratio of AI , we require the decompo-
sition D to have a certain robustness property. Specifically, for our argument to go through, D should
satisfy the following property: Whenever D is invoked on an assignment x that is far from satisfying the
input circuit ϕ and on proof string π, there exists at least one output circuit ψiA such that x ◦ π is far
from satisfying x◦π. This leads to the following definition of “existential robustness” of decompositions.

Definition 3.8.3. We say that a decomposition D has existential robustness ρ if the following holds
for every input circuit ϕ: Let ψ1, . . . , ψR be the output circuits of D on ϕ, and let Q1, . . . , QR be the

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 95

corresponding query functions. Then, for every assignment x to ϕ and any proof string π for D, there
exists i ∈ [R] such that

dist
(

(x ◦ π)|Qi , SAT (ψi)
)
≥ ρ · dist (x, SAT(ϕ)) . (3.2)

Remark 3.8.4. The difference between existential robustness and expected robustness (of Defini-
tion 3.5.6) is that the definition of existential robustness requires Equation (3.2) to hold for some i ∈ [R],
while the definition of expected robustness requires Equation (3.2) to hold for a random i ∈ [R] in ex-
pectation. Note that in general it is unlikely that a decomposition would have expected robustness,
since for a decomposition, it is not even guaranteed that a random output circuit will reject, let alone
that a random output circuit will be far from being satisfied.

We now observe that we can use the robustization technique of Section 3.5.6 to transform decom-
positions into existentially robust ones. We actually use the following variant of the procedure of
Section 3.5.6, which maintains the matrix access property of the decomposition. This is important since
in the construction of the intermediate assignment tester AI we need D to both be existentially robust
and have matrix access.

Proposition 3.8.5 (Robustization of decompositions with matrix access). There exists a polynomial
time procedure that satisfies the following requirements:

• Input:

1. A circuit decomposition D for circuits of size n that has b-matrix access. Furthermore, we
assume that D has outputs’ number R, outputs’ size s, tester size t, input representation size
nrep, and output representation size srep.

2. A reverse lister RL for D.

3. A block access circuit BA for D.

• Output:

1. A circuit decomposition D′ for circuits of size n with existential robustness ρ′ = Ω (1/b), out-
puts’ number R′ = 2·R, outputs’ size s′ = O(b·s), tester size t′ = O (t)+b·poly log (R, s, n, `),
input representation size nrep′ = nrep, and output representation size srep′ = srep + b ·
poly log (s).

2. A reverse lister RL′ for D′ of size at most t′.

3. A block access circuit BA′ for D′.

Furthermore, D′ has b′-matrix access (for some arbitrarily large b′, which in particular may depend on
n).

Remark 3.8.6. We stress that the parameter b′ of the matrix access of D′ may be very large. However,
this does not harm our construction, since we only use the decomposition D′ of Proposition 3.8.5 in the
construction of the intermediate assignment tester AI (Proposition 3.8.7, stated shortly below), and for
this use the value of the parameter b′ has no effect.

Proof sketch. Let us denote by ` and `′ the proof lengths of D and D′ respectively. It is not hard to
prove that if we apply the procedure of Theorem 3.5.23 to a decomposition D that has b-block access,
then the resulting decomposition will have existential robustness Ω (1/b). This can be done using roughly
the same argument used to establish the expected robustness in the proof of Theorem 3.5.23.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 96

For the “furthermore” part, we need to define for D′ a partition of the coordinates set [m+ `′] to
blocks B′1, . . . , B

′
p′ , and show that this partition satisfies the requirements of the definition of matrix

access (Definition 3.6.3). To this end, let B1, . . . , Bp be the partition of [m+ `] defined by D (that
is, by the matrix access of D). We begin the definition of the partition of [m+ `′] for D′ by setting
the first p blocks B′1, . . . , B

′
p of D′ to be equal to the blocks B1, . . . , Bp respectively. It remains to

define a partition B′p+1, . . . , B
′
p′ of the set [m+ `′] \ [m+ `] to blocks. Recall that the coordinates in

[m+ `′] \ [m+ `] consist of encodings Ej of the blocks Bj of D. The straightforward choice of blocks
B′p+1, . . . , B

′
p′ would be to choose the block B′p+j of D′ to be the encoding Ej. However, such choice

violates the requirement that all the proof blocks would be of the same width, in two ways:

1. The encodings Ej that encode proof blocks of D are wider than the proof blocks of D themselves.
This issue can be resolved rather easily, by adding dummy coordinates to the original proof blocks
of D such that the resulting blocks will be of the same width as the encodings Ej.

2. The encodings Ej that encode the assignment blocks of D may be much shorter than those that
encode the proof blocks of D. This could be the case if the assignment blocks of D are much shorter
than the proof blocks of D. In order to resolve this issue, for each encoding Ej that encodes an
assignment block, we define the corresponding block B′p+j of D′ to consist of many distinct copies
of Ej, such that B′p+j has the same width as the encodings of the proof blocks.
The latter definition of B′p+j can be implemented by redefining the proof string of D′ to contain
many copies of the encoding Ej. Note that we can not define the block B′p+j to contain multiple
queries to the same copy of Ej, because the definition of blocks forbids a block to contain multiple
queries to the same coordinate.

After performing the foregoing modifications to the construction of D′, as well as few other minor
modifications, the decomposition D′ can easily be shown to have matrix access. �

3.8.3 The intermediate assignment tester AI

In this section we describe the construction of the intermediate assignment tester AI , which is summa-
rized in the following proposition. We assume that the given circuit decomposition D is existentially
robust, and will later obtain this property by applying the robustization technique (Proposition 3.8.5)
to D.

For reasons that have to do with the efficient implementation of the reverse lister, we also assume
that the assignment tester A is input-uniform (Definition 3.5.11), and we will later obtain this property
by applying the generic transformation that was described in Lemma 3.5.13 in Section 3.5.4.

Proposition 3.8.7. There exists a polynomial time procedure that acts as follows:

• Input:

1. A circuit decomposition D for circuits of size nD that has outputs’ number RD, outputs’
size sD, existential robustness ρD, tester size tD, input representation size nrep

D , and output
representation size srep

D . Furthermore, D is required to have b′-matrix access (for arbitrarily
large b′).

2. An input-uniform assignment tester A for circuits of size nA that has outputs’ number RA,
outputs’ size sA, rejection ratio ρA, tester size tA, input representation size nrep

A and output
representation size srep

A .

3. Reverse listers RLD and RLA for D and A of sizes at most tD and tA respectively.

4. A block-access circuit BAD for D of size at most tD.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 97

5. Furthermore, the following inequalities should hold:

nA ≥ sD · srep
D · poly log (sD)

nrep
A ≥ poly log (sD)

• Output:

1. An assignment tester AI for circuits of size nD with outputs’ number RI
def
= RA, outputs’ size

sI
def
= O(RD · sA), rejection ratio Ω (ρD · ρA), tester size

tI
def
= O (tD + sA · tA) + sA · poly (srep

A) + poly (srep
D) + poly log (RD, sD, nD, RA, sA)

input representation size nrep
D , and output representation size

srep
I

def
= O (tD + sA · log sD) + poly (srep

D) + poly log (RD, sD, nD, RA, sA) .

Furthermore, AI has sA-block access.

2. An reverse lister RL′ for AI of size at most tI .

3. A block-access circuit BAI for AI of size at most tI .

Remark 3.8.8. We note that in the above proposition, we stress that the parameter b′ of the matrix
access of D does not affect the parameters of AI . In particular, b′ may be arbitrarily large, and may
depend on nD. The reason that b′ does not affect the parameters of AI is that for the construction of
AI , we only use the following property from the definition of matrix access:

• he tested assignment and proof string of D can be arranged in matrices, such that every output
circuit of ψi reads the same number of rows from each matrix, and such that the rows of the
assignment matrix precede the rows of the proof matrix in the input of each ψi.

The parameter b′ of matrix access is only important for purposes of robustization, and in the above
proposition, D is already assumed to be robust.

Remark 3.8.9. Throughout this section, we use the family of error correcting codes {Ck}∞k=1 whose
existence was stated in Fact 3.5.14 in Section 3.5.5. Recall that for each k ∈ N, the code Ck has message
length k. With a slight abuse of notation, for every string x ∈ {0, 1}∗ we denote C(x) = C|x|(x), and in
general, we drop k whenever k is clear from the context.

Recall furthermore that all the codes in the family has relative distance that is lower bounded by a
universal constant δC , and that for each k ∈ N, the block length of Ck is denoted by lk = O(k).

The rest of this section is dedicated to the proof of Proposition 3.8.7. Let D, A, RLD, RLA, BAD
be as in the proposition, and let `D and `A be the proof lengths of D and A respectively. Observe that
since D has matrix access, all its output circuits have the same input length (i.e. queries number), let
us denote this length by qD.

Let Û = ÛsD,srepD ,qD be the augmented universal circuit of Corollary 3.5.28, and recall that Û has

size sD · srep
D · poly log (sD) ≤ nA and has representation Û rep of size poly log (sD) ≤ nrep

A . Furthermore,

recall that Û takes as input a representation ζrep of a circuit ζ over qD inputs, strings c1, . . . , cα, which
are supposed to be the encoding C(ζrep) of ζrep, strings y1, . . . , yβ ∈ {0, 1}qD that are supposed to be

equal to each other and to be an assignment to ζ, and string z of length `U
def
= O(sD) that is supposed

to “convince” Û that ζ accepts y1. More formally, we require that if y1 = . . . = yβ is a satisfying
assignment of ζ, then Û accepts for some choice of z, and otherwise Û rejects for every choice of z.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 98

In the rest of this section, we describe the action of D on a fixed input circuit ϕ of size nD over
m inputs that has representation ϕrep of size nrep

D . Let ψ1, . . . , ψRD be the output circuits of D when
invoked on ϕrep, and let ψrep

1 , . . . , ψrep
RD

and QD
1 , . . . , Q

D
RD

be the corresponding representations and query

functions. Furthermore, let ξ1, . . . , ξRA be the output circuits of A when invoked on Û rep, and let
ξrep

1 , . . . , ξrep
RA

and QA
1 , . . . , Q

A
RA

be the corresponding representations and query functions. Note that by
our assumption on the input size and input representation size of A it is indeed possible to invoke A
on Û .

3.8.3.1 The proof strings of AI

Fix a satisfying assignment x of ϕ. We describe the proof string πI that convinces AI to accept x.
Recall that `D and `A denote the proof lengths of D and A respectively, and that `U is the length of the

witnesses of Û . The proof string πI is of length `I
def
= `D + RD · (`U + `A) and consists of the following

parts:

1. πI contains a proof string πD that convinces D that x satisfies ϕ.

2. For each iD ∈ [RD], the proof string πI contains a witness ziD that convinces Û that (x ◦ πD)|QDiD
satisfies ψi.

3. For each iD ∈ [RD], the proof string πI contains a string πiDA defined as follows. Let c = C(ψrep
i)

be the encoding of the binary description of ψrep
iD

via the code C. Then, πiA is the string that

convinces A that Û accepts the input which consists of the binary description of ψrep
iD

, of α copies
of c, of β copies of (x ◦ πD)|QDiD

, and of ziD .

We denote by Mx and MD the assignment matrix and proof matrix in which x and πD can be arranged
due to the fact that D has matrix access, and denote by N the RD × (`U + `A) matrix whose iD-th row
is the string ziD ◦ πiDA .

3.8.3.2 The block access circuit BAI

We describe the behavior of the block access circuit BAI . Let us denote by a and wa the number and
width of the assignment blocks of D respectively, let us denote by wD the width of the proof blocks of D,
and observe that a, wa, and wD can be computed using BAD. As discussed in the the proof overview,
the blocks of AI consist of the wa columns of the matrix Mx, the wD columns of the matrix MD, and
the `U + `A columns of the matrix N .

Recall that BAI has five modes of operation. It is easy to implement efficiently the first four modes
of BAI , namely, the Number of Blocks mode, the Block to Coordinate mode, the Coordinate to Block
mode, and the Number of Assignment Blocks mode, and we do not elaborate on their implementation.
It remains to describe the implementation of the Circuit to Blocks mode, in which BAI is given an index
iA ∈ [RA], and is required to output the indices of the blocks that are queried by ηiA , the iA-th output
circuit of AI .

In the rest of this section, we describe the action of BAI in Circuit to Blocks mode on a fixed
index iA ∈ [RA]. As was explained in the overview in Section 3.8.1.3, the output circuit ηiA is defined

by ηiA
def
=
∧
iD∈[RD] ξiD,iA , where the circuits ξiD,iA are obtained by redirecting the queries of ξiA . In

particular, the columns of Mx, MD and N that are queried by ηiA are determined by the queries of the
circuit ξiA , where each column that is queried by ηiA corresponds to one query of ξiA . The block access
circuit BAI thus begins its action by computing the queries σ1, . . . , σqA ∈ [qD + `A] of ξiA to the input

of Û and to the proof string of A.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 99

We now explain, for each query σh, what is the column of Mx, MD or N that corresponds to σh that
is queried by ηiA . The block access circuit BAI computes the indices of those columns for each of the
queries σh, and outputs the indices of all of those columns. Fix a query σh, and recall that the input
of Û consists of four parts: the description of ζrep in binary, α strings which are supposed to be equal
to the encoding C(ζrep) of ζrep, β supposed copies of the assignment y to ζ, and an auxiliary witness z.
The query σh may be directed at any of those parts, or to the proof string of A for its invocation on Û .
We consider each case separately:

1. σh is directed at z or at the proof string of A: In this case, if σh is directed at the u-th
coordinate of z, then ηiA queries the u-th column of N . Similarly, if σh is directed at the u-th
coordinate of z, then ηiA queries the (`U + u)-th column of N .

2. σh is directed at one of the supposed copies of y: In this case, the circuit ηiA queries one of
the columns of Mx or MD. As explained in the overview, when constructing the circuit ξiD,iA , the
queries of ξiA to the supposed copies of y are redirected to (x ◦ πD)|QDiD

. Recall that since D has

matrix access, the string (x ◦ πD)|QDiD
consists of rows of Mx followed by rows of MD, where the

numbers of rows of Mx and MD do not depend on iD. Let us denote by ra and rD the numbers
of rows of Mx and MD respectively that are queried by every output circuit ψiD (again, ra and rD
are independent of iD). In addition, recall that we denote by wa and wD the widths of Mx and
MD.
Let us view the assignment y as consisting of ra blocks of length wa followed by rD blocks of
length wD. It can be seen that queries of ξiA to the first ra blocks are redirected by ξiD,iA to the
corresponding rows of Mx and that the following rD blocks are always mapped to the rows of MD.
Now, suppose that the query σh is directed at the v-th coordinate of one of the supposed copies
of y. We consider two sub-cases:

a) If v is the u-th coordinate of one of the first ra blocks of y, then the output circuit ηiA queries
the u-th column of Mx.

b) On the other hand, if v is the u-th coordinate of one of the last rD blocks of y, then the
output circuit ηiA queries the u-th column of MD.

3. σh is directed at the description of ζrep or at one of its supposed encodings: In this
case, the circuit ηiA does not query any column that corresponds to σh, since, as explained in the
overview, the queries of ξiA to ζrep and its supposed encodings are hardwired to the descriptions and
encodings of the corresponding representations ψrep

iD
. This means that the h-th input gate of each

circuit ξiD,iA is hardwired to constants, and hence ηiA does not make any query that corresponds
to σh.

This concludes the description of the columns that ηiA queries, and the description of BAI . Observe
that AI indeed satisfies all the requirements for having sA-block access: every output circuit ηiA queries
at most sA columns since sA is an upper bound on the number of queries of ξiA . Furthermore, all
the assignment blocks of AI are of the same width a. Finally, since D has matrix access, and by the
definition of matrix access, it holds that every assignment block of AI (i.e., column of Mx) contains
(1/3) fraction of non-dummy coordinates. It follows that AI has sA-block access, as required.

3.8.3.3 The implementation of AI

We proceed to describe the assignment tester AI itself. It suffices to describe the circuit mode of AI ,
since the query mode of AI is determined by the Circuit-to-Blocks mode of BAI (see Section 3.8.3.2),
and can be implemented by using BAI . Thus, it suffices to describe, for every index iA, what is the

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 100

iA-th output circuit ηiA of AI , how its representation ηrep
iA

is implemented, and how the representation
ηrep
iA

is computed by AI . For the rest of this section, fix an index iA ∈ [RA]. We focus on the descriptions
of ηiA and of ηrep

iA
, and skip the description of how AI computes ηrep

iA
, which is straightforward.

The output circuit ηiA. We begin by describing the output circuit ηiA . As explained in the overview,
the basic idea that underlies the definition of ηiA is the following: Recall that ξiA is the iA-th output

circuit of A when invoked on Û . For every iD ∈ [RD], we obtain a circuit ξiD,iA from ξiA by fixing some
of the queries of ξiA to the description of ψrep

iD
and its encoding, and by redirecting the other queries of

ξiA into the matrices Mx, MD, and N . Next, we observe that all the queries of the circuits ξiD,iA are
contained in few columns of Mx, MD, and N . Finally, we define ηiA to be the circuit that queries the
aforementioned columns of Mx, MD, and N and checks that that all the circuits ξiD,iA are satisfied.

More formally, the output circuit ηiA is defined as follows. The circuit ηiA consists of three parts:

1. Input gates.

2. An output gate which is an AND gate.

3. A collection of RD circuits, such that the iD-th circuit ξiD,iA is obtained from ξiA by modifying ξiA
as follows:

a) Modifying the input gates of ξiD,iA that correspond to queries to the ζrep part in the input of

Û to be constant gates that contain the description of the output circuit ψrep
iD

.

b) Modifying the input gates of ξiD,iA that correspond to queries to the supposed encodings

of ζrep in the input of Û to be constant gates that contain the encoding of the description
of ψrep

iD
.

c) Connecting the output gate of ξiD,iA to the output gate of ηiA .

d) Connecting each input gate of ξiD,iA to the corresponding input gate of ηiA : As explained
above, every query of ξiA should be redirected to some coordinate σ of the matrices Mx, MD,
and N , and ηiA queries the column inside which the coordinate σ is found. We thus connect
each input gate of ξiD,iA that should be directed to a coordinate σ to the corresponding input
gate of ηiA that queries σ.

More specifically, recall that the assignment to Û consists of ζrep and its encodings, supposed
copies of an assignment y to ζ, and of an auxiliary witness z. Furthermore, we view y as
consisting of ra blocks of length wa followed by rD blocks of length wD (see Section 3.8.3.2).
Let qiA be the number of input gates o ξiA . For each j ∈ [qiA], we consider the following
cases for the j-th input gate of ξiA :

i. Suppose that the j-th input gate of ξiA corresponds to a query to the u-th coordinate of
the h-th block of y (for one of the supposed copies of y). Suppose furthermore and the
h-th block that is queried by the output circuit ψiD is the v-th row of Mx or MD. Then,
we connect the j-th input gate of ξiD,iA to the input gate of ηiA that corresponds to the
v-th coordinate of the j-th column that is queried by ηiA (which is the u-th column of Mx

or MD).

ii. Suppose that the j-th input gate of ξiA corresponds to a query to the u-th coordinate of
z or to the u-th coordinate of the proof string of A. In this case, we connect the j-th
input gate of ξiA to the input gate of ηiA that corresponds to the iD-th coordinate of the
j-th column that is queried ηiA (which is the u-th column of N).

This concludes the description of ηiA .

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 101

The representation ηrep
iA

. Recall that ηrep
iA

computes the following functionality: the representation
ηrep
iA

takes as input the index of a gate g of ηiA and an index h, and ηrep
iA

is required to retrieve the
function of g (one of AND, OR, NOT, or one of the constants 0 and 1), the index of the gate from which
the h-th incoming wire of g comes, and the index of the gate to which the h-th outgoing wire of g goes.
This functionality is straightforward to compute for most of the gates and wires of ηiA , but is non-trivial
in the following cases:

1. Suppose that g is one of the constant gates of a circuit ξiD,iA that should be fixed to the description
of ψrep

iD
or its encodings. In this case, the representation ηrep

iA
should determine whether this gate

is the constant 0 or the constant 1. The straightforward way to implement this functionality is
to hardwire to the representation ηrep

iA
the descriptions of all the representations ψrep

iD
for every

iD ∈ [RD]. However, this would cause the representation ηrep
iA

to be of size at least RD, which is
too large.
We therefore use the following alternative solution: We hardwire into ηrep

iA
the input representa-

tion ϕrep and the decomposition D itself. Then, whenever ηrep
iA

needs the description of ψrep
iD

for
any iD ∈ [RD], the representation ηrep

iA
invokes D on ϕrep in order to generate ψrep

iD
.

We stress that the fact that ηrep
iA

can compute the description of ψrep
iD

using D is a key point in our
construction of AI , and is one of the central ideas of this chapter. What is actually happening
here is that we use the fact that the circuits ψrep

1 , . . . , ψrep
iD

are in a way “similar” and “uniform”,
in the sense that they can all be generated using D.
We note that when ηrep

iA
needs the encoding of the description of ψrep

iD
, it computes the description

of ψrep
iD

and encodes it via C, which can be done using a circuit of size poly
(∣∣ψrep

iD

∣∣) = poly (srep
D).

2. Suppose that g is an “input gate” of a circuit ξiD,iA , that is, g is one of the gates of ξiD,iA that
are obtained redirecting a query of ξiA to an input gate of ηiA . The representation ηrep

iA
should

determine the gates of ηiA from which g has incoming wires, which are all input gates of ηiA .
The key issue here is that if g corresponds to a query of ξiA that is redirected to Mx or MD,
then in order to determine the relevant input gates of ηiA , we should determine the queries of the
circuit ψiD . This can be done by invoking the decomposition D on the input representation ϕrep

in query mode to obtain the queries of ψiD , using again the fact that the descriptions of D and
ϕrep are hardwired into ηrep

iA
.

3. Suppose that g is one of the input gates of ηiA . The representation ηrep
iA

should determine the gates
of ηiA to which g has outgoing wires. All of those gates are “input gates” of circuits ξiD,iA , that is,
gates of ξiD,iA that are obtained redirecting a query of ξiA to an input gate of ηiA . The challenge
is to determine which are the relevant circuits ξiD,iA , that is, for which indices iD the gate g has
an outgoing wire to a gate of ξiD,iA .
The key issue here is that if g corresponds to a query to a coordinate σ of Mx or MD, then we need
to determine for which indices iD the output circuit ψiD queries the coordinate σ. Fortunately, this
can be done easily by invoking the reverse lister RLD, and therefore we hardwire the description
of RLD into ηrep

iA
as well. Once we determined those indices iD, the rest of the implementation is

straightforward.
Interestingly, we note that, except for the proof of Dinur’s amplification theorem, this is the only
place in this chapter where we use the fact that our assignment testers have super-fast reverse
listers9.

We mention that we also hardwire the description of the circuit ξiA and its queries into the representa-
tion ηrep

iA
. The representation ηrep

iA
uses this information to compute the descriptions of the internal gates

9We also use this fact in order to upper bound the proof length, as in Section 3.5.2, but this is done only for convenience
and can be avoided.

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 102

of the circuits ξiD,iA . This concludes the implementation of ηrep
iA

, and the description of the circuit mode
of AI .

Remark 3.8.10. We note that instead of hardwiring the circuit ξiA and its queries into the represen-
tation ηrep

iA
, we could have also hardwired the assignment tester A into ηrep

iA
and use it to compute the

queries of ξiA . However, hardwiring A into ηrep
iA

would cause the output representation size of AI to be
at least tA, which in turn would have caused problems in the proof of the tensor product lemma (see
Remark 3.8.11).

3.8.3.4 The reverse lister of AI

We turn to describe the construction of the reverse lister RLI of AI . This construction is not central
to the understanding of the proof of the tensor product lemma, and can be skipped at first reading.
We also note that the construction is straightforward except for one subtle point in which we use the
assumption that the assignment tester A is input-uniform.

Fix a coordinate k ∈ [m+ `I], and consider the action of RLI on input representation ϕrep and
coordinate k. For simplicity, we assume that k belongs to the matrix Mx, while the cases where k
belongs to one of the matrices MD and N can be handled similarly.

Recall that the columns of Mx and MD that an output circuit ηiA queries are determined as follows

(see also Section 3.8.3.2): for each query of ξiA to one of the β supposed copies of y in the input of Û ,
the output circuit ηiA queries either a column of Mx or a column of MD. The exact column of Mx or
MD that is queried depends on the place of the query within the supposed copy of y. In particular if
the query belongs to one of the first ra blocks of y (each of length wa), then ηiA queries a column of Mx,
and if the query belongs to one of the last rD blocks of y (each of length wD), then ηiA queries a column
of MD.

Now, let u be the index of the column of Mx to which the coordinate k belongs. It can be seen that
there exist β · ra coordinates σ1, . . . , σβ·ra in the input of Û such that an output circuit ηiA queries the
u-th column of Mx exactly once for each query of ξiA to a coordinate σi. Observe that the coordinates

σ1, . . . , σβ·ra can be computed efficiently from u, ra, wa, rD, wD, and qD
def
= ra · wa + rD · wD. We turn

to describe the action of RLI on the coordinate k in each of its modes:

1. Counting mode: In this mode, RLI is given as input ϕrep and k, and is required to output
|RevListAI ,ϕ (k)|. By the above discussion, it can be seen that

|RevListAI ,ϕ (k)| =
β·ra∑
h=1

∣∣∣RevListA,Û (σh)
∣∣∣

Now, since the assignment tester A is assumed to be input-uniform, it holds that∣∣∣RevListA,Û (σ1)
∣∣∣ =

∣∣∣RevListA,Û (σ2)
∣∣∣ = . . .

∣∣∣RevListA,Û (σβ·ra)
∣∣∣

Thus, in order to compute |RevListAI ,ϕ (k)|, the reverse lister RLI invokes RLA on Û and σ1 to

determine
∣∣∣RevListA,Û (σ1)

∣∣∣, and outputs β · ra ·
∣∣∣RevListA,Û (σ1)

∣∣∣.
2. Retrieval mode: In this mode, RLI is given as input ϕrep, k, and v ∈ [|RevListAI ,ϕ (k)|], and

is required to output the v-th element (i, κ) of RevListAI ,ϕ (k). Recall that |RevListAI ,ϕ (k)| =

β · ra ·
∣∣∣RevListA,Û (σ1)

∣∣∣, so the index v can be viewed as a pair of indices (h, v′) where h ∈ [β · ra]

and v′ ∈
[∣∣∣RevListA,Û (σ1)

∣∣∣]. The reverse lister RLI begins by invoking RLA in retrieval mode

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 103

to compute the v′-th element (iA, κA) of RevListA,Û (σh).
Now, observe that the desired value of i is iA. Furthermore, observe that the place κ of the query
to the coordinate k within the input of ηi can be computed efficiently using BAI . Hence, the

reverse lister RLI computes this value of κ and outputs (i, κ) (where i
def
= iA).

3. Reverse retrieval mode: In this mode, RLI is given as input ϕrep, k, and a pair (i, κ) ∈
RevListAI ,ϕrep (k), and is required to output the index v such that (i, κ) is the v-th element of
RevListAI ,ϕ (k). Recall that κ is a coordinate in the input of ηi, and suppose that it belongs to
the j-th column that is queried by ηi. Thus, the query of ξi that corresponds to this column is
the j-th query of ξi that is not directed at the representation ζrep or to its supposed encodings
in the input of Û - suppose that this is the κA-th query of ξi. Now, the reverse lister RLI
first invokes the assignment tester A in query mode on κA to determine the coordinate σh at
which the κA-th query of ξi is directed. Then, RLI invokes RLA in reverse retrieval mode to
find the index v′ such that (i, σh) is the v′-th element of RevListA,Û (σh). Finally, RLI outputs

v
def
= (h− 1) ·

∣∣∣RevListA,Û (σ1)
∣∣∣+ v′.

This concludes the description of the action of RLI on a coordinate k of Mx. The cases where k belongs
to the matrix MD or to the matrix N are handled similarly. We note that if k belongs to the matrix N ,
instead of Mx or MD, then the implementation is actually simpler, since the coordinates σ1, . . . , σβ·ra in

the input of Û are replaced with only one coordinate σ.

3.8.3.5 The parameters of AI

It is easy to verify that AI has the input size, input representation size, outputs’ number, and outputs’
size that are stated in the lemma. In addition, as noted in Section 3.8.3.2, the assignment tester AI
indeed has sA-block access. We now argue that AI has the correct output representation size

srep
I

def
= O (tD + sA · log sD) + poly (srep

D) + poly log (RD, sD, nD, RA, sA) .

To see it, note that the actions of a representation ηrep
iA

consist of invoking the decomposition D to
compute a representation ψrep

iD
and its queries (which is a reason for the O(tD) term), computing the

encoding of ψrep
iD

(which is the reason for the poly (srep
D) term), invoking the reverse lister RLD and

the block access circuit BAD (which is another reason for the O(tD) term), and performing calcula-
tions on numbers in the sets [RD], [sD], [nD], [`D], [`A] and [sA] (which is the reason for the term
poly log (RD, sD, nD, `D, `A, sA)). Furthermore, the representation ηrep

iA
contains the description of ξiA

and all of its queries into the input of Û , which is the reason for the O (sA · log sD) term.
Next, we claim that AI indeed has tester size

tI = srep
I +O (sA · tA) + sA · poly (srep

A)

= O (tD + sA · tA) + sA · poly (srep
A) + poly (srep

D) + poly log (RD, sD, nD, RA, sA)

To see it, note that the actions of AI on index iA consist of computing the representation ξrep
iA

(which
accounts for a term of O(tA)), computing the description of ξiA from ξrep

iA
(which is the reason for the

sA ·poly (srep
A) term), computing the queries of ξiA (which accounts for a O(sA ·tA) term), and outputting

the resulting representation ηiA (which accounts for the srep
I term).

It remains to show that the rejection ratio of AI is Ω (ρD · ρA). Let x be an assignment to ϕ that
is ε-far from any satisfying assignment, and let πI be a proof string for AI . As before, we view πI as
consisting of a proof string πD for D, of a collection of witnesses zi for Û , and of a collection of proof
strings πiA for A. By the existential robustness of D, there exists iD ∈ [RD] such that (x ◦ πD)|QD,ϕiD

is

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 104

(ρD · ε)-far from satisfying ψiD . Now, let c = C(ψrep
iD

) be encoding of the binary description of ψrep
iD

, and

consider the following assignment y to Û :

y
def
= ψrep

iD
◦ c ◦ · · · ◦ c︸ ︷︷ ︸

α

◦ (x ◦ πD)|QD,ϕiD

◦ . . . ◦ (x ◦ πD)|QD,ϕiD︸ ︷︷ ︸
β

◦ziD ,

It is not hard to see that y is Ω (ρD · ε)-far from satisfying Û , and therefore for at least Ω (ρA · ρD · ε) frac-
tion of the circuits ξiA reject y ◦ πiDA . It follows that at least Ω (ρA · ρD · ε) fraction of the circuits ξiD,iA
reject their corresponding assignment, and this, in turn, implies that at least Ω (ρA · ρD · ε) fraction of
the circuits ηiA reject x ◦ πI , as required.

3.8.4 Proof of the Tensor Product Lemma

In this section, we complete the proof of the tensor product lemma, by describing the procedure of
the tensor product lemma that constructs the assignment tester A from the decomposition D and the
assignment tester A′. We note that the description of the procedure and the analysis of the parameters
is technical, and contains no new ideas.

When given as input a circuit decomposition D and an assignment tester A as in the lemma, as well
as circuits RLD, BAD, and RLA, the procedure takes the following steps:

1. The procedure applies the robustization technique of Proposition 3.8.5 to D, thus obtaining an
existentially robust decomposition Drob.

2. The procedure applies the transformation of Lemma 3.5.13 to A, thus obtaining an input-uniform
assignment tester Auni.

3. The procedure applies Proposition 3.8.7 to Drob and Auni to construct the intermediate assignment
tester AI .

4. The procedure applies Theorem 3.5.23 (the robustization theorem) to AI , yielding a robust as-
signment tester AI′ .

5. the procedure composes AI′ with A using the composition theorem (Theorem 3.5.7), thus obtaining
the assignment tester A′.

6. The procedure outputs A′ and the corresponding reverse lister RL′, which is obtained in the process
of constructing A′.

We turn to analyze the parameters of A′ by analyzing the parameters obtained in each of the foregoing
steps:

1. By Proposition 3.8.5, it holds that Drob is a circuit decomposition for circuits of size nD with

outputs’ number RDrob
def
= 2 · RD, outputs’ size sDrob

def
= O(b · sD), existential robustness ρDrob

def
=

Ω (1/b), tester size tDrob
def
= O (tD) + b · poly log (RD, sD, nD), input representation size nrep

D , and

output representation size srep
Drob

def
= srep

D + b · poly log (sD). Furthermore, D has b′-matrix access for
some arbitrary b′.

2. By Lemma 3.5.13, it holds that Auni is an assignment tester for circuits of size nA with with

outputs’ number RAuni = 2 · RA, outputs’ size sAuni
def
= O(sA), rejection ratio 1

4
· ρA, tester size

tAuni = tA+poly log (nA, RA), input representation size nrep
A , and output representation size srep

Auni =
srep
A + poly log(nA).

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 105

3. By Proposition 3.8.7, it holds that AI is an assignment tester for circuits of size nD with outputs’

number RI
def
= RAuni = O(RA), outputs’ size sI

def
= O(RDrob · sAuni) = O(RD · sA), rejection ratio

Ω (ρDrob · ρAuni) = Ω(ρA/b), tester size

tI
def
= O (tDrob + sAuni · tAuni) + sAuni · poly

(
srep
Auni

)
+poly

(
srep
Drob

)
+ poly log (RDrob , sDrob , nDrob , RAuni , sAuni)

= O (tD + sA · tA) + sA · poly (srep
A , log nA, logRA)

+poly (srep
D , b, log sD) + b · poly log (RD, sD, nD, RA, sA, b) ,

input representation size nrep
D , and output representation size

srep
I

def
= O (tDrob + sAuni · log sDrob) + poly

(
srep
Drob

)
+ poly log (RDrob , sDrob , nD, RAuni , sAuni)

= O (tD + sA · log (sD · b)) + poly (srep
D , b, log sD) + poly log (RD, sD, nD, RA, sA, b) .

Furthermore, AI has sAuni-block access. We also note that by our assumption on the input size
and input representation size of A, it is indeed legal to apply Proposition 3.8.7 to Drob and Auni

(recall that this proposition requires a lower bound on the input size and input representation size
of A).

4. By Theorem 3.5.23, it holds that AI′ is an assignment tester for circuits of size nD with outputs’

number RI′
def
= 2 · RI = O(RA), outputs’ size sI′

def
= O(sA · sI) = O (RD · s2

A), robustness ρI′
def
=

Ω (ρI/sAuni) = Ω (ρA/b · sA), tester size

tI′
def
= O (sAuni · tI) + sAuni · poly log (RI , sI , nD)

= O
(
sA · tD + s2

A · tA
)

+ poly (sA, s
rep
A , srep

D , b) · poly log (RD, sD, nD, RA, sA, nA) ,

input representation size nrep
D , and output representation size

srep
I′

def
= srep

I + sAuni · poly log (sI)

= O (tD) + poly (srep
D , b, log sD) + sA · poly log (RD, sD, nD, RA, sA, b) .

5. Finally, by the composition theorem (Theorem 3.5.7), it holds that A′ is an assignment tester for

circuits of size nD with outputs’ number R′
def
= 2 · RI · RA = O (R2

A), outputs’ size s′
def
= O(sA),

rejection ratio ρ′
def
= 1

4
· ρI′ · ρA = Ω (ρ2

A/b · sA), tester size

t′
def
= O (tI′ + tA) + poly log (nD, RI′ , `I′ , RA, `A)

= O
(
sA · tD + s2

A · tA
)

+ poly (sA, s
rep
A , srep

D , b) · poly log (RD, sD, nD, RA, sA, nA) ,

input representation size nrep
D , and output representation size srep′ def

= srep
A + poly log(sA). Further-

more, RL′ is of size at most t′. We also note that applying the composition theorem to AI′ and A
is legal, since by our assumption on A, its input size is larger than sI′ , and its input representation
size is larger than srep

I′ .

The required result follows.

Remark 3.8.11. We would like to highlight the fact that the output representation size srep
I of AI does

not depend on the tester size tA of A, even though the tester size tI of AI does depend on tA. This is an
important and non-trivial fact that results from our particular implementation of AI . To see why this

CHAPTER 3. COMBINATORIAL PCPS WITH EFFICIENT VERIFIERS 106

fact is important, observe that had srep
I depended on tA, we would not have been able to perform the

last composition step, since the output representation size srep
I′ of AI′ would have been greater than the

input representation size nrep
A of A.

While it is tempting to try to solve this problem using the input representation lemma (Lemma 3.5.13),
it is not clear that this solution would have worked, since this would have introduced a non-trivial de-
pendency into our iterative construction in Section 3.6.

Chapter 4

Combinatorial PCPs with Short Proofs

4.1 Introduction

4.1.1 Background and Our Results

A PCP (Probabilistically Checkable Proof) is a proof system that allows checking the validity of a claim
by reading only a constant number of bits of the proof. The PCP theorem asserts the existence of
PCPs of polynomial length for any claim that can be stated as membership in an NP language. In this
chapter, we consider the length of the proofs, and provide a combinatorial construction of PCPs that
are almost as short as the ones obtained from the algebraic constructions.

Let L be a language in NP, and recall that there is a polynomial-time algorithm V that verifies the
membership of a string x in L when given an additional NP-witness. Let t : N→ N denote the running
time of V . The original PCP theorem asserts that in order to verify that x ∈ L, the PCP verifier
needs to use a proof of length poly (t(|x|)). However, using algebraic techniques, one can construct PCP
verifiers that use a proof of length only t · poly log(t) [BSS08, Din07]. It is not known whether one can
construct such PCPs using a combinatorial approach such as Dinur’s1.

In this chapter, we present an (almost) combinatorial construction of PCPs that use proofs of length

t · (log t)O(log log t), thus coming very close to the state of the art algebraic constructions. Namely, our
main result is the following

Theorem 4.1.1 (Main theorem). For every time-constructible t : N → N and every language L ∈
NTIME(t), there exists a PCP verifier for L with proof length t(n) · (log (t(n)))O(log log t(n)), query com-
plexity O(1), and rejection probability Ω(1).

In order to prove Theorem 4.1.1, we develop a few generic PCP techniques that may be of independent
interest, and are discussed in Section 4.1.2.

Our use of polynomials. As mentioned above, our construction is only “almost” combinatorial. The
only exception is that our construction does use low degree polynomials at one point. However, our use
of polynomials is a very restricted one, and is confined to the construction of error correcting codes with
a certain simple property. Specifically, we only use polynomials to construct a triplet (CA, CB, CM) of
linear codes that have the following “multiplication property”:

• For every two codewords cA ∈ CA and cB ∈ CB, it holds that cA · cB is a codeword of CM , where
cA · cB is obtained by coordinate-wise multiplication of cA and cB. The multiplication is done in
the finite field over which the codes are linear.

1We mention that the construction of PCPs that have proof length t ·poly log (t) uses Dinur’s combinatorial techniques
in addition to the algebraic techniques. Still, the main part of this construction is algebraic.

107

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 108

Such a triplet (CA, CB, CM) can easily be constructed using low-degree polynomials. Moreover, if the
codes CA, CB, and CM are allowed to have quadratic length, then they can also be constructed without
using polynomials (see Section 2.3.2 of Chapter 2). However, for our purposes we need the codes CA,
CB, and CM to have quasi-linear length, and we do not know how to construct such codes without using
polynomials. Still, a combinatorial construction of such codes is conceivable.

Extensions of our result. It can be shown that our PCPs have randomness complexity of log t +
O(log2 log t), which matches the length of the proofs. In addition, as in previous works in the area, our
construction of PCPs can be extended to yield the stronger notion of PCPPs [BSGH+06, DR06]. We
do not elaborate on those claims in this preliminary version.

4.1.2 Our techniques

Below, we sketch the main steps of our construction and the main techniques that we use.

Constructing PCPs from linear PCPPs. Our first step is reducing the construction of PCPs to
the construction of a simpler object, called linear PCPPs [BSHLM09]. Informally, a linear PCPP is
a verifier that, when given a linear subspace W ⊆ Fn and oracle access to a vector w ∈ Fn, verifies
that w ∈ W by making few queries to w and to an alleged proof. In other words, a linear PCPP is
the restriction of the notion of a PCPP [BSGH+06, DR06] to the verification of membership in linear
subspaces.

We show that any construction of a linear PCPP implies a construction of a full-fledged PCP, with
a poly-logarithmic loss in the parameters. The construction of the full-fledged PCP is generic, and uses
the linear PCPP as a black box. We believe that this construction is interesting in its own right, and
may be useful for future works2.

Our construction of PCPs from linear PCPPs is performed by combining the linear PCPP with the
multiplication codes that were discussed in Section 4.1.1. Intuitively, the multiplication codes allow us
to go from verifying linear claims to verifying non-linear claims.

Robustization via tensor product codes. Our next step is to note, following [BSGH+06, DR06,
BSS08, Din07], that it suffices to construct a linear PCPP that makes Õ(

√
n) queries to its oracle and

has proof length Õ(n). Such a linear PCPP can then be composed with itself for O(log log n) times to

yield3 a linear PCPP with a constant number of queries and proof length n · (log n)O(log logn).
In order for us to be able to apply such composition, the linear PCPP is required to have a property

called robustness [BSGH+06, DR06]. The robustness property was achieved in several previous works by
a technique called “robustization” [BSGH+06, DR06] (also “alphabet reduction” or “parallelization”).
The robustization technique allows one to transform every PCP with a “block-access” property into a
robust PCP. Specifically, the latter property may be viewed as follows: It is required that the PCP proof
can be partitioned to blocks, such that the PCP verifier always queries only a constant number of the
blocks.

2We note that the work of [BSS08] has shown a stronger result, namely that one can construct a full-feldged PCP
from a linear PCPP that can only verify membership in a Reed-Solomon code (rather than a general linear subspace).
However, their construction is signicantly more complicated than ours, and relies heavily on algebraic machinery.

We also note that other works in this area (e.g. [AS98, ALM+98, BSGH+06]) start by reducing the construction of a
full-edged PCP to the construction of a PCP for a specic algebraic problem. However, in all of those works, the latter
algebraic problem is NP-complete, while the problem we consider (checking membership in a linear subspace) is in P.
Hence, there is a fundamental dierence between those reductions and ours.

3We mention that after the composition one also needs to apply a query reduction technique and the gap amplification
theorem of Dinur.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 109

In our context, we do not know how to construct a PCP that satisfies the foregoing block-access
property. We therefore generalize the robustization technique such that it can be applied to PCPs which
satisfy a weaker requirement.

To this end, instead of partitioning the proof to blocks, we arrange the proof coordinates in a matrix.
From this point of view, the foregoing block-access property may be viewed as restricting the PCP verifier
to reading a constant number of rows of the matrix. We now generalize the robustization technique by
allowing the PCP verifier to query both rows and columns of the aforementioned matrix, as long as it
queries a constant number of rows and columns.

Both the standard robustization technique and our generalization use error correcting codes. The
standard robustization technique transforms a “block-access PCP” into a robust one by encoding each
of the blocks by an error correcting code. In our a generalization, we transform the “row/column-access
PCP” into a robust one by encoding the corresponding matrix via a robust tensor product code [BSS06].
This means, roughly, that we first encode the rows of the matrix by an error correcting code, and then
encode the columns of the new matrix by an error correcting code.

We stress that this generalization of the robustization method is generic, and may be useful for future
constructions of PCPs.

Constructing linear PCPPs that make Õ(
√
n) queries. It remains to construct a linear PCPP

that makes Õ(
√
n) queries to its oracle, has proof length Õ(n), and satisfies the relaxed robustization

requirement discussed above. To this end, we first define a notion called “Simultaneous Linear Ver-
ifier” (abbreviated SLV). Informally, an SLV is a verifier V that when given as input

√
n subspaces

W 1, . . . ,W
√
n ⊆ F

√
n and oracle access to

√
n vectors w1, . . . , w

√
n ∈ F

√
n, verifies that all the claims

of the form wi ∈ W i hold simultaneously. Here, “simultaneously” means that if for at least one index
i ∈ [m] it holds that wi is far from W i, the verifier V rejects with significant probability4.

We proceed by showing how to construct the required linear PCPP while assuming the existence of
an SLV that uses Õ(

√
n) queries and proofs of length Õ(n). This is done by transforming a claim of the

form w ∈ W (for w ∈ Fn) to an equivalent collection of claims of the form wi ∈ W i (for wi ∈ F
√
n). The

latter transformation is performed by embedding the claim w ∈ W on a structured routing network,
following [BFLS91, PS94] and in particular Chapter 3.

Finally, we show how to construct the required SLV. We begin by considering the special case in
which all the subspaces W i are equal (say, to a subspace W), and show how to handle this case using
error correcting codes. Finally, we show how to decompose the general case to a constant number of
instances of the foregoing special case, and handle those instances as before. The latter decomposition
is performed via a novel application of routing networks and of the multiplication codes discussed in
Section 4.1.1.

In the author’s opinion, the introduction of SLVs and their construction is the most interesting part
of this chapter.

Organization of this chapter. In Section 4.2 we recall the preliminaries that are required for this
chapter. In Section 4.3, we define the notion of linear PCPPs, and show to construct a PCP based on
a linear PCP. In Section 4.4, we show our generalization of the robustization technique. In Section 4.5,
we show the construction of linear PCPPs with Õ(

√
n) queries. Finally, in Section 4.6, we show how to

use the foregoing tools to construct the required PCPs and prove the main theorem (Theorem 4.1.1).

4Note that the notion of SLV differs from a linear PCPP: if we used a linear PCPP verifier to verify all of the claims
wi ∈W i simultaneously, then the verifier would have rejected only if the vectors w1, . . . , w

√
n were far from W 1, . . . ,W

√
n

on average. On the other hand, a linear PCPP is capable of handling a a subspace of Fn and not just a collection of
subspaces of F

√
n.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 110

4.2 Preliminaries

For any n ∈ N we denote [n]
def
= {1 . . . , n}. For a string x ∈ {0, 1}n and a set S ⊆ [n], we denote by x|S

the projection of x to the coordinates in S.

4.2.1 PCPs

Below we give the formal definition of PCPs.

Definition 4.2.1. Let L ⊆ {0, 1}∗ be a language, and let q, ` : N→ N, ρ : N→ (0, 1). A PCP verifier V
for L with query complexity q, proof length `, and rejection probability ρ, is a probabilistic oracle machine
that satisfies the following requirements:

1. On every input x ∈ {0, 1}∗ and every sequence of coin tosses, V makes at most q(|x|) queries to
its oracle.

2. Completeness: For every x ∈ L, there exists a string π ∈ {0, 1}`(|x|) such that Pr [V π(x) accepts] = 1.

3. Soundness: For every x /∈ L and every a string π ∈ {0, 1}`(|x|), it holds that Pr [V π(x) rejects] ≥ ρ(|x|).

4.2.2 Error Correcting Codes

All the error correcting codes that we consider in this extended abstract are binary linear codes, to be
defined next. A (linear) code C with message length k and block length ` is an injective linear function
from {0, 1}k to {0, 1}` (where linearity is over GF(2)). We will sometimes identify C with its image
C({0, 1}k). Specifically, we will write c ∈ C to indicate the fact that there exists x ∈ {0, 1}k such that
c = C(x). In such case, we also say that c is a codeword of C. The rate RC of the code C is the ratio
k/`.

For any two strings x, y ∈ {0, 1}`, the relative Hamming distance between x and y is the fraction of

coordinates on which x and y differ, and is denoted by δ(x, y)
def
= |{xi 6= yi : i ∈ [`]}| /`. The relative

distance of a code C is defined as δC
def
= minc1 6=c2∈C {δ(c1, c2)}. For every code C : {0, 1}k → {0, 1}` and

a string w ∈ {0, 1}` we denote δ(w,C)
def
= minc∈C {δ(w, c)}. We say that w is ε-far from C (resp. ε-close

to C) if δ(w,C) > ε (resp. δ(w,C) ≤ ε).
A code C : {0, 1}k → {0, 1}` is said to be systematic if for every x ∈ {0, 1}k it holds that C (x)|[k] = x.

By Gaussian elimination, every linear code may be assumed to be systematic without loss of generality.
All the codes in this chapter are assumed to be systematic.

4.2.3 Routing networks

In our construction of PCPs, we use a special kind of graphs called permutation routing networks (see,
e.g., [Lei92]). In order to motivate this notion, let us think of the vertices of the graph as computers
in a network, such that two computers can communicate if and only if they are connected by an edge.
Suppose that there is some set S of computers in the network such that each computer in S needs to
send a message to some other computer in S, and furthermore that each computer in S needs to receive
a message from exactly one computer in S (in other words, the mapping from source computers to
target computers is a permutation). Then, the property of the routing network says that we can route
the messages in the network such that each computer in the network forwards exactly one message.
Formally, we use the following definition of routing networks.

Definition 4.2.2. A routing network of order n is a graph G = (V,E) along with a special set of vertices
S ⊆ V of size n, such that the following requirement holds: For every permuation σ on S, there exists
a set P of vertex-disjoint paths in G that connect each v ∈ S to σ(v) ∈ s.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 111

Routing networks were studied extensively in the literature of distributed computing, and several
constructions of efficient routing networks are known. In particular, we use the following fact on routing
networks, whose requirements are satisfied by several constructions.

Fact 4.2.3 (see, e.g, [Lei92]). There exists an infinite family of routing networks {Gn}∞n=1, the network
Gn being of order n such that the following properties hold.

1. Gn has Õ(n) vertices.

2. The edges of Gn can be colored using 4 colors such that no two edges of the same color share a
vertex.

3. There exists an algorithm that on input n, runs in time poly (n) and outputs Gn.

4. There exists a polynomial time algorithm that when given as input Gn and a bijection σ : S → T
outputs a set P of vertex-disjoint paths that connect each v ∈ S to σ(v) ∈ T .

4.3 PCPs and Linear PCPPs.

In this section we define the notion of linear PCPPs, and show how to construct a full-fledged PCP
using a linear PCPP as a building block.

4.3.1 Linear PCPPs

We begin by defining the notion of linear PCPPs (originally defined in [BSHLM09]). For simplicity, in
this overview we restrict our attention to linear PCPPs over GF(2), but it is possible to generalize this
definition to larger fields, and in fact we do use such a generalization in the actual proof.

Informally, a linear PCPP is a verifier that checks that a vector w satisfies a linear assertion by
reading a small part of w, and of an alledged proof. Little more specifically, a linear PCPP is an oracle
machine that takes as explicit input a linear subspace W ⊆ {0, 1}m, gets oracle access to a vector
w ∈ {0, 1}m and to an additional string π ∈ {0, 1}∗, accepts with probability 1 if w belongs to W ,
and rejects with significant probability if w is far from W . The subspace W is represented by a linear
circuit [Val77], to be defined next.

A linear circuit (over GF(2)) is a circuit that contains only gates that compute the XOR of their
inputs5. The size of the circuit is defined to be the number of wires in the circuit. Note that every
output of the circuit is a linear non-affine function6 of the inputs, and that every linear function over
GF(2) can be computed by such circuits. We note that in some previous works the definition of linear
circuits is little different, and allows the circuits to compute affine functions. The reason we choose not
to allow affine functions is that it allows us to state a stronger result (Theorem 4.3.6).

We will usually consider linear circuits that have multiple outputs. We say that a linear circuit
ϕ : {0, 1}m → {0, 1}t accepts an input w ∈ {0, 1}m if ϕ(w) = 0 ∈ {0, 1}t. Observe that the set of
inputs accepted by a linear circuit ϕ : {0, 1}m → {0, 1}t is a linear subspace of {0, 1}m of dimension at
least m− t. We denote the latter subspace by Wϕ, and say that ϕ accepts Wϕ.

Definition 4.3.1 (Variant of [BSHLM09]). Let q, ` : N → N, ρ : N → (0, 1). A linear PCPP verifier
V with query complexity q, proof length `, and rejection ratio ρ, is a probabilistic oracle machine that
satisfies the following requirements:

5In the generalization of this definition to larger fields, every gate computes a linear combination of its inputs.
6The function is non-affine because we did not allow constant gates.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 112

1. V takes as input a linear circuit ϕ : {0, 1}m → {0, 1}t of size n, and gets oracle access to a vector

w ∈ {0, 1}m as well as to an additional string π ∈ {0, 1}`(n).

2. On every input circuit ϕ and every sequence of coin tosses, V makes at total number of at most
q(n) queries to its oracle. The queries are made non-adaptively.

3. Completeness: For every x ∈ Wϕ , there exists a string π ∈ {0, 1}`(n) such that Pr [V x,π(ϕ) accepts] = 1.

4. Soundness: For every x ∈ {0, 1}m that is ε-far from Wϕ and every string π ∈ {0, 1}`(n), it holds
that Pr [V x,π(ϕ) rejects] ≥ ρ(n) · ε.

Remark 4.3.2. In order to be able to compose linear PCPPs, we also need to require that after the
linear PCPP gets the answers it gets to its queries, it may only apply linear predicates to those answers.
However, we ignore this issue in this extended abstract.

Remark 4.3.3. Our notion of linear PCPP is a special case of the notion of PCPP of [BSGH+06, DR06]
(a.k.a assignment tester). It is also related to the notion of linear inner verifier of [GS06].

4.3.2 Constructing PCPs from linear PCPPs

We turn to show a construction of PCPs that uses linear PCPPs as a building block. This is formalized
in Theorem 4.3.6 below.

Before getting to the theorem and its proof, we note that the proof relies on the existence of “multi-
plication codes”, which are codes with a certain multiplication property. For simplicity, in this overview
we assume the existence of multiplication codes over {0, 1}, while in the actual proof we use such codes
over a larger field, and construct them using the Reed-Solomon code. More specifically, we assume the
following:

Assumption 4.3.4. For every k ∈ N, there exists a triplet of systematic codes (CA, CB, CM) of constant
rate and relative distance, such that CA and CB have message length k, and such that the following
holds: For every cA ∈ CA and cB ∈ CB, it holds that cA · cB ∈ CM , where cA · cB is the coordinate-wise
multiplication of cA and cB.

Remark 4.3.5. In fact, our construction would work even if the rate and distance of CA, CB, and CM
were only 1/poly log k. However, we preferred to use constants for simplicity and because it can be
achieved (over larger fields). While we only know how to construct such codes by using polynomials, it
is plausible that such codes can be constructed in other ways.

In the rest of this section, we sketch the proof of the following theorem, based on Assumption 4.3.4.

Theorem 4.3.6. Suppose that there exists a linear PCPP verifier V with query complexity q(n), proof
length `(n), and rejection ratio ρ(n). Then, for every time-constructible t : N → N and every language
L ∈ NTIME(t), there exists a PCP verifier V ′ for L with proof length O (t+ ` (O(t))) query complexity
O (q (O(t)) · log n),, and rejection probability Ω (ρ (O(t))).

Remark 4.3.7. The extra log n factor in the query complexity comes from the use of large fields in
the construction of the multiplication codes, and is not apparent in this extended abstract. In our final
construction of PCPs this log n factor is reduced in a later stage using known query reduction techniques.

Intuitively, the idea that underlies the proof of Theorem 4.3.6 is that the multiplication codes allow
us to go from verifying linear claims to verifying non-linear claims. Little more specifically, we begin by
noting that it suffices to construct a PCP for the language of satisfiable systems of quadratic equations.
Given a system of quadratic equations E, the PCP proof will be expected to contain a satisfying

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 113

assignment x to the system, as well as a string y that should contain the value under x of each quadratic
term that appears in E. Now, E may be viewed as a system of linear equations over x and y, so
we can use the linear PCPP verifier V on x and y to check that it is satisfied. It remains to verify
that y is indeed consistent with x, and the point is that this consistency can be verified by using the
multiplication codes together with V .

To be more concrete, the verifier V ′ acts as follows. Let CA, CB, and CM be as in Assumption 4.3.4.
The verifier V ′ constructs two projections of the string x, denoted a and b, such that y = a · b (where
the multiplication is coordinate-wise). The verifier V ′ expects the prover to provide the encodings

a′
def
= CA(a) and b′

def
= CB(b), as well as the vector c′

def
= CA(a) · CB(b) ∈ CM . Note that the string y is a

substring of c′, since CA, CB, and CM are systematic. Now, V ′ invokes V to verify that the system E
is satisfied as a linear system over x and y, where y is retrieved from c′.

Finally, the verifier V ′ checks that the vectors a′, b′, and c′ provided by the prover are constructed as
expected. To this end, observe that CA(a) and CB(b) are obtained from x via a linear transformation,
and hence V ′ verifies the consistency of a′ and b′ with x simply by invoking V . In order to verify the
consistency of c′, the verifier V ′ checks that the vectors c′ and a′ · b′ agree on a random coordinate. The
soundness of the latter check is proved using the relative distance of CM .

Remark 4.3.8. One may argue that using the language of quadratic equations is an “algebraic step”.
However, it is not hard to adjust the proof to work with the language CircuitSat instead of quadratic
equations. We chose the language of quadratic equations for technical convenience.

We now turn to give a somewhat more rigorous proof description of We begin by recalling that it
suffices to construct a PCP for proving that a system of quadratic equations is satisfiable, due to the
NP-completeness of the quadratic equations problem, and via the efficient reduction of Turing machines
to circuits of [PF79]. We turn to construct a PCP verifier V ′ for quadratic equations. For simplicity,
we consider only equations that do not contain constant terms - it is not hard to extend the proof to
the general case.

The proof strings of V ′. Let E denote a satisfiable system of quadratic equations, and let x be a
satisfying assignment of E. We describe how to construct the proof string of V ′ that corresponds to E
and x.

We first arrange the quadratic terms that appear in E in an arbitrary fixed order, and define y to be
a string whose i-th bit is the value of the i-th quadratic term (of E) under x. Observe that E induces
a system of linear equations over x and y (since by assumption E does not contain constant terms).

Let (CA, CB, CM) be the multiplication codes of Assumption 4.3.4. We now define two strings a and
b as follows: The i-th bit of a is the value under x of the first factor of the i-th quadratic term in E
(according to some arbitrary order of the factors), and b is defined similarly for the second factors. We
define ca and cb to be the encodings of a and b via CA and CB respectively, and define cm = ca · cb. Note
that since CA, CB, and CM are systematic, for each i ∈ [|y|] it should hold that yi = (cm)i.

Finally, we define cx to be the encoding of x via CA. The proof string of V ′ that corresponds to E
and x is now defined to be the concatenation of cx, ca, cb, cm, and an additional string π to be described
next. The string π is a proof string of the linear PCPP verifier V that proves that:

1. cx, ca, cb, and cm are all legal codewords of the corresponding codes.

2. x and y satisfy the system of linear equations induced over them by E, where x and y are retrieved
from cx and cm, respectively.

3. The strings a and b are consistent with the string x, where x, a, and b are retrieved from cx, ca,
and cb, respectively. Here, consistency means that the occurences of the value of each xi in a and
b are indeed consistent with xi.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 114

The behavior of V ′. Fix a system of quadratic equations E. We describe the action of V ′ on input
E when given access to a purported proof π′ of the form cx ◦ ca ◦ cb ◦ cm ◦ π. The verifier V ′ performs
the following checks:

1. V ′ invokes V to perform the linear checks listed above.

2. V ′ chooses uniformly at random i ∈ [|ca|] and checks that (ca)i ·
(
cb
)
i

= (cm)i.

The completeness of V ′ is clear. Proving the soundness of V ′ and analyzing its other parameters is not
hard and is deferred to the full version of this work.

4.4 A Generalization of the Robustization Technique

Our construction of PCPs uses the composition technique in order to reduce the query complexity of
our linear PCPPs (see details in Section 4.6). In order to apply composition, we need our linear PCPPs
to have a property called robustness [BSGH+06, DR06]. As discussed in Section 4.1.2, this property was
achieved in previous works by a technique called “robustization”, which can not be applied to our linear
PCPPs. In order tor resolve this issue, we generalize the robustization technique so it can be applied to
our linear PCPPs.

In Section 4.4.1 below, we define the notion of robustness and describe the standard robustization
method. Then, in Section 4.4.2, we describe our generalization of the robustization method.

4.4.1 Background on robustness and robustization

Below we provide some background on the robustness property, and a more detailed information may
be found in [BSGH+06, DR06]. All the definitions and results discussed here are stated in terms of
linear PCPPs, although they were originally developed for PCPs. Informally, a linear PCPP verifier V
is robust if, when V is given oracle access to a vector x that is far from satisfying the linear assertion
being checked, the answers to V ’s queries are far from making V accept.

Definition 4.4.1 (Views and accepting views). Let V be a linear PCPP verifier with proof length `. Fix

an input circuit ϕ : {0, 1}m → {0, 1}t of size n, a vector x ∈ {0, 1}m, and a proof string π ∈ {0, 1}`(n).
For every possible invocation of V , we refer to the answers that V gets to its queries as the view of V .
If V accepts, then the corresponding view is said to be an accepted view.

Definition 4.4.2 (Robustness). Let ρ : N → (0, 1), and let. V be a linear PCPP verifier. The verifier
V is said to have robustness ρ if whenever x is ε-far from Wϕ, the expected relative distance of the view
of V from the closest accepted view is at least ρ(n) · ε.

Remark 4.4.3. Observe that if a linear PCPP has robustness ρ then it in particular has rejection ratio
ρ. Thus, when discussing robust linear PCPPs we do not mention their rejection ratio.

A common technique in the PCP literature, called “robustization” (also “alphabet reduction” or
“parallelization”), allows transforming every PCP with a certain query structure into a robust PCP.
Specifically, the technique requires the following property:

Definition 4.4.4. We say that a linear PCPP verifier V has κ-block access if for every circuit ϕ, the
coordiantes of the oracle x◦π can be partitioned into blocks, such that V always queries at most κ blocks.

The robustization technique yields the following result.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 115

Theorem 4.4.5 (Robustization, special case proved in [BSGH+06, DR06]). Suppose that there exists
a linear PCPP verifier V with query complexity q(n), proof length `(n), and rejection ratio ρ(n), which
has κ-block access. Then, there exists a linear PCPP verifier V ′ with query complexity O(q), proof length
O(`), and robustness Ω(ρ/κ).

The verifier V ′ is constructed roughly as follows. The prover is expected to provide V ′ with the
encoding of each of the blocks via an error correcting code. The verifier V ′ emulates the verifier V , but
whenever V queries a block, the verifier V ′ also queries the purported encoding of the block, and verifies
that it is indeed the legal encoding of the block.

To see that V ′ is robust, observe that whenever V rejects, at least one of the blocks that V queries
must be modified in order to make V accept. Hence, in order to make V ′ accept, the prover must
modify both the aforementioned block and its encoding. However, modifying the latter encoding to
another legal encoding requires flipping many coordinates, and therefore the view of V ′ is far from any
accepting view.

4.4.2 Our generalized robustization

Unfortunately, we do not know how to make our linear PCPPs to have κ-block access. In order to
resolve this issue, we define a relaxation of the block access property, which we call row/column access,
and prove a more general robustization theorem that applies to PCPs with the latter property.

Definition 4.4.6. We say that a linear PCPP verifier V has κ-row/column access if for every circuit ϕ
and every strings x, π, the string x ◦ π can be arranged in a matrix M , such that V queries at most κ
rows and columns of M .

We now have the following result.

Theorem 4.4.7 (Generalized robustization). Suppose that there exists a linear PCPP verifier V with
query complexity q, proof length `, and rejection ratio ρ, which has κ-row/column access. Then, there
exists a linear PCPP verifier V ′ with query complexity O(q), proof length O(`), and robustness Ω(ρ/κ).

It is tempting to try to prove Theorem 4.4.7 using the same argument as for Theorem 4.4.5. Such a
construction would ask the prover to provide the encoding of every row and column of M via an eror
correcting code. Then, the verifier V ′ would read the encoding of every row and column that are queried
by V and check that it is a legal encoding.

However, the foregoing argument fails. The reason is that the purported encodings of the rows and
columns of M may be inconsistent. That is, the prover might provide us with encodings whose encoded
messages do not agree on the intersections of the rows and columns. Such an inconsistency may fail the
soundness of V ′.

In order to resolve this issue, we use tensor codes, to be defined next.

Definition 4.4.8 (Tensor codes, see, e.g., [Sud01, Lect. 6 (2.4)]). Let C : {0, 1}k → {0, 1}n be a code.
The tensor code C2 is a code with block length n2, whose codewords are exactly the n× n matrices N
such that every row and every column of N is a codeword of C.

Fact 4.4.9. Let C : {0, 1}k → {0, 1}n be a code of relative distance δ. Then, C2 has message length k2

and relative distance δ2. Furtheremore, if C is systematic, then the message encoded by a codeword N
of C2 is the top-left k × k submatrix of N .

The critical property of tensor codes that we use is the following: Let N ′ be a matrix that is close
to a codeword N of C2. Then, for most of the rows and columns of N ′, the closest codeword of C is the

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 116

corresponding row or column of N . In particular, this means that the messages encoded by most rows
and columns of N ′ are consistent with each other.

Now, we construct the verifier V ′ such that the prover is required to provide the encoding of the
matrix M via tensor code C2. The soundness analysis goes roughly as follows. Let N ′ be the purported
encoding of M provided by the prover. We first note that if N ′ is close to C2, then we can use the
foregoing property of C2 to argue that the rows and columns are mostly consistent, and perform roughly
the same analysis as in Theorem 4.4.5.

It remains to verify that N ′ is close to C2. To this end, we require C2 to have a robust tester.
This means, roughly, that there exists a robust linear PCPP verifier that is only capable of verifying the
assertion that a matrix is close to C2 (rahter than verifying any linear assertion). Tensor codes satisfying
this requirement can be constructed combinatorially using a few methods (see [BSS06, DSW06, BSV09b,
BSV09a]). The verifier V ′ will invoke the robust tester of C2 to verify that N ′ is close to C2, and then
proceed as before.

Remark 4.4.10. The foregoing description oversimplifies things a little. In particular, note that the
property of C2 only guarantees that most of the rows and columns are consistent, and not all of them.
Thus, in general it could be the case that V always queries the inconsistent rows and columns. In
order to handle this issue, we begin the construction by invoking the expander-replacement technique
of [PY91], which guarantees that V queries rows and columns according to the uniform distribution,
and then proceed as before.

4.5 Construction of Linear PCPPs with
√
n Queries

In this section, we explain how to construct a linear PCPP that have proof length Õ(n), query complex-
ity Õ(

√
n), and rejection ratio 1/poly log n, and that has O(1)-row/column access. Later, in Section 4.6,

we will compose this linear PCPP with itself for O(log log n) times to obtain a linear PCP with constant
query complexity.

This section is organized as follows: In Section 4.5.1 below, we define an auxiliary object called
simultaneous linear verifier (SLV). Then, in Section 4.5.2, we describe how to construct linear PCPPs
based on the existence of SLVs. Finally, in Section 4.5.3, we show a construction of SLVs, which in turn
yield linear PCPPs.

In the author’s opinion, the introduction of SLVs, as well as the ways they are constructed and used
for constructing linear PCPPs, are the most interesting part in this chapter.

4.5.1 Simultaneous linear verifiers

Intuitively, an SLV is a variant of a linear PCPP verifier, which verifies
√
n linear assertions of size

√
n

instead of verifying one linear claim of size n. The verification is simultaneous, in the sense that if at
least one of the

√
n linear assertions is far from being correct, then the SLV rejects with noticeable

probability.
To see the difference between SLVs and linear PCPPs, observe that if a linear PCPP verifier is

invoked on a linear assertion of size n that consists of
√
n concatenated linear assertions of size

√
n, then

the verifier is required to reject only if the
√
n linear assertions are far from being correct on average

(i.e., a random assertion is far from being correct).

Definition 4.5.1. Let q, ` : N → N, ρ : N → (0, 1). A simultaneous linear verifier (SLV) V with query
complexity q, proof length `, and rejection ratio ρ, is a probabilistic oracle machine that satisfies the
following requirements:

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 117

1. V takes as input
√
n linear circuits ϕ1, . . . , ϕ√n : {0, 1}m → {0, 1}t of size at most

√
n, and gets

oracle access to
√
n vectors x1, . . . , x√n ∈ {0, 1}m as well as to an additional string π ∈ {0, 1}`(n).

2. For every input circuits ϕ1, . . . , ϕ√n and every sequence of coin tosses, V makes at most q(n)
non-adaptive queries to its oracle.

3. Completeness: For every x1 ∈ Wϕ1 , . . . , x
√
n ∈ Wϕ√n , there exists a string π ∈ {0, 1}`(n) such

that Pr [V x1,...,x√n,π accepts] = 1.

4. Soundness: For every x1, . . . , x√n ∈ {0, 1}m such that for some i ∈ [
√
n] it holds that xi is ε-far

from Wϕi , and for every string π ∈ {0, 1}`(n), it holds that Pr [V x1,...,x√n,π rejects] ≥ ρ(n) · ε.

Recall that our goal is to construct linear PCPPs that have the row/column access property (Defi-
nition 4.4.6), which is important since we use it later to make the linear PCPP robust. To this end, we
will also want our SLVs to have row/column access as well. Recall that a linear PCPP verifier is said to
have κ-row/column access if the coordinates of its oracle can be arranged in a matrix M , such that the
verifier always queries at most κ rows and columns of M . The same definition can be applied to SLVs.
Actually, we will want our SLVs to satisfy the following stronger property, which will be used shortly
below in Theorem 4.5.2.

Definition 4.5.2. An SLV V is said to have κ-row/column access with assignments sub-matrix if it has
O(1)-row/column access, and furthermore satisfies the following requirement: Let M be the matrix with
respect to which the SLV has row/column access. Then, the matrix whose rows are the assignments
x1, . . . , x√n is a sub-matrix of the matrix M , where x1, . . . , x√n are as in Definition 4.5.1.

4.5.2 Linear PCPPs from simultaneous linear verifiers

As discussed above, the importance of SLVs is that we are able to construct a linear PCPP using an
SLV as a building block. More specifically, we have the following result.

Theorem 4.5.3. Suppose that there exists an SLV V with query complexity q(n), proof length `(n), and

rejection ratio ρ(n). Then, there exists a linear PCPP verifier V ′ with query complexity O
(
q
(
Õ(n)

))
,

proof length O
(
Õ(n) + `

(
Õ(n)

))
, and rejection probability Ω

(
ρ
(
Õ(n)

))
. Furthermore, if V has κ-

row/column access with assignments sub-matrix, then V ′ has O(κ)-row/column access.

Proof sketch. The basic idea of the proof is to decompose the linear assertion that should be verified
to a collection of Õ (

√
n) linear assertions of size Õ(

√
n) by using a decomposition method of Section ??

in Chapter 3, and then applying the SLV to verify the latter linear assertions. Details follow.
We begin by recalling the notion of circuit decomposition of Chapter 3 in our terms. A circuit

decomposition may be thought as a linear PCPP verifier that satisfies only the following trivial soundness
requirement: For every x /∈ Wϕ and every π, it is required that the decomposition rejects with non-zero
probability. The circuit decomposition D of Chapter 3 has proof length Õ(n) and query complexity
Õ(
√
n).

For our purposes, it is more convenient to define the decomposition a little differently: Instead
of viewing D as a probabilistic oracle machine, we view D as a deterministic algorithm that takes a
linear circuit ϕ as an input, and outputs linear circuits ψ1, . . . , ψÕ(

√
n) of size Õ(

√
n), where each ψi

takes as input a part of the string x ◦ π (where the inputs of different ψi’s may overlap). The linear
circuits ψ1, . . . , ψÕ(

√
n) correspond to all the possible tests that D may perform. In this terminology, the

soundness of D requires that for every x /∈ Wϕ and every π, there exists at least one circuit ψi that does

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 118

not accept its input (which is derived from x and π). We mention that the term “circuit decomposition”
was chosen since D may be thought as decomposing ϕ into smaller circuits ψ1, . . . , ψÕ(

√
n).

It is important to note that, as argued in Chapter 3, the circuit decomposition D can be strengthened
to have the following robustness property: for every x that is far from Wϕ and for every π, there exists
at least one circuit ψi whose input is far from any string accepted by ψi. This is done using the standard
robustization technique.

Now, we construct V ′ as follows. When given as input a circuit ϕ, the verifier V ′ first applies the
circuit decomposition D of Chapter 3 to ϕ, resulting in a collection of circuits ψ1, . . . , ψÕ(

√
n). Then, the

verifier V ′ invokes the SLV V to verify that all the circuits in ψ1, . . . , ψÕ(
√
n) are satisfied simultaneously.

The idea that underlies the soundness analysis is that if V ′ is given oracle access to a vector x that is
far from Wϕ, then for at least one circuit ψi, the input of ψi is far from a satisfying assignment to ψi.
Therefore, the SLV V is expected to reject with high probability.

It remains to show the “furthermor” part of the theorem. To this end, we note that, as observed in
Chapter 3, the decomposition D has O(1)-block access, so the coordinates of its oracle can be arranged
in a matrix N , such that each circuit ψi queries at most O(1) rows of N . Now, let M be the matrix
with respect to which V has row/column access with assignments sub-matrix, so V always queries at
most O(1) rows and columns of M . By assumption, the assignments to the circuits ψ1, . . . , ψÕ(

√
n) form

a submatrix of M . When combining this property with the block access property of D, we get that
whenever V queries a row of M , the verifier V ′ can emulate this query by querying O(1) rows of N , and
an additional row from the proof string of V . Moreover, whenever V queries a column of M , the verifier
can emulate this query by querying one column of N , and an additional column from the proof string
of V . By a careful choice of the implementation details of V ′, the foregoing considerations can be used
to guaranteed that V ′ has O(1)-row/column access. �

4.5.3 Construction of simultaneous linear verifiers

In the rest of this section, we finish the construction of linear PCPPs by showing the following result.

Theorem 4.5.4. There exists an SLV with proof length Õ(n), query complexity Õ(
√
n), and rejection

ratio 1/poly log n.

By combining the latter result with Theorem 4.5.3, we obtain as a corollary the required linear
PCPPs.

Corollary 4.5.5. There exists a linear PCPP with proof length Õ(n), query complexity Õ(
√
n), and

rejection ratio 1/poly log n.

We first describe how to construct an SLV for the simple special case in which all the circuits
ϕ1, . . . , ϕ√n are the same. Then, we show how to construct an SLV for a more interesting case, which
we call colorable constraint systems, by reducing it to few instances of the foregoing simple case. Finally,
we show how to reduce the general case to the case of colorable constraint systems.

4.5.3.1 A simple case

We begin with describing how to construct an SLV V for case in which all the circuits ϕ1, . . . , ϕ√n are
the same. Let W ⊆ {0, 1}m denote the subspace that is accepted by the circuit ϕ1 = ϕ2 = . . . = ϕ√n.

In order to verify that x1, . . . , x√n ∈ W , we consider a
√
n×m matrix A whose rows are exactly the

vectors x1, . . . , x√n. Let A′ be the matrix obtained by encoding each column of M by some systematic
linear code C with constant rate and relative distance. The proof string π of V is expected to contain
all the rows of A′ that do not belong to A.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 119

Observe that if x1, . . . , x√n ∈ W , then all the rows of A′ belong to W , including the rows that are
not in A. This is true since all the rows of A′ are linear combinations of rows of A.

Now, when given oracle access to vectors x1, . . . , x√n and to a purported proof π, the verifier V acts
as follows. The verifier V views its oracle as a purported matrix A′, and performs the following checks:

1. V chooses a row of A′ uniformly at random and checks that it belongs to W .

2. V chooses a column of A′ uniformly at random and checks that it is a legal codeword of C.

V accepts if and only if both checks accept. It is easy to see that the query complexity and proof length
of V are as required. Furthermore, it is easy to see that V has 1-row/column access with assignments

sub-matrix - here, V has 1-row/column access with respect to the matrix M
def
= A′, and the assignments

x1, . . . , x√n form the matrix A, which is indeed a sub-matrix of A′. It remains to analyze the rejection
ratio of V . Suppose that V is given oracle access to a purported matrix M ′, and that one of the rows
of M ′ (say, the i-th row) is ε-far from W .

First, as a warm-up, assume that all the columns of A′ are legal codewords of C. Observe that in this
case, if at least one row of A′ does not belong to W , then at least δC fraction of the rows of A′ do not
belong to W , where δC is the relative distance of C: To see it, let w⊥ be any vector that is orthogonal
to W but is not orthogonal to the i-th row of A′ (such w⊥ must exist, since by assumption the i-th row
of A′ does not belong to W). Now, let v = A′ · w⊥, and note that

1. v is a codeword of C, since v is a linear combination of columns of A′, which are codewords of C.

2. v is a non-zero vector, since the i-th row of A′ is not orthogonal to w⊥, and hence the i-th coordinate
of v is non-zero.

We conclude that v is a non-zero codeword of C, and therefore at least δC fraction of its coordinates are
non-zero. However, for each non-zero coordinate of v, the corresponding row of M ′ is not orthogonal to
w⊥ and thus does not belong to W . Hence, at least δC fraction of the rows of A′ do not belong to W ,
and V therefore rejects in this case with probability at least δC .

Next, assume that some of the columns of A′ are not legal codewords of C, and let T denote the set
of those columns. If the density of T is at least ε, then V rejects with probability at least ε, and we are
done. Suppose otherwise. Let A′0 be the matrix obtained from A′ by removing the columns in T , and
let W0 be the vector space obtained by projecting the vectors of W to the coordinates in [m] \T .

Now, observe that the i-th row of A′0 can not belong to W0, or otherwise the i-th row of A′ would
have belonged to W . Thus, A′0 is a matrix whose columns are all legal codewords of C, and such that
one of the rows of A′0 does not belong to W0. We therefore conclude as before that at least δC fraction
of the rows of A′0 do not belong to W0. The latter assertion implies that at least δC fraction of the rows
of A′ do not belong to W , and hence V rejects with probability at least δC , as required.

4.5.3.2 The case of colorable constraint systems

We proceed to show a construction of an SLV for circuits ϕ1, . . . , ϕ√n that are a colorable constraints
system (CCS), to be defined below. We will later show that any sequence of circuits ϕ1, . . . , ϕ√n can be
transformed to a CCS.

Informally, we say that a collection of circuits ϕ1, . . . , ϕk : {0, 1}m → {0, 1}t forms a CCS if the
subspaces Wϕ1 , . . . ,Wϕk can be described by a collection S of linear constraints that can be “legally
colored” using few colors. We say that a coloring of the constraints in S is legal if constraints of the
same color do not share coordinates. The idea that underlies our construction of an SLV for a CCS is
that in a CCS can be decomposed to few monochromatic systems of constraints, such that each system
can be reduced to the simple case discussed above. Some details follow.

For the following definitions and constructions, it will be convenient for us to describe linear subspaces
by sets of linear constraints, defined next, rather than by linear circuits.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 120

Notation 4.5.6. Let S ⊆ {0, 1}m. We say that a subspace W ⊆ {0, 1}m is the subspace described by S
if W contains exactly the vectors that are orthogonal to all the vectors in S. We refer to the vectors of
S as constraints. We say that a constraint s ∈ S touches a coordinate i ∈ [m] if si = 1.

Observe that every linear circuit ϕ : {0, 1}m → {0, 1}t can be transformed in polynomial time to a
set Sϕ of constraints which describes Wϕ such that |Sϕ| = t. This is done simply by taking, for each
output of ϕ, the constraint which touches exactly the coordinates that affect this output. We turn to
define the notion of CSS.

Definition 4.5.7 (Colorable constraints system). Let χ ∈ N, let ϕ1, . . . , ϕk : {0, 1}m → {0, 1}t be linear
circuits, and let S1, . . . , Sk ⊆ {0, 1}m be the corresponding sets of constraints. We say that ϕ1, . . . , ϕk

form a χ-colorable constraints system (abbreivated χ-CCS) if the union S def
== S1 ∪ . . . ∪ Sk satisfies the

following requirement: The constraints in S can be colored by χ colors, such that no two constraints in
S of the same color touch the same coordinate.

A construction of SLV for a CCS. We turn to describe a construction of an SLV V for a CCS.
Suppose that the verifier V is given as input circuits ϕ1, . . . , ϕ√n and is also given oracle access to vectors
x1, . . . , x√n ∈ {0, 1}m. Let S1, . . . , S√n, and χ be as in Definition 4.5.7.

Our strategy is to construct for each color c ∈ [χ] a collection of vectors xc1, . . . , x
c√
n
∈ {0, 1}m and

a subspace U c ⊆ {0, 1}m such that the following holds: The circuits ϕ1, . . . , ϕ√n accept x1, . . . , x√n
(respectively) if and only if the vectors xc1, . . . , x

c√
n

all belong to U c for every color c ∈ [χ]. The point
is that verifying that xc1, . . . , x

c√
n

belong to U c can be done as in the simple case of Section 4.5.3.1. The
prover will be expected to provide the vectors xc1, . . . , x

c√
n
, as well as additional information that allows

verifying their consistency with x1, . . . , x√n.
For each color c ∈ [χ], we define the vectors xc1, . . . , x

c√
n

to be the vectors obtained from x1, . . . , x√n
by zeroing every coordinate that is not touched by a constraint of color c. More formally, for each

xj, we define
(
xcj
)
i

def
= (xj)i if Sj contains a constraint of color c that touches the coordinate i, and(

xcj
)
i

def
= 0 otherwise. We define the subspace U c ⊆ {0, 1}m to be the subspace that is described by

all the constraints in S of color c. It is not hard to see that he circuits ϕ1, . . . , ϕ√n accept x1, . . . , x√n
(respectively) if and only if the vectors xc1, . . . , x

c√
n

all belong to U c for every color c ∈ [χ]. Thus, if the
prover indeed provides vectors xc1, . . . , x

c√
n

that are constructed as defined above, we are done.

It remains to verify that the vectors xc1, . . . , x
c√
n

are obtained from x1, . . . , x√n as expected. To this
end, observe that the vectors xc1, . . . , x

c√
n

can be obtained from x1, . . . , x√n using multiplication. More

specifically, for every c ∈ [χ] and j ∈ [
√
n], we define a vector zcj by setting

(
zcj
)
i

def
= 1 if Sj contains

a constraint of color c that touches the coordinate i, and
(
xcj
)
i

def
= 0 otherwise. We then observe that

xcj = xj · zcj (where the multiplication is coordinate-wise).
Let (CA, CB, CM) be the multiplication codes of Assumption 4.3.4. Now, the verifier checks the

equality xcj = xj · zcj by checking that the encodings CM(xcj) and CA(xj) · CB(zcj) agree on a random
coordinate. To this end, the verifier expects the prover to provide CA(xj) and CM(xcj) (for every c and
j), while CB(zcj) is computed by the verifier itself.

Finally, the verifier should verify that the purported vectors CA(xj), CM(xcj) that are provided by
the prover are indeed legal codewords of CA and CM , and this should be done for all j’s simultaneously.
However, this check can again be done as in the simple case of Section 4.5.3.1. This concludes our
construction of the SLV.

An SLV that has row/column access. Recall that we want our SLV to have O(1)-row/column
access with assignments sub-matrix. To this end, we modify the foregoing construction by a little.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 121

Recall that for every j and c ∈ [χ], the verifier V checks that xcj = xj · zcj by checking that CM(xcj)
and CA(xj) · CB(zcj) agree on a random coordinate. We now modify V such that it chooses the same
random coordinate for all j and c ∈ χ. It is not hard to see that this modification does not harm the
soundness analysis. However, as we will now show, the modified SLV indeed has row/column access
with assignments sub-matrix. We also mention that this modification is required in order to save in the
randomness complexity of V .

In order to show that the modified SLV has row/column access with assignments sub-matrix, consider
the matrix M whose rows are the following:

1. For each j ∈ [
√
n], the matrix M contains the row that consists of xj concatenated with CA(xj).

2. For each j ∈ [
√
n] and c ∈ [χ], the matrix M contains the row that consists of xcj concatenated

with CM(xcj).

3. The matrix M contains all the additional rows that are needed for the invocations of the simple
case of Section 4.5.3.1.

We proceed to show that the modified SLV has row/column access with assignments sub-matrix with
respect to M . First, observe that the assignments x1, . . . , x√n indeed form a sub-matrix of M . Next,
note that each invocation of the the simple case of Section 4.5.3.1 can be emulated by querying exactly
one row or column of M . Finally, recall that except for the invocations of the simple case, the only
check made by the SLV is the checks that the codewords CM(xcj) and CA(xj) ·CB(zcj) agree on a random
coordinate, for all j ∈ [

√
n] and c ∈ [χ]. Now, observe that since the same random coordinate is used for

all j and c, this check can be done by querying exactly one column of M (the column that corresponds to
the chosen random coordinate). It follows that the SLV has (χ+ 1)-row/column access with assignments
sub-matrix, as required.

Remark 4.5.8. We note that the foregoing description slightly oversimplifies things. In particular,
the encoding CM(xcj) is not well-defined because the message length of CM is larger than

∣∣xcj∣∣. Thus,
in the actual construction, the prover is not required to provide CM(xcj) but is rather required to
provide CA(xj)·CB(zcj). We then use the fact that xcj is a prefix of the message encoded by CA(xj)·CB(zcj),
due to the fact that CA, CB, and CM are systematic.

4.5.3.3 The general case

We conclude our construction of SLVs by showing that the general case can be reduced to the case of
6-CCS (i.e., CCS with 6 colors). The basic idea of the reduction is that every constraint system can
be embedded on any routing network, and in particular one may choose a routing network whose edges
can be colored using few colors. It should be mentioned that while the idea of embedding a constraint
system on a routing network has been used in several prior works (e.g. [BFLS91, PS94]), the use of this
technique for reducing a general constraint system to a CCS is new.

In order to embed a system of linear constraints on a routing network, we add auxiliary variables to
the system in a way that essentially does not change the solution space. This notion of adding auxiliary
variables while “essentially” not changing the solution space is captured by the following notion of
extension.

Definition 4.5.9. Let W ⊆ {0, 1}m and let l ∈ N. We say that a subspace W ′ ⊆ {0, 1}m+l is an
extension of W if it satisfies the following property: A vector x ∈ {0, 1}m belongs to W if and only if
there exists a vector y ∈ {0, 1}l such that x ◦ y ∈ W ′.

In the foregoing Definition 4.5.9, the vector y represents the assignment to the auxiliary variables,
and the fact that the solution space remains intact is captured by the fact that the m long prefix of each

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 122

vector in W ′ is in W , and by the fact that every vector in W has a corresponding vector in W ′. Our
reduction of a general constraint system to a CCS can now be stated as follows.

Claim 4.5.10. Let ϕ1, . . . , ϕk : {0, 1}m → {0, 1}t be linear circuits of size n. Then, one can transform

ϕ1, . . . , ϕk in polynomial time to circuits ϕ′1, . . . , ϕ
′
k : {0, 1}m

′
→ {0, 1}t

′
that form a 6-CCS, such that

for each i ∈ [k] the subspace Wϕ′i
is an extension of Wϕi. Furthermore, the circuits ϕ′1, . . . , ϕ

′
k are of

size Õ(n), and it holds that m′ = Õ(n), t′ = Õ(n).

Proving Claim 4.5.10 essentially finishes our work, since it is not hard to use it to construct SLVs
for arbitrary linear circuits given this claim and the construction of Section 4.5.3.2. Moreover, the
resulting SLV will have 7-row/column access with assignment sub-matrix, as required. In the rest of
this section we sketch the proof of Claim 4.5.10. Fix a collection of circuits ϕ1, . . . , ϕk, let W1, . . . ,Wk be
the subspaces accepted by those circuits, and let S1, . . . , Sk be sets of linear constraints corresponding

to ϕ1, . . . , ϕk. For each Wi, we denote by W ′
i

def
= Wϕ′i

the extension of Wi that we seek to construct.

Warm-up. As a warm-up, consider the case in which every set Si is a collection of disjoint equality
constraints. That is, we consider the case in which every constraint in Si touches exactly two coordinates,
and every coordinate is touched by exactly one constraint. We show that that such sets Si can be
extended to a 4-CCS - note that we use two colors less than in Claim 4.5.10, a fact that will be used
later.

We would like to construct for each Wi a subspace W ′
i ⊆ {0, 1}

m′ which is an extension of the subspace
Wi, such that W ′

1, . . . ,W
′
k form a 4-CCS. The idea that underlies the construction is the following. We

identify every coordinate in [m′] with a vertex of a routing network G (see Section 4.2.3). We then
embed each equality constraint of the set Si on a path in G that connects the coordinates touched by
the constraint. The 4-colorability of the corresponding constraints system follows from the fact that G
is 4-edge colorable. Some details follow.

Let G be a routing network with m′ = m·poly logm vertices. We now construct a set S ′i of constraints

that describes the subspace W ′
i ⊆ {0, 1}

m′ as follows. We begin by identifying each coordinate in [m′]
with a vertex of G, and in particular identify the coordinates in [m] with vertices of G. Next, we find a
collection P of vertex-disjoint paths on G, such that for each equality constraint s ∈ Si, there is a path
in P that connects the coordinates that s touches. Finding such paths is possible by the fact that G
is a routing network. Finally, for each edge e of G, we put in S ′i an equality constraint between the
endpoints of e if and only if e participates in one of the aforementioned vertex-disjoint paths.

It should be clear that W ′
i is an extension of Wi. To see that W ′

1, . . . ,W
′
k form a 4-CCS, let S ′ def

=
S ′1 ∪ . . . ∪ S ′k and observe that every constraint in S ′ is an equality constraint between the endpoints
of some edge of G. Now, we can choose the network G to be 4-edge colorable, in which case the
constraints in S ′ can be colored using 4 colors such that no two constraints of the same color touch
the same coordinate. Thus, W ′

1, . . . ,W
′
k and S ′ satisfy Definition 4.5.7 with χ = 4. This concludes the

construction.

Handling arbitrary linear circuits. It remains to show how to transform arbitrary linear circuits
ϕ1, . . . , ϕk to a 6-CCS as in Claim 4.5.10. Let ϕ1, . . . , ϕk : {0, 1}m → {0, 1}t be linear circuits of size n,
and assume for simplicity that every gate in ϕ1, . . . , ϕk has exactly two incoming and two outgoing wires
(it is not hard to remove this assumption). The proof strategy is to construct for each subspace Wi

an extension Ui ⊆ {0, 1}2n that is described by constraints of two types: The constraints of the first
type form a 2-CCS. The constraints of the second type are equality constraints. We then complete the
proof by handling the second type equality constraints in the same way as in the “warm-up” case of
Section 4.5.3.3.

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 123

We turn to describe how to construct the subspace Ui ⊆ {0, 1}2n. For each wire v of ϕi, we associate

v with two coordinates in [2n], denoted vin and vout. The subspace Ui is described by two types of
constraints:

1. Computation constraints: For each gate g in ϕi, whose incoming wires are v1, v2 and whose

outgoing wires are v3, v4, we have two linear constraints of the form vout
3 = vin

1 + vin
2 and

vout
4 = vin

1 + vin
2 . In addition, for each output wire v of ϕi, we have a constraint of the form

vout = 0.

2. Consistency constraints: For every wire v in ϕi, we have the linear constraint vin = vout.

Observe that each Ui is indeed an extension of Wi.
Now, let us re-arrange the coordinates in [2n] such that, if a gate g of ϕi has incoming wires v1, v2

and outgoing wires v3, v4, then the coordinates vin
1 , vin

2 , vout
3 , vout

4 are consecutive as numbers. The
critical observation is that when using this ordering, the computation constraints are the same for every
subspace Ui. In other words, the only difference between distinct subspaces Ui, Uj is the consistency
constraints. In addition, observe that the computation constraints can be colored using two colors such
that no two computation constraints of the same color touch the same coordinate. The latter two
observations imply that the computation constraints already satisfy the requirements of a 2-CCS.

We have seen that the computation constraints already satisfy the requirements of a CCS, so it
remains to handle the consistency constraints. This is done as in the “warm-up” case of Section 4.5.3.3,
by embedding the consistency constraints on a routing network, and coloring them using 4 colors. Note
that this embedding requires to construct for each Ui an extension W ′

i ⊆ {0, 1}
m′ for m′ = Õ(n). Finally,

we take W ′
1, . . . ,W

′
k to be the required 6-CCS. Note that each W ′

i is indeed an extension of Wi, since
W ′
i is an extension of Ui which is in turn an extension of Wi.

4.6 Proof of the main theorem

In this section, we show how to prove our main theorem, restated below, by combining the tools that
were developed in the previous sections.

Theorem (4.1.1, main theorem, restated). For every time-constructible t : N→ N and every language

L ∈ NTIME(t), there exists a PCP verifier for L with proof length `(n) = t(n) · (log (t(n)))O(log log t(n)),
query complexity O(1), and rejection probability Ω(1).

Fix a time-constructible function t. We construct PCPs with the required parameters for NTIME(t).
Our starting point is the linear PCPP constructed in Corollary 4.5.5, which we denote here V1. The
verifier V1 has proof length Õ(n), query complexity Õ(

√
n), and rejection ratio 1/poly log n. In addi-

tion, V1 has O(1)-row/column access. We thus apply the robustization technique of Theorem 4.4.7 to
V1, resulting in a linear PCPP verifier V2 that has proof length Õ(n), query complexity Õ(

√
n), and

robustness 1/poly log n.
Our next step is to compose V2 with itself for log log n times, resulting in a linear PCPP veri-

fier V3 that has proof length n · (log n)O(log logn), query complexity (log n)O(log logn), and rejection ratio

1/ (log n)O(log logn). Then, we apply the transformation of linear PCPPs to (general) PCPs of Theo-

rem 4.3.6, resulting in a PCP verifier V4 for NTIME(t), which has proof length t · (log t)O(log log t), query

complexity (log t)O(log log t), and rejection probability 1/ (log t)O(log log t).
We proceed by reducing the query complexity of V4 to O(1) by applying a standard query reduction

technique that works roughly like the reduction of CircuitSat to 3Sat. This technique increases the
proof length by a factor that is polynomial in the original query complexity, and decreases the rejection
probability by a similar factor. We are left with a PCP verifier V5 for NTIME(t), which has proof

length t · (log t)O(log log t), constant query complexity, and rejection probability 1/ (log t)O(log log t).

CHAPTER 4. COMBINATORIAL PCPS WITH SHORT PROOFS 124

Finally, we apply the gap amplification technique of Dinur [Din07] to V5. This technique can be
applied to PCPs with constant query complexity, and increases the rejection probability of a PCP
verifier to a constant, while increasing the proof length by a factor that is inversly polynomial in the
original rejection probability, and maintaining the constant query complexity. We therefore obtain a
PCP verifier V6 for NTIME(t), which has proof length t · (log t)O(log log t), constant query complexity,
and constant rejection probability. V6 is the required PCP verifier.

Remark 4.6.1. The foregoing description oversimplifies things a little. In particular, a few of the steps
taken above require bounds on the randomness complexity and the decision complexity of the verifiers.
However, such bounds can be proved.

Chapter 5

Combinatorial PCPs with Low Soundness
Error

5.1 Introduction

A PCP (Probabilistically Checkable Proof) is a proof system that allows checking the validity of a claim
by reading only a constant number of bits of the proof. The PCP theorem asserts the existence of
PCPs of polynomial length for any claim that can be stated as membership in an NP language. In this
chapter, we consider the soundness error of PCPs, which is the probability that a false claim is accepted,
and give a new construction of a PCP with sub-constant soundness error and two queries. This setting
is particularly important for inapproximability, as will be discussed shortly below. Formally, we prove
the following result.

Theorem 5.1.1 (Two-query PCP with small soundness). There exists a constant κ > 0 such that for
every function ε : N→ (0, 1) satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n the following holds: Every language
L ∈ NP has a two-query PCP system with perfect completeness, soundness error 1/poly log n, alphabet
size 21/poly(ε), proof length poly (n), and randomness complexity O(log n). Furthermore, the verifier in
this PCP system makes only ‘projection’ queries.

This theorem matches the parameters of the folklore “manifold vs. point” construction which has
been the only construction in the literature for this parameter range. The technical heart of that
construction is a sub-constant error low degree test [RS97, AS03], see full details in [MR08].

Our proof of Theorem 5.1.1 is based on the elegant derandomized direct product test of [IKW09]. In
a nutshell, our construction is based on applying this test to obtain a “derandomized parallel repetition
theorem”. While it is not clear how to do this for an arbitrary PCP, it turns out to be possible for PCPs
with certain structure. We show how to convert any PCP to a PCP with the required structure, and then
prove a “derandomized parallel repetition theorem” for such PCPs, thereby getting Theorem 5.1.1. The
derandomized parallel repetition theorem relies on a reduction from the derandomized direct product
test of [IKW09].

The Moshkovitz-Raz Construction. Recently, Moshkovitz and Raz [MR08] constructed even stronger
PCPs. Specifically, they managed to remove the limitation ε(n) ≤ 1/poly log n from Theorem 5.1.1,
thus allowing any function ε(n) ≥ 1/nκ. This allows constructing PCPs with sub-constant error and
any alphabet size smaller than 2poly logn, at the expense of a suitable increase in the soundness error.
Being able to reduce the alphabet size has strong consequences for inapproximability, see [MR08] for
details. The technique of [MR08] (as explained in the later simplification of [DH09]) is essentially based

125

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 126

on the composition of certain PCP constructions. In fact, their main building block is the “manifold vs.
point” construction mentioned above.

Our construction can be extended to yield a so-called decodable PCP [DH09], which is an object
slightly stronger than a PCP. This can be plugged into the scheme of [DH09] to give a nearly1 combi-
natorial proof of the following result of [MR08]. Namely,

Theorem 5.1.2 ([MR08]). There exists a constant κ > 0 such that for every function ε(n) ≥ 1/nκ

the following holds: Every language L ∈ NP has a two-query PCP system with perfect completeness,
soundness error ε, alphabet size at most 21/poly(ε), proof length poly (n), and randomness complexity
O(log n). Furthermore, the verifier in this PCP system makes only ‘projection’ queries.

We note that the result of [MR08] is in fact even stronger than claimed above since their verifier has
almost-linear proof length (specifically n1+o(1)), and has randomness complexity of only (1 + o(1)) log n
random bits, see also Remark 5.6.27.

Organization of the introduction. In the following four sections we outline the background and
main ideas of this chapter. We start by describing the parallel repetition technique in general and
its relation with direct product tests. We proceed to describe our technique of derandomized parallel
repetition. We then describe our notion of “PCPs with linear structure”, to which the derandomized
parallel repetition is applied.

After the foregoing outline, we discuss relevant works and possible future directions, and describe
the organization of this chapter.

Parallel repetition and Direct Products

A natural approach to reducing the soundness error of a PCP verifier is by running it several times
independently, and accepting only if all runs accept. This is called sequential repetition. Obviously, if
the verifier is invoked k times the soundness error drops exponentially in k. However, the total number
of queries made into the proof grows k-fold, and in particular, it is greater than 2. Since our focus is on
constructing PCPs that make only two queries, we can not afford sequential repetition.

In order to decrease the soundness error while maintaining the query complexity, one may use parallel
repetition. For the rest of this discussion, we consider only PCPs that use only two queries. Let us briefly
recall what parallel repetition means in this context. As in the case of sequential repetition, one starts
out with a PCP with constant soundness error, and then amplifies the rejection probability by repetition
of the verifier. However, in order to save on queries, the prover is expected to give the k-wise direct
product encoding of the original proof. Formally, if π : [n] → Σ describes the original proof then its
direct product encoding, denoted by π⊗k, is the function π⊗k : [n]k → Σk defined by

π⊗k(x1, . . . , xk) = (π(x1), . . . , π(xk)).

The new verifier will simulate the original verifier on k independent runs, but will read only two symbols
from the new proof, which together contain answers to k independent runs of the original verifier.

Of course, there is no a priori guarantee that the given proof is a direct product encoding π⊗k of
any underlying proof π, as intended in the construction. This is the main difficulty in proving the
celebrated parallel repetition due to Raz [Raz98] that shows that the the soundness error does go down
exponentially with k.

One may try to circumvent the difficulty in analyzing the parallel repetition theorem by augmenting
it with a direct product test. That is, making the verifier test that the given proof Π is a direct product

1It is debatable whether our use of “linear structure” disqualifies the result from being considered purely combinatorial.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 127

encoding of some string π, and only then running the original parallel repetition verifier. This can
sometimes be done without even incurring extra queries. Motivated by this approach Goldreich and
Safra [GS00] suggested and studied the following question:

DP testing: Given a function F : [n]k → Σk test that it is close to f⊗k for some f : [n]→ Σ.

Let us now describe a two query direct product test. From now on let us make the simplifying assumption
that the function F : [n]k → Σk to be tested is given as a function of k-sized subsets rather than
tuples, meaning that F (x1, . . . , xk) is the same for any permutation of x1, . . . , xk. The test chooses two
random k-subsets B1, B2 ∈

(
[n]
k

)
that intersect on a subset A = B1 ∩ B2 of a certain prescribed size

and accept if and only if F (B1)|A = F (B2)|A. This test was analyzed further in several works, see
[GS00, DR06, DG08, IKW09].

Remark 5.1.3. An expert reader may note that the above direct product test is not a projection test,
while we need a projection test for Theorem 5.1.1. Indeed, in our actual proof we use a variant of the
above direct product test which is a projection test (see Section 5.2.1 for details).

Derandomized Direct Product Testing

Recall that our goal is to construct PCPs with sub-constant soundness error. Note, however, that
since the parallel repetition increases the proof length exponentially in k (and the randomness of the
verifier grows k-fold), one can only afford to make a constant number of repetitions if one wishes to
maintain polynomial proof length and logarithmic randomness complexity. On the other hand, obtaining
sub-constant soundness error requires a super-constant number of repetitions.

This leads to the derandomization question, addressed already 15 years ago [FK95]. Can one recycle
randomness of the verifier in the parallel repetition scheme without losing too much in soundness error?

Motivated by this question, Impagliazzo, Kabanets, and Wigderson [IKW09] introduced a method
for analyzing the direct product test which allowed them to derandomize it. Namely, they exhibited
a relatively small collection of subsets K ⊂

(
[n]
k

)
, and considered the restriction of the direct product

encoding f⊗k to this collection. They then showed that this form of derandomized direct product can
be tested using the above test. The collection K is as follows: identify [n] with a vector space Fm, let
k = |F|d for constant d, and let K be the set of all d-dimensional linear subspaces.

A natural next step is to use the derandomized direct product of [IKW09] to obtain a derandomized
parallel repetition theorem. Recall that the parallel repetition verifier works by simulating k independent
invocations of the original verifier on π, and querying the (supposed) direct product Π on the resulting
k-tuples of queries. However, in the derandomized setting, the k-tuples of queries generated by the
verifier may fall outside K. This is the main difficulty that we address in this chapter.

This is where the structure of the PCP comes to our aid. We show that for PCPs with a certain linear
structure, the k-tuples of queries can be made in a way that is compatible with the derandomized direct
product test of [IKW09]. More specifically, the k-tuples of queries always belong to the collection K,
and are distributed like queries of the derandomized direct product test. This allows us to prove a
derandomized parallel repetition theorem for the particular case of PCPs with linear structure. Our
main theorem is proved by constructing PCPs with linear structure (discussed next), and applying the
derandomized parallel repetition theorem.

PCPs with Linear Structure

We turn to discuss PCPs with linear structure. The underlying graph structure of a two-query PCP
is a graph defined as follows. The vertices are the proof coordinates, and the edges correspond to all

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 128

possible query pairs of the verifier. (See also Section 5.2.3). We say that a graph has linear structure
if the vertices can be identified with a vector space Fm and the edges, which clearly can be viewed as
a subset of F2m, form a linear subspace of F2m (see also Definition 5.3.1). A two-query PCP has linear
structure if its underlying graph has linear structure.

As mentioned above, an additional contribution of this chapter is the construction of PCPs with
linear structure. That is, we prove the following result.

Theorem 5.1.4 (PCPs with linear structure). Every language L ∈ NP has a two-query PCP system
with a linear structure which has perfect completeness, soundness error 1−1/poly log n, constant alphabet
size, proof length poly (n), and randomness complexity O(log n).

We believe that Theorem 5.1.4 is interesting in its own right: For known PCPs, the underlying graph
structure is quite difficult to describe, mostly due to the fact that PCP constructions are invariably based
on composition. In principle, however, the fact that a PCP is a “complex” object need not prevent the
underlying graph from being simple. In analogy, certain Ramanujan expanders [LPS88] are Cayley
graphs that are very easy to describe, even if the proof of their expansion is not quite so easy. It is
therefore interesting to study whether there exist PCPs with simple underlying graphs.

Philosophically, the more structured the PCP, the stronger is the implied statement about the class
NP, and the easier it is to exploit for applications. Indeed, the structure of a PCP system has been used
in several previous works. For example, Khot constructs [Kho06] a PCP with quasi-random structure
in order to establish the hardness of minimum bisection. Dinur [Din07] imposes an expansion structure
on a PCP to obtain amplification.

We prove Theorem 5.1.4 by embedding a given PCP into the de Bruijn graph and relying on the
algebraic structure of this graph. We remark that the de Bruijn graph has been used in constructions of
PCPs before, e.g. [PS94, BFLS91], in similar contexts. We believe that structured PCPs are an object
worthy of further study. One may view their applicability towards proving Theorem 5.1.1 as supporting
evidence. An interesting question which we leave open is whether Theorem 5.1.4 can be strengthened
so as to get constant soundness error. By simply plugging such a PCP into our derandomized parallel
repetition theorem one would get a direct proof of the aforementioned result of [MR08], without using
two-query composition.

Remark 5.1.5. Our notion of PCPs with linear structure should not be confused with the notion of
“linear PCPPs” that appeared in the literature before (see [BSHLM09], and the related “linear inner
verifier” of [GS00]). A linear PCPP is, roughly, a PCP system for checking the membership of a vector
in a given linear subspace, in which the proof is required to be a linear function of the aforementioned
vector. This requirement is unrelated to our definition, which does not restrict the claim to be verified
or the proof, and on the other hand restricts the query structure of the PCP verifier.

Decodable PCPs

We extend our results to also yield a new construction of decodable PCPs (dPCPs). A dPCP gives a
way to encode NP witnesses so that a verifier (called a decoder in this context) is able to both locally
test their validity as well as to locally decode bits from the encoded NP witness. Decodable PCPs2 were
introduced in [DH09] towards simplifying and modularizing the work of [MR08] on two-query PCPs with
small soundness. In [DH09] the result of [MR08] was reproved assuming the existence of two building
blocks, a PCP and a dPCP, which were used as a black box. Until this work there has been only one
known construction of a dPCP, based on the manifold vs. point construction. In this chapter we give

2Decodable PCPs generalize the notion of “locally decode/reject codes” of [MR08] and the even earlier notion of “LDF
readers” of [DFK+99].

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 129

a new construction of a dPCP which is obtained by applying derandomized parallel repetition in an
analogous way to Theorem 5.1.1. We prove

Theorem 5.1.6 (dPCP, informal version). There exists a two-query PCP decoder with perfect complete-
ness, soundness error 1/poly log n, list size poly log n, proof alphabet 2poly logn, proof length poly (n), and
randomness complexity O(log n).

The notion of dPCPs is described in detail in Section 5.6, and in particular in Section 5.6.2. The-
orem 5.1.6 is stated and proved in Section 5.6.4 based on two main lemmas, which are proved in
Sections 5.7 and 5.8.

In order to prove this theorem we generalize each of the steps of the proof of Theorem 5.1.1. First,
we construct a dPCP with linear structure but with relatively high soundness error in an analogous
way to our proof of Theorem 5.1.4 (PCPs with linear structure). Next, we apply derandomized parallel
repetition to get the desired dPCP. The two steps are described in Sections 5.7 and 5.8 respectively.

An additional contribution of this chapter is an extension of the definitions of [DH09], of dPCPs that
work with low soundness error, to one that works with high soundness error. This is necessary because
plugging in a higher value for the soundness error parameter into the existing definition of [DH09] turns
out to be useless. Instead, we give a variant which we call uniquely decodable PCPs (udPCPs). We show
that udPCPs are in fact equivalent to PCPs of Proximity (PCPPs). This allows us to rely on known
constructions of PCPPs [BSGH+06, DR06] as our starting point. For more details see Section 5.6.2.

Together, Theorem 5.1.1 and Theorem 5.1.6 imply Theorem 5.1.2 (the [MR08] result). This is
sketched in Section 5.6.5.

Remark 5.1.7. In fact, Theorem 5.1.6 can be proved for any soundness error ε(n) satisfying 1/nκ ≤
ε(n) ≤ 1/poly log n (for some constant κ > 0. As in Theorem 5.1.1, the alphabet size in such case
is 21/poly(ε), and furthermore the list size becomes 1/poly (ε). However, in this chapter we only prove
Theorem 5.1.6 for ε(n) = 1/poly log n, since this is all we need to in order to prove Theorem 5.1.2 (the
[MR08] result).

Related Work and Future directions

Our final construction of a two-query PCP has exponential relation between the alphabet size and the
error probability (that is, |Σ| = 21/poly(ε)). In general, one can hope for a polynomial relation, and
this is the so-called “sliding scale” conjecture of [BGLR93]. Our approach is inherently limited to an
exponential relation both because of a lower bound on direct product testing from [DG08], and, more
generally, because of the following lower bound of Feige and Kilian [FK95] on parallel repetition of games.
Feige and Kilian prove that for every PCP system and k = O(log n) invocations of the original verifier, if
one insists on the parallel repetition using only O(log n) random bits, then the soundness error must be
at least 1/poly log n (and not 1/poly(n) as one might hope). For the choice of k = O(log n), the results
of this chapter match the [FK95] lower bound by exhibiting a derandomized parallel repetition theorem,
albeit only for PCPs with linear structure, that achieves a matching upper bound of 1/poly log n on the
soundness error.

Nevertheless, for three queries we are in a completely different ball-game, and no lower bound is
known. It would be interesting to find a derandomized direct product test with three queries with
lower soundness error, and to try and adapt it to a PCP. We note that there are “algebraic” construc-
tions [RS97, DFK+99] that make only three queries and have much better relationship between the error
and the alphabet size.

It has already been mentioned that while our result matches the soundness error and alphabet size
of the [MR08] result, it does not attain nearly linear proof length. Improving our result in this respect
is another interesting direction.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 130

Structure of the chapter

The chapter has two main parts, the first part is concerned with proving the main result for PCPs, and
the second part generalizes this result to dPCPs.

• Part 1. The structure of the proof is “top to bottom”. Our main theorem for PCPs is based on
two main steps: (i) embedding a PCP into a PCP with linear structure, and (ii) a derandomized
parallel repetition theorem for such PCPs. We begin, in Section 5.3, by stating the two main
lemmas corresponding to the two steps above, and then proving the main theorem, assuming
correctness of the lemmas. We then proceed to prove each main lemma. In Section 5.4 we show
how to embed a PCP into one with linear structure (by routing it on a de Bruijn like graph).
In Section 5.5 we prove the “derandomized parallel repetition” theorem for PCPs with linear
structure. This is done by reduction to the derandomized direct product test of [IKW09]. More
accurately, our analysis relies on a specialized variant of this test which we call an S-test, which
is analyzed in Section 5.9.

• Part 2. The second part of the chapter adapts our PCP construction to a dPCP. In Section 5.6
we discuss and define dPCPs, and prove Theorem 5.1.6. We also show how to use this theorem
to derive the [MR08] result (Theorem 5.1.2) as a corollary. The two main steps in the proof of
Theorem 5.1.6 are described in Sections 5.7 and 5.8 and are analogous to the two main steps of
proving Theorem 5.1.1.

• Finally, we analyze the specialized direct product test (called the S-test) in Section 5.9, based on
the work of [IKW09].

5.2 Preliminaries

Let g : U → Σ be an arbitrary function, and let A ⊂ U be a subset. We denote by g|A the restriction of
g (as a function) to A. We also use the following convention.

Notation 5.2.1. Given two functions f, g : U → Σ, we denote f
α
≈ g (f

α

6≈ g) to mean that they differ
on at most (more than) α fraction of the elements of U .

We refer to a d-dimensional linear subspace of an underlying vector space simply as a d-subspace.
For two linear subspaces A1 and A2, the standard notation A1 +A2 denotes the smallest linear subspace
containing both of them. We say that A1, A2 are independent if and only if A1 ∩ A2 = {0}. If A1 and
A2 are disjoint, the standard notation A1 ⊕ A2 is used to denotes A1 + A2.

Let G = (V,E) be a directed graph. For each edge e ∈ E we denote by left (e) and right (e) the left
and right endpoints of e respectively. That is, if we view the edge e ∈ E as a pair in V ×V , then left (e)
and right (e) are the first and second elements of the pair e respectively. Given a set of edges E0 ⊆ E,
we denote by left (E0) and right(E0) the set of left endpoints and right endpoints of the edges in E0

respectively.

5.2.1 Direct product testing [IKW09]

Let us briefly describe the setting in which we use the derandomized direct product test of [IKW09]. In
[IKW09] the main derandomized direct product test is a so-called “V-test”. We consider a variation of
this test that appears in [IKW09, Section 6.3] to which we refer as the “P-test” (P for projection).

Given a string π ∈ Σ`, we define its (derandomized) P-direct product Π as follows: We identify [`]
with Fm, where F is a finite field and m ∈ N, and think of π as an assignment that maps the points in

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 131

1. Choose a uniformly distributed d1-subspace B ⊆ Fm.

2. Choose a uniformly distributed d0-subspace A ⊆ B.

3. Accept if and only if Π (B)|A = Π(A).

Figure 5.1: The P-test

Fm to Σ. We also fix d0 < d1 ∈ N. Now, we define Π to be the assignment that assigns each d0- and
d1-subspace W of Fm to the function π|W : W → Σ (recall that π|W is the restriction of π to W).

We now consider the task of testing whether a given assignment Π is the P-direct product of some
string π : Fm → Σ. In those settings, we are given an assignment to subspaces, i.e. a function Π that
on input a d0-subspace A ⊂ Fm (respectively d1-subspace B ⊂ Fm), answers with a function a : A→ Σ
(respectively, b : Fm → Σ). We wish to test whether Π is a P-direct product of some π : Fm → Σ, and
to this end we invoke the P-test, described in Figure 5.1.

It is easy to see that if Π is a P-direct product then the P-test always accepts. Furthermore, it can
be shown that if Π is “far” from being a P-direct product, then the P-test rejects with high probability.
Formally, we have the following result.

Theorem 5.2.2 (Soundness of the P-test[IKW09]). There exists a universal constant h ∈ N such that

the following holds: Let ε ≥ h·d0·|F|−d0/h, α
def
= h·d0·|F|−d0/h. Assume that d1 ≥ h·d0, m ≥ h·d1. Suppose

that an assignment Π passes the P-test with probability at least ε. Then, there exists an assignment π
such that

Pr
[
Π (B)|A = Π (A) and Π (B)

α
≈ π|B and Π (A)

α
≈ π|A

]
= Ω(ε4), (5.1)

where the probability is over A,B chosen as in the P-test.

Theorem 5.2.2 can be proved by adapting the analysis of [IKW09] (in particular, Sections 3.4 and 4)
to the setting of the P -test, while relying on a lemma of [IKW09]. The proof can be found in [DM10,
App. A].

Working with randomized assignments. As observed by [IKW09], Theorem 5.2.2 works in even
stronger settings. Suppose that Π is a randomized function, i.e., a function of both its input and some
additional randomness. Then, Theorem 5.2.2 still holds for Π, where the probability in (5.1) is over
both the choice of A and B, and over the internal randomness of Π. We will rely on this fact in a crucial
way in this chapter.

5.2.2 Sampling tools

The following is the standard definition of a sampler, stated in the terminology of graphs, see e.g.
[IJKW08].

Definition 5.2.3 (Sampler Graph). A bipartite graph G = (L,R,E) is said to be an (ε, δ)-sampler if,
for every function f : L→ [0, 1], there are at most δ |R| vertices u ∈ R for which∣∣Ev∈N(u)[f(v)]− Ev∈L[f(v)]

∣∣ > ε.

Observe that if G is an (ε, δ)-sampler, and if F ⊂ L, then by considering the function f ≡ 1F we get
that there are at most δ |R| vertices u ∈ R for which∣∣∣∣ Pr

v∈N(u)
[v ∈ F]− Pr

v∈L
[v ∈ F]

∣∣∣∣ > ε.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 132

The following lemma is stated in [IKW09, Lemma 2.2] and is proved implicitly in [IJKW08, Lemma
2.9]. For completeness, we include its proof.

Lemma 5.2.4 (Subspace-point sampler [IJKW08]). Let d′ < d be natural numbers, let V be a linear
space over a finite field F, and let W be a fixed d′-subspace of V . Let G be the bipartite graph whose left
vertices are all points of V and whose right vertices are all d-subspaces of V that contain W . We place
an edge between a d-subspace X and x ∈ V if and only if x ∈ X. Then G is an (τ + 1

|F|d−d′
, 1

|F|d−d′−2·τ2
)-

sampler for every τ > 0.

Proof. Fix a function f : V → [0, 1]. We show that for a uniformly distributed d-subspace X ⊆ V that
contains W it holds with probability at least 1− 1

|F|d−d′−2·τ2
that

|Ex∈X [f(x)]− Ev∈V [f(v)]| ≤ τ +
1

|F|d−d′
.

Let W be a fixed subspace of V for which V = W ⊕W . Let fW : W → [0, 1] be the function that
maps each vector w of W to Ev∈w+W [f(v)], and observe that Ev∈V [f(v)] = Ew∈W [fW (w)]. Furthermore,
observe that every d-subspace X that contains W can be written as X = W ⊕U where U is a (d− d′)-
subspace of W , and moreover that Ex∈X [f(x)] = Eu∈U [fW (u)]. Thus, it suffices to prove that for a
uniformly distributed (d− d′)-subspace U of W it holds with probability at least 1− 1

|F|d−d′−2·τ2
that

|Eu∈U [fW (u)]− Ew∈W [fW (w)]| ≤ τ +
1

|F|d−d′
. (5.2)

To that end, let U be a uniformly distributed (d− d′)-subspace of W . Let S1 be a uniformly distributed

set of Q
def
= |F|d−d

′
−1

|F|−1
vectors of U such that every two vectors in S1 are linearly independent3. For every

α ∈ F∗ let Sα be the set obtained by multiplying every vector in S1 by α. Observe that all the sets Sα
have the property that every two vectors in Sα are linearly independent, and that the sets Sα form a
partition of U\ {0}. We will show that for every α ∈ F∗ it holds with probability at least 1− 1

|F|d−d′−1·τ2
that

|Eu∈Sα [fW (u)]− Ew∈W [fW (w)]| ≤ τ,

and the required result will follow by taking the union bound over all α ∈ F∗, and by noting that the
vector 0 contributes at most 1

|F|d−d′
to the difference in Inequality 5.2.

Fix α ∈ F∗, and let s1, . . . , sQ be the vectors in Sα. It is a known fact that s1, . . . , sQ are pair-wise
independent and uniformly distributed vectors of W (over the random choice of U). This implies that
fW (s1), . . . , fW (sQ) are pair-wise independent random variables with expectation Ew∈W [fW (w)], and
therefore by the Chebyshev inequality it follows that

Pr

[∣∣∣∣∣ 1

Q

Q∑
i=1

fW (si)− Ew∈W [fW (w)]

∣∣∣∣∣ > τ

]
≤ 1

Q · τ 2
≤ 1

|F|d−d′−1 · τ 2
,

as required. �

3Such a set can be sampled, for example, by iteratively choosing a uniformly distributed vector of U that is linearly
independent from each of the previously chosen vectors individually. It is not hard to see that such a process will halt

after choosing Q
def
= |F|d−d′−1

|F|−1 vectors.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 133

5.2.3 Constraint graphs and PCPs

As discussed in the introduction, the focus of this chapter is on claims that can be verified by reading a
small number of symbols of the proof. A PCP system for a language L is an oracle machine M , called a
verifier, that has oracle access to a proof π over an alphabet Σ. The verifier M reads the input x, tosses
r coins, makes at most q “oracle” queries into π, and then accepts or rejects. If x is in the language
then it is required that M accepts with probability 1 for some π, and otherwise it is required that M
accepts with probability at most ε for every π. More formally:

Definition 5.2.5. Let r, q : N → N, and let Σ be a function that maps the natural numbers to finite
alphabets. A (r, q)Σ-PCP verifier M is a probabilistic polynomial time oracle machine that when given
input x ∈ {0, 1}∗, tosses at most r(|x|) coins, makes at most q (|x|) non-adaptive queries to an oracle
that is a string over Σ(|x|), and outputs either “accept” or “reject”. We refer to r, q, and Σ as the
randomness complexity, query complexity, and proof alphabet of the verifier respectively.

Remark 5.2.6. Note that for an (r, q)Σ-PCP verifier M and an input x, we can assume without loss
of generality that the oracle is a string of length at most 2r(|x|) · q(|x|), since this is the maximal number
of different queries that M can make. Hence, it is unnecessary to keep track of the proof length of the
verifier.

Definition 5.2.7. Let r, q and Σ be as in Definition 5.2.5, let L ⊆ {0, 1}∗ and let ε : N→ [0, 1). We say
that L ∈ PCPε,Σ [r, q] if there exists an (r, q)Σ-PCP verifier M that satisfies the following requirements:

• Completeness: For every x ∈ L, there exists π ∈ Σ (|x|)∗ such that Pr [Mπ(x) accepts] = 1.

• Soundness: For every x /∈ L and for every π ∈ Σ (|x|)∗ it holds that Pr [Mπ(x) accepts] ≤ ε (|x|).

One possible formulation of the PCP theorem is as follows.

Theorem 5.2.8 (PCP Theorem [AS98, ALM+98]). There exist universal constant ε ∈ (0, 1) and a finite
alphabet Σ such that NP ⊆ PCPε,Σ [O(log n), 2].

PCPs that have query complexity 2 correspond to graphs in a natural way: Consider the action of

an (r, 2)Σ-verifier M on some fixed string x, and let r
def
= r(|x|),Σ def

= Σ(|x|). The verifier M is given
access to some proof string π of length `, and may make 2r possible tests on this string, where each such
test consists of making two queries to π and deciding according to the answers. We now view the action
of M as a graph in the following way. We consider the graph G whose vertices are the coordinates
in [`], and that has an edge for each possible test of the verifier M . The endpoints of an edge e of
G are the coordinates that are queried by M in the test that corresponds to e. We also associate an
edge e with a constraint ce ∈ Σ× Σ, which contains all the pairs of answers that make M accept when
performing the test that corresponds to e. We think of π as an assignment that assigns the vertices of
G values in Σ, and say that π satisfies an edge (u, v) if (π(u), π(v)) ∈ c(u,v). If x ∈ L, then it is required
that there exists some assignment π that satisfies all the edges of G, and otherwise it is required that
every assignment satisfies at most ε fraction of the edges. This correspondence is called the FGLSS
correspondence [FGL+96]. We turn to state it formally:

Definition 5.2.9 (Constraint graph). A (directed) constraint graph is a directed graph G = (V,E)
together with an alphabet Σ, and, for each edge (u, v) ∈ E, a binary constraint cu,v ⊆ Σ× Σ. The size
of G is the number of edges of G. The graph is said to have projection constraints if it is bipartite with
all the edges directed from the left to the right, and every constraint cu,v has an associated function

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 134

fu,v : Σ→ Σ such that cu,v is satisfied by (a, b) if and only if fu,v(a) = b.
Given an assignment π : V → Σ, we define

SAT(G, π) = Pr
(u,v)∈E

[(π(u), π(v)) ∈ cu,v] and SAT(G) = max
π

(SAT(G, π)).

We also denote UNSAT(G, π) = 1− SAT(G, π) and similarly UNSAT(G) = 1− SAT(G).

Remark 5.2.10. Note that Definition 5.2.9 uses directed graphs, while the common definition of con-
straint graphs refers to undirected graphs.

Remark 5.2.11. Note that if the graph G has projection constraints, then this is simply a label cover
instance with projection constraints [AL96].

Proposition 5.2.12 (FGLSS correspondence [FGL+96]). The following two statements are equivalent:

• L ∈ PCPε,Σ [r, 2].

• There exists a polynomial-time algorithm that transforms strings x ∈ {0, 1}∗ to constraint graphs
Gx of size 2r(|x|) with alphabet Σ (|x|) such that: (1) if x ∈ L then SAT(Gx) = 1, and (2) if x 6∈ L
then SAT(Gx) ≤ ε.

Given a PCP system for L, we refer to the corresponding family of graphs {Gx} where x ranges over all
possible instances as its underlying graph family. If the graphs {Gx} have projection constraints then
we say that the PCP system has the projection property.

Using the [FGL+96] correspondence, we can rephrase the PCP theorem in the terminology of con-
straint graphs:

Theorem 5.2.13 (PCP Theorem for constraint graphs). There exist universal constant ε ∈ (0, 1) and a
finite alphabet Σ such that for every language L ∈ NP the following holds: There exists a polynomial time
reduction that on input x ∈ {0, 1}∗, outputs a constraint graph Gx such that if x ∈ L then SAT(Gx) = 1
and otherwise SAT(Gx) ≤ ε.

Remark 5.2.14. The connection between PCPs and approximation problems (such as Proposition 5.2.12)
was discovered by [FGL+96]. However, the precise correspondence between PCPs and constraint graphs
that is given in Proposition 5.2.12 was only stated for the first time by [ALM+98]. Still, in the rest of
this chapter we refer to Proposition 5.2.12 as the [FGL+96] correspondence.

Remark 5.2.15. Note the tight relationship between the randomness complexity of the PCP and the
size of the corresponding constraint graphs. In particular, observe that PCP verifiers with randomness
complexity O(log n) correspond to constraint graphs of polynomial size. This relationship is one of the
main reasons for the study of the randomness complexity of PCP verifiers.

Moreover, recall that the work of [MR08] constructs PCPs that are very randomness efficient, i.e.,
have randomness complexity (1 + o(1)) log n (see also Remark 5.6.27). This randomness efficiency is
translated into constraints graphs of almost-linear size, namely n1+o(1).

5.2.4 Basic facts about random subspaces

In this section we present two useful propositions about random subspaces. The following proposi-
tion says that a uniformly distributed subspace is independent from every fixed subspace with high
probability.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 135

Proposition 5.2.16. Let d, d′ ∈ N such that d > 2d′, and let V be a d-dimensional space. Let W1 be a
uniformly distributed d′-subspace of V , and let W2 be a fixed d′-subspace of V . Then,

Pr[W1 ∩W2 = {0}] ≥ 1− 2 · d′/ |F|d−2·d′ .

Proof. Suppose that W1 is chosen by choosing random basis vectors v1, . . . , vd′ one after the other. It
is easy to see that W1 ∩W2 6= {0} only if vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for some i ∈ [d′]. For each
fixed i, the vector vi is uniformly distributed in V \span {v1, . . . , vi−1}, and therefore the probability that
vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for a fixed i is at most

|span (W2 ∪ {v1, . . . , vi−1})|
|V \span {v1, . . . , vi−1}|

=
|F|d

′+i−1

|F|d − |F|i−1

≤ 2 · |F|d
′+i−1

|F|d
(5.3)

≤ 2 · |F|2·d
′−1

|F|d

≤ 2

|F|d−2·d′ ,

where Inequality 5.3 can be observed by noting that |F|i−1 ≤ |F|d−1 ≤ 1
2
· |F|d. By the union bound,

the probability that this event occurs for some i ∈ [d′] is at most 2·d′

|F|d−2·d′ . It follows that the probability

that W1 ∩W2 6= {0} is at most 2·d′

|F|d−2·d′ as required. �

The following proposition says that the span of d′ uniformly distributed vectors is with high proba-
bility a uniformly distributed d′-subspace.

Proposition 5.2.17. Let V be a d-dimensional space over a finite field F, let w1, . . . , wd′ be independent
and uniformly distributed vectors of V , and let W = span {w1, . . . , wd′}. Then, with probability at least

1− d′/ |F|d−d
′

it holds that dimW = d′. Furthermore, conditioned on the latter event, W is a uniformly
distributed d′-subspace of V .

Proof. The fact that dimW = d′ with probability at least 1−d′/ |F|d−d
′
can be proved in essentially the

same way as Proposition 5.2.16. To see that conditioned on the latter event it holds that the subspace W
is uniformly distributed, observe that since w1, . . . , wd′ were originally chosen to be uniformly distributed,
all the possible d′-sets of linearly independent vectors have the same probability to occur. �

Finally, the following proposition shows the equivalence of two different ways of choosing subspaces
A1, A2 ⊆ B where A1 and A2 are independent.

Proposition. Let V be a linear space over a finite field F, and let d0, d1 ∈ N be such that d0 < d1 <
dimV . The following two distributions over d0-subspaces A1, A2 and a d1-subspace B are the same:

1. Choose B to be a uniformly distributed d1-subspace of V , and then choose A1 and A2 to be two
uniformly distributed and independent d0-subspaces of B.

2. Choose A1 and A2 to be two uniformly distributed and independent d0-subspaces of V , and then
choose B to be a uniformly distributed d1-subspace of V that contains A1 and A2.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 136

Proof. Observe that choosing A1, A2, B under the first distribution amounts to choosing d1 uniformly
distributed and linearly independent vectors in V (those vectors will serve as the basis of B), and then
choosing two disjoint subsets of those vectors to serve as the basis of A1 and as the basis of A2. On
the other hand, choosing A1, A2 and B under the second distribution amounts to choosing d0 uniformly
distributed and linearly independent vectors in V to serve as the basis of A1, then choosing another d0

uniformly distributed and linearly independent vectors in V to serve as the basis of A2 while making
sure that this basis is also linearly independent from the basis of A1, and then completing the basis of
A1 and the basis of A2 to a basis of B. It is easy to see that those two distributions over a set of d1

vectors and its two disjoint subsets are identical. �

5.2.5 Similarity of distributions

In this section we introduce a notion of “similarity of distributions”, which we will use in the second
part of the chapter. Let X1 and X2 be two random variables that take values from a set X , and let
γ ∈ (0, 1]. We say that X1 and X2 are γ-similar if for every x ∈ X it holds that

γ · Pr [X1 = x] ≤ Pr [X2 = x] ≤ 1

γ
· Pr [X1 = x] .

Note that if X1 and X2 are γ-similar then actually it holds for every S ⊆ X that

γ · Pr [X1 ∈ S] ≤ Pr [X2 ∈ S] ≤ 1

γ
· Pr [X1 ∈ S] ,

The following claim says roughly that if f is a randomized function, then the random variable f(X1) is
γ-similar to f(X2).

Claim 5.2.18. Let X1 and X2 be two random variables that take values from a set X that are γ-similar.
Let Y1 and Y2 be two random variables that take values from a set Y such that for every x ∈ X , y ∈ Y
it holds that

Pr [Y1 = y|X1 = x] = Pr [Y2 = y|X2 = x] .

Then, the variables Y1, Y2 are γ-similar.

Proof. It holds that

Pr [Y1 = y] =
∑
x∈X

Pr [Y1 = y|X1 = x] · Pr [X1 = x]

=
∑
x∈X

Pr [Y2 = y|X2 = x] · Pr [X1 = x]

≥
∑
x∈X

Pr [Y2 = y|X2 = x] · γ · Pr [X2 = x]

= γ · Pr [Y2 = y] .

Similarly it can be proved that Pr [Y1 = y] ≤ 1
γ
· Pr [Y2 = y]. �

5.2.6 Expanders

Expanders are graphs with certain properties that make them extremely useful for many applications
in theoretical computer science. Below we give a definition of expanders that suits our needs.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 137

Definition 5.2.19. Let G = (V,E) be a d-regular graph. Let E
(
S, S

)
be the set of edges from a subset

S ⊆ V to its complement. We say that G has edge expansion h if for every S ⊆ V such that |S| ≤ |V | /2
it holds that ∣∣E(S, S)

∣∣ ≥ h · d0 · |S| .

A useful fact is that there exist constant degree expanders over any number of vertices:

Fact 5.2.20. There exist d0 ∈ N and h0 > 0 such that there exists a polynomial-time constructable
family {Gn}n∈N of d0-regular graphs Gn on n vertices that have edge expansion h0 (such graphs are
called expanders).

5.3 Main theorem

In this section we prove our main PCP theorem (Theorem 5.1.1), which asserts the existence of two-
query PCPs with soundness error ε(n) for any function 1/nκ ≤ ε(n) ≤ 1/poly log n. To that end, we use
the PCP theorem for graphs (Theorem 5.2.13) to reduce the problem of deciding membership of a string
x in the language L to the problem of checking the satisfiability of a constraint graph with constant
soundness error. We then show that every constraint graph can be transformed into one that has “linear
structure”, defined shortly below. This is done in Lemma 5.3.3, which directly proves Theorem 5.1.4
(the existence of PCPs with linear structure). Finally, in Lemma 5.3.4 we prove a derandomized parallel
repetition theorem for constraint graphs with linear structure. Theorem 5.1.1 follows by combining the
two lemmas. We begin by defining the notion of a graph with linear structure.

Definition 5.3.1 (Linear Structure). We say that a directed graph G has a linear structure if it satisfies
the following conditions:

1. The vertices of G can be identified with the linear space Fm, where F is a finite field and m ∈ N.

2. We identify the set of pairs of vertices (Fm)2 with the linear space F2m. Using this identification,
the edges E of G are required to form a linear subspace of F2m.

3. We require that left (E) = right (E) = Fm. In other words, this means that every vertex of G is
both the left endpoint of some edge and the right point of some edge.

Remark 5.3.2. We mention that although it is not required by Definition 5.3.1, a graph with linear
structure must be regular, i.e., all the vertices in the graph have the same in-degree and out-degree.
This is a straightforward corollary of Items 2 and 3 of the definition.

The following lemmas are proved in Sections 5.4 and 5.5 respectively.

Lemma 5.3.3 (Linear Structure Embedding). There exists a polynomial time procedure that satisfies
the following requirements:

• Input:

– A constraint graph G of size n over alphabet Σ.

– A finite field F of size q.

• Output: A constraint graph G′ = (Fm, E ′) such that the following holds:

– G′ has a linear structure.

– The size of G′ is at most O (q2 · n).

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 138

– G′ has alphabet ΣO(logq(n)).

– If G is satisfiable then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

1
q·logq(n)

· ρ
)

.

Lemma 5.3.4 (Derandomized Parallel Repetition). There exist a universal constant h and a polynomial
time procedure that satisfy the following requirements:

• Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parameter will determine the dimension of
linear subspaces used in the derandomized parallel repetition, and thus together with q will
determine the number of repetitions used in the derandomized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h. Intuitively, the parameter ρ should be
chosen such that 1− ρ is an upper bound on the soundness error of G.

• Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0).

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property.

We turn to prove the main theorem from the above lemmas.

Theorem (5.1.1, restated). There exists a constant κ > 0 such that for every function ε : N → (0, 1)
satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n the following holds: Every language L ∈ NP has a two-query
PCP system with perfect completeness, soundness error 1/poly log n, alphabet size 21/poly(ε), proof length
poly (n), and randomness complexity O(log n). Furthermore, the verifier in this PCP system makes only
‘projection’ queries.

Proof. Let κ > 0 be a constant to be chosen later, and let ε : N → (0, 1) be a function satisfying
1/nκ ≤ ε(n) ≤ 1/poly log n. Fix a language L ∈ NP. We show that L has a two-query PCP system
with perfect completeness, soundness error ε(n) and alphabet size 21/poly(ε), which has the projection
property. By the [FGL+96] correspondence (Proposition 5.2.12), it suffices to show a polynomial time
procedure that on input x ∈ {0, 1}∗, outputs a constraint graph G′ of size poly (n) such that the
following holds: If x ∈ L then G′ is satisfiable (i.e. SAT(G′) = 1), and if x 6∈ L then SAT(G′) ≤ ε(n).
The procedure begins by transforming x, using the PCP theorem for constraint graphs (Theorem 5.2.13),
to a constraint graph G of size n = poly |x| such that if x ∈ L then SAT (G) = 1 and if x 6∈ L then
SAT (G) ≤ ε0, where ε0 ∈ (0, 1) is a universal constant that does not depend on x. Let n = poly (|x|)
be the size of G, and let ρ0 = 1− ε0.

Next, the procedure sets F to be the smallest field of size at least 1/ (ε(n))c for some constant c > 1 to
be determined later, and sets q = |F|. Note that q ≥ poly log n. The procedure now invokes Lemma 5.3.3
(linear structure embedding) on input G and F, thus obtaining a new constraint graph G1. Note that

by Lemma 5.3.3 if UNSAT (G) ≥ ρ0, then ρ1
def
= UNSAT (G1) ≥ Ω

(
1

q·logq(n)
· ρ0

)
.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 139

Finally, the procedure sets d0 to be an arbitrary constant such that ρ1 ≥ h · d0 · q−d0/h . Note that
this is indeed possible, since logq (1/ρ1) is a constant that depends only on ρ (here we use the fact
that q ≥ poly log n). Finally, the procedure invokes Lemma 5.3.4 (derandomized parallel repetition) on
input G1, F, ρ1, and d0, and outputs the resulting constraint graph G′. We note that we use here the
assumption that ε(n) ≥ nκ, and choose κ to be sufficiently small, in order to guarantee that G1 satisfies
the requirements of Lemma 5.3.4.

It remains to analyze the parameters of G′. It is not hard to see that G′ has size nO(d0) and
alphabet ΣqO(d0) = Σ1/poly(ε). Furthermore, if UNSAT (G) ≥ ρ, then UNSAT (G1) ≥ ρ1. Therefore, by
Lemma 5.3.4 and by the choice of d0, it holds that SAT(G′) ≤ O(1/qΩ(1)). Since q = 1/ (ε(n))c, it holds
for sufficiently large c that SAT(G′) ≤ ε(n), as required. �

Remark 5.3.5. Recall that [MR08] prove a stronger version of the main theorem, saying that for every
soundness error ε(n) > nκ, not necessarily upper bounded by 1/poly log n, it holds that NP has a
PCP system with soundness ε and alphabet size exp (1/poly(ε)) (Theorem 5.1.2). If one could prove a
stronger version of Lemma 5.3.3 (Linear Structure Embedding) in which the soundness of G′ is ρ/poly (q)

and the alphabet size is |Σ|poly(q) then the stronger Theorem 5.1.2 would follow using the same proof
as above, without using a composition technique as in [MR08, DH09], by choosing q to be sufficiently
small.

Remark 5.3.6. The reduction described in Theorem 5.1.1 yields graphs of polynomial size, but not
of nearly-linear size as in [MR08] (see Remark 5.2.6). In fact, the construction of graphs with linear
structure (Lemma 5.3.3) is nearly linear size (taking an instance of size n to an instance of size q2 · n).
The part that incurs a polynomial and not nearly-linear blow-up is the derandomized parallel repetition
(Lemma 5.3.4) that relies on the derandomized direct product. It is possible that a more efficient
derandomized direct product may lead to a nearly-linear size construction in total.

5.4 PCPs with Linear Structure

In this section we prove Lemma 5.3.3 (linear structure embedding), which implies Theorem 5.1.4 (the
existence of PCPs with linear structure) by combining it with the PCP theorem (Theorem 5.2.13). The
lemma which says that every constraint graph can be transformed into one that has linear structure. To
this end, we use a family of structured graphs called de-Bruijn graphs. We show that de-Bruijn graphs
have linear structure, and that every constraint graph can be embedded in some sense on a de-Bruijn
graph. This embedding technique is a variant of a technique introduced by Babai et. al. [BFLS91]
and Polishchuk and Spielman [PS94] for embedding circuits on de-Bruijn graphs. We begin by defining
de-Bruijn graphs.

Definition 5.4.1. Let Λ be a finite alphabet and let m ∈ N. The de Bruijn graph DBΛ,m is the directed
graph whose vertices set is Λm such that each vertex (α1, . . . , αm) ∈ Λm has outgoing edges to all the
vertices of the form (α2, . . . , αm, β) for β ∈ Λ.

Remark 5.4.2. We note that previous works used a slightly different notion, the “wrapped de Bruijn
graph”, which is a layered graph in which the edges between layers are connected as in the de Bruijn
graph. Also, we note that previous works fixed Λ to be the binary alphabet, while we we use a general
alphabet.

Lemma 5.3.3 follows easily from the following two propositions. Proposition 5.4.3 says that de Bruijn
graphs have linear structure. Proposition 5.4.4 says that any constraint graph can be embedded on a
de Bruijn graph.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 140

Proposition 5.4.3. Let F be a finite field and let m ∈ N. Then, the de Bruijn graph DBF,m has linear
structure.

Proof. Items 1 and 3 of the definition of linear structure (Definition 5.3.1) follow immediately from the
definition of de Bruijn graphs. To see that Item 2 holds, observe that in order for a tuple in F2m to
be an edge of DBF,m, it only needs to satisfy equality constraints, which are in turn linear constraints.
Thus, the set of edges of DBF,m form a linear subspace of F2m. �

Proposition 5.4.4 (Embedding on de-Bruijn graphs). There exists a polynomial time procedure that
satisfies the following requirements:

• Input:

– A constraint graph G of size n over alphabet Σ.

– A finite alphabet Λ.

– A natural number m such that |Λ|m ≥ 2 · n

• Output: A constraint graph G′ such that the following holds:

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.

– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– If G is satisfiable then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

n
|Λ|m+1·m · ρ

)
.

Lemma 5.3.3 (linear structure embedding) is obtained by invoking Proposition 5.4.4 with Λ = F,
m =

⌈
logq (2 · n)

⌉
and combining it with Proposition 5.4.3. The rest of this section is devoted to

proving Proposition 5.4.4, and is organized as follows: In Section 5.4.1 we give the required background
on the routing properties of de Bruijn graphs. Then, in Section 5.4.2, we give an outline of the proof of
Proposition 5.4.4. Finally, we give the full proof of the proposition in Section 5.4.3.

5.4.1 de Bruijn graphs as routing networks

The crucial property of the de Bruijn graphs that we use is that the de Bruijn graph is a permutation
routing network. To explain the intuition that underlies this notion, let us think of the vertices of the
de Bruijn graph as computers in a network, such that two computers can communicate if and only if
they are connected by an edge. Furthermore, sending a message from a computer to its neighbor takes
one unit of time. Suppose that each computer in the network wishes to send a message to some other
computer in the network, and furthermore each computer needs to receive a message from exactly one
computer (that is, the mapping from source computers to target computers is a permutation). Then,
the routing property of the de Bruijn network says that we can find paths in the network that have the
following properties:

1. Each path corresponds to a message that needs to be sent, and goes from the message’s source
computer to its target computer.

2. If all the messages are sent simultaneously along their corresponding paths, then at each unit of
time, each computer processes exactly one message. By “processing” we mean that the computer
receives the message from one of its neighbors and sends it to one of its neighbors.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 141

3. The paths are of length exactly 2 ·m. This means that if all the messages are sent simultaneously
along their corresponding paths, then after 2 · m units of time all the messages will reach their
destination.

Formally, this property can be stated as follows.

Fact 5.4.5. Let DBΛ,m be a de-Brujin graph. Then, given a permutation µ on the vertices of DBΛ,m

one can find a set of undirected paths of length l = 2m which connect each vertex v to µ(v) and which
have the following property: For every j ∈ [l], each vertex v is the j-th vertex of exactly one path.
Furthermore, finding the paths can be done in time that is polynomial in the size of DBΛ,m.

Fact 5.4.5 is proved in [Lei92] for the special case of Λ = {0, 1}. The proof of the general case
essentially follows the original proof, except that the looping algorithm of Beneš is replaced with the
decomposition of d-regular graphs to d perfect matchings. The proof of the general case can be found
in [DM10, App. B].

Remark 5.4.6. Note that the paths mentioned in Fact 5.4.5 are undirected. That is, if a vertex u
appears immediately after a vertex v in path, then either (u, v) or (v, u) are edges of DBΛ,m.

5.4.2 Proof overview

Suppose we are given as input a constraint graph G which we want to embed on DB = DBΛ,m. Recall
that the size of G is at most |Λ|m, so we may identify the vertices of G with some of the vertices of DB.

Handling degree 1 As a warm up, assume that G has degree 1, i.e., G is a perfect matching. In

this case, we construct G′ as follows. We choose the alphabet of G′ to be Σl for l
def
= 2m. Fix any

assignment π to G. We describe how to construct a corresponding assignment π′ to G′. We think of
the vertices of G as computers, such that each vertex v wants to send the value π(v) as a message to
its unique neighbor in G. Using the routing property of the de Bruijn graph, we find paths for routing
those messages along the edges of G′. Recall that if all the messages are sent simultaneously along those
paths, then every computer has to deal with one packet at each unit of time, for l units of time. We now
define the assignment π′ to assign each vertex v of G′ a tuple in Σl whose j-th element is the message
with which v deals at the j-th unit of time.

We define the constraints of G′ such that they verify that the routing is done correctly. That is,
if the computer u is supposed to send a message to a vertex v between the j-th unit of time and the
(j + 1)-th unit of time, then the constraint of the edge between u and v checks that π′ (u)j = π′(v)j+1.
Furthermore, for each edge (u, v) of G, the constraints of G′ check that the values π′ (v)l and π′ (v)1

satisfy the edge (u, v). This condition should hold because if π′ was constructed correctly according to
π then π′ (v)l = π(u) and π′ (v)1 = π(v). It should be clear that the constraints of G′ “simulate” the
constraints of G. We discuss the exact behavior of the soundness error in the detailed proof.

Handling arbitrary degree graphs Using the expander replacement technique of Papadimitriou
and Yannakakis [PY91], we may assume that G is d-regular for some universal constant d. The d-
regularity of G implies that the edges of G can be partitioned to d disjoint perfect matchings µ1, . . . , µd
in polynomial time (see, e.g., [Cam98, Proposition 18.1.2]). Now, we set the alphabet of G′ to be(
Σl
)d

, and handle each of the matchings µi as before, each time using a “different part” of the alphabet
symbols. In other words, the alphabet of G′ consists of d-tuples of Σl, and so the constraints used to
handle each matching µi will refer to the i-th coordinates in those tuples. Finally, for vertex v, its
constraints will also check that the message it sends in each of the d paths is the same. In other words,

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 142

if π′ (v) = (σ1, . . . , σd) ∈
(
Σl
)d

then the constraints will check that (σ1)1 = . . . = (σd)1. As before, the
constraints of resulting graph G′ “simulate” the constraints of the original graph G.

Remark 5.4.7. Observe that the foregoing proof used only the routing property of de Bruijn graphs,
and will work for any graph that satisfies this property. In other words, Proposition 5.4.4 (embedding
on de-Bruijn graphs) holds for any graph for which Fact 5.4.5 holds.

5.4.3 Detailed proof

We use the following version of the expander-replacement technique of [PY91].

Lemma 5.4.8 ([Din07, Lemma 3.2]). There exist universal constants c, d ∈ N and a polynomial time
procedure that when given as input a constraint graph G of size n outputs a constraint graph G′ of size
2 · d · n over alphabet Σ such that the following holds:

• G′ has 2 · n vertices and is d-regular.

• If G is satisfiable then so is G′.

• If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ ρ/c.

We turn to proving Proposition 5.4.4 (embedding on de-Bruijn graphs). When given as input a
constraint graph G, a finite alphabet Λ and a natural number m such that |Λm| ≥ 2 · n, the procedure
of Proposition 5.4.4 acts as follows. The procedure begins by invoking Lemma 5.4.8 on G, resulting in
a d-regular constraint graph G1 over 2 · n vertices. Then, the vertices of G1 are identified with a subset
of the vertices of DB = DBΛ,m (note that this is possible since |Λm| ≥ 2 · n).

Next, the procedure partitions the edges of G1 to d disjoint perfect matchings, and views those
matchings as permutations µ1, . . . , µd on the vertices of DB in the following way: Given a vertex v
of DB, if v is identified with a vertex of G1 then µi maps v to its unique neighbor in G via the i-th
matching, and otherwise µi maps v to itself. The procedure then applies Fact 5.4.5 to each permutation µi

resulting in a set of paths Pi of length l
def
= 2m. Let P =

⋃
Pi.

Finally, the procedure constructs G′ in the following way. We set the alphabet of G′ to be Σl·d,

viewed as
(
Σl
)d

. If σ ∈
(
Σl
)d

, and we denote σ = (σ1, . . . , σd), then we denote by σi,j the element
(σi)j ∈ Σ. To define the constraints of G′, let us consider their action on an assignment π′ of G′. An

edge (u, v) of DB′ is associated with the constraint that accepts if and only if all the following conditions
hold:

1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1

)
satisfy the edge

(
µ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = . . . = π′ (u)d,1 and that π′ (v)1,1 = . . . = π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th and (j + 1)-th vertices of a path in
p ∈ Pi respectively, it holds that π′ (u)i,j 6= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u is its (j + 1)-th vertex.

The size of G′ is indeed |Λ|m+1, since the graph is |Λ|-regular and contains |Λ|m vertices. Furthermore,
if G is satisfiable, then so is G′: The satisfiability of G implies the satisfiability of G1, so there exists
a satisfying assignment π1 for G1. We construct a satisfying assignment π′ from π1 by assigning each
vertex v of G′ a value π′ (v), such that for each i ∈ [d], if v is the j-th vertex of a path p ∈ Pi that
connects the vertices u and µi(u), then we set π′ (v)i,j = π1(u). Note that this is well defined, since
every vertex is the j-th vertex of exactly one path in Pi.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 143

It remains to analyze the soundness of G′. Suppose that UNSAT (G) ≥ ρ. Then, by Lemma 5.4.8 it
holds that UNSAT (G1) ≥ ρ/c. Let π′ be an assignment to G′ that minimizes the fraction of violated
edges of G′. Without loss of generality, we may assume that for every vertex v of the DB it holds
that π′ (v)1,1 = . . . = π′ (v)d,1: If there is a vertex v that does not match this condition, all of the
edges attached to v are violated and therefore we can modify the π′(v) to match this condition without
increasing the fraction of violated edges of π′. Define an assignment π1 to G1 by setting π1(v) = π′ (v)1,1

(when v is viewed as a vertex of DB).
Since UNSAT (G1) ≥ ρ/c, it holds that π1 violates at least ρ/c fraction of the edges of G1, or in

other words π1 violates at least ρ · 2 · n · d/c edges of G1. Thus, there must exist a permutation µi such
that π1 violates at least ρ · 2 · n/c edges of G1 of the form (u, µi(u)). Fix such an edge (u, µi(u)) and
consider the corresponding path p ∈ Pi. Observe that π′ must violate at least one of the edges of p: To
see it, note that if π′ would satisfy all the edges on p, then it would imply that π′ (µi(u))i,l = π1(u) and
that π′ (µi(u))i,1 = π1(µi(u)), but the last two values violate the edge (u, µi(u)) of G1, and therefore π′

must violate the last edge of p - contradiction. It follows that for each of the ρ · 2 · n/c edges of the
matching µi that are violated by π1 it holds that π′ violates at least one edge of their corresponding
path. By averaging there must exist j ∈ [l] such that for at least ρ · 2 · n/c · l edges of the matching µi
it holds that π′ violates the j-th edge of their corresponding path.

Now, by the definition of the paths in Pi, no edge of G′ can be the j-th edge of two distinct paths in
Pi, and therefore it follows that there at least ρ · 2 · n/c · l edges of G′ are violated by π′. Finally, there
are |Λ|m+1 edges in G′, and this implies that π′ violates a fraction of the edges of G′ that is at least

ρ · 2 · n/c · l
|Λ|m+1 = Ω

(
n

|Λ|m+1 · l
· ρ
)
,

as required. �

5.5 Derandomized Parallel Repetition of Constraint Graphs

with Linear Structure

In this section we prove Lemma 5.3.4, restated below, by implementing a form of derandomized parallel
repetition on graphs that have linear structure.

Lemma 5.5.1 (5.3.4, restated). There exist a universal constant h and a polynomial time procedure
that satisfy the following requirements:

• Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parameter will determine the dimension of
linear subspaces used in the derandomized parallel repetition, and thus together with q will
determine the number of repetitions used in the derandomized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h. Intuitively, the parameter ρ should be
chosen such that 1− ρ is an upper bound on the soundness error of G.

• Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 144

– G′ has alphabet ΣqO(d0).

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property

The basic idea of the proof is as follows. G′ contains two kinds of vertices: the first kind corresponds
to small subspaces of the vertices space Fm, and of the other kind corresponds to small subspaces of the
edges space E, where in both cases “small subspaces” means O (d0)-dimensional subspaces. A satisfying
assignment Π to G′ is expected to be constructed in the following way: Take a satisfying assignment π
to G. For each vertex of G′ which is a subspace A of vertices, the assignment Π should assign A to π|A.
For each vertex of G′ which is a subspace F of edges, the assignment Π should assign F to π|left(F)∪right(F).

The edges of G′ are constructed so as to simulate a test on Π to which we refer as the “E-test”, and
acts roughly as follows (see Figure 5.2 for the actual test): Choose a random subspace F of edges and
a random subspace A of endpoints of F , and accept if and only if the labeling of the endpoints of the
edges in F by Π (F) satisfies the edges and is consistent with the labeling of the vertices of A by Π (A).

The intuition that underlies the soundness analysis of G′ is the following: The E-test performs some
form of a “derandomized direct product test” on Π - if we compare it to the P -test (Figure 5.1), then
the pair (A,F) here is analogous to the pair (A,B) there. Therefore, if Π (F) is consistent with Π (A),
the labeling Π (F) should be roughly consistent with some assignment π to G. Therefore, by checking
that the labeling Π (F) satisfies the edges in F , the E-test checks that π satisfies many edges of π in
parallel. In this sense, the E-test can be thought as a form of “derandomized parallel repetition”.

The rest of this section is organized as follows. In Section 5.5.1 we provide a formal description of
the construction of G′ and analyze all its parameters except for the soundness. In order to analyze the
soundness of G′, we introduce in Section 5.5.2 a specialized direct product test. Finally, in Section 5.5.3,
we analyze the soundness of G′ by reducing it to the analysis of the specialized direct product test.

Notation 5.5.2. Given a function f : U → Σ and two subsets S, T ⊆ U we denote by f|(S,T) the pair
of functions

(
f|S, f|T

)
.

Notation 5.5.3. Recall that in Notation 5.2.1 we denoted the notation f
α
≈ g (f

α

6≈ g) to mean that
f and g differ on at most (more than) α fraction of the elements of U . We now extend this notation
to pairs of functions. Given two pairs of functions f1, f2 : U → Σ and g1, g2 : V → Σ, we denote by

(f1, g1)
α
≈ (f2, g2) the fact that both f1

α
≈ f2 and g1

α
≈ g2, and otherwise we denote (f1, g1)

α

6≈ (f2, g2).

5.5.1 The construction of G′

We begin by describing the construction of G′. Let G = (Fm, E) be the given constraint graph, let
d0 be the parameter from Lemma 5.3.4, and let d1 = h · d0 where h is the universal constant from
Lemma 5.3.4 to be chosen later. The graph G′ is bipartite. The right vertices of G′ are identified with
all the 2d0-subspaces of Fm (the vertex space of G). The left vertices of G′ are identified with all the
2d1-subspaces of the edge space E of G. An assignment Π to G′ should label each 2d0-subspace A of Fm
with a function from A to Σ, and each 2d1-subspace F of E with a function that maps the endpoints of
the edges in F to Σ. The edges of G′ are constructed such that they simulate the action of the “E-test”
described in Figure 5.2.

The completeness of G′ is clear. It is also clear that G′ has projection constraints. Let us verify the
size and alphabet-size of G′. The size of G′ is at most the number of 2d1-subspaces of E multiplied by
the number of 2d0-subspaces of Fm, which is |E|2d1 · |Fm|2d0 . It holds that d0 < d1, and furthermore
the linear structure of G′ implies that dimE ≥ m (by Item 3 of Definition 5.3.1), so it follows that

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 145

1. Let FL and FR be random d1-subspaces of E, and let

BL
def
= left (FL) , BR

def
= right (FR) , F

def
= FL + FR.

FL and FR are chosen to be uniformly and independently distributed d1-
subspaces of E conditioned on dim(F) = 2d1, dim (BL) = d1, dim (BR) = d1,
and BL ∩BR = {0}.

2. Let AL and AR be uniformly distributed d0-subspaces of BL and BR respectively,
and let

A
def
= AL + AR.

3. Accept if and only if Π (F)|(AL,AR) = Π (A)|(AL,AR) and the assignment Π (F)
satisfies the edges in F .

Figure 5.2: The E-test

1. Choose uniformly distributed pair of independent d1-subspaces B1, B2 of Fm.

2. Choose uniformly distributed pair of d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1 + A2)|(A1,A2).

Figure 5.3: The S-test

|Fm|2d0 ≤ |E|2d1 and thus |E|2d1 · |Fm|2d0 ≤ |E|4d1 . Finally, observe that the size of G is n = |E|, so it
follows that the size of G′ is at most n4d1 = nO(d0), as required.

For the alphabet size, recall that an edges subspace F is labeled by a function that maps the endpoints
of the edges to Σ. Such a function can be represented by a string in Σ2·q2·d1 , since each 2d1-subspace F
contains q2d1 edges and each has two endpoints. It can be observed similarly that the labels assigned
by Π to 2d0-subspaces A of Fm can be represented by strings in Σ2·q2·d1 . The alphabet of G′ is therefore
Σ2·q2·d1 = ΣqO(d0) , as required.

5.5.2 The specialized direct product test

In order to analyze the soundness of the E-test, we introduce a variant of the direct product test
of [IKW09] that is specialized to our needs. We refer to this variant as the specialized direct product
test, abbreviated the “S-test”.

Given an string π : Fm → Σ, we define its S-direct product Π (with respect to d0, d1 ∈ N) as follows:
Π assigns each 2d0-subspace A ⊆ Fm the function π|A, and assigns each pair of independent d1-subspaces
(B1, B2) the pair of functions π|(B1,B2).

We turn to consider the task of testing whether a given assignment Π is the S-direct product of
some string π : Fm → Σ. In our settings, we are given an assignment Π that assigns each 2d0-subspace
A to a function a : A → Σ and each pair of independent d1-subspaces (B1, B2) to a pair of functions
b1 : B1 → Σ, b2 : B2 → Σ. We wish to check whether Π is a S-direct product of some π : Fm → Σ. To
this end we invoke the S-test, described in Figure 5.3.

It is easy to see that if Π is a S-direct product then the S-test always accepts. Furthermore, it can be
shown that if Π is “far” from being a S-direct product, then the S-test rejects with high probability. As
in the P-test, this holds even if Π is a randomized assignment. Formally, we have the following result.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 146

Theorem 5.5.4 (the soundness of the S-test). There exist universal constants h′, c ∈ N such that the

following holds: Let d0 ∈ N, d1 ≥ h′ · d0, and m ≥ h′ · d1, and let ε ≥ h′ · d0 · q−d0/h
′
, α

def
= h′ · d0 · q−d0/h

′
.

Suppose that a (possibly randomized) assignment Π passes the S-test with probability at least ε. Then
there exists an assignment π : Fm → Σ for which the following holds. Let B1, B2 be uniformly distributed
and independent d1-subspaces of Fm, let A1 and A2 be uniformly distributed d0-subspaces of B1 and B2

respectively, and denote A = A1 + A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc) . (5.4)

We defer the proof of Theorem 5.5.4 to Section 5.9.

Remark 5.5.5. Note that Equation 5.4 only says that Π is close to the S-direct product of π on pairs
(B1, B2), and not necessarily on 2d0-subspaces A. In fact, it could be also proved that Π is close to the
S-direct product of π on the 2d0-subspaces, but this is unnecessary for our purposes.

5.5.3 The soundness of the derandomized parallel repetition

In this section we prove the soundness of G′: namely, that if SAT (G) < 1− ρ, then

SAT(G′) ≤ ε
def
= h · d0 · q−d0/h,

where h is the universal constant from Lemma 5.3.4 (derandomized parallel repetition). We will choose
h to be sufficiently large such that the various inequalities in the following proof will hold. To this end,
we note that throughout all the following proof, increasing the choice of h does not break any of our
assumptions on h, so we can always choose a larger h to satisfy the required inequalities.

Let h′ and c be the universal constants whose existence is guaranteed by Theorem 5.5.4 (the soundness
of the S-test), and let α denote the corresponding value from Theorem 5.5.4. We will choose the constant
h to be at least h′.

Let Π be an assignment to G′. Let us denote by T the event in which the E-test accepts Π. With a

slight abuse of notation, for a subspace F ⊆ E and an assignment π : Fm → Σ, we denote by Π (F)
α
≈ π

the claim that for at least 1− α fraction of the edges e of F it holds that Π (F) is consistent with π on

both the endpoints of e, and otherwise we denote Π (F)
α

6≈ π. Our proof is based on two steps:

• We will show (in Proposition 5.5.6 below) that if the test accepts with probability ε, then it is
“because” Π is consistent with some underlying assignment π : Fm → Σ. This is done essentially
by observing that the E-test “contains” an S-test, and reducing to the analysis of the S-test.

• On the other hand, we will show (in Proposition 5.5.7 below) that for every assignment π : Fm → Σ
the probability that the test accepts while being consistent with π is negligible. This is done roughly
as follows: Any fixed assignment π is rejected by at least ρ fraction of G’s edges. Furthermore,
the subspace F queried by the test is approximately a uniformly distributed subspace of E, and
hence a good sampler of E. It follows F must contain ≈ ρ fraction of edges of G that reject π,
and therefore Π (F) must be inconsistent with π.

The conclusions of each of the foregoing two steps clearly contradict each other, we therefore conclude
that the E-test accepts with probability less than ε. We now state the two said propositions, which
formalize the foregoing two steps, and which are proved in Sections 5.5.3.1 and 5.5.3.2 respectively.

Proposition 5.5.6. There exists ε0 = Ω (εc) such that the following holds: If Pr [T] ≥ ε, then there

exists an assignment π : Fm → Σ such that Pr
[
T and Π (F)

4·α
≈ π

]
≥ ε0.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 147

Proposition 5.5.7. Let ε be as in Proposition 5.5.6. Then, for every assignment π : Fm → Σ it holds

that Pr
[
T and Π (F)

4·α
≈ π

]
< ε0.

Clearly, the two propositions together imply that Pr[T] ≤ ε, as required.

Before turning to the proofs of Propositions 5.5.6 and 5.5.7 let us state a useful claim that says that if
we take a random d-subspace of edges and project it to its left endpoints (respectively, right endpoints),
we get a random d-subspace of vertices with high probability.

Claim 5.5.8. Let d ∈ N and let Ea be a uniformly distributed d-subspace of E. Then, Pr [dim (left (Ea)) = d] ≥
1 − d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly distributed d-
subspace of Fm. The same holds for right (Ea).

More generally, let Eb be a fixed subspace of E such that dim (Eb) > d and dim (left (Eb)) = D > d.
Let Ea be a uniformly distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥ 1 − d/qD−d, and
conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly distributed d-subspace of left (Eb).
Again, the same holds for right (Ea).

Proof. We prove the proposition only for special case in which Eb = E and only for left (Ea). The
proof of the general case and of the case of for right (Ea) is analogous. Let e1, . . . , ed be independent
and uniformly distributed vectors of E, and let E ′a = span {e1, . . . , ed}. We prove Proposition 5.5.8 by
showing that Ea is distributed similarly to E ′a, and analyzing the distribution of E ′a.

Observe that by Proposition 5.2.17, it holds that conditioned on dim (E ′a) = d, the subspace E ′a is a
uniformly distributed d-subspace of E. It therefore holds that

Pr [dim (left (Ea)) = d] = Pr [dim (left (E ′a)) = d| dim (E ′a) = d]

≥ Pr [dim (left (E ′a)) = d and dim (E ′a) = d]

= Pr [dim (left (E ′a)) = d] ,

where the last equality holds since clearly dim (left (E ′a)) = d implies dim (E ′a) = d. Now, since left (·)
is a linear function, it holds that left (e1) , . . . left (ed) are independent and uniformly distributed vectors
of left (E) = Fm, and therefore by Proposition 5.2.17 it holds that Pr [dim (left (E ′a)) = d] ≥ 1− d/qm−d.
It thus follows that Pr [dim (left (Ea)) = d] ≥ 1− d/qm−d, as required.

It remains to show that conditioned on Pr [dim (left (Ea)) = d] it holds that left (Ea) is a uniformly
distributed d-subspace of Fm. To see it, observe that for every fixed d-subspace D of Fm, it holds that

Pr [left (Ea) = D| dim (left (Ea)) = d] = Pr [left (E ′a) = D| dim (E ′a) = d and dim (left (E ′a)) = d]

= Pr [left (E ′a) = D| dim (left (E ′a)) = d] ,

where the first equality again holds since conditioned on dim (E ′a) = d it holds that E ′a is a uniformly
distributed d-subspace, and the second equality again holds since dim (left (E ′a)) = d implies dim (E ′a) =
d. Now, it holds that left (E ′a) is the span of d uniformly distributed vectors of Fm, and therefore by
Proposition 5.2.17 it holds that conditioned on dim (left (E ′a)) = d the subspace left (E ′a) is a uniformly
distributed d-subspace of left (Eb). This implies that the probability

Pr [left (E ′a) = D| dim (left (E ′a)) = d]

is the same for all possible choices of D, and therefore the probability

Pr [left (Ea) = D| dim (left (Ea)) = d]

is the same for all possible choices of D, as required. �

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 148

5.5.3.1 Proof of Proposition 5.5.6

Suppose that Pr [T] ≥ ε. We prove Proposition 5.5.6 by arguing that the E-test contains an “implicit
S-test” and applying Theorem 5.5.4 (the soundness of the S-test).

Observe that, without loss of generality, we may assume that for every edge-subspace F such that
Π (F) violates one of the edges in F , it holds that Π (F)(AL,AR) 6= Π (A)(AL,AR) for any choice of AL and
AR. The reason is that for every such F , we can modify Π (F) such that it assigns symbols outside of
the alphabet Σ of G, so Π (F) will always disagree with Π (A). Note that this modification indeed does
not change the acceptance probability of Π. This assumption that we make on Π implies in particular
that the event T is equivalent to the event Π (F)(AL,AR) 6= Π (A)(AL,AR), and this equivalence is used in
the following analysis.

We turn back to the proof of Proposition 5.5.6. We begin the proof by extending Π to pairs of
independent d1-subspaces of Fm in a randomized manner as follows: Given a pair of independent d1-
subspaces B1 and B2, we choose F1 and F2 to be uniformly distributed and independent d1-subspaces
of E such that left (F1) = B1 and right (F2) = B2, and set Π (B1, B2) = Π (F1 + F2)|(B1,B2).

Now, observe that the probability that the E-test accepts equals to the probability that the S-test
accepts the extended Π. The reason is that the subspaces BL, BR, AL, AR of the E-test are distributed
like the subspaces B1, B2, A1, A2 of the S-test. It thus follows the E-test performs in a way an S-test
on the extended assignment Π.

Next, we note that by choosing h to be sufficiently large, the foregoing “implicit S-test” matches the
requirements of Theorem 5.5.4 (the soundness of the S-test), and we can thus apply this theorem. It
follows that there exists an assignment π : Fm → Σ such that

Pr
[
Π (BL, BR)(AL,AR) = Π (A)|(AL,AR) and Π (BL, BR)

α
≈ π(BL,BR)

]
≥ Ω (εc) . (5.5)

By using the equivalence between the event T and the event Π (F)(AL,AR) 6= Π (A)(AL,AR), it follows that
Inequality 5.5 is equivalent to the inequality

Pr
[
T and Π (F)|(BL,BR)

α
≈ π|(BL,BR)

]
≥ Ω (εc) . (5.6)

We turn to show that

Pr
[
T and Π (F)

4α
≈ π

]
≥ Ω (εc) .

We will prove that if F is such that Π (F)
4α

6≈ π, then for a random choice of BL, BR conditioned on F ,
it is highly unlikely that Inequality 5.6 still holds. Formally, we will prove the following.

Claim 5.5.9. For every fixed 2d0-subspace F0 of E such that Π (F0)
4α

6≈ π, it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

We defer the proof of Claim 5.5.9 to the end of this section. Claim 5.5.9 immediately implies the
following.

Corollary 5.5.10. It holds that

Pr

[
Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣Π (F)
4α

6≈ π

]
≤ 1/

(
qd1−2 · (α/2)2) .

By combining Corollary 5.5.10 with Inequality 5.6, and by choosing h to be sufficiently large, it follows
that

Pr
[
T and Π (F)|(BL,BR)

α
≈ π|(BL,BR) and Π (F)

4α
≈ π

]
≥ Ω (εc) .

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 149

This implies that

Pr
[
T and Π (F)

4α
≈ π

]
≥ Ω (εc) .

Setting ε0 to be the latter lower bound finishes the proof. �

Proof of Claim 5.5.9. Observe that the assumption Π (F0)
4α

6≈ π implies that one of the following holds

Π (F0)|left(F0)

2α

6≈ π|left(F0),

Π (F0)|right(F0)

2α

6≈ π|right(F0).

Without loss of generality, assume that the first holds. Now, when conditioning on F = F0, it holds that
FL is a uniformly distributed d1-subspace of F0 satisfying dim (left (FL)) = d1. By Claim 5.5.8 (with

Eb = F0 and Ea = FL), under the conditioning on dim (left (FL)) = d1, it holds that BL
def
= left (FL) is

a uniformly distributed d1-subspace of left (F0). Therefore, by Lemma 5.2.4 (subspace-point sampler),

the event Π (F)|BL

α

6≈ π|BL occurs with probability at least

1− 1/
(
qd1−2 ·

(
α− q−d1

)2
)
≥ 1− 1/

(
qd1−2 · (α/2)2) ,

as required. �

5.5.3.2 Proof of Proposition 5.5.7

Fix an assignment π : Fm → Σ. By assumption it holds that SAT (G) < 1 − ρ, and therefore π must
violate a set E∗ of edges of G of density at least ρ. Below we will show that at least ρ/2 fraction of
the edges in F are in E∗ with probability greater than 1 − ε0. Now, observe that Π (F) cannot satisfy
the edges of F and at the same time be consistent with π on the edges in E∗, and hence whenever the

latter event occurs it either holds that the E-test fails or that Π (F)
ρ/2

6≈ π. However, for sufficiently large
choice of h, it holds that ρ/2 > 4 · α, and therefore the probability that the E-test passes and at the

same time it holds that Π (F)
4·α
≈ π is less than ε0, as required.

It remains to show that

Pr

[
|F ∩ E∗|
|F |

≥ ρ/2

]
> 1− ε0.

We prove the above inequality by showing that F is close to being a uniformly distributed 2d1-subspace
of E, and then applying Lemma 5.2.4 (subspace-point sampler). To this end, let F ′L and F ′R be uniformly
distributed d1-subspaces of F , and let F ′ = F ′L +F ′R. Let us denote by E1 the event in which dim (F ′) =
2d1, and by E2 the event in which left (F ′L) and right (F ′R) are independent and are of dimension d1.
Observe that conditioned on E1 and E2 the subspace F ′ is distributed exactly like the subspace F . It
therefore holds that

Pr

[
|F ∩ E∗|
|F |

≥ ρ/2

]
= Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2

∣∣∣∣ E1 and E2

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2 and E2

∣∣∣∣ E1

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2

∣∣∣∣ E1

]
− Pr [¬E2|E1]

≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2

∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]
.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 150

Now, observe that conditioned on E1, the subspace F ′ is a uniformly distributed 2d1-subspace of E.
Thus, by Lemma 5.2.4 (subspace-point sampler) it holds that

Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2

∣∣∣∣ E1

]
≥ 1− 1/q2d1−2 ·

(
ρ/2− q−2d1

)2 ≥ 1− 1/q2d1−2 · (ρ/3)2 .

Moreover, by Proposition 5.2.16 it holds that

Pr [E1] ≥ 1− 2d1/q
dimE−2d1

≥ 1− 2d1/q
m−2d1

≥ 1

2
,

Finally, we upper bound Pr [¬E2] by showing that Pr [E2] ≥ 1 − 4d1/q
m−2·d1 . By Claim 5.5.8 (with

Eb = E and Ea = F ′L, F
′
R) it holds that dim (left (F ′L)) = dim (right (F ′R)) = d1 with probability at least

1− 2 · d1/q
m−d1 . Furthermore, conditioned on the latter event, it holds that left (F ′L) and right (F ′R) are

uniformly distributed d1-subspaces of Fm, and it is also easy to see that those subspaces are independent.
By Proposition 5.2.16, this implies that conditioned on dim (left (F ′L)) = dim (right (F ′R)) = d1 the
subspaces left (F ′L) and right (F ′R) are independent with probability at least 1− 2d1/q

m−2·d1 , and hence
Pr [E2] ≥ 1− 4d1/q

m−2·d1 as required.
We conclude that that

Pr

[
|F ∩ E∗|
|F |

≥ ρ/2

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2

∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]

≥ 1− 1/q2·d1−2 · (ρ/3)2 − 4 · d1/q
m−2·d1

1/2

= 1− 1/q2·d1−2 · (ρ/3)2 − 8 · d1/q
m−2·d1

> 1− ε0,

where the last inequality holds for sufficiently large choice of h. This concludes the proof. �

5.6 Decodable PCPs

The PCP theorem says that CircuitSat has a proof system in which the (randomized) verifier reads
only O(1) bits from the proof. In known constructions this proof is invariably an encoding of a satisfying
assignment to the input circuit. Although this is not stipulated by the classical definition of a PCP,
the fact that a PCP is really an encoding of a ‘standard’ NP witness is sometimes useful. Various
attempts to capture this behavior gave rise to such objects as PCPs of Proximity (PCPPs) [BSGH+06]
or assignment testers [DR06], and more recently to decodable PCPs (dPCPs) [DH09].

Application: alphabet reduction through composition. The notion of dPCPs is useful for re-
ducing the alphabet size of PCPs with small soundness error via composition. They were introduced in
[DH09] in an attempt to simplify and modularize the construction of [MR08]. Indeed this notion is a
refinement of [MR08]’s so-called “locally decode or reject codes (LDRCs)” which allowed [DH09] prove
a generic two-query composition theorem. This theorem allows one to improve parameters of a PCP
using any dPCP. The only known construction of a dPCP (until this work) is the so-called “manifold
vs. point” construction. In the next sections we give a new construction of a dPCP by adapting the
work of the previous sections to a dPCP. Our dPCP can then be plugged into the composition scheme
of [DH09] to reprove the result of [MR08]. We sketch this in Section 5.6.5.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 151

Decodable PCPs and PCPs of Proximity (PCPPs). We can define dPCPs for any NP language
but we focus on the language CircuitSat since it suffices for our purposes. A dPCP system for
CircuitSat is a proof system in which the satisfying assignments of the input circuit are encoded into
a special “dPCP” format. These encodings can then be both locally verified and locally decoded in a
probabilistic manner. In other words, the verifier is given an input circuit as well as oracle access to a
proof string, and is able to simultaneously check that the given string is a valid encoding of a satisfying
assignment, as well as to decode a random symbol in that assignment. The formal definition is given
below in Section 5.6.2.

dPCPs are closely related to PCPs of proximity [BSGH+06] or assignment testers [DR06] (to be de-
fined shortly below). In fact dPCPs were first defined in the context of low soundness error to overcome
inherent limitations of PCPPs in this parameter range. In this chapter we extend the definition of a
dPCP also to the high soundness error range (i.e. matching the parameter range of PCPPs). We call
these uniquely decodable PCPs (udPCPs) as opposed to list decodable dPCPs. It is natural to consider
such an object in our context since our approach is to reduce the error by parallel repetition. Thus we
start with a dPCP with relatively high error and then reduce the error. Uniquely decodable PCPs turn
out to be roughly equivalent to PCPPs in the sense that any PCPP can be used to construct a udPCP
and vice versa. In retrospect, we find the notion of udPCPs (and dPCPs) just as natural as that of
PCPPs. In fact, many known constructions of PCPPs work by implicitly constructing a udPCP and
then adding comparison checks.

As mentioned above, our main goal in Sections 5.6, 5.7, and 5.8 is to give a new construction of dPCPs
with low soundness error (Theorem 5.1.6). Our construction of dPCPs with low soundness error follows
the same steps as our construction of PCPs with low soundness error: In the first step, we construct a
dPCP with high soundness error (that is, a udPCP). In the second step, we apply derandomized parallel
repetition to the foregoing udPCP to reduce its soundness error to a sub-constant function.

In the following subsections we recall the definitions of PCPPs (Section 5.6.1) and define udPCPs
(Section 5.6.2). We then prove the equivalence of PCPPs and udPCPs. Next we state two lemmas
that capture the two main steps in constructing dPCPs. This is followed by a proof of Theorem 5.1.6
(construction of dPCPs). Finally, we sketch a proof of Theorem 5.1.2 (the [MR08] result) based on
Theorem 5.1.6.

5.6.1 Recalling the definition of PCPPs

PCPs of Proximity (PCPPs) were defined simultaneously in [BSGH+06] and in [DR06] under the name
assignment testers. PCPPs allow the verifier to check not only that a given circuit is satisfiable, but also
that a given assignment is (close to being) satisfying. They were introduced for various motivations,
and in particular, they facilitate composition of PCPs which is important for constructing PCPs with
reasonable parameters.

Intuitively, a PCP verifier for CircuitSat is an oracle machine V that is given as input a circuit
ϕ : {0, 1}t → {0, 1}, and is also given oracle access to an assignment x to ϕ and a proof π. The verifier
V is required to verify that x is close to a satisfying assignment of ϕ, and to do so by making only few
queries to x and π. For technical reasons, it is often preferable to define V in a different way. In this
definition, instead of requiring that V makes few queries to its a oracle and decides according to the
answers it gets, we require that V outputs explicitly the queries it intends to make and the predicate ψ
it intends to apply to the answers it gets. The advantage of this definition is that it allows us to measure
the complexity of the predicate ψ. The formal definitions of PCPP are given below.

Definition 5.6.1 (PCPP verifier). A PCPP verifier for CircuitSat is a probabilistic polynomial-time
algorithm V that on input circuit ϕ : {0, 1}t → {0, 1} of size n tosses r(n) coins and generates

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 152

1. q = q(n) queries I = (i1, . . . , iq) in [t+ `] (where ` = ` (n) and the queries are viewed as coordinates

of a string in {0, 1}t+`).

2. A circuit ψ : {0, 1}q → {0, 1} of size at most s(n).

We shall refer to r(n), q(n), `(n), and s(n) as the randomness complexity, query complexity, proof
length, and decision complexity respectively.

Definition 5.6.2 (PCPPs). Let V , r(n), q(n), `(n), and s(n), be as in Definition 5.6.1, and let ρ : N→
(0, 1]. We say that V is a PCPP system for CircuitSat{0,1} with rejection ratio ρ if the following holds

for every circuit ϕ : {0, 1}t → {0, 1} of size n:

• Completeness: For every satisfying assignment x for ϕ there exists a proof string πx ∈ {0, 1}`
such that

Pr
I,ψ

[
ψ
(

(x ◦ πx)|I
)

= 1
]

= 1,

where I and ψ are the (random) output of V (ϕ).

• Soundness: For every x ∈ {0, 1}t that is ε-far from a satisfying assignment to ϕ and every proof
string π ∈ {0, 1}` the following holds:

Pr
I,ψ

[
ψ
(

(x ◦ π)|I

)
= 0
]
≥ ρ · ε.

The starting point for our construction of a dPCP is the fact that NP has PCPPs with reasonable
parameters:

Theorem 5.6.3 ([BSGH+06, DR06]). CircuitSat{0,1} has a PCPP system with randomness complexity
O(log n), query complexity O(1), proof length poly(n), decision complexity O(1), and rejection ratio Ω(1).

Remark 5.6.4. The PCPPs described in Definition 5.6.2 are known in the literature as “strong PCPPs”.
Here, the term “strong” means that the rejection probability is linearly related to to the distance ε of x
from a satisfying assignment. In particular, this implies that even if ε is small (but non-zero), then the
PCPP rejects with non-zero probability.

An alternative definition of PCPPs, known as “weak PCPPs”, requires only that every assignment
x ∈ {0, 1}t that is very far from a satisfying assignment will be rejected with high probability, while x’s
that are close to a satisfying assignment may be accepted with probability 1.

5.6.2 The definition of decodable PCPs

Decodable PCPs (dPCPs) were defined in the work of [DH09] in order to overcome certain limitations
of PCPPs4. As mentioned above, the definition of [DH09] is only useful if the soundness error is indeed
very low. Below, we recall the definition of [DH09] and suggest an alternative definition for the case
where the soundness error is high. This alternative definition will be useful later in the construction of
decodable PCPs with low soundness error.

4In particular, using arguments in the spirit of [BSHLM09], it is easy to prove that a PCPP that has low soundness
error must make at least three queries. Hence, PCPPs can not be used to construct two-query PCPs with low soundness
error.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 153

5.6.2.1 Recalling the definition of [DH09]

Intuitively, a PCP decoder for CircuitSat is an oracle machine D that is given as input a circuit ϕ,
and is also given oracle access to a “proof” π that is supposed to be the encoding of some satisfying
assignment x to ϕ. The PCP decoder D is required to decode a uniformly distributed coordinate k of
the assignment x by making only few queries to π. It could also be the case that the proof π is too
corrupted for the decoding to be possible, in which case D is allowed to output a special failure symbol
⊥. Thus, we say that D has made an error only if it outputs a symbol other than xk and ⊥. We refer
to the probability of the latter event as the “decoding error of D”, and would like it to be minimal. We
do note, however, that if π is not corrupted, then D is not allowed to output ⊥.

It turns out that if we wish the decoding error of D to be very small, we need to relax the foregoing
definition, and allow the PCP decoder D to perform “list decoding”. That is, instead of requiring that
there would be a single assignment x that is decoded by D, we only require that there exists a short list
of assignments x1, . . . , xL such that the decoder outputs either ⊥ or one of the symbols x1

k, . . . , x
L
k with

very high probability. Of course, this is meaningless if the assignments are binary strings, and therefore
we extend the definition of CircuitSat to circuits whose inputs are symbols from some large alphabet
Γ.

We turn to give the formal definitions of (list-)decodable PCPs. As in the case of PCPPs, instead of
letting the decoder make the queries and process the answers directly, we require the decoder to output
the queries and a circuit ψ that given the answers to the queries outputs the decoded value.

Notation 5.6.5. Let Σ and Γ be finite alphabets, and let f : Γk → Σn be a function. We say that a
circuit C computes f if it takes as input a binary string of length k · dlog |Γ|e and outputs a binary string
of length n · dlog |Σ|e that represent the input in Γk and the output in Γn in the natural way. We will
usually omit the function f and simply refer to the circuit C : Γk → Σn. We will also view the circuit
C as taking as input k symbols in Γ and outputs n symbols in Σ. Given a circuit ϕ : Γt → {0, 1}, an
assignment x ∈ Γt for ϕ is said to satisfy ϕ if ϕ(x), and otherwise it is said to be unsatisfying.

Definition 5.6.6 (PCP decoders, similar to [DH09, Definition 3.1]). Let r, q, s, ` : N → N, and let Γ,
Σ be functions that map each n ∈ N to some finite alphabet. A PCP decoder for CircuitSatΓ over
proof alphabet Σ is a probabilistic polynomial-time algorithm D that for every n ∈ N acts as follows.
Let Γ = Γ(n), Σ = Σ(n), ` = `(n). When given as input an input circuit ϕ : Γt → {0, 1} of size n and
an index k ∈ [t], the PCP decoder D tosses r(n) coins and generates

1. A sequence of queries I =
(
i1, . . . , iq(n)

)
in [`] (where the queries are viewed as coordinates of a

proof string in Γ`).

2. A circuit ψ : Σq(n) → Γ ∪ {⊥} of size at most s(n).

We shall refer to the functions r(n), q(n), `(n), and s(n) as the randomness complexity, query
complexity, proof length, and decoding complexity respectively. Without loss of generality we have
` (n) = 2r(n) · q(n) · t.

Definition 5.6.7 (List Decodable PCPs, similar to [DH09, Definition 3.2]). Let D, Γ, Σ, and ` be
as in Definition 5.6.6, and L : N → N and ε : N → [0, 1]. We say that a PCP decoder D with the
foregoing parameters is a (list) decodable PCP system for CircuitSatΓ (abbreviated ldPCP) with list
size L = L(n), soundness error ε = ε(n) if the following holds for every circuit ϕ : Γt → {0, 1} of size n:

• Completeness: For every x ∈ Γt such that ϕ(x) = 1 there exists a proof string πx ∈ Σ` such that

Pr
k;I,ψ

[
ψ
(
πx|I
)

= xk
]

= 1,

where k is uniformly distributed in [t] and I and ψ are the (random) output of D (ϕ, k).

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 154

• Soundness: For every proof string π ∈ Σ`, there exist a (possibly empty) list of satisfying
assignments x1, . . . , xL ∈ Γt for ϕ such that

Pr
k;I,ψ

[
ψ
(
π|I
)
/∈
{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k, I, ψ are as before.

5.6.2.2 Uniquely-decodable PCPs

We turn to discuss our suggested definition for dPCPs for the case of high soundness error. If the
soundness error is high, then we can actually require the PCP decoder to decode a unique assignment,
instead of decoding a list of assignments. Thus, we refer to dPCPs with high soundness error as “uniquely
decodable PCPs” (udPCPs).

The straightforward definition for udPCPs would be to take the foregoing definition of ldPCPs, and
set ε to be large and L to be 1. However, this definition turns out to be useless for our purposes. To
see why, recall that our ultimate goal is to construct dPCPs with low error by first constructing dPCPs
with high error and then decreasing their error using derandomized parallel repetition. However, if
we define udPCPs using the above straightforward definition, then it is not even clear that sequential
repetition decreases their error5.

We therefore use the following alternative definition for udPCP. We now require that if the proof π
is such that the PCP decoder D errs with high probability, then D detects that there is an error with
at least proportional probability. In other words, we require that the probability that D outputs ⊥ is
related to the probability that D errs. Observe that such PCP decoders can indeed be improved by
sequential repetition: If the proof π is erroneous and we invoke the PCP decoder D many times, then
the probability that D detects the error and outputs ⊥ improves. Below we give the formal definition.

Definition 5.6.8. Let D, Γ, Σ, and ` be as in Definition 5.6.6. Let ϕ : Γt → {0, 1} be a circuit of size
n, let x be an assignment to ϕ, and let π ∈ Σ`(n) be a proof for D. We define the decoding error of D
on π with respect to x as the probability

Pr
k;I,ψ

[
ψ
(
π|I
)
/∈ {xk,⊥}

]
,

where k, I, ψ are as in Definition 5.6.7. We define the decoding error of D on π as the minimal decoding
error of D on π with respect to an assignment x′ for ϕ, over all possible assignments x′ to ϕ.

Definition 5.6.9 (Uniquely Decodable PCPs). Let D, Γ, Σ, and ` be as in Definition 5.6.6, and let
ρ : N→ [0, 1]. We say that the PCP decoder D is a (uniquely) decodable PCP system for CircuitSatΓ

(abbreviated udPCP) with rejection ratio ρ if for every circuit ϕ : Γt → {0, 1} of size n the PCP decoder
D satisfies the completeness requirement of Definition 5.6.7, and furthermore satisfies the following
requirement:

• Soundness: For every proof string π ∈ Σ`, if D has decoding error ε on π then

Pr
k;I,ψ

[
ψ
(
π|I
)

= ⊥
]
≥ ρ(n) · ε,

where k, I, ψ are as in Definition 5.6.7.

5The problem in performing sequential repetition for such definition of udPCPs is that we must invoke the PCP
decoder on a uniformly distributed and independent index k in each invocation, and it is not clear how to use invocations
for different indices k in order to decrease the error.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 155

Remark 5.6.10. We could have also defined the decoding error of D on π with respect to x as the
probability Prk;I,ψ

[
ψ
(
π|I
)
6= xk

]
. This definition may be more natural, but it is more convenient to

work with the current definition.

Remark 5.6.11. Note that the soundness requirement in our definition of udPCPs is similar to the
soundness requirement of PCPPs, and in particular to definition of soundness of strong PCPPs (see
Remark 5.6.4). We could also use a definition that is analogous to the definition of a weak PCPP.
Specifically, we could have required only that when the decoding error is very large, the decoder rejects
with high probability. However, our definition is stronger, and since we can satisfy it, we prefer to work
with it. It is also more convenient to work with this definition throughout this chapter.

We next argue that every PCPP implies a udPCP.

Proposition 5.6.12. Let V be a PCPP system for CircuitSat{0,1} with randomness complexity r(n),
query complexity q(n), proof length `(n), decision complexity s(n), and rejection ratio ρ(n). Then, for
every u : N → N there exists a udPCP for CircuitSat{0,1}u(n) with proof alphabet {0, 1}, randomness

complexity r(n), query complexity q(n)+u(n), proof length n+`(n), decoding complexity s(n)+O (u(n)),
and rejection ratio ρ(n)/u(n).

Proof. Let u : N → N and denote u = u(n). For every circuit ϕ : ({0, 1}u)t → {0, 1} of size n and
satisfying assignment x for ϕ, we define the corresponding proof string for D to be x ◦ πx, where πx is
the proof string of V for x when x is treated as a binary string.

Fix a circuit ϕ : ({0, 1}u)t → {0, 1} and k ∈ [t], and let x′ ∈ {0, 1}u·t, π ∈ {0, 1}`. On input (ϕ, k)
and oracle access to a proof x′ ◦ π, the decoder D first emulates the verifier V on ϕ with oracle access
to x′ ◦ πx. If V rejects, then D outputs ⊥. Otherwise, D queries the coordinates

u · (k − 1) + 1, . . . , u · k

of x and outputs the tuple of answers as the symbol in {0, 1}u that it is ought to decode.
It should be clear that D satisfies the completeness requirement, and has the correct randomness

complexity, query complexity, proof length, and decoding complexity.
It remains to analyze the rejection ratio of D. Let π′ be a proof string for D and assume that

π′ = x ◦ π where x ∈ {0, 1}u·t and π ∈ {0, 1}`. Let x0 be the satisfying assignment of ϕ that is nearest
to x when viewed as a binary string. Let ε be the relative distance between x and x0 when viewed as
strings over the alphabet {0, 1}u. Clearly, the decoding error of D on x ◦ π with respect to x0 is ε, and
is an upper bound on the decoding error of D. Furthermore, the relative distance between x and x0 as
binary strings is at least ε/u. Thus, the emulation of V rejects x ◦ π with probability at least ρ(n) · ε/u,
and this is also the rejection probability of D, as required. �

Remark 5.6.13. One could also prove Proposition 5.6.12 without a loss of a factor of u in the rejection
ratio ρ using error correcting codes.

Remark 5.6.14. It is not hard to see that the converse of Proposition 5.6.12 also holds. Namely, given
a udPCP it is easy to construct from it a PCPP. Roughly, given a udPCP D, construct a PCPP verifier
that when given oracle access to x ◦ π, invokes D with oracle access to π on a uniformly distributed k,
and verifies that the output of D equals xk.

Remark 5.6.15. Our definition of udPCPs (Definition 5.6.9) bears some similarities to the notion of
relaxed locally decodable codes [BSGH+06], which are also constructed using PCPPs. However, the
notions are fundamentally different. The most important difference between the notions is that while
the decoder of a relaxed LDC should decode any possible message, the decoder of a udPCP is required to
decode only satisfying assignments of a given circuit. This makes udPCPs significantly more powerful,

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 156

and in fact makes them equivalent to PCPPs. A secondary difference is that when a udPCP is given
oracle access to a corrupted oracle then it can output ⊥ with any probability, while a relaxed LDC is
required to output xk (instead of ⊥) with some given probability.

5.6.3 Decoding graphs

5.6.3.1 The definition of decoding graphs

Recall that in the first part of the chapter, we often found it more convenient to work with constraint
graphs instead of working with PCPs. We now define the notion of “decoding graphs”, which will serve
as the graph analogue of decoding PCPs just as constraint graphs serve as the graph analogue of PCPs.

Definition 5.6.16 (Decoding graphs). A (directed) decoding graph is a directed graph G = (V,E) that
is augmented with the following objects:

1. A circuit ϕ : Γt → {0, 1}, to which we refer as the input circuit. Here Γ denotes some finite
alphabet.

2. A finite alphabet Σ, to which we refer as the alphabet of G.

3. For each edge e ∈ E, an index ke ∈ [t], and a circuit ψe : Σ × Σ → Γ ∪ {⊥}. We say that e is
associated with ke and ψe. For k ∈ [t], we denote by Ek the set of edges associated with k.

The size of G is the number of edges of G. We say that G has decoding complexity s if all the circuits
are of size at most s. It is required that G satisfies the following property:

• Completeness: For every satisfying assignment x ∈ Γt to ϕ, there exists an assignment πx :
V → Σ to G such that the following holds. For every edge (u, v) that is associated with an index
k = k(u,v) and a circuit ψ = ψ(u,v), it holds that ψ (π(u), π(v)) = xk.

Notation 5.6.17. We will use the following terminology regarding constraint graphs: Let G = (V,E)
be a decoding graph with input circuit ϕ : Γt → {0, 1} alphabet Σ.

1. Let (u, v) ∈ E and ψ = ψ(u,v) be and edge its associated circuit, and let π : V → Σ be an
assignment to G. If ψ outputs ⊥ on input (π(u), π(v)) then we say that (u, v) rejects π (or that
π violates (u, v)), and otherwise we say that (u, v) accepts π (or that π satisfies (u, v)).

2. Let (u, v), ψ, and π be as before, let k = k(u,v) be the index associated with (u, v), and let x be
an assignment to ϕ. We say that (u, v) fails to decode x if ψ (π(u), π(v)) /∈ {xk,⊥}. When x is
clear from the context we will omit it, and we will also say that (u, v) errs, or that (u, v) decodes
correctly (if (u, v) does not err). Note that outputting ⊥ is not considered to be failure.

3. We say that G has the projection property if for every circuit ψ(u,v) has an associated function
f(u,v) : Σ→ Σ such that ψ(u,v) (a, b) 6= ⊥ if and only if f(u,v)(a) = b.

4. We refer to the quantity log
(
maxk∈[t] |Ek|

)
as the randomness complexity of G, since it upper

bounds the number of bits required to choose a uniformly distributed edge that is associated with
a particular index.

We turn to define soundness properties of decoding graphs. As in the case of decodable PCPs, we
have two definitions, one for the case of high soundness error (unique decoding) and one for the case of
low soundness error (list decoding).

Definition 5.6.18. Let G = (V,E), Σ, Γ, ϕ be as before, and let π : V → Σ be an assignment to G.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 157

• Unique decoding soundness: For every satisfying assignment x ∈ Γt to ϕ, we define the
decoding error of G on π with respect to x as the probability

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈ {xk,⊥}

]
,

where k is uniformly distributed in [t] and (u, v) is uniformly distributed in Ek. Note that the
edge (u, v) is chosen according to the decoding distribution of G.
We define the decoding error of G on π as the minimal decoding error of G on π with respect to
any satisfying assignment of ϕ. Now, we say that G has rejection ratio ρ if for every assignment
π to G, if G has decoding error ε on π then it holds that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) = ⊥

]
≥ ρ · ε,

where k and (u, v) are chosen as before.

• List decoding soundness: We say that G is list-decoding with list size L and soundness er-
ror ε if for every assignment π to G there exists a (possibly empty) list of satisfying assignments
x1, . . . , xL ∈ Γk for ϕ such that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k and (u, v) are chosen as before

The following proposition gives the correspondence between decoding PCPs and decoding graphs,
in analogy to the correspondence between PCPs and constraint graphs.

Proposition 5.6.19. Let r, s, `, ρ,Γ,Σ be as in Definition 5.6.9. The following two statements are
equivalent:

• CircuitSatΓ has a udPCP with query complexity 2, randomness complexity r, decoding complexity
s, proof length `, proof alphabet Σ, and rejection ratio ρ.

• There exists a polynomial-time transformation that transforms a circuit ϕ : Γt → {0, 1} of size n to
a decoding graph G = (V,E) with `(n) vertices, randomness complexity r(n), decoding complexity
s(n), proof alphabet Σ (n), and rejection ratio ρ(n).

A similar equivalence holds for ldPCPs and list-decoding graphs.

5.6.3.2 Additional properties of decoding graphs

Recall that when discussing constraint graphs, we were interested in the probability that a uniformly
distributed edge of the graph is satisfied by a given assignment. As can be seen in Definition 5.6.18,
when discussing decoding graphs we are interested in a different distribution over the edges, defined
below.

Definition 5.6.20. The decoding distribution DG of a decoding graph G = (V,E) is the distribution
over the edges of G that is corresponds to the following way for picking a random edge of G: Choose
k ∈ [t] uniformly at random, and then choose an edge uniformly at random from Ek.

It is usually inconvenient to analyze the decoding distribution of the graphs we work with. However,
we will work only with graphs whose decoding distribution is similar to the uniform distribution over
the edges (where similarity is defined as in Section 5.2.5). The following definition aims to capture this
property, which allows us to analyze the uniform distribution instead of the decoding distribution.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 158

Definition 5.6.21. We say that a decoding graph G = (V,E) has smoothness γ if its decoding distri-
bution is γ-similar to the uniform distribution over E.

The following proposition gives a comfortable way for calculating the smoothness of a decoding
graph. Intuitively, observe that if all the sets Ek are of the same size then the decoding distribution is
identical to the uniform distribution. We now observe that if the sizes of the sets Ek are close to each
other then the decoding distribution is similar to the uniform distribution.

Proposition 5.6.22 (Smoothness criterion). A decoding graph G with edge-set E has smoothness γ if

and only if for every k ∈ [t], the number of edges that are associated with k is between γ · |E|
t

and 1
γ
· |E|
t

.

Proof. Observe that if there are mk edges associated with k ∈ [t] then the probability for such an edge
to be chosen under the decoding distribution is 1

t
· 1
mk

while the corresponding probability under the

uniform distribution is 1
|E| . Now apply the definition of similarity of distributions. �

We will often want our decoding graphs to be regular, or at least have bounded degree. The precise
definition follows.

Definition 5.6.23. We say that a decoding graph G has degree bound d ∈ N if all the in-degrees and
all out-degrees of the vertices in G are bounded by d. We say that it is d-regular if every vertex has
exactly d incoming edges and exactly d outgoing edges.

5.6.3.3 General udPCPs and decoding graphs

Proposition 5.6.19 gave us only a correspondence between decoding graphs and udPCPs that makes
exactly two queries. The next proposition shows that in fact any udPCP, even if it uses more than two
queries, gives rise to a procedure that transforms circuits to decoding graphs with related parameters
and unique decoding soundness. A nice property of this procedure is that it generates decoding graphs
that are regular and have smoothness 1, which will be useful later in this chapter.

Proposition 5.6.24. Let Γ, Σ, r(n), q(n), `(n), s(n), and ρ(n) be as in Definition 5.6.9, and let h0 and
d0 be the constants from Fact 5.2.20. If there exists a udPCP D for CircuitSatΓ with the foregoing
parameters, then there exists a polynomial time procedure that acts as follows. When given a circuit
ϕ : Γt → {0, 1} of size n, the procedure outputs a corresponding vertex-decoding graph G = (V,E) with
randomness complexity r(n) + log (d0 · q(n)), alphabet Σq(n), decoding complexity s(n) + poly log |Σ(n)|,
and rejection ratio Ω

(
ρ(n)/ (q(n))2). Furthermore, G is (q(n) · d0)-regular, and has t · 2r(n) vertices and

smoothness 1.

Proof sketch The proof is a variant of a well known technique for reducing the query complexity of
a PCP verifier to 2, and its full details can be found in [DM10, App. D]. The graph G is constructed
roughly as follows: The graph G has a vertex for every possible invocation of the decoder D. Each such
vertex v is expected to be labeled with the answers that D receives to its queries on the corresponding
invocation, and the edges that are connected to v check that those answers are not rejected by D. The
edges of G also verify that the labels of the different vertices are consistent with each other, and in order
to save in the number of edges we choose the consistency checks according to an expander.

Observe that since a vertex should be labeled with all the answers that D gets to its queries on this
particular invocation, we can use those labels to perform decoding. In particular, given that an edge
(u, v) accepts, the value that it decodes can be decided based only on the label of u. This property will
be useful in Section 5.7 (see Definition 5.7.1 for details). �

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 159

5.6.4 Our construction of dPCPs, Theorem 5.1.6

In this section we state and prove Theorem 5.1.6.

Theorem (5.1.6, dPCP, restated formally). For every function Γ that maps natural numbers to finite
alphabets such that |Γ(n)| ≤ 2poly logn the following holds. There exists an ldPCP D for CircuitSatΓwith
query complexity 2, proof alphabet 2poly logn, randomness complexity O(log n), soundness error 1/ logΩ(1) n,
and list size poly log n. Furthermore, D has the projection property (see Notation 5.6.17, Item 3).

We prove this theorem analogously to the proof of Theorem 5.1.1, which asserts the existence of
two-query PCPs with soundness error 1/poly log n. Our starting point is a known construction of a
PCPP, stated here as Theorem 5.6.3 which is then reduced to a transformation mapping circuits to
decoding graphs. We then have two main steps. The first is to equip the decoding graphs with linear
structure, as formulated in Lemma 5.6.25. The second step is to reduce the error by derandomized
parallel repetition, as stated in Lemma 5.6.26. Theorem 5.1.6 follows by combining the two lemmas
which we state next,

Lemma 5.6.25 (Linear Structure Embedding for udPCPs). There exists a polynomial time procedure
that satisfies the following requirements:

• Input:

– A decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with alphabet Σ, rejection ratio
ρ, decoding complexity s, and smoothness γ.

– A finite field F of size q such that q ≥ 4 · d2
0, where d0 is the constant from Fact 5.2.20.

• Output: A decoding graph G′ = (Fm, E ′) for ϕ such that the following holds:

– G′ has a linear structure.

– The size of G′ is at most O (q · n/γ).

– G′ has alphabet ΣO(logq(n/γ)).

– G′ has rejection ratio Ω
(
ρ/q2 · logq(n/γ)

)
– G′ has decision complexity s+ poly

(
logq (n/γ) , log |Γ|

)
– G′ has smoothness Ω (1/q).

Lemma 5.6.26 (Derandomized Parallel Repetition for dPCPs). There exist a universal constant h and
a polynomial time procedure that satisfy the following requirements:

• Input:

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit ϕ : Γt → {0, 1} with linear structure,
alphabet Σ, rejection ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 · q−d0/h/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

– G′ has size nO(d0).

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 160

– G′ has alphabet ΣqO(d0).

– G′ is list-decoding with soundness error ε
def
= h · d0 · q−d0/h/γ and list size L

def
= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

We now turn to prove Theorem 5.1.6.

Proof. Let V be a PCPP verifier for CircuitSat as in Theorem 5.6.3. By Proposition 5.6.12 this
implies a udPCP for CircuitSat with similar parameters. Next, by Proposition 5.6.24 we get a
polynomial time transformation taking a circuit ϕ : {0, 1}n → {0, 1} into a vertex-decoding graph. The
graph G has the following parameters. The randomness complexity is r(n) = O(log n), the decoding
complexity, rejection ratio, and constant proof alphabet are constant, and the smoothness is 1.

We choose F to be the smallest finite field of size at least log n, and set F to be the finite field of
size q. We now invoke Lemma 5.6.25 (linear structure embedding for udPCPs) on input G and F, and
obtain a new vertex-decoding graph G1 with linear structure and parameters:

• The size of G1 is at most O(q · n).

• G1 has alphabet size 2O(logq(n)).

• G1 has rejection ratio ρ1
def
= Ω

(
ρ/q2 · logq(n)

)
• G1 has decision complexity poly(logq n)

• G1 has smoothness γ1 = Ω
(

1
q

)
.

Finally, we set d0 to be an arbitrary constant such that ρ1 ≥ h · d0 · q−d0/h/γ1 . Note that this is
indeed possible, since logq (1/ρ1) is a constant that depends only on ρ. Finally, we invoke Lemma 5.6.26
(derandomized parallel repetition for dPCPs) on input G1, F, ρ1, and d0, and denote by G′ the output
decoding graph. The transformation taking the initial input ϕ into G′ (via intermediate steps G and
G1) is equivalent, by Proposition 5.6.19, to a dPCP with the claimed parameters. �

5.6.5 Proof of the result of [MR08], Theorem 5.1.2

Our Theorem 5.1.1 asserts the existence of a two query PCP with soundness error 1/poly log n and
alphabet size |Σ| = 2poly logn. In this section we will sketch a proof of Theorem 5.1.2 in which the alphabet
size |Σ| can be any value smaller than 2poly logn while maintaining the relation of ε ≤ 1/poly(log |Σ|).

Theorem (5.1.2, restated, [MR08]). For any function ε(n) ≥ 1/poly log n the class NP has a two-
query PCP verifier with perfect completeness, soundness error at most ε over alphabet Σ of size at most
|Σ| ≤ 21/poly(ε).

Our proof of Theorem 5.1.2 relies on the scheme of [DH09] who showed a generic way to compose a PCP
with a dPCP, and then proved Theorem 5.1.2 by repeating the composition step, assuming the existence
of two building blocks: a PCP and a dPCP. We plug in our constructions of a PCP (Theorem 5.1.1)
and of a dPCP (Theorem 5.1.6) into the composition scheme of [DH09] and obtain a new construction
of the verifier of Theorem 5.1.2 that does not rely on low degree polynomials.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 161

Remark 5.6.27. An important feature of the theorem of [MR08] asserts that the verifier is randomness-
efficient, i.e. it uses only (1+o(1)) log n random bits rather than O(log n) random bits. This is equivalent
to constructing constraint graphs of almost-linear size rather than polynomial size (see Remark 5.2.15).
Using the composition scheme of [DH09], the outcome will be randomness efficient as long as the PCP
verifier at the outermost level of composition is randomness-efficient. It does not, for example, depend
on whether the dPCP is randomness-efficient.

However, since our PCP verifier from Theorem 5.1.1 is not randomness-efficient, we can only get this
additional feature by relying at the outermost level on a PCP verifier as in [MR08]. The dPCP can still
be based on our Theorem 5.1.6. Alternatively, if we also base the outermost PCP on theorem 5.1.1 we
get a polynomial-size construction, but not a “randomness-efficient” one. It is also conceivable that the
construction of Theorem 5.1.1 can be improved to yield a randomness-efficient PCP, and we leave this
for future work.

In order to state the generic composition theorem of [DH09] let us first define the decision complexity
of a PCP verifier. Roughly speaking, a PCP verifier has decision complexity s(n) if every constraint
in the underlying constraint graph can be computed by a circuit of size at most s(n)6. This definition
is analogous to the definition of the decoding complexity of a PCP decoder. It is easy to see that the
PCP verifier (from Theorem 5.1.1) has decision complexity poly log n in the same way that the dPCP
decoder (from Theorem 5.1.6) was shown to have decoding complexity poly log n.

We turn to state the composition theorem of [DH09]. As in all composition theorems in the literature,
the goal of this theorem is to take an “outer verifier” (in this case, a PCP verifier), which has a large
alphabet, and reduce its alphabet size by composing it with an “inner verifier” (in this case, a PCP
decoder). The gain is obtained from the fact that the inner verifier is invoked on a claim of size s(n)� n,
and thus can have a much smaller alphabet than the outer verifier. The result of the composition is a
verifier that has the alphabet size roughly as of the inner verifier, and can still be invoked on a claim
of size n. However, the composed verifier accumulates soundness error from the invocations of both the
outer verifier and the inner verifier, and thus the composition does not come “for free”.

Theorem 5.6.28 (Paraphrasing [DH09]). Let V and D be a PCP verifier and a PCP decoder as follows:

1. Let V be a two-query PCP verifier for NP with perfect completeness, soundness error ∆(n),
alphabet size |Σ(n)|, and decision complexity s(n). Assume further that the PCP verifier makes
projection queries.

2. Let D be a two-query PCP decoder for CircuitSatΓ for some Γ(n). Assume D has perfect
completeness, soundness error δ(n), list size L(n), and alphabet size |σ(n)|.

If both V and D have the projection property then there is a PCP verifier V ~ D with the following
properties. V ~ D invokes D on inputs of length at most s(n). V ~ D has perfect completeness,

soundness error O(δ(s(n)) + L(s(n))∆(n)), alphabet size |σ(s(n))|poly(L(s(n))/δ(s(n))), and V ~D has the
projection property.

As discussed above, the main gain from this theorem is that the alphabet size of V ~D is much smaller
than that of V . Let us see how this is useful. Suppose we take V,D from Theorems 5.1.1 and 5.1.6. We
have Σ(n) ≤ 2poly logn, s(n) = poly log n, and σ(n) ≤ 2poly logn. Thus, σ(s(n)) = 2poly log log(n). Similarly
L(s(n)) ≤ poly log log n and δ(s(n)) = 1/poly log log n. This results in alphabet size of 2poly log log(n) and
soundness error of 1/poly log log n. By composing this verifier again with D (yielding (V ~D)~D) one
can inductively obtain a PCP verifier with soundness error 1/poly log(i) n for any i and corresponding
alphabet size |Σ| = 21/poly(ε). To get any alphabet size |Σ| one must do careful padding and we do not
go into these details.

6More precisely, the verifier should be able to compute this circuit based on its input and its randomness.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 162

The composition theorem (Theorem 5.6.28) is stated here in the two-query terminology (rather than
in the terminology of “robust” PCPs). Let us now give a brief outline of how to obtain this version from
the version of [DH09]:

1. From two-query to robust: Use Lemma 2.5 of [DH09] to deduce existence of a robust PCP rV and
a robust dPCP rD with parameters related to V and D. In particular, the number of accepting
views for rD is bounded by |σ|.

2. Composition: Apply Theorem 4.2 of [DH09] with parameter ε = δ/L ≥ |σ|Ω(1). Deduce a new
robust PCP rV ~rD with parameters as follows. The soundness error is δ+L∆+4Lε = O(δ+L∆).

The number of accepting views is at most |σ|4/ε
4

(this follows from inspecting the proof, but not
directly from the theorem statement).

3. Back to two queries: Again use Lemma 2.5 to move back to a two query PCP. The new alphabet

size is at most the number of accepting views of rV ~rD which is at most |σ(s(n))|4/ε
4

= |σ|(L/δ)
O(1)

as claimed. �

5.7 Decoding PCPs with Linear Structure

In this section we prove Lemma 5.6.25, i.e., that every decoding graph G can be embedded on a graph
that has linear structure. The heart of the proof is very similar to the proof of the corresponding
lemma for constraint graphs (Lemma 5.3.3) with few adaptations to the setting of decoding graphs.
Two important differences are the following:

1. Recall that we prove Lemma 5.3.3 by embedding the constraint graph G on a de Bruijn graph
DB, and that this is done by identifying the vertices of G with the vertices of DB. Furthermore,
recall that if DB has more vertices than G, then some of the vertices of DB are not identified with
vertices of G, and thus we place only trivial constraints on those vertices.
This construction does not work for decoding graphs. The reason is that in the setting of decoding
graphs every edge needs to be able to decode some index k ∈ [t]. Furthermore, every edge that
fails to decode must contribute to the fraction of rejecting edges. Thus, we can not have many
trivial edges.
In order to resolve this issue, we prove a proposition that allows us to ensure that G has exactly
the same number of vertices as in DB, see Proposition 5.7.4 below.
We note that Item 1 is not caused by the fact we chose a strong definition of udPCP and not a
weak one (see Remark 5.6.11). Even if we used a weak definition of udPCP, requiring edges to
reject only if the decoding error is above some threshold, we still could not use dummy vertices
and edges in the embedding, as this would cause the aforementioned threshold to be too large for
our purposes.

2. Recall that in the embedding of constraint graphs on de Bruijn graphs we used the expander-
replacement technique (Lemma 5.4.8) to make sure that the graph G has small degree. Since such
a lemma was not proved for decoding graphs in previous works, we have to prove it on our own.
This is done in Proposition 5.7.3 below.

The rest of this section is organized as follows. In Section 5.7.1 we prove the aforementioned Proposi-
tions 5.7.3 and 5.7.4. Then, in Section 5.7.2, we prove Lemma 5.6.25.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 163

5.7.1 Auxiliary propositions

In this section we prove Propositions 5.7.3 and 5.7.4 mentioned above. In order to state those two
propositions, we need to define a special kind of decoding graphs, called “vertex-decoding graphs”. The
reason is that we only know how to prove Proposition 5.7.4 for vertex-decoding graphs. Fortunately,
we can convert any decoding graph to a vertex-decoding one using Proposition 5.7.3.

We move to define the notion of vertex-decoding graphs. Intuitively, a decoding graph is vertex-
decoding if the value that an edge (u, v) decodes depends only on the labeling of u, while the labeling
of v only affects on whether the edge accepts or rejects. The formal definition follows.

Definition 5.7.1 (Vertex-decoding graphs). We say that a decoding graph G is a vertex-decoding graph
if it has the following properties:

1. For every edge (u, v) of G and its associated circuit ψ = ψ(u,v), there exists a function f : Σ → Γ
that satisfies the following: For every assignment π to the vertices ofG for which ψ (π(u), π(v)) 6= ⊥
it holds that ψ (π(u), π(v)) = f (π(u)).

2. Every vertex has at least one outgoing edge. In other words, every vertex is capable of decoding
at least one index k ∈ [t].

Remark 5.7.2. While the property of a graph being vertex-decoding is reminiscent of the projection
property, there are two important differences. First, note that Item 1 in Definition 5.7.1 is weaker
than the projection property, since it only requires that π(u) determines the decoded value, and not
necessarily π(v). Second, note that Item 2 is not required by the projection property, and is actually
violated by the known constructions of graphs that have the projection property.

We turn to prove Propositions 5.7.3 and 5.7.4. We begin with Proposition 5.7.3, which says that we
can always reduce the degree of decoding graphs while paying only a moderate cost in the parameters.
As mentioned above, the proposition also transforms the decoding graph into a vertex-decoding graph.

Proposition 5.7.3. Let d0 be the constant from Fact 5.2.20, and let d = 2d0. There exists a polynomial
time procedure that acts as follows:

• Input: A decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with alphabet Σ, rejection
ratio ρ, decoding complexity s, and smoothness γ.

• Output: A d-regular vertex-decoding graph G′ of size at most d · n/γ for input circuit ϕ, alphabet
Σ2, rejection ratio Ω (ρ), decoding complexity s+ poly log |Σ|, and smoothness 1. Furthermore, G′

has at most n/γ vertices.

Proof sketch We apply the same construction as in the proof of Proposition 5.6.24. Let ϕ : Γt → {0, 1}
be the input circuit of G. The key observation is that G corresponds to a decoder D that acts on ϕ
such that D has query complexity 2, randomness complexity log (n/t · γ), proof alphabet Σ, rejection
ratio ρ, and decoding complexity s. The reason for the foregoing randomness complexity is that by the
smoothness of G and by the smoothness criterion of Proposition 5.6.22, it holds that for every k ∈ [t]
there are at most n/t ·γ edges that are associated with k, and therefore choosing a uniformly distributed
edge that is associated with G requires log (n/ (t · γ)) uniformly distributed bits. Now, by applying the
construction of the proof of Proposition 5.6.24 to the decoder D, we obtain a graph G′ that satisfies the
requirements. The fact that G′ is vertex-decoding can be observed by examining the construction of
Proposition 5.6.24 (see also the second paragraph in the above proof sketch of Proposition 5.6.24). �

We next prove Proposition 5.7.4, which says that we can increases the number of vertices of a vertex-
decoding graph to any size we wish, while paying only a small cost in the parameters. This proposition

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 164

will be used to ensure that the number of vertices of a decoding graph G is equal to the number of
vertices of the de Bruijn graph on which we want to embed G.

Proposition 5.7.4. There exists a polynomial time procedure that acts as follows:

• Input:

– A vertex-decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with ` vertices, alphabet
Σ, rejection ratio ρ, decoding complexity s, degree bound d, and smoothness γ.

– A number `′ ∈ N such that `′ ≥ ` (given in unary).

• Output: Let c
def
=
⌊
`′

`

⌋
and let d0 and h0 be the constants from Fact 5.2.20. The procedure outputs

a vertex-decoding graph G′ of size at most 2 · (c + 1) · d0 · n for input circuit ϕ that has exactly `′

vertices and also has alphabet Σ, output size s + poly log |Σ|, rejection ratio Ω (γ2 · ρ/d2), degree
bound 2 · d0 · d, and smoothness 1

2
· γ.

Furthermore, if G is d-regular then G′ is (2 · d0 · d)-regular and has rejection ratio Ω (γ2 · ρ).

Proof sketch The basic idea of the proof is as follows. Given the graph G, we construct the graph G′

by replacing each vertex v of G with multiple copies of v, such that the total number of vertices becomes
`′ as required. Each copy of v will be connected to the same edges as the original v. An assignment to
G′ will be required to assign the same value to all the copies of v: Clearly, if an assignment π′ to G′

assigns the same value to the copies of each vertex v of G, then in a way π′ “behaves” like an assignment
to G, and we can use the soundness of G to establish the soundness of G′ with respect to π′. In order to
verify that the copies of a vertex v are assigned the same value, we will put equality constraints between
the copies of v. In order to save edges, the equality constraints are placed according to the edges of an
expander, and the analysis goes exactly as in the proof of Proposition 5.6.24. We use the fact that G
is vertex decoding in order to allow the equality constraints to decode values even though they can use
only the labeling of a single vertex of G. The rest of this proof consists of the technical details of this
construction, and can be found in [DM10, App. E]. �

5.7.2 Embedding decoding graphs on de Bruijn graphs

In this section we prove the following proposition, which implies Lemma 5.6.25 (linear structure embed-
ding for udPCPs) and is analogous to Proposition 5.4.4 (embedding of constraint graphs on de-Bruijn
graphs). The proof follows the steps of Proposition 5.4.4 with the few adaptations to the setting of de-
coding graphs. For intuition and a high-level explanation of the proof, we refer the reader to Section 5.4
and in particular to Section 5.4.2.

Proposition 5.7.5 (Embedding Decoding Graphs on de-Bruijn Graphs). Let d0 be the constant of
Fact 5.2.20. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

– A decoding graph G of size n for an input circuit ϕ : Γt → {0, 1} with alphabet Σ, rejection
ratio ρ, decoding complexity s, and smoothness γ.

– A finite alphabet Λ such that |Λ| ≥ 4 · d2
0.

– A natural number m such that |Λ|m ≥ 2 · d0 · n/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 165

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.

– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– G′ has rejection ratio Ω
(
ρ/ |Λ|2 ·m

)
.

– G′ has smoothness at least γ′
def
= Ω

(
1
|Λ|

)
.

– G′ has decision complexity s+ poly (m, log |Σ|)

Let G, Λ, and m be as in Proposition 5.7.5, and let ϕ : Γt → {0, 1} be the input circuit of G. On
input G, Λ, and m, the procedure acts as follows. The procedure first constructs a vertex-decoding
graph G1 by applying to G the procedure of Proposition 5.7.3, and then applying to the resulting graph
the procedure of Proposition 5.7.4 with `′ = |Λ|m. It can be verified that G1 is a vertex-decoding graph

for input circuit ϕ with exactly |Λ|m vertices, alphabet Σ1
def
= Σ2, rejection ratio ρ1 = Ω (ρ), decoding

complexity s+ poly log |Σ|, and smoothness at least 1
2
. Furthermore, G1 is d-regular for d = 4 · d2

0 ≤ |Λ|,
and is of size d · |Λ|m.

Then, the procedure identifies the vertices of G1 with the vertices of DB = DBΛ,m, partitions the
the edges of G1 to d matchings µ1, . . . , µd, and views those matchings as permutations on the vertices

of DB. We apply Fact 5.4.5 to each permutation µi resulting in a set of paths Pi of length l
def
= 2m. Let

P =
⋃
Pi.

Next, the procedure constructs G′ in the following way. The alphabet of G′ is set to be Σl·d
1 , viewed

as
(
Σl

1

)d
. If σ ∈

(
Σl

1

)d
, and σ = (σ1, . . . , σd), we denote by σi,j the element (σi)j ∈ Σ1. It remains to

describe how to associate each edge e of G′ with an index ke ∈ [k] and with a circuit ψe. To this end,
we first describe in which cases a circuit ψe accepts, and then describe how the index ke is chosen and
what is the output of ψe when it accepts.

The conditions in which ψe accepts. Fix an edge e′ = (u, v) of G′, and let ψe be the circuit associ-
ated with e. The circuit ψe accepts in exactly the same cases in which the constraint that corresponds
to e in the proof of Proposition 5.4.4 (for constraint graphs) accepts. That is, the circuit ψe accepts if
and only if all of the following conditions hold:

1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1

)
satisfy the edge

(
µ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = . . . = π′ (u)d,1 and that π′ (v)1,1 = . . . = π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th and (j + 1)-th vertices of a path in
p ∈ Pi respectively, it holds that π′ (u)i,j 6= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u is its (j + 1)-th vertex.

The choice of ke and the output of ψe. Fix a vertex u of G′. We describe the way we assign indices
ke to the outgoing edges of u, and the output of the circuits ψe. We begin by associating each of the
|Λ| outgoing edges of u in G′ with one of the d outgoing edges of u in G1. This association is done in
a “balanced” way - that is, each outgoing edge of u in G1 is associated with either b|Λ| /dc or d|Λ| /de
edges of u in G′.

Now, let e′ be an outgoing edge of u in G′, and suppose that it is associated with an outgoing edge e1

of u in G1, and that e1 belongs to the matching µi. Let ke1 and ψe1 be the index and circuit associated
with e1. Recall that since G1 is vertex-decoding, there exists a function fe1 : Σ1 → Γ such that whenever

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 166

ψe1 (a, b) 6= ⊥ it holds that ψe1 (a, b) = fe1(a). We associate e′ with the index ke1 , and with the circuit

ψe′ that is defined for every a′, b′ ∈
(
Σl

1

)d
for which ψe′ (a, b) 6= ⊥ by

ψe′ (a
′, b′) = fe1

(
(a′)1,1

)
.

Note that ψe′ is indeed well defined, since the cases in which ψe′ outputs ⊥ were defined above.

The parameters of G′. The size and alphabet of G′ are immediate, and the completeness of G′ can
be established in the same way as in Proposition 5.4.4 (embedding of constraint graphs on de-Bruijn
graphs). It can also be verified that G′ has smoothness at least γ′ = 1

2·|Λ| using the smoothness criterion

(Proposition 5.6.22) and a straightforward calculation.
It remains to analyze the rejection ratio of G′. Let π′ be an assignment to G′ that minimizes the

ratio between the probability that a random edge of G′ rejects π′ (under the decoding distribution) to
the decoding error of G′ on π′. As in the proof of Proposition 5.4.4, we may assume that for every vertex
u of DB it holds that π′ (u)1,1 = . . . = π′ (u)d,1, since otherwise we may modify π′ to such an assignment
that satisfies this property without increasing the rejection probability or decreasing the decoding error.
Let π1 be the assignment to G1 defined by π1(u) = π′ (u)1,1. Let ε be the decoding error of G1 on π1,
and let x be the assignment to ϕ that achieves this decoding error. Let ε′ be the decoding error of G′ on
π′ with respect to x. We show that the rejection probability of G′ on π′ is at least Ω (γ′ · ρ1 · ε′/ |Λ| ·m),
and this will yield the required rejection ratio.

Observe that by the smoothness of G1 (resp. G′), the fraction of edges of G1 (resp. G′) that fail

to decode x on π1 (resp. π′) is at least ε0
def
= 1

2
· ε (resp. ε′0 = γ′ · ε′). Furthermore, the fraction of

edges of G1 that reject π1 is at least ρ1 · ε0. This implies, using the same argument as in the proof of
Proposition 5.4.4, that the fraction of edges of G′ that reject π′ is at least Ω (ρ1 · ε0/ |Λ| ·m).

We finish the proof by relating ε′0 with ε0. To this end, observe that for every edge e′ = (u, v) of G′

and its associated edge e1 of G1, the edge e′ fails to decode x on π′ (i.e. ψe′ (π
′ (u)) /∈

{
xke′ ,⊥

}
) only if

e1 fails to decode x on π1 (i.e. ψe1 (π1 (u)) /∈
{
xke1 ,⊥

}
). Furthermore, each edge e1 of G1 corresponds

to either b|Λ| /dc or d|Λ| /de edges in G′. It can be verified by a straightforward calculation that this
implies that ε′0 ≤ 2 · ε0. It now follows that the fraction of edges of G′ that reject π′ is at least

Ω

(
ρ1 · ε0

|Λ| ·m

)
≥ Ω

(
ρ1 · ε′0
|Λ| ·m

)
≥ Ω

(
ρ1 · γ′

|Λ| ·m
· ε′
)

= Ω

(
ρ

|Λ|2 ·m
· ε′
)
.

The required rejection ratio follows. �

5.8 Derandomized Parallel Repetition of Decoding Graphs

with Linear Structure

In this section we prove Lemma 5.6.26 (derandomized parallel repetition for dPCPs), restated below.

Lemma (5.6.26, restated). There exist a universal constant h and a polynomial time procedure that
satisfy the following requirements:

• Input:

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 167

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit ϕ : Γt → {0, 1} with linear structure,
alphabet Σ, rejection ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 · q−d0/h/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0).

– G′ is list-decoding with soundness error ε
def
= h · d0 · q−d0/h/γ and list size L

def
= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

The proof follows the proof of the corresponding lemma for constraint graphs (Lemma 5.3.4), with
the following modification: Recall that the proof of Lemma 5.3.4 described the graph G′ by describing
a verification procedure (the E-test, Figure 5.2). Moreover, recall that the E-test works by choosing a
random subspace F of edges and verifying that the edges in F are satisfied by the assignment Π (F).

In order to describe the graph G′ of Lemma 5.6.26, we describe a decoding procedure (the E-decoder,
see Figure 5.4 below). The E-decoder is constructed by changing the E-test as follows. Whenever the E-
decoder is required to decode an index k ∈ [t], the E-decoder chooses a random edge e that is associated
with k, and then chooses the subspace F to be a random subspace that contains e. The E-decoder then
checks, as before, that the edges in F are satisfied by the assignment Π (F). If one of the edges in F is
unsatisfied, then the E-decoder rejects. If all the edges in F are satisfied, then the E-decoder decodes
the index k by invoking the circuit ψe associated with e on input Π (F)|e.

The intuition that underlies the construction of the E-decoder is as follows. Just as in the proof of
Lemma 5.3.4, we argue that the E-decoder contains an implicit S-test, and therefore the assignment Π
needs to be roughly consistent with some assignment π to G in order to be accepted. We now consider
two cases:

1. If G has high decoding error on π, then by the soundness of G it holds that many of the edges of
G reject π. By the sampling property of F , there are many edges in F that reject π, and therefore
the E-decoder must reject with high probability.

2. If G has low decoding error on π, then due to the sampling property of F , only few of the edges in
F err. In particular, since e is distributed like a random edge of F , it only errs with low probability.
Thus, in this case the E-decoder decodes correctly with high probability.

Thus, in both cases the soundness error of the E-decoder is small.

5.8.1 The construction of G′ and its parameters

The decoding graph G′ is constructed as follows. Let G = (Fm, E) and d0 be as in Lemma 5.6.26
(derandomized parallel repetition for dPCPs), and let d1 = h · d0 where h is the universal constant from
Lemma 5.6.26 to be chosen later. As in the proof of the corresponding lemma for constraint graphs
(Lemma 5.3.4), the graph G′ is bipartite, the right vertices of G′ are the 2d0-subspaces of Fm (the vertex-
space of G), and the left vertices of G′ are the 2d1-subspaces of the edge space E of G. An assignment
Π to G′ should label each 2d0-subspace A of Fm with a function from A to Σ, and each 2d1-subspace F

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 168

1. Suppose that we are required to decode an index k ∈ [t]. Let e = (u, v) be
a uniformly distributed edge of G that is associated with k, and let ψe be its
associated circuit.

2. Let FL and FR to be random d1-subspaces of E, and let

BL
def
= left (FL) , BR

def
= right (FR) , F

def
= FL + FR.

FL and FR are chosen to be uniformly and independently distributed d1-
subspaces of E conditioned on e ∈ F , dim(F) = 2d1, dim (BL) = d1,
dim (BR) = d1, and BL ∩BR = {0}.

3. Let AL and AR be uniformly distributed d0-subspaces of BL and BR respectively,
and let

A
def
= AL + AR.

4. If either Π (F)|(AL,AR) 6= Π (A)|(AL,AR) or the assignment Π (F) is rejected by of
the edges in F , output ⊥.

5. Otherwise, output ,ψe

(
Π (F)|u ,Π (F)|v

)
.

Figure 5.4: The E-decoder

of E with a function that maps the endpoints of the edges in F to Σ. The edges of G′ are constructed
such that they simulate the action of the “E-decoder” described in Figure 5.4.

The completeness, size, and alphabet size of G′ is can be verified in the same way as it was done in
the proof of Lemma 5.3.4, and so is the fact that G′ has the projection property. It remains to analyze
the soundness of G′, which is done in the following section.

5.8.2 The soundness of G′

We turn to prove that G′ is list-decoding with ε = h · d0 · q−d0/h/γ and list size L = qO(d0). Let Π be an
assignment to G′. That is, we prove that there exists a (possible empty) list of satisfying assignments
x1, . . . , xL ∈ Γt to the input circuit ϕ such that when given as input a uniformly distributed index
k ∈ [t], the probability that the output of the E-decoder is not in

{
x1
k, . . . , x

L
k ,⊥

}
is at most ε.

Consider the distribution on the edges of G′ that results from letting the edge e of the E-decoder
be chosen according to the uniform distribution on the edges of G instead of the decoding distribution
of G. We will refer to the above distribution as the G-uniform distribution of G′. It is straightforward
to show that the G-uniform distribution and decoding distribution of G′ are γ-similar, by applying
Claim 5.2.18 with X1 and X2 being the choices of e according the the G-uniform distribution and the
decoding distribution, and Y1 and Y2 being the G-uniform distribution and decoding distribution of G′

respectively. In the following proof, all the probability expressions are not over the decoding distribution
of G′, but rather over the G-uniform distribution of G′. We will later use the similarity between the
distributions to argue that G′ has small soundness error with respect to its decoding distribution.

Notation 5.8.1. We denote by D the random variable that equals to the output of the E-decoder. As
in the proof of Lemma 5.3.4 (derandomized parallel repetition for constraint graphs), we denote by T
the event in which the E-decoder accepts Π, so T is the event D 6= ⊥. Moreover, as in the proof of

Lemma 5.3.4, for an assignment π : Fm → Σ, we denote by Π (F)
α
≈ π the claim that for at least

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 169

1 − α fraction of the edges e of F it holds that Π (F) is consistent with π on both the endpoints of e,

and otherwise we denote Π (F)
α

6≈ π.

Our proof proceeds in two steps. We first show that there exists a (possible empty) assignments
π1, . . . , πL : Fm → Σ such that whenever the E-decoder accepts Π, it almost always does so while
being roughly consistent with one of the assignments π1, . . . , πL. We can then choose the assignments
x1, . . . , xL to be the assignments that minimize the decoding error of π1, . . . , πL respectively. Next, we
show that whenever Π is roughly consistent with πi, the E-decoder either rejects Π with high probability
(if πi has high decoding error) or decodes xi successfully with high probability (if πi has low decoding
error). Thus, the overall probability that the E-decoder fails is small.

The above strategy is made formal in the following three propositions. Let h′ and c be the universal

constants defined in Theorem 5.8.5 below, and let α
def
= h′ · d0 · q−d0/h

′
. Let ε0

def
= ε · γ/3 = h · d0 · q−d0/h/3

and let L = O (1/εc0).

Proposition 5.8.2. There exists a (possibly empty) list of assignments π1, . . . , πL : Fm → Σ such that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0.

Proposition 5.8.3. For every assignment π : Fm → Σ on which G has decoding error at least ε0/2L it

holds that Pr
[
T and Π (F)

4·α
≈ π

]
< ε0/L.

Proposition 5.8.4. For every assignment π : Fm → Σ on which G has decoding error less than ε0/2L
with respect to a satisfying assignment x to the input circuit ϕ it holds that

Pr
[
D 6= xk and Π (F)

4·α
≈ π

]
< ε0/L,

where k is the index on which the E-decoder is invoked.

Propositions 5.8.2 and 5.8.4 are proved in Sections 5.8.2.1 and 5.8.2.2 respectively. Proposition 5.8.3
can be proved in the same way as Proposition 5.5.7, by noting that due to the soundness of G, at least
ρ · ε0/2L of the edges of G reject π.

We now prove that G′ is (L, ε)-list decoding using Propositions 5.8.2, 5.8.3, and 5.8.4. Let π1, . . . , πL

be the assignments from Proposition 5.8.2. For each i ∈ [L], let xi be the assignment to ϕ that attains
the decoding error of πi. The decoding error of G′ on Π under the G-uniform distribution of G′ is as
follows.

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤

L∑
i=1

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and Π (F)

4·α
≈ πi

]
+ Pr

[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
≤

L∑
i=1

Pr
[
D /∈

{
xik,⊥

}
and Π (F)

4·α
≈ πi

]
+ Pr

[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
≤

L∑
i=1

ε0/L+ 2 · ε0 (5.7)

= 3 · ε0,

where Inequality 5.7 follows from Propositions 5.8.2 and 5.8.4. Finally, since the G-uniform distribution
of G′ and the decoding distribution of G′ are γ-similar, it follows that the decoding error of G′ on Π
under the decoding distribution of G′ is at most 3 · ε0/γ = ε, as required. �

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 170

5.8.2.1 Proof of Proposition 5.8.2

Recall that in order to analyze the soundness of the E-test in Proposition 5.5.6, we argued that the
E-test contains an “implicit S-test”, and then relied on a theorem regarding the soundness of the S-test
(Theorem 5.5.4). The aforementioned theorem said that if the S-test accepts an assignment Π with
some probability, then there exists an assignment π such that with some (smaller) probability, the S-
test accepts Π while being consistent with the S-direct product of π. This can be thought as a “unique
decoding” theorem, that decodes π from Π.

In order to prove Proposition 5.8.2 for the E-decoder, we use a similar argument, but this time we
use a “list decoding” theorem for the S-test. The following theorem says that there exists a short list
of assignments π1, . . . , πL, such that it is almost always the case that if the S-test accepts Π, it does so
while being consistent with the S-direct product of one of the assignments π1, . . . , πL.

Theorem 5.8.5 (List-decoding soundness of the S-test). There exist universal constants h′, c ∈ N such
that for every d0 ∈ N, d1 ≥ h′ · d0, and m ≥ h′ · d1, the following holds: Let ε ≥ h′ · d0 · q−d0/h

′
,

α
def
= h′ · d0 · q−d0/h

′
. Let Π be a (possibly randomized) assignment to 2d0-subspaces of Fm and to

pairs of d1-subspaces of Fm. Then, there exists a (possibly empty) list of L = O (1/εc) assignments
π1, . . . , πL : Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε.

Theorem 5.8.5 is proved in Section 5.9.
We turn to prove Proposition 5.8.2 based on Theorem 5.8.5. As in the proof of Proposition 5.5.6, we

begin by extending Π to pairs of independent d1-subspaces of Fm in a randomized manner as follows:
Given a pair of independent d1-subspaces B1 and B2, we choose F1 and F2 to be uniformly distributed
and independent d1-subspaces of E such that left (F1) = B1 and right (F2) = B2, and set Π (B1, B2) =
Π (F1 + F2)|(B1,B2).

Again as in the proof of Proposition 5.5.6, we observe that the probability that the E-decoder accepts
equals to the probability that the S-test accepts the extended Π. The reason is that the subspaces BL,
BR, AL, AR of the E-decoder are distributed like the subspaces B1, B2, A1, A2 of the S-test. By choosing
h to be at least the constant h′ we can invoke Theorem 5.8.5 (list-decoding soundness of the S-test),
and conclude that there there exists a list of L = O (1/εc) assignments π1, . . . , πL : Fm → Σ such that
for subspaces B1, B2, A1, A2 as in the S-test it holds that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε0.

The latter inequality is equivalent to the following inequality:

Pr
[
Π (F)|(BL,BR) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0,

which in turn implies the inequality

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0. (5.8)

In the rest of this section we show that this implies that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0 (5.9)

To this end, we use Claim 5.5.9, which was proved in Section 5.5.3.1 and is restated below.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 171

Claim (5.5.9, restated). For every fixed 2d0-subspace F0 of E such that Π (F0)
4α

6≈ π, it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

Claim 5.5.9 implies immediately the following corollary.

Corollary 5.8.6. For every i ∈ [L] it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃j ∈ [L] s.t. Π (F)
4·α
≈ πj

]
< 1/

(
qd1−2 · α2

)
.

In order to prove Inequality 5.9, we first show that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃i ∈ [L] s.t. Π (F)
4·α
≈ πi

]
≥ 1

2
. (5.10)

To show it, we prove an upper bound on the complement event, that is, we prove that

Pr
[
T and ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃i ∈ [L] s.t. Π (F)
4·α
≈ πi

]
≤ 1

2
.

To see the latter inequality, observe that the right end side is upper bounded by∑
i∈[L]

Pr
[

Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃j ∈ [L] s.t. Π (F)
4·α
≈ πj

]
≤

∑
i∈[L]

1/
(
qd1−2 · α2

)
= L · /

(
qd1−2 · α2

)
= O

(
1/εc0 ·

(
qd1−2 · α2

))
≤ 1

2
.

where the first inequality follows from Corollary 5.8.6, and the second inequality follows for sufficiently
large choice of h. Now, it holds that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR) and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
(5.11)

is upper bounded by

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0.

On the other hand, by writing the probability in (5.11) in conditional form and applying Inequality 5.10,
we obtain that the probability in (5.11) is at least

1

2
· Pr

[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
.

By combining the two last bounds, we obtain that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0,

as required. �

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 172

5.8.2.2 Proof of Proposition 5.8.4

Fix an assignment π : Fm → Σ on which G has decoding error less than ε0/2L with respect to a satisfying

assignment x of the input circuit ϕ. We prove that Pr
[
D 6= xk and Π (F)

4·α
≈ π

]
< ε0/L Let us denote

by E1 the event in which Π (F)
4·α
≈ π and by E2 the event in which F contains less than ε0/3L fraction

of edges on which G fails to decode x on π. We will prove that

Pr [D 6= xk and E1] = Pr
[
D 6= xk and Π (F)

4·α
≈ π

]
< ε0/L.

It holds that

Pr [D 6= xk and E1] = Pr [D 6= xk and E1 and E2] + Pr [ψ(a, b) 6= xk and E1 and ¬E2] .

We upper bound both terms on the right hand side. The second term is clearly upper bounded by
Pr [¬E2]. The latter probability can be shown to be at most O

(
L2/q2·d1−2 · ε2

0 + ·d1/q
m−2·d1

)
, using the

fact that F samples well the edges of G, and more specifically using an argument similar to the one
used in the proof of Proposition 5.5.7. For sufficiently large choice of h, the latter expression is upper
bounded by ε/3L.

We turn to upper bound the probability Pr [D 6= xj and E1 and E2]. This probability is upper
bounded by the probability Pr [D 6= xj|E1 and E2]. Now, let F0 be any 2d1-subspace of E such that

Π (F0)
4·α
≈ πi and such that the fraction of edges of F0 that fail to decode x on π is at most 2ε0/3L.

Let us consider the probability Pr [D 6= xj|F = F0]. Observe that conditioned on the choice F = F0,
the edge e chosen by the E-test is uniformly distributed among the edges of F . Observe that e fails to
decode x only if one of the endpoints of e is inconsistent with π or if e is one of the edges in F that fail
to decode x on π. The probability of the first case is at most 4 · α ≤ ε0/3L (where the latter inequality
holds for sufficiently large choice of h), and the probability of the second case is at most ε0/3L. It
therefore holds that

Pr [D 6= xk and E1 and E2] ≤ Pr [D 6= xj|F = F0] ≤ ε0/3L+ ε0/3L ≤ 2ε0/3L.

All in all, it holds that Pr [D 6= xk and E1] is at most 2ε0/3L+ 3 · ε0/3L = ε0/L, as required. �

5.9 The Analysis of the Specialized Direct Product Test

In this section we provide the analysis of the S-test and prove Theorems 5.5.4 and 5.8.5, which are the
theorems on the soundness of the S-test that are used in Sections 5.5.3.1 and 5.8.2.1 respectively. The
proof proceeds in two steps. First, in Section 5.9.1, we define and analyze an intermediate direct product
test, which we call the P 2-test. Then, in Section 5.9.2, we reduce the analysis of the S-test to that of
the P 2-test.

For the rest of this section, we let F be a finite field of size q and let d0, d1 ∈ N.

5.9.1 The P 2-test

In this section we define and analyze the P 2-test. Informally, the P 2-test consists of two P-tests that
are performed simultaneously. Details follow.

Given two strings π1, π2 : Fm → Σ, we define their P 2-direct product Π (with respect to d0, d1 ∈ N)
as follows: Π assigns each pair of d0-subspaces (A1, A2) the pair of functions (π1|A1 , π2|A2), and assigns
each pair of d1-subspaces (B1, B2) to the pair of functions (π1|B1 , π2|B2). We consider the task of testing
whether a given assignment Π is the P 2-direct product of some pair of strings π1, π2 : Fm → Σ. That

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 173

1. Choose two uniformly distributed d1-subspaces B1, B2 of Fm.

2. Choose two uniformly distributed d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1, A2).

Figure 5.5: The P 2-test

is, we are given an assignment Π , and in order to check whether Π is a P 2-direct product, we invoke
the P 2-test, described in Figure 5.5.

It is easy to see that if Π is a P 2-direct product then the P 2-test always accepts. Again, it can be
shown that if Π is “far” from being a P 2-direct product, then the P 2-test rejects with high probability,
and that this holds even if Π is a randomized assignment. Formally, we have the following result.

Theorem 5.9.1 (Soundness of the P 2-test). There exist universal constants h, c ∈ N such that the

following holds: Let ε ≥ h · d0 · q−d0/h, α
def
= h · d0 · q−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1. Suppose

that an assignment Π passes the P 2-test with probability at least ε. Then, there exist two assignments
π1 and π2 to Fm such that for B1, B2, A1, A2, distributed as in the P 2-test it holds that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A1, A2) and Π (A1, A2)

α
≈
(
π1|A1 , π2|A2

)
and Π (B1, B2)

α
≈
(
π1|B1 , π2|B2

)]
is at least Ω (εc).

In the rest of this section we prove Theorem 5.9.1. We denote by P the event in which the P 2-test
accepts, that is, that Π (B1, B2)|(A1,A2) = Π (A1, A2). The core of the proof is the following lemma:

Lemma 5.9.2. There exist universal constants h′, c′ ∈ N such that the following holds: Let ε ≥ h′ · d0 ·
q−d0/h

′
, α′

def
= h′ ·d0 ·q−d0/h

′
. Assume that d1 ≥ h′ ·d0, m ≥ h′ ·d1. If Π passes the P 2-test with probability

at least ε then there exists an assignment π2 : Fm → Σ such that

Pr

[
P and Π (A1, A2)|A2

α′

≈ π2|A2 and (B1, B2)|B2

α′

≈ π2|B2

]
≥ Ω(εc

′
),

and symmetrically, there exists a function π1 : Fm → Σ such that

Pr

[
P and Π (A1, A2)|A1

α′

≈ π1|A1 and (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω(εc

′
).

We prove Lemma 5.9.2 in Section 5.9.1.1. We turn to derive Theorem 5.9.1 from Lemma 5.9.2.

Proof of Theorem 5.9.1. The following proof is for the case where Π is not randomized, but it can
be easily extended to the case where Π is randomized (see Remark 5.9.4 for details). We will choose h
to be larger than the constant h′ of Lemma 5.9.2, so we can apply this lemma. Let π2 : Fm → Σ be the
assignment guaranteed by Lemma 5.9.2, and let Π′ be an assignment that is obtained from Π as follows:

1. For every pair (A1, A2) for which Π (A1, A2)|A2

α′

≈ π2|A2 , set Π′ (A1, A2) = Π (A1, A2).

2. For every other pair (A1, A2), set Π′ (A1, A2) = ⊥, where ⊥ is some special value on which the test
never accepts.

3. Set the pairs (B1, B2) similarly.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 174

The probability ε′ that the assignment Π′ passes the P 2-test is at least Ω(εc
′
) by the definition of π2.

By choosing h to be sufficiently larger than the corresponding constants of Lemma 5.9.2, we can make
sure that ε′ satisfies the requirements of Lemma 5.9.2. Therefore, we can deduce by Lemma 5.9.2 that
there exists an assignment π1 : Fm → Σ such that

Pr

[
P and Π′ (A1, A2)|A1

α′

≈ π1|A1 and Π′ (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω((ε′)

c′
) = Ω(ε(c′)2).

We now choose c = (c′)2. Since the test never accepts when Π′ answers ⊥, we deduce that

Pr

[
P and Π(A1, A2)

α′

≈
(
π1|A1 , π2|A2

)
and Π (B1, B2)

α′

≈
(
π1|B1 , π2|B2

)]
≥ Ω(εc).

Choosing h such that α ≥ α′ completes the proof. �

Remark 5.9.3. Technically speaking, our use of the special value ⊥ requires formal justification, since
when defining the P 2-test and stating Lemma 5.9.2 we did not allow the use of such a special symbol.
To this end, we observe that the use of ⊥ can be implemented as follows: Let Σ′ = Σ∪{⊥A,⊥B}, where
⊥A,⊥B are symbols outside Σ. We first observe that Lemma 5.9.2 works just as well if we replace the
alphabet Σ with the modified alphabet Σ′, since Lemma 5.9.2 is oblivious to the choice of the alphabet.
Now, whenever we wish to set Π′ (A1, A2) = ⊥ in the proof of Theorem 5.9.1, we actually set Π′ (A1, A2)
to be the pair of functions that map all the vectors of A1 and A2 respectively to the symbol ⊥A. We
deal with the case of Π′ (B1, B2) = ⊥ similarly, this time using the symbol ⊥B. It remains to observe
that when assigning Π′ (A1, A2) this way, the P 2-test will always reject Π′ (A1, A2), since the assignment
Π′ never assigns pairs (B1, B2) with the symbol ⊥A. The same holds for the case of Π′ (B1, B2) = ⊥.

Remark 5.9.4. If Π is randomized, then the definition of Π′ in the foregoing proof should be slightly
changed to consider the internal randomness of Π. That is, we define Π′ to be a randomized assignment,
and obtain it from Π as follows. For every pair (A1, A2) and every internal randomness ω of Π, let
us denote by (a1, a2) the output of Π on (A1, A2) and randomness ω. We define the output of Π′ on

(A1, A2) and randomness ω to be (a1, a2) if a2
α′

≈ π2|A2 , and define it to be ⊥ otherwise. The definition
for pairs (B1, B2) is again similar.

5.9.1.1 The proof of Lemma 5.9.2

We prove Lemma 5.9.2 only for the assignment π2, and the conclusion π1 can be proved analogously. The
proof proceeds in three steps. First, we rely on Theorem 5.2.2 (soundness of the P-test) to find for each
pair of A1, B1 a direct product function that agrees (on average) with a good fraction of Π(A1, ·) and
Π(B1, ·). Then, we show that for each A1 separately, the number of distinct such functions is bounded.
Next, we show that there is a single function π such that the probability that the test accepts and
Π (A1, A2)|A2

≈ π|A2 is non-negligible (A priori there could have been a different π for each A1). Finally,
we extend the latter result for d1-subspaces B1, B2. Let h1 be the universal constant whose existence is
guaranteed in Theorem 5.2.2, and let α1 be the corresponding value from Theorem 5.2.2.

Step 1. Consider the bipartite graph corresponding to the P -test, that is, the graph whose left vertices
are d0-subspaces and whose right vertices are d1-subspaces, and such that a d0-subspace A1 is connected
to a d1-subspace B1 by an edge if and only if A1 ⊆ B1. . We label an edge (A1, B1) by π : Fm → Σ if

Pr
A2,B2

[
P and Π (B1, B2)|B2

α1≈ π|B2 and Π (A1, A2)|A2

α1≈ π|A2

]
≥ Ω

(
ε4
)
.

If no such π exists then do not label the edge.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 175

Fix A1, B1. We will choose the universal constant h′ to be at least 2 ·h1. If the probability of passing
the P 2-test conditioned on A1, B1 is at least ε/2, then we claim that the edge is labeled. Indeed, define
an assignment Π(A1,B1) by

Π(A1,B1)(A2) = Π (A1, A2)|A2
and Π(A1,B1)(B2) = Π (B1, B2)|B2

.

If Π(A1,B1) passes the P -test with probability at least ε/2, then by Theorem 5.2.2 (soundness of the
P-test) there is an assignment π as needed (since h′ ≥ 2 · h1).

Furthermore, observe that by averaging at least ε/2 of the edges (A1, B1) have conditional success
at least ε/2, so (A1, B1) is labeled.

Step 2. Fix B1 and let L(B1) be the labels on edges touching B1. Consider the following “pruning”
process: arbitrarily choose a label π ∈ L(B1) and remove all elements in L(B1) that are within relative
Hamming distance 3α1 of π. Repeat until no more labels can be removed. Let L′(B1) denote the
remaining set of labels. The set L′(B1) has the following properties

• Every pair of labels in L′(B1) are at least 3α1 apart, and

• Every f ∈ L(B1) is 3α1-close to some label in L′(B1).

We prove that |L′(B1)| ≤ O(1/ε4), using an argument in the spirit of the Johnson bound: Suppose
L′(B1) = {π1, π2, . . .} is non-empty. For every πi 6= πj ∈ L′(B) let us denote

pi
def
= Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2

]
pi,j = Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2 and Π (B1, B2)|B2

α1≈ πj|B2

]
.

By the definition of the labels πi, we know that for some universal constant η it holds that pi ≥ η · ε4

for every πi. We upper bound the fractions pi,j: We know that for every πi 6= πj it holds that πi
3·α1

6≈ πj.
It follows that

pi,j ≤ Pr
B2

[
πi|B2

2·α1≈ πj|B2

]
≤ 1/

(
qd1−2 ·

(
α1 − q−d1

)2
)

≤ 1

2
· η2 · ε8,

where the second inequality follows by Lemma 5.2.4 (subspace-point sampler) and the third inequality
holds for sufficiently large choice of h′. Now, by the inclusion-exclusion principle that∑

i

pi −
∑
i 6=j

pi,j ≤ 1

|L′(B1)| ·
(
η · ε4

)
− 1

2
|L′(B1)|2 ·

(
1

2
· η2 · ε8

)
≤ 1.

The last inequality immediately implies that |L′(B1)| ≤ 2/ (η · ε4) = O(1/ε4).
We define L(A1) similarly, and prune it to L′(A1). Imagine now choosing a random πA1 ∈ L′(A)

for each A1 and a random πB1 ∈ L′(B1) for each B1. An edge (A1, B1) is called alive if it is labeled
by a function π that is 3α′-close to both πA1 and πB1 . We expect at least 1/ |L′(A)| |L′(B)| = Ω(ε8)
fraction of edges to be alive. Fix a choice of πA1 and πB1 for each A1 and B1 in a way that attains this
expectation.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 176

Step 3. Let D1 be the distribution of choosing a random d1-subspace B1 and two neighbors A1, A
′
1

of it in the graph. Let D2 be the distribution of choosing two d0-spaces A1, A
′
1 independently and a

random B1 that is a common neighbor of them in the graph. The statistical distance between D1 and
D2 is small:

Claim 5.9.5. For every κ ∈ N, if the constant h′ is sufficiently large then the distributions D1 and D2

are δ-close for δ < ε24/κ.

We defer the proof of this claim to Section 5.9.1.2. Now choose a random triplet A1, A
′
1, B1 according

to D1. We lower bound the probability that both edges (A1, B1) and (A′1, B1) are alive. This certainly
holds if (i) Ω(ε8) fraction of the edges adjacent to B are alive, and (ii) both edges (A1, B1) and (A′1, B1)
are alive. Part (i) holds with probability Ω(ε8) and conditioned on this, Part (ii) holds with probability
at least Ω(ε16). Altogether

Pr
(B1,A1,A′1)∼D1

[(A1, B1), (A′1, B1) are both alive] = Ω(ε24).

Finally, if we let δ be the statistical distance of D1 and D2, and apply Claim 5.9.5 with sufficiently large
choices of κ and h′, then we have that

Pr
(B1,A1,A′1)∼D2

[(A1, B1), (A′1, B1) are both alive] ≥ Ω(ε24)− δ = Ω(ε24).

Now fix A1 such that the above holds when conditioning on A1. This means that for at least Ω(ε24)
fraction of the d0-subspaces A′1 there exists a d1-subspace B1 such that both the edges (A1, B1) and
(A′1, B1) are alive. For each such A′1, it holds that the label of (A′1, B1) is 3α1-close to πB1 , which in turn
is 3α1-close to the label of the edge (A1, B1), which is 3α1-close to πA1 . Thus, the label of (A′1, B1) is is
9α1-close to πA1 . Let us denote by π(A′1,B1) the label of the edge (A′1, B1). Recall that by the definition

of π(A′1,B1) it holds that

Pr
A2,B2

[
P and Π (A′1, A2)|A2

α1≈ π(A′1,B1)|A2

]
≥ Ω

(
ε4
)
. (5.12)

Since π(A′1,B1)
9·α1≈ πA it holds by Lemma 5.2.4 (subspace-point sampler) that for a uniformly distributed

d0-subspace A2:

Pr
A2

[
π(A′1,B1)|A2

10·α1

6≈ πA1|A2

]
≤ 1

qd0−2 · (α1 − q−d0)2 .

The latter expression can be made smaller than any constant times ε4 by choosing h′ to be sufficiently
large. By subtracting that expression from Inequality 5.12, we obtain that

Pr
A2,B2

[
P and Π (A′1, A2)|A2

α1≈ π(A′1,B1)|A2
and π(A′1,B1)|A2

10·α1≈ πA1|A2

]
≥ Ω

(
ε4
)
.

By letting π2 = πA1 and choosing c′ = 28, we have by the triangle inequality

Pr
A′1,A2

[
P and Π (A′1, A2)|A2

11·α1≈ π2|A2

]
≥ Ω(ε24) · Ω

(
ε4
)

= Ω(εc
′
). (5.13)

Step 4. It remains to show that the assignment Π agrees with π2 on a non-negligible fraction of the
B’s. To this end, we observe that

Pr

[
P and Π (A1, A2)|A2

11·α1≈ π2|A2

∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1

qd0−2 · (α1/2)2 . (5.14)

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 177

To see it, note that it suffices to prove that

Pr

[
Π (B1, B2)|A2

11·α1≈ π2|A2

∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1

qd0−2 · (α1 − q−d0)2 ≤
1

qd0−2 · (α1/2)2 .

The latter inequality is an immediate corollary of Lemma 5.2.4 (subspace-point sampler).
Now, by choosing h′ to be sufficiently large so that the upper bound in Inequality 5.14 is sufficiently

smaller than εc
′
, and by combining Inequality 5.13 with Inequality 5.14, we obtain that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2 and Π (B1, B2)|B2

12·α1≈ π2|B2

]
≥ Ω(εc

′
).

By setting h′ such that α′ ≥ 12 · α1 this concludes the proof of Lemma 5.9.2. �

5.9.1.2 Proofs of Auxiliary Claim

Proof of Claim 5.9.5. Fix κ ∈ N. In order to prove the claim, consider the event J which holds if
and only if A and A′ are independent. We argue that

D1

δ/2
≈ D1|J = D2|J

δ/2
≈ D2.

The fact that D1|J = D2|J is exactly Proposition 5.2.4. We show that D1

δ/2
≈ D1|J and D2

δ/2
≈ D2|J .

The statistical distance between D1 and D1|J (respectively, D2 and D2|J) is exactly the probability that
the event J does not occur under D1 (respectively D2). It follows immediately from Proposition 5.2.16
that PrD1 [¬J] ≤ 2 · d0/q

d1−2·d0 and PrD2 [¬J] ≤ 2 · d0/q
m−2·d0 . Both the latter expressions can indeed

be made smaller than ε24/κ by choosing sufficiently large h′, as required. �

5.9.2 The proof of Theorems 5.5.4 and 5.8.5

In the rest of this section we prove Theorems 5.5.4 and 5.8.5.

Theorem (5.5.4, the soundness of the S-test, restated). There exists a universal constants h, c ∈ N such

that the following holds: Let ε ≥ h · d0 · q−d0/h, α
def
= h · d0 · q−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1.

Suppose that a (possible randomized) assignment Π passes the S-test with probability at least ε. There
exists an assignment π : Fm → Σ for which the following holds. Let B1, B2 be uniformly distributed
and independent d1-subspaces of Fm, let A1 and A2 be uniformly distributed d0-subspaces of B1 and B2

respectively, and denote A = A1 + A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc) .

Remark 5.9.6. Note that in the foregoing restatement of Theorem 5.5.4 we denote the first universal
constant by h, while in its original statement it was denoted by h′.

The intuition that underlies the proof is the following. Consider an adversary the chooses the proof Π.
Since the S-test essentially contains a P 2-test, the adversary must choose the assignment Π such that for
random d0-subspaces A1 and A2, the assignment Π (A1 + A2)|(A1,A2) is consistent with two assignments
π1, π2 on A1, A2 respectively. On the other hand, given the sum A1 +A2, the adversary can not deduce
the choices of A1 and A2, and therefore he must label both of A1 and A2 with the same assignment
in order to make the S-test accept. We conclude that π1 and π2 must be essentially the same. Details
follow.

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 178

Let h′ be the universal constant whose existence guaranteed in Theorem 5.9.1 (soundness of the P 2-
test), and let α′ be the corresponding value from Theorem 5.9.1. We choose c to be the same constant
as in Theorem 5.9.1, and will choose the universal constant h to be at least h′.

Fix an assignment Π that passes the S-test with probability at least ε. We define a new assignment
Π′ that assigns values to pairs of d0-subspaces and to pairs of d1-subspaces of Fm (not necessarily
independent) by choosing Π′ (B1, B2) (respectively Π′ (A1, A2)) to be equal to Π (B1, B2) (respectively
Π (A1 + A2)) if B1 and B2 (respectively A1 and A2) are independent, and choosing Π′ to be arbitrary
otherwise. Observe that the assignment Π′ passes the P 2-test whenever B1 and B2 are independent and
Π passes the S-test. Furthermore, the probability that two uniformly distributed d1-subspaces B1 and
B2 of Fm are not independent is at most d1/q

m−2·d1 by Proposition 5.2.16, and therefore Π′ passes the
P 2-test with probability at least ε−d1/q

m−2·d1 . For a sufficiently large choice of h, the latter probability
is at least Ω (ε), and also matches the requirements of Theorem 5.9.1 (soundness of the P 2-test), so we
can apply this theorem. It follows that there exist assignments π1, π2 : Fm → Σ such that for uniformly
distributed (not necessarily independent) B1, B2, A1 ⊆ B1, A2 ⊆ B2 it holds that

Pr[Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) (5.15)

and Π′ (A1, A2)
α′

≈
(
π1|A1 , π2|A2

)
and Π′ (B1, B2)

α′

≈
(
π1|B1 , π2|B2

)
]

= Ω (εc) .

The probability that B1 and B2 are not independent is at most d1/q
m−2·d1 , and the latter expression

can be made smaller than any constant factor times εc by choosing h to be sufficiently large. Thus,
Inequality 5.15 also holds for uniformly distributed independent B1 and B2. We now argue that

Claim 5.9.7. For sufficiently large choice of h, it holds that π1
5·α′
≈ π2.

We defer the proof of Claim 5.9.7 to the end of this section. We turn to prove the theorem. By
Inequality 5.15 it holds for uniformly distributed and independent d1-subspaces B1 and B2 of Fm that

Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1 , π2|B2

)]
≥ Ω (εc) .

By Claim 5.9.7 it holds that π1
5·α′
≈ π2. Since B2 is a uniformly distributed d1-subspace of Fm, this

implies by Lemma 5.2.4 (subspace-point sampler) that

Pr

[
π1|B2

6·α′
≈ π2|B2

]
≥ 1− 1

qd1−2 · (α′ − q−d1)2 ≥ 1− 1

qd1−2 · (α′/2)2 .

We conclude that

Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

7·α′
≈
(
π1|B1 , π1|B2

)]
≥ Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1 , π2|B2

)
and π1|B2

6·α′
≈ π2|B2

]
= Ω (εc)− 1

qd1−2 · (α′/2)2

= Ω (εc) ,

where the last equality holds for sufficiently large choice of h. the theorem now follows by defining
π = π1 and setting h to be sufficiently large such that α = 7 · α′. �

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 179

Proof of Claim 5.9.7. For the sake of contradiction, assume that π1

5·α′
6≈ π2. Let A be a uniformly

distributed 2 · d0-subspace A of Fm and let A1 and A2 be uniformly distributed and independent d0-
subspaces of A. By Lemma 5.2.4, it holds that

Pr

[
π1|A

4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′ − q−2d0)2 ≥ 1− 1

q2·d0−2 · (α′/2)2 .

If π1|A
4·α′
6≈ π2|A then by the triangle inequality it either holds that Π (A)

2·α′
6≈ π1|A or that Π (A)

2·α′
6≈ π2|A.

Since A1 is a uniformly distributed d0-subspace of A, it holds by Lemma 5.2.4 (subspace-point sampler)
that

Pr

[
Π (A)|A1

α′

6≈ π1|A1

∣∣∣∣Π (A)
2·α′
6≈ π1|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2 .

A similar claim can be made for π2 and A2. Now, if either Π (A)|A1

α′

6≈ π1|A1 or Π (A)|A2

α′

6≈ π2|A2 then by

definition it holds that Π (A)|(A1,A2)

α′

6≈
(
π1|A1 , π2|A2

)
. We conclude that

Pr

[
Π (A)|(A1,A2)

α′

6≈
(
π1|A1 , π2|A2

)∣∣∣∣ π1|A
4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2 ,

and therefore by lifting the conditioning and substituting A = A1 + A2 we obtain that for a uniformly
distributed and independent d0-subspaces A1 and A2 of Fm it holds that

Pr

[
Π (A1 + A2)|(A1,A2)

α′

≈
(
π1|A1 , π2|A2

)]
≤ 2

q2·d0−2 · (α′/2)2 .

On the other hand, by the definition of Π′, Inequality 5.15 implies that for uniformly distributed and
independent d0-subspaces A1 and A2 of Fm it holds that

Pr

[
Π (A1 + A2)|(A1,A2)

α′

≈
(
π1|A1 , π2|A2

)]
≥ Ω (εc) .

By choosing h to be sufficiently large, the latter lower bound can be made larger than 2/
(
q2·d0−2 · (α′)2),

and this is a contradiction. �

Theorem 5.9.8 (5.8.5, list-decoding soundness of the S-test, restated). There exist universal constants
h, c ∈ N such that for every d0 ∈ N, d1 ≥ h ·d0, and m ≥ h ·d1, the following holds: Let ε ≥ h ·d0 ·q−d0/h,

α
def
= h · d0 · q−d0/h. Let Π be a (possibly randomized) assignment to 2d0-subspaces of Fm and to pairs of

d1-subspaces of Fm. Then, there exists a (possibly empty) list of L = O (1/εc) assignments π1, . . . , πL :
Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε

Remark 5.9.9. Note that in the foregoing restatement of Theorem 5.8.5 we denote the first universal
constant by h, while in its original statement it was denoted by h′.

The basic idea of the proof is as follows. We apply Theorem 5.5.4 to Π, thus “decoding” from it an
assignment π1. We then remove from Π the places at which it roughly agrees with π1, resulting in an
assignment Π2. If the assignment Π2 is accepted by the S-test with probability less than ε, then we are
finished - the required list of assignments in this case consists only of π1. Otherwise, the assignment Π2

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 180

is accepted by the S-test with probability at least ε, and we can therefore “decode” a second assignment
π2 from Π2. Next, we remove from Π2 the places at which it roughly agrees with π2, resulting in an
assignment Π3. We proceed in this manner, each time obtaining new assignments Πi and πi, until the
conclusion of Theorem 5.8.5 holds.

We prove Theorem 5.8.5 only for non-randomized assignments Π, but the proof can easily be extended
to randomized assignments, see Remark 5.9.11 for details. We choose the constants h and c to be the
same as in Theorem 5.5.4. If the S-test accepts Π with probability less than ε then the theorem holds
vacuously. We thus assume that the S-test accepts Π with probability at least ε. We show that for
L = O (1/εc) there exist assignments π1, . . . , πL : Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]
(5.16)

−Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and ∃i ∈ [L] : Π (B1, B2)

α
≈ πi|(B1,B2)

]
≤ ε.

We construct the assignments π1, . . . , πL as follows. We begin by applying Theorem 5.5.4 to Π, obtaining

the assignment π1, and set Π1 def
= Π. Then, for each i ≥ 1 we define an assignment Πi+1 as follows.

1. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α
≈ πi|(B1,B2), we set Πi+1 (B1, B2) = ⊥,

where ⊥ is a special symbol that the test always rejects. This is our formal way of “removing”
Πi (B1, B2).

2. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α

6≈ πi|(B1,B2), we set Πi+1 (B1, B2) =

Πi (B1, B2).

3. For every 2d0-subspace A, we set Πi+1 (A) = Πi (A).

Now, observe that

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
(5.17)

= Pr
[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2)

]
−Pr

[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) ∧ Πi (B1, B2)

α
≈ πi|(B1,B2)

]
,

since we must have Πi+1 (B1, B2)|(A1,A2) 6= Πi+1 (A)|(A1,A2) whenever Πi+1 (B1, B2)|(A1,A2) = ⊥, and the

latter occurs whenever Πi (B1, B2)
α
≈ πi|(B1,B2). If Pr

[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
< ε then

we set L = i and finish the construction. Otherwise, we construct πi+1 by applying Theorem 5.5.4 to
the assignment Πi+1 and setting πi+1 to be the resulting assignment.

It is easy to prove by induction that for every i ∈ [L] it holds that

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
(5.18)

= Pr
A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]
− Pr

A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and ∃i ∈ [L] : Πi (B1, B2)

α
≈ πi|(B1,B2)

]
.

The proof of the Equality 5.18 goes essentially by summing over the probabilities of events of the form

Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) and Πi (B1, B2)
α
≈ πj|(B1,B2) and 6 ∃j < i s.t. Πj (B1, B2)

α
≈ πj|(B1,B2),

CHAPTER 5. COMBINATORIAL PCPS WITH LOW SOUNDNESS ERROR 181

for different values of i.
Finally, by combining Equality 5.18 with the fact that

Pr
[
ΠL+1 (B1, B2)|(A1,A2) = ΠL+1 (A)|(A1,A2)

]
< ε,

it follows that the assignments π1, . . . , πL satisfy Inequality 5.16. To see that L = O (1/εc), observe that
for each i we have that

Pr
[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) and Πi (B1, B2)

α
≈ πi|(B1,B2)

]
= Ω (εc) .

By Equality 5.17, this implies that the acceptance probability of Πi+1 is smaller than the acceptance
probability of Πi by at least εc, and therefore that the number of iterations can be at most O (1/εc), as
required.

Remark 5.9.10. As in the proof of Theorem 5.9.1 (soundness of the P 2-test), the use of the special
symbol ⊥ requires formal justification. This can be done as explained in Remark 5.9.3.

Remark 5.9.11. As in the proof of Theorem 5.9.1 (soundness of the P 2-test), if Π is randomized, then
for each i the definition of Πi+1 should be slightly changed to consider the internal randomness of Πi.
That is, we define Πi+1 to be a randomized assignment, and obtain it from Π as follows. For every pair
(B1, B2) and every internal randomness ω of Πi, let us denote by (b1, b2) the output of Πi on (B1, B2) and

randomness ω. We define the output of Πi+1 on (B1, B2) and randomness ω to be ⊥ if (b1, b2)
α′

≈ πi|(B1,B2),

and define it to be (b1, b2) otherwise. The definition for 2d0-spaces A can be changed similarly to include
the internal randomness of Πi. �

Bibliography

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38:509–516, 1992.

[AL96] Sanjeev Arora and Carsten Lund. Hardness of Approximations. PW Publishing, 1996.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and intractability of approximation problems. Journal of ACM, 45(3):501–555,
1998. Preliminary version in FOCS 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization of
NP. Journal of ACM volume, 45(1):70–122, 1998. Preliminary version in FOCS 1992.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Com-
binatorica, 23(3):365–426, 2003.

[AW08] Scott Aaronson and Avi Wigderson. Algebrization: a new barrier in complexity theory. In
STOC, pages 731–740, 2008.

[Bab85] László Babai. Trading group theory for randomness. In STOC, pages 421–429, 1985.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In STOC, pages 21–31, 1991.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In IEEE
Conference on Computational Complexity, pages 194–203, 2002.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient proba-
bilistically checkable proofs and applications to approximations. In STOC, pages 294–304,
1993.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. pages 120–134, 2005.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. SIAM Journal of Computing,
36(4):120–134, 2006.

182

BIBLIOGRAPHY 183

[BSHLM09] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-query PCPPs
are long. TOCT, 1(2), 2009.

[BSS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes. Ran-
dom Struct. Algorithms, 28(4):387–402, 2006. Preliminary version in APPROX-RANDOM
2004.

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008. Preliminary version in STOC 2005.

[BSV09a] Eli Ben-Sasson and Michael Viderman. Composition of semi-ltcs by two-wise tensor prod-
ucts. In APPROX-RANDOM, pages 378–391, 2009.

[BSV09b] Eli Ben-Sasson and Michael Viderman. Tensor products of weakly smooth codes are robust.
Theory of Computing, 5(1):239–255, 2009.

[Cam98] Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University
Press, Cambridge CB2 2RU, MA, USA, 1998.

[DFK+99] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP characterizations
of NP: Towards a polynomially-small error-probability. In STOC, pages 29–40, 1999.

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range. In
FOCS, pages 613–622, 2008.

[DH09] Irit Dinur and Praladh Harsha. Composition of low-error 2-query PCPs using decodable
PCPs. In FOCS, 2009.

[Din07] Irit Dinur. The PCP Theorem by gap amplification. Journal of ACM, 54(3):241–250, 2007.
Preliminary version in STOC 2006.

[DM10] Irit Dinur and Or Meir. Derandomized parallel repetition of structured PCPs. In IEEE
Conference on Computational Complexity, pages 16–27, 2010. Full version can be obtained
as ECCC TR10-107.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proof of the
PCP theorem. SIAM Journal of Computing, 36(4):155–164, 2006.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of ldpc codes. In APPROX-RANDOM, pages 304–315, 2006.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.

[FK95] Uriel Feige and Joe Kilian. Impossibility results for recycling random bits in two-prover
proof systems. In STOC, pages 457–468, 1995.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989.

BIBLIOGRAPHY 184

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[Gol08] Oded Goldreich. Probabilistic proof systems: A primer. Foundations and Trends in Theo-
retical Computer Science, 3(1):1–91, 2008.

[GS00] Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application to
proving the PCP theorem. SIAM J. Comput., 29(4):1132–1154, 2000.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost linear length.
Journal of ACM, 53(4):558–655, 2006. Preliminary version in FOCS 2002, pages 13-22.

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: simplified, optimized, and derandomized. In STOC, pages 579–
588, 2008.

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product testers
and 2-query PCPs. In STOC, pages 131–140, 2009.

[Kho06] Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM J. Comput., 36(4):1025–1071, 2006.

[Köt92] Ralf Kötter. A unified description of an error locating procedure for linear codes. In
Proceedings of the International Workshop on Algebraic and Combinatorial Coding Theory,
pages 113–117, 1992.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array, trees,
hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LPS88] Alexander Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[Mei09] Or Meir. Combinatorial PCPs with efficient verifiers. In FOCS, 2009. Full version is
available as ECCC TR11-104.

[Mei10a] Or Meir. Combinatorial pcps with short proofs. 2010. In preparation.

[Mei10b] Or Meir. IP = PSPACE using error correcting codes. Electronic Colloquium on Computa-
tional Complexity (ECCC), (137), 2010.

[MR08] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In FOCS, 2008.
Full version is available as ECCC TR08-071.

[MS88] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error cor-
recting codes. Elsevier/North-Holland, Amsterdam, 1988.

[Pel92] Ruud Pellikaan. On decoding by error location and dependent sets of error positions.
Discrete Mathematics, 106-107:369–381, 1992.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

BIBLIOGRAPHY 185

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
STOC, pages 194–203, 1994.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In STOC, pages 475–484, 1997.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. Preliminary version in FOCS
1990.

[She92] Alexander Shen. IP = PSPACE: Simplified proof. J. ACM, 39(4):878–880, 1992.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

[Sud01] Madhu Sudan. Algorithmic introduction to coding theory (lecture notes), 2001. Available
from http://theory.csail.mit.edu/~madhu/FT01/.

[Sze99] Mario Szegedy. Many-valued logics and holographic proofs. In ICALP, pages 676–686,
1999.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, pages
162–176, 1977.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, 117:739–741, 1957.

